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Preface

We are living in a connected world, where a wide variety of computing and sensing
components interact with each other. Secure computation and trusted communi-
cation are essential as intelligent computing devices are increasingly embedded
in every possible device in our daily life such as wearable devices, autonomous
vehicles, and smart homes. Any failure of security and trust requirements of
these devices may endanger human life and environment by causing damages to
critical infrastructure, violating personal privacy, or undermining the credibility
of a business. Attacks on hardware can be more critical than traditional attacks
on software since patching is extremely difficult (almost impossible) on hardware
designs. Note that hardware designs are fixed after fabrication, and any existing
vulnerability in their implementations can be exploited by attackers. Moreover, the
same attack can be repeated on every instance of the fabricated design. The problem
gets worse when we consider the increasing complexity of the semiconductor
designs. Therefore, effective and well-developed hardware security validation and
verification techniques are vital for the security assurance of today’s designs.

Modern computing devices are designed using System-on-Chip (SoC) technol-
ogy. Modern SoC designs contain several highly sensitive assets such as encryption
keys, device configurations, and on-device protected data that are responsible for
keeping our personal, financial, and intimate physiological information safe and
secure. These assets should be protected from any unauthorized access. With the
globalization of the semiconductor industry, the outsourcing and integration of third-
party hardware Intellectual Property (IP) has become a common practice in SoC
design methodology. However, it raises significant security concerns as an attacker
can insert malicious components (e.g., hardware Trojans) in third-party IPs and
tamper the system. There are a wide variety of security vulnerabilities for hardware
designs. Attacks on hardware can be immensely dangerous and can harm human life
and environment by causing damages to critical infrastructure, violating personal
privacy, or undermining the credibility of a business. These attacks may arise
from a wide variety of sources such as malicious components, insecure connection
to software, firmware, and other devices as well as side-channel vulnerabilities
through energy, power, and performance profiles. Given the importance of hardware
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security and the extreme consequences of vulnerable SoC designs, it is critical to
ensure their correctness from both functional and security perspectives. There has
been a plethora of research (including conference and journal publications) in the
last decade on developing efficient security validation and verification techniques.
This book covers a wide variety of state-of-the-art SoC security validation and
verification techniques.

This book provides a comprehensive overview of SoC security vulnerabilities
and corresponding security verification techniques based on formal verification,
machine learning, simulation-based validation, and side-channel analysis. These
techniques are applicable across different design abstraction levels to address
both detection and localization (mitigation) of SoC security vulnerabilities. The
presentation of topics has been divided into five categories with each category
focusing on a specific aspect of the big picture. A brief outline of the book is
provided below.

1. SoC Security Validation Preliminaries: The first part of the book includes three
introductory chapters on SoC security validation and related topics.

• Chapter 1 introduces the modern semiconductor supply chain and provides an
overview of SoC security vulnerabilities.

• Chapter 2 describes the fundamental challenges in validation and verification
of SoC security and trust. Specifically, it highlights why existing functional
validation methodology is enough for SoC security verification.

• Chapter 3 presents SoC trust metrics and benchmarks that are vital in evaluat-
ing the quality of security validation techniques as well as the trustworthiness
of SoC designs.

2. Security Verification Using Formal Methods: The second part of the book
focuses on formal and semi-formal approaches for SoC security verification.

• Chapter 4 presents an equivalence checking framework using symbolic
algebra to identify anomalies in the implementation compared to the golden
reference model.

• Chapter 5 describes an efficient framework for detection and localization of
hardware Trojans using symbolic algebra.

• Chapter 6 outlines an automated approach for detecting security vulnerabili-
ties in finite state machines.

• Chapter 7 presents SoC trust validation techniques using security properties.

3. Security Validation Using Simulation and Learning Techniques: The third
part of the book deals with security validation techniques using simulation-based
validation as well as machine learning.

• Chapter 8 describes automated test generation techniques for detection of
malicious implants (e.g., hardware Trojans).

• Chapter 9 provides an overview of hardware Trojan detection techniques using
machine learning.
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4. Security Validation Using Side-Channel Analysis: The fourth part of the book
looks at SoC security validation techniques using side-channel signatures such
as dynamic current and path delay.

• Chapter 10 describes hardware Trojan detection techniques using dynamic
current-based side-channel analysis.

• Chapter 11 presents efficient techniques for detection of hardware Trojans
using path delay analysis.

5. Conclusions and Future Directions: The last part concludes the book with a
summary and discussion on future directions.

• Chapter 12 concludes the book with an executive summary as well as
discussion on security validation challenges of future SoCs.

We hope you enjoy reading this book and find the information useful for
applying SoC security validation and verification techniques in designing secure
and trustworthy systems.

Gainesville, FL, USA Farimah Farahmandi
June 30, 2019 Yuanwen Huang

Prabhat Mishra
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Chapter 1
System-on-Chip Security Vulnerabilities

1.1 Introduction

There is a new trend toward validation of complex computing systems, which is
hardware security verification and validation. Previously, hardware systems were
considered secure, trusted, and static where every other computing components
(such as firmware, hypervisors, operating systems, user applications) were built
over them. However, hardware cannot be considered as root-of-trust anymore
as recent research practices [16, 17] have shown that hardware systems can be
as vulnerable as software systems toward security attacks. The importance of
hardware security validation significantly increases when considering Internet-
of-Things (IoT) devices. Highly complex, connected, and smart IoT devices are
increasingly embedded in our daily life (almost everywhere) and they are recording,
analyzing, and communicating some of our most intimate personal information in
order to improve the quality of our lives. The core computing functionality of each
of these IoT devices is performed by one or more complex System-on-Chip (SoC)
designs. It is a significant challenge to verify the security requirements of SoCs in
IoT devices, primarily due to increasing design complexity coupled with shrinking
time-to-market constraints. Verification is already a major bottleneck in modern chip
design life cycle where more than 70% of the resources and engineering time are
spent on verification efforts [6] to ensure the correct functionality, performance,
timing, and reliability of a hardware design. The verification problem becomes
more challenging to ensure SoCs are secure and trusted and operate in compliance
with their specifications, especially when considering the security requirements of
diverse applications and evolving use cases of IoT devices. In the absence of com-
prehensive SoC security verification, vulnerable IoT devices can lead to catastrophic
consequences ranging from violating personal privacy, hurting the reputation of a
business to endangering human lives. Therefore, detecting and locating hardware
Trojans are extremely challenging due to their stealthy behavior and it requires the
development of efficient and scalable security validation approaches. Developing
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Fig. 1.1 Hardware vulnerabilities enable different attacks (software and firmware-based attacks).
Blocking hardware vulnerabilities will address current and future security issues [5]

efficient and well-designed hardware security validation approaches is an essence
to create more secure and trustworthy IoT devices, and hardware systems should
be verified and validated against various security and trust requirements before
integration in computing systems.

Existing hardware security verification approaches are often ad hoc and manual
(i.e., rely on human ingenuity and experience). There is a critical need to identify
all possible security vulnerabilities and fix them using automatic and reliable
mechanisms during security validation. Attacks on hardware can be more critical
and destructive than traditional software attacks since patching is extremely difficult
(almost impossible) on hardware designs. Moreover, a security attack can be
successfully repeated on every instance of a vulnerable IoT device. As shown
in Fig. 1.1, hardware-level vulnerabilities are extremely important to be fixed
before deployment since it affects the overall system security. Based on common
vulnerability exposure (CVE-MITRE) estimates, if hardware-level vulnerabilities
are removed, the overall system vulnerability will reduce by 43% [4, 5].

An SoC is an integrated circuit that encompasses all components of a computing
system such as processing units, memory, secondary storage, input/output ports
in a single chip [15]. An SoC typically contains several security assets and
sensitive information such as encryption keys, Original Equipment Manufacturer
(OCM) and Original Component Manufacturer (OEM) keys, developer keys, digital
rights management (DRM) keys, and configuration bits that are needed to be
protected from adversaries [12]. An SoC is usually constructed from several pre-
designed intellectual property (IP) blocks. Each IP is responsible to implement
a specific functionality (e.g., CPU, memory units, memory controller, analog-to-
digital converter, digital-to-analog converter, digital signal processing unit, etc.) as
well as communicate with other IPs through standard communication fabrics such
as network-on-chip (NoC). As shown in Fig. 1.2, a typical SoC may also come with
various security IPs such as crypto (encryption and decryption) cores, True Random
Number Generator (TRNG) modules, Physical Unclonable Function (PUF) units,
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Fig. 1.2 An SoC design integrates a wide variety of IPs in a chip. It can include one or
more processor cores, on-chip memory, digital signal processor (DSP), analog-to-digital (ADC)
and digital-to-analog converters (DAC), controllers, input/output peripherals, and communication
fabric. Huge complexity, many custom designs, distributed supply chain, and integration of
untrusted third-party IPs make security validation challenging

one-time memory blocks, etc. The security IPs either generate, propagate, use, or
manage assets during runtime. Therefore, security assets are distributed at different
IPs across the SoC and they should be protected using security policies. However,
there are many security vulnerabilities that can be exploited by attackers, which
could compromise the security of SoCs by leaking sensitive information, tampering
the functionality of the design, or causing a denial of service.

The IP-based SoC design methodology is a popular approach since it provides an
opportunity for IP reusing, which leads to reducing design costs, as well as meeting
time-to-market constraints. With the globalization of the IC industry, IP outsourcing
and integration has become a trend for SoC design [1]. However, it raises significant
security concerns as the attacker can insert malicious modifications in third-party
IPs and tamper the system. Additionally, assets can be leaked through side-channel
information and existing vulnerabilities in IPs. Security vulnerabilities can be
inserted intentionally or introduced unintentionally at different stages of SoC design,
such as in the high-level specifications (e.g., transaction-level modeling, TLM, and
register transfer level, RTL, models), synthesized gate-level netlist, layout, as well as
in the fabricated chip by an attacker. In this book, we show various threat models for
SoC designs as well as their IPs and we discuss several verification and validation
approaches to detect various security vulnerabilities in them. We also show different
mitigation techniques to address them.
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The rest of this chapter is organized as follows: Sect. 1.2 presents the source
of hardware security attacks at different stages of a design life cycle. Section 1.3
describes the security vulnerabilities (threat model) in the current SoC design
methodology. Finally, Sect. 1.4 describes the organization of this book.

1.2 Sources of Attacks in SoCs

Security threats can be introduced throughout the IC design, as well as the
manufacturing process. In the pre-silicon stage, vulnerabilities can be introduced
due to (1) designer mistakes, rogue employees, and untrusted third-party IPs during
the design integration phase; (2) untrusted electronic design automation (EDA) tools
in the synthesis phase; (3) untrusted EDA tools and untrusted vendors when design-
for-test (DFT), design-for-debug (DFD), and dynamic power management (DPM)
functions are added. In the post-silicon stage, vulnerabilities can come from (1)
untrusted foundry during manufacturing, and (2) physical attacks or side-channel
attacks after the chip is shipped. An SoC design can encounter security threats
during different stages of its life cycle, as shown in Fig. 1.3. We have listed the
sources of attacks in SoCs as follows.

1.2.1 Design Stage

Design of an SoC starts with defining the high-level behavior and requirements
using natural languages, as well as high-level languages such as C and C++.
Hardware designers implement specifications using RTL descriptions. In the past,
all of the components of an SoC are designed in-house. However, due to constraints
on time-to-market and exponential increase of design complexity, outsourcing and
integration of third-party hardware IPs have become a common practice for SoCs.
Attacks in the design stage can occur through the integration of third-party IPs.
These IPs may come with deliberate malfunctions that pose significant security
threats to the security of SoCs. Malfunctions may leak secret information to
adversaries or reduce the reliability of the design. These malfunctions can also be
introduced using rogue designers (insider attacks). Insider threats are particularly
dangerous since they have full observability and access to the whole design and
source files. Moreover, IP theft can also happen at the design stage. Stolen IPs will
lead to loss of venue for the IP owner and producing counterfeit instances of the
design. Furthermore, analyzing of stolen IPs will help to find existing vulnerabilities
of the design, as well as new ways (from software or hardware) to attack the SoC.



1.2 Sources of Attacks in SoCs 5

Fig. 1.3 Potential threats during SoC design flow. It shows various types of threats (represented
by ovals) during different design stages: specification, integration, synthesis/DFT/DPM, layout,
and fabrication

1.2.2 Synthesis RTL to Layout

When the SoC design and integration is done at RTL, the design is needed to
be synthesized to a gate-level netlist. The synthesis process is done using third-
party EDA tools (e.g., Synopses Design Compiler [14], Cadence Genus Synthesis
Solution [2], etc.). These tools only take timing, performance, area, and power into
consideration, and they are often unaware of security while transforming the design
to the lower levels of abstraction. While performing design optimization, these
tools may create unintentional vulnerabilities into the design. One example of such
vulnerabilities is that while the synthesis tool tries to optimize the controller design,
it may introduce don’t care states in finite state machines (FSMs). The assumption
was that these additional states are not accessible through states transitions (from the
initial state of the FSM or other stats) and they do not affect the correct functionality
of the design. However, recent studies have shown that these states are reachable
through fault injection attacks [10, 11]. Now if the don’t care states are connected to
protected states (those states that control security-critical operations) of the design,
an adversary can inject faults to access those don’t care stats and access to the
protected states illegally.
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The gate-level netlist is required to be mapped to standard cell library and
transistor-level netlist (layout). The gate-level netlist and the layout of design can go
to untrusted venues for different purposes such as DFD and DFT insertion, power
optimization, clock-tree insertion, etc. Since those entities have write access to the
netlist, they can inject malicious functionality in the design by adding/removing
gates and transistors or manipulating the interconnects of the layout. Moreover,
these entities can reverse engineer the netlist and create IP piracy and counterfeit
problems. Having full knowledge of the design will also lead to extra information
that facilitates new attacks.

1.2.3 Fabrication and Manufacturing

When the layout of the design is finalized, it will be sent to the foundry to fabricate
the chips. Due to the increased cost of fabrication, design houses send their designs
to potentially untrusted foundries. Attackers in the foundry can add malicious
functionality into the chip. IP piracy and reverse engineering of the design to create
counterfeits also can happen with an untrusted foundry. An untrusted foundry can
introduce overproduction threat. The foundry may not honor the number of chips
stated in the contract and creates more chips and makes profits out of them by selling
them in the black market.

1.2.4 In-Field Attacks

When a chip is deployed into the final design, it will be susceptible to various
types of attacks. If a Trojan was inserted during design, synthesis, or fabrication
stages, it can be activated to perform the intended attack or malfunction. The
malfunction can also be activated by injecting faults in the design (using changing
the clock frequency, voltage, local heating, intensive light pulses, etc.). An attacker
can monitor physical characteristics of a design (such as delays, power consumption,
transient current leakage) to recover secret information. Moreover, a well-equipped
attacker can perform reverse engineering through depackaging, delayering, and
imaging of the chip to extract information about the design and enable IP theft
and counterfeiting. Moreover, high-precision and nondestructive probing equipment
can be used to obtain secret information (e.g., different keys that are stored in
non-volatile memories). Last but not least, refurbished and recycled chips may be
presented as new chips. It is a dangerous threat especially when the functionality of
a system is dependent on those chips since the system may not be reliable or come
with permanent faults/failures (refurbished chips did not pass some manufacturing
tests).
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Fig. 1.4 Different categories of common hardware and software vulnerability exposure in an
electronic system [5]

It is of paramount importance to verify the trustworthiness of an SoC. In order
to trust a design, security verification and debugging should be done at each of the
stages.

1.3 Threat Model

In this section, we talk about different threat models that endanger the security of
SoCs. As shown in Fig. 1.4, the potential SoC vulnerabilities would be huge once
we consider seven classes of hardware security vulnerabilities (access privileges,
buffer errors, resource management, information leakage, numeric errors, crypto
errors, and code injection) coupled with software and firmware attacks that threaten
the security and integrity of the design [5]. Therefore, detecting and locating
these vulnerabilities are extremely challenging due to their stealthy behavior, and
it requires efficient and scalable security validation approaches to be developed.
Each design should be verified against all of these threat models to ensure the
correct and secure behavior of the design. In terms of hardware security verification,
we categorized them into four classes: hardware Trojans, access violations, fault
injection attacks, and side-channel leakage. In this section, we briefly describe each
of these threat models.

1.3.1 Hardware Trojans

Hardware Trojans are malicious modifications of an integrated circuit which are
designed to disable or bypass the security of design. They can also create denial
of service by tampering the functionality of the design. Hardware Trojans are
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Fig. 1.5 Simple examples of hardware Trojans. (a) A combinational Trojan that can be triggered
using rare condition a = 1 and b = 0. (b) A sequential Trojan that is triggered when rare condition
a = 1 and b = 0 happens 2N times, where N is the length of the counter. The effect of Trojans can
be propagated using payload circuit

hard-to-detect malicious components which are inactive for most of the execution
time and they can be activated under rare input conditions which trigger them.
Hardware Trojans can be inserted in an SoC by integration of untrustworthy IPs
gathered from third parties, internally by a rouge employee or by EDA tools.
Trojans can be designed as a combinational circuit (e.g., a k-bit comparator) or
a sequential circuit (e.g., k-bit counter) as shown in Fig. 1.5. Usually, hardware
Trojans consist of two parts: trigger and payload. The trigger is responsible for
checking the activation conditions and the payload is the entire activity of the
Trojan and it is responsible for propagating the effect of the Trojan when it becomes
activated. Trojans can be activated by change of functionality (digital conditions)
or change in the physical characteristics of the design (analog conditions) such as
temperatures. Smart adversaries design hardware Trojans such that they are unlikely
to arise during normal testing and validation stages (to create a stealthy behavior)
but Trojans can be activated after long hours of in-field execution.

A major challenge for Trojan identification is that Trojans are usually stealthy [1].
It is difficult to construct a fault model to characterize Trojan’s behavior. Moreover,
Trojans are designed in a way that they can be activated under very rare conditions
and they are hard-to-detect. Therefore, it is difficult to activate a Trojan and even
more difficult to detect or locate it. As a result, conventional validation methods
are impractical to detect hardware Trojans. Conventional structural and functional
testing methods are not effective to activate trigger conditions since there are many
possible Trojans and it is not feasible to construct a fault model for each of them.
As a result, existing EDA tools are incapable of detecting hardware Trojans to
differentiate between trustworthy third-party IPs and untrusted ones. Furthermore,
malicious hardware can easily bypass traditional software-implemented defense
techniques as it is a layer below the entire software stack. Similarly, a benign
debug/test interface or uncharacterized parametric behavior can be exploited by an
adversary during legitimate in-field debug.
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Trojans can be inserted into hardware design using various ways as listed
below:

• Rare Nodes: A smart adversary tries to design trigger conditions such that they
are satisfied in very rare situations and usually after long hours of operation
[3]. Rare conditions at internal nodes (rare nodes) are candidates for hiding the
malicious functionality. Figure 1.5 shows examples of hardware Trojans that are
designed using rare nodes. Figure 1.5a shows a combinational Trojan whose
trigger is dependent on a set of rare nodes (a = 1 and b = 0). The Trojan will
be activated when the respective conditions on rare nodes are satisfied. On the
other hand, Fig. 1.5 shows a simple sequential Trojan which is triggered by the
overflow output of a counter. The counter increments when it is enabled using
conditions (a = 1 and b = 0) and the Trojan is activated when a series of a = 1 and
b = 0 events happens until the counter reaches a specific value.

• Rare Branches: An adversary (e.g., a rogue designer or an untrusted IP vendor)
can insert hard-to-detect Trojans in the RTL design and hide them under
rare branches and continuous/concurrent assignments. Otherwise, traditional
simulation techniques using random or constrained-random tests can detect them,
and the attacker’s attempt would fail.

• Gate Misplacement: Any deviation from the specification may endanger the cor-
rect functionality, trustworthiness, and the security of the design. Notably, gate
replacement errors in the gate-level netlist can change the correct functionality
of design and insert anomaly in its implementation. Moreover, gate replacement
error may pose security threats since it can act as a bit-flip (in comparison with
the golden behavior) and cause unauthorized transitions to protected states of
the design, wrong results, and denial of service. Gate replacement anomalies are
small malicious modifications and have negligible effect on physical characteris-
tics (area, power, and energy) of the design. Therefore, they cannot be detected
during design review. Moreover, they cannot be easily activated using random
and constraint-random validation approaches.

A design should be verified and validated comprehensively to ensure that there is
no Trojan or malfunction inserted in it. In this book we cover several methods such
as formal methods (Chaps. 4, 5, and 7), simulation and learning-based approaches
(Chaps. 8 and 9), and side-channel analysis (Chaps. 10 and 11).

1.3.2 Access Violation

Critical data as well as protected states of the design should only be accessed
by authorized sources as any unauthorized access mechanisms can lead to illegal
read/write of assets or changing the flow of the program to bypass the security
of the overall system and threaten its integrity. Therefore, the content of memory
locations (e.g., instruction and data cache units, registers, RAM blocks, and hard
drives) with sensitive information and assets should be protected from unauthorized
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modifications. Violation of memory confidentiality may allow adversaries to achieve
their goal without providing correct input and lead to a leak of sensitive information.
For example, the system’s assets/sensitive computations may be accessed through
DFT and DFD infrastructure for legitimate debugging reasons and in order to
facilitate hardware post-silicon validation. However, an attacker should not be able
to access those information while the chip is in functional mode. It is also important
to check how the memory is accessed in order to prevent vulnerabilities like buffer
overflow and integer overflow attacks. Buffer overflows can lead to overwrites
in adjacent memory locations and cause integrity problems. Recently it has been
shown that integer/buffer overflow attacks as well as unauthorized accesses can
happen due to speculative components of the hardware design such as exception
handler unit and branch predictor that allow programs to steal the secret stored in the
memories that they are not allowed to access [8, 9]. Security validation approaches
should check all access paths to critical information and memory location of the
design. Designers need to block those detected unprivileged accesses. Chapters 6
and 7 present security validation mechanisms for such vulnerabilities.

1.3.3 Fault Injection Attacks

Over the past decade, fault injection attacks have grown from a crypto-engineering
curiosity to a systematic adversarial technique [19]. FSMs in the control path are
also susceptible to fault injection attacks, and the security of the overall SoC can
be compromised if the FSMs controlling the SoC are successfully attacked. For
example, it has been shown that the secret key of the RSA encryption algorithm
can be detected when FSM implementation of the Montgomery ladder algorithm
is attacked using fault injection [13]. Fault injection attacks can be performed by
changing the clock frequency (overclocking), reducing the voltage, and heating the
device to violate the setup time constraint of state flip-flops to bypass a normal state
transition and enter a protected state. The non-uniform path delay distribution of
an FSM enables an attacker to violate setup time of certain flip-flops and bypass
the security of the design. For fault injection attacks, the adversary should have
physical access to the device. Setup time violations can be performed by different
fault injection methods, including overclocking, reducing the voltage, and/or heating
the device [18]. To prevent fault injection attacks on FSMs, it is critical to identify
and remove FSM vulnerabilities. The susceptibility to fault injection attacks should
be analyzed in both datapath as well as control logic of an SoC. For datapath, we
should check the likelihood of creating timing violation faults and if the fault will
propagate throughout the design. For control logic, the state transition graph of
the controller circuit should be checked to see if an adversary can cause timing
violation to bypass normal state transitions and get access to state which causes
security vulnerability. In Chap. 6, we propose a technique to formally detect such
vulnerabilities. The challenges in trust validation of controller designs come from
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the fact that we need to detect illegal accesses to the design states in addition to
verifying legal transitions. The state-space of this problem is exponential.

1.3.4 Side-Channel Attacks

Timing information, power consumption, electromagnetic emanation, and even
sound of a design can be extracted by an attacker to gain more information about the
design and be able to attack. For example, an attacker can guess some internal values
or secret keys by measuring the execution time of various computations (note that
“0” or “1” bits in a register can initiate different operations). Extracting side-channel
information may require some knowledge about the internal structure of the design.
However, some of these attacks such as differential power side-channel attacks [7]
are black-box attacks. Unfortunately, side-channel analysis has a common issue,
i.e., the sensitivity of side-channel signatures is susceptible to thermal and process
variations. Therefore, the success of these attacks is determined by the quality and
precision of equipment that are used for measurement.

Power-side channel attacks use the amount of power consumption and transien-
t/dynamic current leakage to attack the design. A device like an oscilloscope can
be used to collect power traces, and those traces are statistically analyzed using
correlation analysis to derive secret information of the design. Therefore, it is very
important to develop automated security validation methods that can identify power
side-channel leakage. We need to detect the parts of a design that is responsible for
power side-channel leakage in an automated fashion. Chapter 10 presents techniques
to detect these vulnerabilities.

Any implicit or explicit control flow that depends on the asset value can create
side-channel timing leakage and make the design vulnerable to timing attacks. To
remove timing side-channel attacks, the security verification tools need to ensure
that the execution time is independent of the asset value. The assets dependent
control flows make the design vulnerable to timing side-channel leakage. Chapter 11
covers security validation methods to detect such vulnerabilities.

1.4 Book Organization

In this book, we provide different security verification and validation approaches
to identify security and trust vulnerabilities that are introduced at different stages
of the design. These techniques are based on formal methods, simulation-based
approaches, machine learning, and side-channel analysis. These techniques can be
applied at IP-level, pre-silicon design (after integration of soft IPs), and post-silicon.
The organization of this book is as follows:
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• Chapter 2 presents the fundamental challenges in verifying SoC security vulner-
abilities. Specifically, it also highlights the limitations of applying the existing
functional and security validation methods.

• Chapter 3 describes security metrics and benchmarks (both dynamic and static)
which are necessary for evaluating the trustworthiness of SoCs as well as
measuring the effectiveness of any security verification/validation technique.

• Chapter 4 describes an automated methodology for anomaly detection in com-
plex arithmetic circuits. It used the remainder produced by equivalence checking
methods to generate directed tests as well as fixing the security vulnerabilities.
The threat model is considered malfunction insertion using gate misplacement.

• Chapter 5 presents an automated approach to localize hardware Trojans in third-
party IPs using symbolic algebra. This chapter considers hardware Trojans that
change the functionality of the design (e.g., add additional malfunction) as the
threat model.

• Chapter 6 highlights the importance of securing FSMs against fault injection
attacks and access violations. This chapter presents a formal approach to detect
anomalies using symbolic algebra. This chapter also discusses some design rules
to avoid such vulnerabilities.

• Chapter 7 discusses the importance of developing security properties that allow
detection of security violations such as information leakage at the early stages of
the design cycle.

• Chapter 8 focuses on efficient simulation-based validation approaches as well as
test generation techniques for hardware Trojan detection.

• Chapter 9 presents machine learning techniques as well as feature extraction
techniques for the detection of hardware Trojans.

• Chapter 10 discusses a side-channel analysis framework based on current and
power signatures to detect malfunctions in an SoC.

• Chapter 11 surveys a wide variety of delay-based side-channel analysis
approaches for detection of side-channel security vulnerabilities. It describes a
wide range of timing and power analysis techniques to detect hardware Trojans.

• Chapter 12 provides a summary of techniques covered in the book. This chapter
also highlights the future directions for security verification and validation of an
SoC.

1.5 Summary

This chapter introduced the modern semiconductor supply chain and provided an
overview of SoC security vulnerabilities. Specifically, it highlighted various types of
potential threats during different design stages. It provided an overview of multiple
SoC security vulnerabilities. This chapter presented the fact that SoC designs are
required to be validated/verified from security and trust aspects.
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Chapter 2
SoC Security Verification Challenges

2.1 Introduction

Verification/validation is a significant bottleneck in the design steps of a System-
on-Chip (SoC) such that it consumes more than 70% of design efforts. Significant
validation efforts come from the fact that an SoC should be verified against several
objectives, such as correct functionality, timing, power, energy consumption, relia-
bility, and security in pre- and post-silicon stages, before it can be used in hardware
devices. Moreover, an SoC has various working domains, including digital, analog,
and mixed-signals. All components in different areas should work with each other
correctly to create the expected behavior. Therefore, verification/validation should
be carried out in these domains individually, as well as cross domains. The huge
complexity of SoCs (tens of billion transistors are involved), as well as aggressive
time-to-market, also contribute to even more growth of verification/validation
efforts.

When it comes to security verification and validation, not only all of the above-
mentioned challenges are still in the picture, but the problem becomes even more
challenging due to several reasons. The first reason is that security is a generic term
and it is unclear how to achieve a secure design. There is no security specification
or security verification plan to check the implementation against it. As we discussed
in Chap. 1, there are several security vulnerabilities, including information leakage,
side-channel leakage, access control violations, malicious functionality, etc., that a
security verification engineer should check. Checking the implementation against
those vulnerabilities requires a vast knowledge about security attacks and their
targets. However, there is a lack of understanding about security issues by the
designers. Designers often make decisions based on performance, constraints on
design budgets, and testability. They may be unaware of the effect of their decision
on creating potential security threats. On the other hand, protecting the design
against one security vulnerability may make it vulnerable to the other one. For
example, protecting a design against information leakage may create side-channel
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Fig. 2.1 Challenges in security verification and validation of SoC designs on the top of challenges
for conventional functional verification approaches

leakage that can be exploited by an attacker to retrieve sensitive information. As
of now, there is no comprehensive guideline that designers can follow and create
secure hardware components.

In addition to the above-mentioned challenges, there are other factors and
challenges that should be considered for verifying the security of an SoC. Figure 2.1
summarizes the challenges in security verification and validation. We briefly
describe each of them in the following categories:

• Diversity of Assets: An SoC contains several assets that should be protected
from an adversary. Secret keys are embedded in the device to perform on-chip
encryption, decryption, and hashing algorithms. Unauthorized access to these
codes will create confidentiality issues. Moreover, there are developer keys and
configurations bits that configure/control critical operations in the design. Break-
ing the integrity of those will bypass the security of the system. For example,
most of the encryption algorithms require a random number (nonce) to operate.
An attacker should not be able to change the configuration of True Random
Number Generator (TRNG) unit to produce a constant number (several options
such as generating a constant number exist in the implementation of a TRNG
for testing purposes) as the nonce or weaken the randomness of the generated
number to break the security of the encryption unit. Chip manufacturing codes
such as Original Equipment Manufacturer (OCM) and Original Component
Manufacturer (OEM) keys also exist in SoCs. Compromising them would result
in counterfeiting. Moreover, there may be on-device sensitive data about the
user credentials that unauthorized access to them could result in breaking the
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privacy. Additionally, a design house may lock the gate-level netlist (obfuscate
the original functionality using the placement of secret keys) of its design before
sending it to the foundry to avoid overproduction. The correct key of the locked
design will be placed in the chip in the design house after manufacturing to create
the correct functionality. Access to the obfuscation key will lead to revenue loss
for the design house.

To perform security validation, we need to precisely identify the assets of
an SoC and analyze their attributes. It is a challenging task due to two main
reasons: (1) as we mentioned, there are many assets in an SoC, and (2) the
assets cannot be considered as static values. New assets and critical data will
be introduced when the original assets are propagating to different components
and affect other variables during runtime. Moreover, we need to identify threat
models for each of those assets and define security rules about how they should
be securely transmitted through various communication channels.

• Lack of Security Metrics: There is no set of comprehensive metrics so the
security of each design can be quantitatively measured. Security metrics are
needed to define a way to guide verification efforts and create closures (similar to
branch coverage, reach ability analysis, statement coverage, etc. that are used in
functional verification) for validation activities. For example, to be able to check
side-channel vulnerabilities, metrics should be defined to measure unbalanced
execution paths [48] that create exploitable timing and power signatures in hard-
ware designs. Moreover, the effect of different keys on the power consumption of
encryption components should be measured to avoid leaky implementations [85].

If we consider hardware Trojans and malicious functionality, the diversity
of hardware Trojans with different objectives, trigger, and payloads makes it
very difficult to construct a fault model to detect them systematically. A smart
adversary usually introduces Trojans with stealthy behavior and hides them in
hard-to-detect areas of the design to avoid detection using conventional validation
efforts. Similarly, an asset can be leaked via various forms to observable points.
It is complicated to construct a model for information leakage. Therefore, a set
of metrics is needed to measure the vulnerability of a design against different
threat models and attack surfaces to be able to automatically identify the source
of vulnerabilities and perform security verification.

• Unintentional Vulnerabilities: Not all of the vulnerabilities are created in
the system by adversaries. Some vulnerabilities are introduced in the design
by designers’ mistakes, by electronic design automation (EDA) tools, or from
design-for-test (DFT) and design-for-debug (DFD) infrastructures. Recently, it
has been shown that speculative execution units that exist in modern processors
to enhance the performance allow programs to steal secret stored in the memory
of other programs [65, 66]. When a control flow of a program is dependent on
an uncached value which resides in external memory, the CPU should be idle
for several hundred clock cycles until the value becomes known. Rather than
wasting several clock cycles, micro-architectural units (e.g., branch predictors) in
modern CPUs try to execute the program on a guessed path speculatively. If the
guessed path is wrong, the speculative execution will be discarded by reverting
intermediate checkpoints. Otherwise, the result of the speculative execution
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will be committed, which causes a significant gain in performance. However,
wrong execution paths create fingerprints in caches which can be exploitable
using cache timing attacks [69, 103]. From the security standpoint, speculative
executions may lead to an unauthorized access to assets in the design and reveal
their values using side-channel analysis.

It has been shown that EDA tools such as synthesis tools unintentionally create
vulnerabilities in the design [81, 82]. Synthesis tools create additional don’t care
states and transitions in the controller designs for optimization purposes. If don’t
care states are connected to the protected states of the design, an attacker can
exploit fault injection attacks to reach to those states and subsequently reach
to the protected states of the design. Therefore, they can bypass the security
mechanisms of the circuit and change the control flow of the design. The choice
of the encoding of finite state machines (FSMs) has an effect on the connectivity
of don’t care states to original states of the FSM. Some encoding styles create
more vulnerabilities that others [82].

Considering the complexity of today’s SoCs, DFD and DFT infrastructures
are required for post-silicon debug and validation efforts. However, there is an
inherent conflict between increasing observability and trust. Although designing
effective debug infrastructures can drastically reduce the post-silicon validation
and debug efforts by expanding the observability and controllability, the extra
observability/controllability generated by DFD and DFT infrastructures can
facilitate integrity and confidentiality issues such as trace buffer attack [49, 50]
and scan-based side-channel attacks [64].

Note that all of the vulnerabilities mentioned above have been introduced
unintentionally due to the fact that the current design and valuation flows are
not security-aware. Therefore, existing design and verification procedures and
flows should be revised to consider security.

• Globally Distributed Supply Chain: SoC supply chain is globally distributed
over the globe. So many countries and companies around the world are involved
in different stages of design, fabrication, and testing of an SoC. An SoC designer
may integrate so many IPs gathered from third-party vendors in the final design to
be able to decrease the cost of the design and meet time-to-market requirements.
However, the third-party IPs may come with deliberate malicious functionality
which targets the change of the correct behavior of the design, denial of service,
causing information leakage, etc. Malicious functionality is hidden in a way to
escape traditional validation efforts.

An SoC design may be sent to outsider venues for different purposes such
as power optimization, clock-tree insertion, and DFT and DFD insertion. The
untested venue has full observability to the gate-level/layout of the design and
can create several vulnerabilities, such as reverse engineering of the design and
steal it. They can also introduce hard-to-detect malicious functionality in the
design. An untrustworthy foundry could add similar threats during the fabrication
of the design. All in all, the globally distributed supply chain of SoCs creates
several unique vulnerabilities for SoCs that should be checked using security
validation/verification techniques.
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It is of paramount importance to detect and address security vulnerabilities
during design and verification time. If the vulnerabilities reach the post-silicon
stage, there would be limited flexibility (almost none) in changing or fixing them.
Moreover, the cost of fixing the design is significantly higher as we advance through
the later stages of the design (rule of ten) [80]. Furthermore, vulnerabilities that
reach the manufacturing stage will cause revenue loss. Therefore, it is essential
to develop efficient security validation and verification approaches to ensure the
security and trustworthiness of hardware designs. In this chapter, we review the
existing security validation methods for SoCs at different design stages. There
has been plenty of research on trust validation at IP-level, as well as during
pre-silicon and post-silicon validation. These methods focus on simulation-based
approaches, side-channel analysis, and formal approaches as shown in Fig. 2.2.
Simulation-based techniques focus on generating tests and utilizing simulation

Fig. 2.2 Hardware trust verification can be categorized into three major directions: (1) simulation-
based approaches, (2) side-channel analysis, and (3) formal approaches



20 2 SoC Security Verification Challenges

traces to detect security vulnerabilities. Side-channel analysis approaches focus on
analyzing physical characteristics of design as well as its side-channel signatures
(such as current [51], leakage power [11, 58], path delay [54], electromagnetic
waves [44], etc.) to detect exploitable side-channel leakage that facilities attacks
on an SoC. Formal methods evaluate the security and trust of a design using
mathematical models and representations. The remainder of this chapter reviews
these approaches in detail.

2.2 Simulation-Based Trust Validation Approaches

Simulation-based approaches aim on generating tests to activate malicious modifica-
tions (hardware Trojans) and propagate the payload of the Trojan to primary outputs
to check with the golden circuit. The difficulty of logic testing is to generate efficient
tests to activate and propagate the effect of Trojans, which are stealthy enough to
hide through the traditional manufacturing testing.

A major problem with the design validation is that we do not know whether a
Trojan exists, and if it does, how to quickly detect and fix it. We can always keep on
generating random tests, in the hope of activating the Trojan; however, random test
generation is not effective for detecting stealthy Trojans.

Several approaches are focused on generation of guided test vectors to activate
hardware Trojans. Traditional test generation techniques may not be beneficial as
Trojans are designed in a way that they will be activated under very rare sequences
of the inputs. In this section, we review simulation-based validation approaches
including rare node activation, redundant circuit detection, N-detect ATPG, and
code coverage techniques.

2.2.1 Logic Testing

Test generation is extremely important for both functional and trust validation of
integrated circuits. A good set of tests can activate/detect vulnerabilities, facilitate
finding the source of them, and help verification engineers to effectively address
them. Test generation techniques can be classified into three different categories:
random, constrained-random [1], and directed [18, 19, 21, 71, 79, 87]. Random test
generators are used to activate unknown errors; however, relying on random tests
to activate a target is inefficient when designs are large and complex. Constrained-
random test generation tries to guide random test generator towards finding test
vectors that may activate a set of important/interesting scenarios. The probabilistic
nature of these constraints may lead to situations where the generated tests are
inefficient. Moreover, constraint generation is not possible when we do not have
any knowledge about the potential errors/vulnerabilities. A directed test generator,
on the other hand, generates one test to target a specific scenario [20, 32, 67, 86, 88].
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Clearly, less effort is needed to reach the same coverage goal using directed
tests compared to random or constrained-random tests. However, existing directed
test generation methods require a fault list, the set of targeted vulnerabilities, or
desired functional behaviors that need to be activated [67]. Directed test generation
approaches are either based on formal methods (e.g., SAT solvers and model
checkers) or based on Concolic testing (combination of concrete simulation and
symbolic execution techniques) [3, 5, 70, 89, 98]. These approaches cannot generate
directed tests when the target (faulty scenario) is unknown.

In a case study [104], code coverage analysis and automatic test pattern gen-
eration (ATPG) are employed to identify Trojan-inserted circuits from Trojan-free
circuits. The presented method utilizes test vectors to perform formal verification
and code coverage analysis in the first step. If this step cannot detect existence
of the hardware Trojan, some rules are checked to find unused and redundant
circuits. In the next step, the ATPG tool is used to find some patterns to activate
the redundant/dormant Trojans. Code coverage analysis is done over RTL models
to make sure that there are no hard-to-activate events or corner-case scenarios in
the design, which may serve as a backdoor and leak secret information [6, 104].
However, Trojans may exist in a design that have 100% code coverage.

Chakraborty et al. proposed MERO [16] which excites the rare nodes multiple
times in order to increase the likelihood of Trojan activation. Generating such
directed tests is extremely difficult given the stealthiness of activation condition.
Besides, this technique is only applicable to gate-level designs and does not
guarantee whether the generated tests can activate the Trojans. Usually complete
coverage is required to detect Trojans [104]. Saha et al. [94] extended MERO by
proposing an approach using genetic algorithm to generate tests to activate. Cruz et
al. have proposed a test generation technique that combines the strength of model
checking and ATPG for fast test generation [24]. Their approach partitions the
design based on the scan chain. Constraints are generated for non-scan elements
using model checking. These constraints as well as the scan elements are then given
to ATPG for test generation. This approach is suitable only for partial scan-chain
inserted designs. However, none of the existing techniques is scalable to activate
and detect hidden Trojans. Moreover, logic testing would be beneficial when it uses
efficient test vectors that can satisfy the Trojan triggering conditions, as well as
propagate the activation effect to the observable points such as primary outputs. In
other words, the test needs to reveal the existence of the malicious functionality.
These kinds of tests are hard to create since trigger conditions may be satisfied after
long hours of operation and they are usually designed with low probability. As a
result, traditional use of existing test generation tools can be impractical to produce
patterns to activate trigger conditions.
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2.2.2 Statistical Methods

Statistical detection of malicious functionality relies on identifying the potentially
untrustworthy circuit from the safe version using properties of known vulnerabil-
ities. For example, FANCI [102] tries to detect hardware Trojans by marking the
gates that weakly influence output signals as suspicious. FANCI uses approximate
truth table for each signal to infer its effect on the outputs. However, FANCI has
a high false positive rate. False positives are situations that a test marks a design
as untrustworthy when in fact it is safe. A similar method named VeriTrust marks
redundant logic gates as suspicious [106]. Initially, all gates that are not covered
during verification phase are considered as suspicious nodes, and further analysis
is carried out to confirm redundancy. FANCI and VeriTrust can detect only Trojans
with always on or combinational type triggers (a trigger that depends only on current
inputs). They cannot detect sequential Trojans, which are exploited by DeTrust
benchmarks [105]. Hicks et al. proposed an approach for defeating Trojan based
on unused circuit detection [46]. This method relies on the assumption that Trojan
circuits will reside on unused portion of the circuit. However, their algorithm failed
to detect Trojans that do not rely on unused circuits [100].

A score-based classification method for detecting Trojan is discussed in [84].
The classification features are based on properties found from Trojans in Trust-
HUB benchmarks [101]. Scores are given to nets for each of the matching features.
Nets with score above a threshold are marked as Trojan nodes. Unfortunately, these
features are too specific to Trust-HUB benchmarks and thus cannot be used as a
generic detection method. A recent approach proposed by Salmani et al. [95] uses
SCOAP1 controllability and observability values to detect and isolate Trojan nodes.
Controllability is defined as the number of primary inputs that must be manipulated
to control a signal to a particular logic value. Observability is the number of primary
input manipulations which is required to make a signal observable at the primary
outputs. This method works using the assumption that Trojan nodes will have higher
controllability/observability values to avoid detection. However, this approach will
result in false positives in designs with partial scan chains. Benign signals that are
not part of the scan chain will also have controllability/observability values similar
to Trojans. A Trojan clustering approach based on signal correlation is proposed in
[15]. However, this method is suitable for gate-level designs, and cannot be extended
to RTL models for early detection.

1SCOAP: Sandia Controllability/Observability Analysis Program [38].



2.3 Security Validation Using Side-Channel Analysis 23

2.2.3 Machine Learning Approaches

Several approaches have been proposed to use machine learning to detect security
vulnerabilities in the system. Hasegawa et al. [42] proposed a Trojan detection tech-
nique based on static support-vector-machine-based (SVM-based) classification of
gate-level netlists. This method extracts five features for any potentially suspicious
candidate S in a gate-level netlist to differentiate a Trojan-inserted netlist from a safe
one. The five features include the number of fan-ins of gate S (up to two levels), the
number of logic levels to the closets flip-flop input from S, the number of logic
levels to the closets flip-flop output from S, the minimum cone of influence from
any primary input to s, and minimum propagation cone from S to any primary
outputs. The features are constructed based on the stealthy behavior of hardware
Trojans (as they are hardly activated and their effect may be masked in most of the
cases). An SVM classifier is trained on these features to detect unknown Trojans.
A similar runtime approach has been proposed for many-core platform [61]. These
approaches can achieve high accuracy (∼80%) in detecting Trojans. However, they
also have a high false positive rate and mark many benign components as suspicious.
The accuracy of such approaches has been improved by better feature selection and
use of other machine learning models (e.g., neural networks) [43, 53] to reduce false
positive rate.

Machine learning can build the pattern of side-channel fingerprints [55, 56] of
normal circuits and any outlier will be a Trojan circuit. Most of these approaches
utilize the traces of applying different tests to extract features and train the model
to detect untrustworthy behavior of the design at the runtime. In these techniques,
a machine is modeled and trained based parametric signature of a chip [68]. The
signature is collected and compared to a trusted region in a multidimensional space.
The fingerprint of Trojan-free chips is expected to fall within this region, while
the fingerprint of Trojan-infested chips is expected to fall outside. However, the
classification boundary is very narrow due to the uncertainty incurred by process
variations. Therefore, the chance of misclassification is high.

2.3 Security Validation Using Side-Channel Analysis

Existing techniques based on side-channel analysis rely on the change of physical
characteristics caused by the security vulnerability—mostly in the form of current,
power, or delay [54, 68–70, 83]. If the side-channel signature of a chip is different
from the golden chip over a certain threshold, a Trojan is detected. For example,
when a Trojan is partially or fully activated, it will have increased switching activity
compared to Trojan-free circuit. Moreover, implementation of security critical
components (e.g., encryption/decryption units) should be verified to ensure that
none of secret information or assets in the design can be extracted using analysis
of power or delay analysis.
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2.3.1 Trojan Activation Using Transient Current and Power
Analysis

Side-channel approaches for detecting Trojans depend on measuring and monitoring
physical parameters like transient current or power signature of an IC in order
to identify sudden/unexpected changes in those parameters when the Trojan is
activated. In other words, these techniques are based on the idea that the side-
channel signature of a Trojan-inserted design (when the Trojan is activated) is
different than the signature of a Trojan-free design. Wang et al. used this property
to isolate Trojan [64]. Leakage current and transient current measurements have
been widely used to detect manufacturing defects [2, 91]. These approaches are very
promising to activate unknown Trojans. However, the success of these approaches
is limited due to variations in processes (since Trojans are designed as small
malfunctions in a covert manner and their effect on side-channel signatures is
minimal). This is because the difference in side-channel signature, which is due
to the Trojan, can be negligible compared to process variations.

Several approaches have been proposed to overcome process variations by
maximizing the activity of rare nodes, as well as the possibility of activating Trojans.
MERS utilized test generation to improve the Trojan detection sensitivity [51, 52].
Their approach selected the nodes with low transition probability as suspicious
nodes. Then test vectors are applied in such a way that switching activity of
these suspicious nodes become much higher than other nodes, increasing side-
channel emission. However, these methods also require Trojan-free golden reference
models. As side-channel analysis is carried out after fabrication, the chip may
require respins if Trojan is detected. The authors in [68] relieve this limitation by
using fingerprints from process control monitors. Thus, methods that can detect
Trojan in an early design stage are highly desirable.

2.3.2 Trojan Detection Using Delay Analysis

Path-delay-based analysis methods can be used to detect subtle changes in the
delay introduced by the trigger and payload gates of hardware Trojans. The main
idea is that Trigger and payload nodes introduce additional capacitive load to the
nodes that are connected and cause noticeable delay in the existing paths of the
design, creating an observer effect [54, 96]. Specifically, path-delay tests are used
to determine if an adversary has added a fanout to logic gate inputs and outputs to
increase the delay of paths and modify the correct functionality of the design. These
approaches are susceptible to generating false positives and false negatives. Ismari et
al. used an on-chip measurement structure called a time-to-digital converter (TDC)
to measure path delay with high resolutions [54]. This technique explores various
process variation calibration methods (chip-to-chip and within-die) to improve false
negative and false positive detection decisions. A technique called REBEL [14]
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has been proposed to use a delay chain to obtain timing information. Chapter 11
describes these techniques in detail.

2.3.3 Detecting Side-Channel Leakage Using Power Analysis

Weak implementation of a crypto algorithm can lead to side-channel leakage of
sensitive information (e.g., encryption keys) despite the mathematical robustness
of encryption algorithms. Therefore, an attacker can exploit such vulnerabilities
to break encryption algorithms. Several power analysis techniques such as dif-
ferential power analysis [58], correlation power analysis [11], partitioning power
analysis [62], and template attacks [17] have been used to extract the secret key of
encryption/decryption. These attacks are based on the fact that different key values
may cause different power consumption in a leaky implementation of a crypto
algorithm. Therefore, an attacker makes an assumption on the key and guess a
hypothetical model for power consumption based on the key value. Next, he/she
can utilize statistical analysis to compare physical power output and hypothetical
power output to determine whether the guessed key is right.

These attacks pose major threats to the security community and several coun-
termeasures such as hiding and masking [72] have been proposed to remove the
dependency between the different key values (as well as intermediate values) and
power consumption. However, these countermeasures introduce the additional area
and which makes it infeasible to apply them resource-constraint designs. Different
techniques have been presented to address the limitation of these countermeasures
by performing side-channel leakage assessment to identify the leaky components
of the design and apply countermeasures only to those parts of it. Side-channel
assessment techniques include measuring signal-to-noise ratio (SNR) [75], test
vector leakage assessment (TVLA) [7], and success rate [37]. These assessment
techniques can be mostly applied to the post-silicon designs when it is too late
to fix leaky components. He et al. [45] have proposed a side-channel assessment
technique, which can be applied on RTL designs while there is still flexibility
to make design changes. This method utilizes Kullback–Leibler (KL) divergence
and success rat metrics to estimate the statistical distance between two different
probability distributions of power signatures (based on different key pairs) and
detect leaky blocks. The success of this method is dependent on the implementation
of detailed and high-precision power consumption models for RTL designs.

2.4 Security Validation Using Formal Methods

Formal methods are promising in hardware validation as they evaluate the func-
tionality and security of the design using mathematical models. Formal verification
methods can be broadly classified into four categories: (1) satisfiability (SAT)
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solvers, (2) property checking using model checkers [10, 74], (3) information flow
tracking, and (4) equivalence checking using decision graphs [12, 13, 22] and
symbolic algebra [26]. In this section, we briefly discuss each of these methods
and their applications for security validation. We focus on different formal methods
to verify the design and detect undesired functions, unauthorized accesses, and
information leakage [4, 24, 28, 29, 33, 39–41, 82].

2.4.1 Trust Validation Using SAT Solvers

Given a Boolean formula, the satisfiability problem relies on finding Boolean
values to the formula’s variables such that the formula is evaluated to true. If
such an assignment does not exist, the formula is called unsatisfiable. The Boolean
formula is constructed from AND, OR, and NOT operators between various
variables which can be either assigned to true or false. Many of the validation and
debugging problems can be mapped to satisfiability problems [8, 9, 59]. One of the
applications is to check the equivalence between the specification of the circuit and
its implementation using SAT solvers. Figure 2.3 shows the equivalence checking
using SAT solvers. If hardware Trojans exist in the implementation, the SAT solver
finds assignments to the internal variables to reveal the hidden Trojan. However, this
method requires a golden model and suffers from scalability issues. The SAT solver
may encounter state explosion when the design is large, and the specification and
the implementation significantly differ from each other.

Several works explore the existence of Trojans in unspecified functionality [34,
35]. Therefore, the Trojan does not alter the specification of the design, and existing
statistical or simulation-based methods cannot identify the Trojan-inserted design
[36]. Fern et al. propose a SAT-based technique to detect Trojans, which exploits
design signals in their unspecified functionality to cause malfunction or information
leakage [36]. Suppose that the function “f unc” is unspecified when internal signal
“s” is under condition “C.” Suppose that signal s can have two possible values: v0
and v1. Under condition C, Eq. 2.1 should be unsatisfiable if the design is Trojan-
free. Therefore, any assignment that makes Eq. 2.1 satisfiable is a trace (counter-
example) to detect the covert Trojan. For every pair (s, C), one CNF formula is
constructed and a SAT solver (for Boolean values) or a satisfiability module theory

Fig. 2.3 Equivalence checking using SAT solvers [39]
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(SMT) solvers can be used to find the potential threats. The success of this approach
is dependent on both SAT solvers and identification of (s, C) pairs. Moreover, the
approach requires manual intervention.

C ∧ (f unc(s = v0) ⊕ f unc(s = v1)) (2.1)

SAT solvers [63, 73] have been also used to automatically localize hard-to-detect
bugs in arithmetic circuits. Solving SAT problem results in finding suspicious func-
tionality. These approaches are based on either inserting logic corrector components
in the implementation [99], using abstraction and refinements [57, 93] or using
quantified Boolean formula [73]. The success of SAT-based approaches is dependent
on the performance of SAT solvers, and they fail for large and complex circuits.

2.4.2 Security Validation Using Property (Model) Checking

Model checking is a famous technique in design verification, which checks a design
for a set of given properties. To solve the model checking problem, the design
and the given properties are converted to a mathematical model/language, and all
of the design states are checked to see whether the given properties are satisfied.
Security properties describe the expected behaviors of a secure and trustworthy
design. These properties can be modeled as a collection of linear time temporal
logics (LTL) [23]. A model checker either proves the correctness of a given property
over all of the possible behaviors of the design or finds a counter-example when
the property fails. Figure 2.4 shows the high-level overview of security verification
using model checkers. The counter-example generated by model checkers can be
used as a test case to activate the target scenario [20, 25, 32, 60, 76–78, 88, 90].
Since model checkers consider all of the design states, it is prone to state-space
explosion issue, especially when large designs and complex properties are involved.
A bounded model checking (BMC) is used to limit the design unfolding to a limited
number of clock cycles. Since BMC does not check for all of the possible design
states, it cannot formally prove the given property. However, BMC assumes that
the designer knows the required number of clock cycles that a particular property
should hold.

Model checkers can be used to ensure safety properties. An SoC designer and a
third-party vendor can agree on certain security properties that should be held on the
design. When the design is sent to the SoC integrator, the SoC integrator converts
the design to a formal description to check the security properties using a model
checker. If all of the security properties are verified, the expected security behaviors
are met. Rajendran et al. have proposed a Trojan detection technique, which is based
on using a bounded model checking [92]. They have considered the threat model as
an attempt to corrupt the critical data such as secret keys of a cryptographic design,
random numbers which are required by most of the cryptography algorithms, or
stack pointer of a processor. The assumption is that these critical data should be
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Fig. 2.4 Security verification using model checkers. Security properties describe the expected
behaviors that a trustworthy design is required to follow

stored in some specific registers and accesses to these registers should be protected.
In other words, the registers that contain critical data should be accessed through
valid ways, and any undefined access to these registers is considered as a threat. The
safe access conditions to these registers are formulated as properties (assertions),
and a bounded model checker is utilized to find a counter-example when the security
properties are violated.

Several security validation approaches using model checking have been pro-
posed. J. Rajendran et al. have introduced a test generation technique for Trojan
detection using BMC approach [92]. They generate a set of security properties
based on access privileges to critical data registers, address tables, or stack pointer
of processors. The properties are then checked against the design using BMC to
find unauthorized accesses. The BMC generates a test to activate the hidden Trojan
when the given property does not hold in the design. However, the strength of this
approach is dependent on the completeness of the security properties, as well as
the capability of the SAT solver used during BMC. A combination of information
flow tracking techniques and model checking techniques has been introduced in
[47]. This technique looks for confidentiality and integrity property violations. The
confidentiality property requires that any secure data may not enter the unsecured
domain. Conversely, the integrity property requires that anything from unsecured
domain may not enter the secured domain. Use of model checking to find hardware
Trojans, information leakage, and unauthorized accesses to secret and critical data
is beneficial since the method does not require any golden model of the design.
However, the success of this method is dependent on the SAT-engine (which may
fail for large and complex designs) and precise definition of security properties,
which needs prior knowledge of all safe ways to access a critical register.
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2.4.2.1 Application of Equivalence Checking in Security Validation

Equivalence checking is used to formally prove that different representations of a
design display the same functionality—nothing more, nothing less. Every extra,
incorrect, or missing components can threaten the security of the design (the
threat model is any deviation from the expected functionality). However, traditional
equivalence checking methods may face a state-space explosion issue when applied
on large design. There are equivalence checking methods based on symbolic algebra
(Gröbner basis theory) that are successful to detect deviations from the specification
for combinational circuits, especially arithmetic circuits [26, 31, 39, 97]. Using
Gröbner basis theory enables formulation of the security verification problem in the
algebraic domain [39]. The design specification is first converted to a specification
polynomial fspec. The gate-level implementation is then converted to a set of
implementation polynomial F , where each gate is modeled as a polynomial. A
polynomial division is then applied to reduce the specification polynomial fspec

over implementation polynomials F . The remainder should be zero for functionally
equivalent designs. A non-zero remainder indicates that the specification differs
from the implementation, and the design is not trustworthy.

The remainder not only expresses the outcome of the equivalence checking but
also is beneficial in removing the Trojan. Any assignment which makes the total
value of the remainder non-zero is a directed test (counter-example) that activates
the Trojan. The directed test can be used to localize the source of error. Moreover,
patterns and existing terms of the remainder provide valuable information to detect
and correct the bug (gate misplacement and signal inversion are considered fault
models) [27–30, 33]. Although this technique is promising, the complexity of this
approach remains a challenge due to two factors: (1) To check whether a given
polynomial is a member of a polynomial system or not, and (2) a sequence of
expensive (in terms of both runtime and memory usage) polynomial manipulations,
including polynomial division and multiplication, are needed.

Equivalence checking based on symbolic algebra can be used to detect malfunc-
tions in general circuits as well. After a design is implemented and validated in
pre-silicon, the synthesized gate-level netlist may go through several non-functional
changes for different optimization purposes. The goal of the equivalence checking
is to detect whether an adversary has inserted a hard-to-detect hardware Trojan
during non-functional changes and has made undesired functional changes. For
example, a design house may send their RTL design for synthesis or insertion of
low-power features to a third-party vendor. Once the third-party IP comes back (after
synthesis or other functionality-preserving transformations), it is crucial to ensure
the trustworthiness of these IPs. In this scenario, the in-house version of the design
is treated as the golden design and specification polynomials are extracted from
it. Implementation polynomials are extracted from the potentially untrustworthy
design. The specification and implementation polynomials are compared using
polynomial manipulations and any malfunction is detected formally [33]. Similarly,
equivalence checking techniques based on symbolic algebra can be used to detect
the vulnerabilities in finite state machines [28].
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2.5 Summary

This chapter presented challenges in security verification and validation. We also
presented existing techniques for hardware security validation. It outlined prior
efforts in test generation, side-channel analysis, as well as formal approaches for
detecting hardware Trojans.
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Chapter 3
SoC Trust Metrics and Benchmarks

3.1 Threats to IP Trustworthiness

A typical SoC design flow is shown in Fig. 3.1. Design specification by the SoC
integrator is generally the first step. The SoC integrator then identifies a list of IPs
necessary to implement the given specification. These IP cores are either developed
in-house or purchased from 3PIP vendors. These 3PIP cores can be procured from
the vendors in one of the following three ways:

• Soft IP cores are delivered as synthesizable register transfer level (RTL) hardware
description language (HDL).

• Hard IP cores are delivered as GDSII representations of a fully placed and routed
core design.

• Firm IP cores are optimized in structure and topology for performance and area,
possibly using a generic library.

After developing/procuring all the necessary soft IPs, the SoC design house
integrates them to generate the RTL specification of the whole system. SoC
integrator then synthesizes the RTL description into a gate-level netlist based on
the logic cells and I/Os of a target technology library, then they may integrate gate-
level IP cores from a vendor into this netlist. They also add design-for-test (DFT)
structures to improve the design’s testability. The next step is to translate the gate-
level netlist into a physical layout based on logic cells and I/O geometries. It is
also possible to import IP cores from vendors in GDSII layout file format. After
performing static timing analysis (STA) and power closure, developers generate the
final layout in GDSII format and send it out for fabrication.

Today’s advanced semiconductor technology requires prohibitive investment for
each stage of the SoC development procedure. As a result, most semiconductor
companies cannot afford maintaining such a long supply chain from design to
packaging. In order to lower R&D cost and speed up the development cycle, the
SoC design houses typically outsource fabrication to a third-party foundry, purchase
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third-party intellectual property (IP) cores, and/or use electronic design automation
(EDA) tools from third-party vendors. The use of untrusted (and potentially
malicious) third parties increases the security concerns. Thus, the supply chain is
now considered susceptible to various attacks, such as hardware Trojan insertion,
reverse engineering, IP piracy, IC tampering, IC cloning, IC overproduction, and
so forth. Among these, hardware Trojans are arguably one of the biggest concern
and have garnered considerable attention. Trojans can be inserted in SoCs at the
RTL, at the gate level during synthesis and DFT insertion, at the layout level during
placement and routing, or during IC manufacturing. An attacker can also insert a
Trojan through IP cores provided by external vendors. Designers must verify the
trustworthiness of IP cores to ensure that they perform as intended, nothing more
and nothing less.
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3.2 IP Trust Validation

IP trust validation focuses on verifying that an IP does not perform any malicious
function, i.e., an IP does not contain any Trojan. Existing IP trust validation tech-
niques can be broadly classified into code/structural analysis, functional verification,
logic testing, formal verification, and runtime validation.

Code Coverage Analysis Code coverage is defined as the percentage of lines of
code that has been executed during functional verification of the design. This metric
gives a quantitative measure of the completeness of the functional simulation of
the design. In [11], the authors have proposed a technique named unused circuit
identification (UCI) to find the lines of RTL code that have not been executed
during simulation. These unused lines of codes can be considered to be part of a
malicious circuit. In [3], the authors have proposed similar code coverage analysis
in combination with hardware assertion checker to identify malicious circuitry in a
3PIP. However, these techniques do not guarantee the trustworthiness of a 3PIP. The
authors in [26] have demonstrated that hardware Trojans can be designed to defeat
UCI technique. This type of Trojans derives their triggering circuits from less likely
events to evade detection from code coverage analysis.

Formal Verification Formal methods such as symbolic execution, model checking,
and information flow have been traditionally applied to software systems for finding
security bugs and improving test coverage. Formal verification has also shown to
be effective in verifying the trustworthiness of 3PIP [9, 15]. These approaches are
based on the concept of proof-carrying code (PCC) to formally validate the security-
related properties of an IP. In these proposed approaches, an SoC integrator provides
a set of security properties in addition to the standard functional specification to
the IP vendor. A formal proof of these properties alongside with the hardware
IP is then provided by the third-party vendor. SoC integrator then validates the
proof by using the PCC. Any malicious modification of the IP would violate this
proof indicating the presence of hardware Trojan. However, these approaches cannot
ensure complete trust in an IP because the third-party vendor crafts the formal proof
of these security-related properties [2].

Structural Analysis Structural analysis employs quantitative metrics to mark
signals or gates with low activation probability as suspicious. In [23], the authors
have presented a metric named “Statement Hardness” to evaluate the difficulty
of executing a statement in the RTL code. Areas in a circuit with large value of
“Statement Hardness” are more vulnerable to Trojan insertion. At gate level, an
attacker would most likely target hard-to-detect areas of the gate-level netlist to
insert Trojan. Inserting a Trojan in hard-to-detect areas would reduce the probability
to trigger the Trojan and thereby, reduce the probability of being detected during
verification and validation testing. In [29], the authors have proposed metrics to
evaluate hard-to-detect areas in the gate-level netlist. The limitations of code/struc-
tural analysis techniques are that they do not guarantee Trojan detection, and manual
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post-processing is required to analyze suspicious signals or gates and determine if
they are a part of a Trojan.

Logic Testing Logic testing aims to activate Trojans by applying test vectors and
comparing the responses with the correct results. While at first glance this is similar
in spirit to manufacturing tests for detecting manufacturing defects, conventional
manufacturing tests using functional/structural/random patterns perform poorly to
reliably detect hardware Trojans [4]. Intelligent adversaries can design Trojans that
are activated under very rare conditions, so they can go undetected under structural
and functional tests during the manufacturing test process. In [12, 13, 16] the authors
have developed a test pattern generation methods to trigger such rarely activated
nets and improve the possibility of observing Trojan’s effects from primary outputs.
However, this technique does not guarantee to trigger the Trojan and it is infeasible
to apply this technique in an industrial scale design.

Functional Analysis Functional analysis applies random input patterns and per-
forms functional simulation of the IP to find suspicious regions of the IP which
have similar characteristics of a hardware Trojan. The basic difference between
functional analysis and logic testing is that logic testing aims to apply specific
patterns to activate a Trojan, whereas functional analysis applies random patterns
and these patterns are not directed to trigger the Trojan. The authors in [30]
have proposed a technique named functional analysis for nearly unused circuit
identification (FANCI) which flags nets having weak input-to-output dependency
as suspicious. This approach is based on the observation that a hardware Trojan is
triggered under very rare condition. Therefore the logic implementing the trigger
circuit of a Trojan is nearly unused or dormant during normal functional operation.
This approach has similar drawbacks as structural analysis.

Runtime Validation Runtime validation approaches are generally based on dual
modular redundancy based approaches [5, 21]. These techniques rely on procuring
IP cores of same functionality from different IP vendors. The basic assumption
is that it is highly unlikely that different Trojans in different 3PIPs will produce
identical wrong outputs. Therefore, by comparing the outputs of IP cores of same
functionality but obtained from different vendors, one can detect any malicious
activity triggered by a Trojan. The main disadvantage of this approach is that the
area overhead is prohibitively high and the SoC integrator needs to purchase same
functional IP from different vendors (economically infeasible).

3.3 Static Benchmarks

Research in the field of hardware IP verification has seen significant growth in the
past decade. Benchmarks serve as an important tool for researchers to assess the
effectiveness of their proposed methodologies by providing a standardized baseline.
Traditionally, Trojans have been inserted in an ad hoc manner into pre-silicon
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designs. This fact prevents effective comparison among Trojan detection methods
because an ad hoc Trojan can favor one detection methodology over another. Recent
efforts have attempted to remedy this by offering a benchmark suite with fixed
number of Trojan-inserted designs [24, 25].

Standard benchmarks to evaluate hardware Trojans and their detection have
been developed, such as the ones in from Trust-HUB (http://trust-hub.org/resources/
benchmarks). In this section, we focus on the hardware Trojan benchmarks and
hardware obfuscation benchmarks from Trust-HUB website. We discuss the taxon-
omy that researchers have used for hardware security research.

3.3.1 Hardware Trojan Taxonomy

Trust-HUB has hundreds of benchmark circuits with a hardware Trojan inserted.
These Trojan benchmarks are carefully crafted so that they are guaranteed to be
stealthy and remain undiscovered under conventional testing methods. It is recom-
mended that users search for trust benchmarks based on the Trojan characteristics
they are interested in. The hardware Trojan taxonomy is shown in Fig. 3.2. Trojans
[8, 10, 18] can be inserted at different phases (i.e., specification, design, fabrication,
testing, and packaging) of the IP design flow. From the perspective of abstrac-
tion levels, Trojans can be inserted at different levels (i.e., system, development
environment, RTL, gate level, layout, or physical). Activation mechanism can be
either “Always On” or “Triggered.” Effects of a Trojan can differ depending on
the attacker’s malicious intent, which might change the functionality, degrade the
performance, leak information, or cause denial of service. Locations of a Trojan can
be anywhere including processor, memory, I/O, power supply, or clock grid. The
physical characteristics of Trojans might also vary a lot in terms of distribution,
size, type, and structure.

3.3.2 Hardware Obfuscation Taxonomy

IP protection can be based on hardware obfuscation, which makes reverse engi-
neering an IP design infeasible for adversaries and untrusted parties with any

Fig. 3.2 Hardware Trojan taxonomy [25]
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reasonable amount of resources. As shown in Fig. 3.3, hardware obfuscation can
be divided into two groups: combinational and sequential obfuscation. The one
or more combinational obfuscation methods can be applied simultaneously on a
circuit. Single techniques can be either cyclic or acyclic. The acyclic techniques
applied for generating obfuscation were random insertion, secure logic locking
(SLL) [32], and logic cone size [20] based. Multiple modifications can be coupling
with SAT attack [31] resiliency block or using multiple obfuscation methods. The
SAT resiliency block can be AntiSAT [31], SARLock [33], or any other technique.
These blocks can be applied along with other combinational obfuscation blocks.

3.4 Dynamic Trojan Benchmark Generation

Existing trust benchmarks have the following major deficiencies: (1) These bench-
marks only enumerate a subset of the possible hardware Trojans. There exists
an inherent bias in these designs as the Trojan location and trigger conditions
are static. As a result, it is possible for researchers to tune their methods (often
unknowingly) to detect these Trojans. (2) A static set of benchmarks also prevent
us from incorporating new types of Trojans in this rapidly evolving field, which
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Fig. 3.4 Tool flow and integration with commercial test tool in the Trojan insertion framework [7]

keep discovering new Trojan structures. (3) A limited number of benchmarks can
negatively affect supervised machine learning techniques for Trojan detection which
require an expansive test set. (4) Finally, it does not allow inserting multiple Trojans
in a design or inserting Trojan in a different design, e.g., a new intellectual property
(IP) block.

In order to make a more robust and flexible Trust benchmark suite, we have
developed a novel framework to dynamically insert various functional Trojan types
into a gate-level design. The possible Trojans that can be inserted using the tool can
vary in terms of the Trojan type (e.g., combinational, sequential, etc.), the number
of Trojans, detection difficulty, number and rarity of trigger points, payload types,
and Trojan structure. For added flexibility and forward-compatibility, we also allow
users to insert a Template Trojan triggered from a combination of rare or non-rare
nodes. Figure 3.4 provides an overview of the proposed framework. We first identify
the rare internal nodes in the given netlist. Potential Trojan instances are generated
using the principle of random sampling from the population of rare nodes (and non-
rare if specified). Trigger conditions and payloads are verified producing a feasible
Trojan list. From this list, we then randomly select and insert the Trojans according
to the user’s configuration options including any footprint optimization.



44 3 SoC Trust Metrics and Benchmarks

Fig. 3.5 (a) Generic Combinational Trojan; (b) Generic Sequential Trojan

3.4.1 Trojan Model

Hardware Trojans are malicious modifications of a circuit that cause undesired side-
effects. Trojans structurally consist of a trigger and a payload. Typically, an attacker
will insert Trojans under hard-to-trigger conditions or rare nodes of a design.
Therefore, most Trojans lay dormant for a majority of an infected circuit’s lifetime
and subsequently evade detection when using standard validation techniques. Once
the trigger or activation condition is reached, the Trojan’s effect is realized through
the payload gate. These payload effects can be broadly classified as functional denial
of service (DoS) or information leakage [2, 28].

There are two general structures of functional Trojans: combinational and
sequential. Combinational Trojans consist of only combinational logic gates. Fig-
ure 3.5a shows a generic combinational Trojan. Simultaneous activation of rare
nodes T1 to Tn leads to undesired effects. Sequential Trojans include state elements
and a series of state transitions to trigger an undesired effect. In Fig. 3.5b, after the
state transitions from S1 to Sn occur, the Trojan is activated. These state transitions
can be activated from trigger nodes T1 to Tn or from just the clock signal in the case
of always-on Trojans.

3.4.2 Customizable and Dynamic Trojan Insertion

Having a dynamic Trojan insertion tool is important in achieving a robust bench-
mark suite for hardware security. Table 3.1 describes the user configuration
parameters and their effect on Trojan trigger and payload: rare node threshold
θ , number of trigger nodes q, number of rare trigger nodes r , number of Trojan
instances N , the effect, activation mechanism, and the Trojan type (combinational
or sequential). Because we cannot include every Trojan type, we also allow the user
to specify a Template Trojan that follows a particular format. With this input we
construct the Trojan and automatically insert it into the design. Algorithm 1 shows
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the four major steps in the automated Trojan insertion framework shown in Fig. 3.4.
Algorithm 1 takes a gate-level design D and the set of configuration parameters
C from Table 3.1 and generates a Trojan-inserted design T . The remainder of this
section describes these steps in detail.

Table 3.1 Configurable Trojan insertion tool parameters

Parameter Objective

No. of trig. node (q) Affects trigger probability, complexity

No. of rare trig. node (r) Affects trigger probability, complexity

Rare signal threshold (θ) Affects trigger probability and available trig. nodes

No. of Trojans (N ) Affects trigger probability, structure

Activation mechanism (always on/triggered) Affects Trojan complexity, potential effect

Trojan effect (functional/ leakage) Affects Trojan complexity, payload effect

Trojan structure (comb/seq/templ) Affects Trojan complexity, payload effect

Algorithm 1: Dynamic Trojan insertion algorithm
Input: Design D, set of config param C={q,r ,θ ,N , ...}
Output: Trojan inserted design T

1 rareNode, sampleT rojPop={}
2 hypergraph = constructGraph(D)
3 topologicalSort(hypergraph)
4 stats = functionalSim(hypergraph)
5 for each node ∈ hypergraph do
6 if node.signalP rob ≤ θ then
7 rareNode ∪ nodei

8 end
9 end

10 trigPop = [rareNode]r + [nodeˆrareNode]q−r

11 sampleTrigPop = sample(trigPop, 10000)
12 for each trigger ∈ sampleT rigPop do
13 if !validTrigger(triggeri ) then
14 removeTrig(triggeri , sampledTrigPop)
15 end
16 else
17 payload=findRandomPayload(hypergraph)
18 while !validPayload(payload) do
19 payload=findRandomPayload(hypergraph)
20 if allVisited(hypergraph) then
21 removeTrig(triggeri , sampledTrigPop)
22 end
23 end
24 sampleT rojPop ∪ (triggeri + payload)

25 end
26 end
27 T = constructTrojans(D,C)
28 return T
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3.4.3 Identify Rare Internal Nodes

Trojans are generally difficult to detect because an adversary would likely insert
a Trojan under a set of hard-to-activate internal trigger conditions. Lines 5–9 of
Algorithm 1 describe how we identify rare nodes. We first construct a hypergraph by
parsing the gate-level netlist. Next, the graph is sorted topologically and we employ
functional simulation from a set of input patterns and compute the signal probability
p for each activation level for each net. Users provide a threshold signal probability
θ . All nets with a signal probability p < θ will be considered rare, and therefore
potential trigger conditions. If we assume q trigger nodes with independent signal
probabilities p, the resulting Trojan trigger probability becomes

q∏

i=0

pi where pi ∈ {p}

Yet, smart adversaries may try to bypass this assumption by including non-rare
nodes in the Trojan trigger. This modification can evade techniques which consider
only rare nodes in the activation condition. Therefore, in addition to the number of
trigger nodes, we allow users to specify the number of rare trigger nodes r with
r ⊆ q. If r < q, then the remaining trigger nodes will be selected from the signals
with p > θ as shown in line 11 of Algorithm 1.

3.4.4 Selecting Trojans Using Random Sampling

Suppose we have identified m rare nodes with signal probability less than θ . If a
Trojan can have q trigger nodes, then the total potential Trojan population for a
given structure is

m!
q!(m − q)!

If we consider a combination of rare and non-rare trigger nodes for the Trojan, the
population becomes much larger. In order to accurately model the potential Trojan
population, we employ random sampling in line 11 of Algorithm 1 and select a large
sample size (e.g., 10,000) potential Trojan triggers [4].

3.4.5 Trojan Validation

Inserting potential Trojans does not guarantee an adverse effect will be observable
during the lifetime of the circuit. Many Trojans will be invalid or unobservable due
to imposed constraints or redundant circuitry. Therefore, the inserted Trojan must be
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validated. In lines 12–26 of Algorithm 1, the tool verifies both the trigger condition
and payload observability to ensure the Trojan inserted is a valid Trojan. From the
list of potential trigger conditions, we use Synopsys TetraMAX [27] to remove any
false trigger conditions by justifying each trigger condition. If the trigger condition
results in a conflict, the trigger is removed from the trigger pool.

For each instance in the sampled list of feasible trigger nodes, a payload is
selected randomly from the remaining nets. The criteria for payload selection is
the topological order of the payload net must be greater than that of all the trigger
nodes. This prevents the formation of combinational loops. Additionally, to ensure
observability, stuck-at fault testing is performed for each payload. Any payload for
which a stuck-at fault cannot be generated is removed from the list of feasible
payloads. After combining the validated trigger condition and payload, a list of
feasible Trojans exists which can be inserted into the design. If no Trojans are
possible, users can increase the effort of TetraMAX or adjust the rare threshold
value to include more potential Trojans.

3.4.6 Trojan Construction and Insertion

From the list of feasible Trojans, we randomly select the trigger instance and
construct the Trojan from the user specification. The user can choose between
functional and leakage payload effects. For functional Trojans, there are three Trojan
structures a user can insert: combinational, sequential, and template. For example,
Figs. 3.6 and 3.7 show a design before and after Trojan insertion. Our tool (DeTrust)
for automatic Trojan insertion has a web interface as shown in Fig. 3.8.

Combinational The combinational Trojan consists of a sample structure with q

trigger conditions connected together using an AND gate. The output of the AND
gate is connected to an XOR gate. In Fig. 3.9, the left design is an example design
after we generated a list of feasible Trojans. With input θ = 0.2, q = 2, r = 2,
N = 2, type = comb, eff ect = func, and activ_mech = trigger the design on the
right is generated.

Fig. 3.6 DeTrust template
before insertion
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Fig. 3.7 DeTrust template
after insertion

Fig. 3.8 Web interface for our DeTrust tool

Sequential The sequential Trojan consists of sample structure with q trigger
conditions connected using an and gate. This trigger output feeds into a template
3-bit counter which executes the payload after the trigger condition activates 23

times. The Trojan-inserted design on the right of Fig. 3.10 is generated after the
user inputs θ = 0.2, q = 3, r = 3, N = 1, type = seq, eff ect = func, and
acti_mech = trigger.

Template The functional template Trojan option allows for users to insert their
own Trojan structure with q customizable trigger conditions. Users must format the
trigger inputs to their gate-level template so that they may be properly substituted
and inserted. After running the tool with θ = 0.2, q = 4 N = 1, type = template,
eff ect = func, activ_mech = trigger, and the template module above the Trojan is
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Fig. 3.9 Design after combinational Trojan insertion

Fig. 3.10 Design after sequential Trojan insertion

inserted into the design shown in Fig. 3.11. The code snippets for the corresponding
template before and after insertion are shown in Figs. 3.6 and 3.7.

For leakage Trojans, this tool allows for always-on or internally triggered
activation mechanisms. Users must provide a template leakage circuit along with the
critical information that is to be leaked. If critical signals are not specified, the tool
will randomly select existing internal signals to leak. In case of always-on Trojans,
all tool configurations regarding Trojan triggers are disregarded. Figure 3.12 shows
a design with an always-on MOLES [14] template leaking three random internal
signals with N = 1, type = template, eff ect = leakage, activ_mech =
always_on.

Multiple Trojan Insertions Users can also insert multiple Trojans in a design by
specifying the configuration parameter N > 1 in Table 3.1. Inserting multiple
Trojans can increase the threat level in certain scenarios. As a result, detecting one
Trojan does not eliminate the possibility of another. For example, in the event that
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Fig. 3.11 Design after template Trojan insertion

Fig. 3.12 Design after always-on leakage Trojan insertion

a functional Trojan is detected and removed from a third-party IP, another more
stealthy leakage Trojan instance can remain. The existence of multiple Trojans
in an IP can be more difficult and computationally expensive, especially when
scaled to the System-on-Chip (SoC) level due to the increasing challenges in SoC
verification [6].

Additional Configurations In addition to the configurations mentioned above, the
current version of the tool also provides support for scan-chain insertions, clock
definitions, and footprint optimizations. For scan chains, users must provide an
SPF describing the scan-structure of the original design. Multiple clocks can be
specified by providing the clock’s signal name along with the activation level. For
sequential or combinational Trojan types, if specified, the tool will seek to construct
a Trojan with minimal switching activity and area from the provided specifications
and original netlist through trigger and structure selection.
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3.4.7 Experimental Results and Analysis

To demonstrate the effectiveness of the framework, we have inserted Trojans
into ISCAS-85 and ISCAS-89 benchmarks and evaluate using a state-of-the-art
Trojan detection methods: COTD [22]. A machine with Intel Core i5-3470 CPU
@ 3.20GHz and 8 GB of RAM is used for testing. This tool supports flattened
gate-level designs written in Verilog. The current implementation supports two
standard cell libraries (LEDA and SAED). COTD is an unsupervised machine
learning approach for Trojan detection. Sandia Controllability/Observability Analy-
sis Program (SCOAP) controllability and observability values are extracted from
nets in a gate-level netlist using Synopsys TetraMAX. The feature set includes
a two-dimensional vector with combinational controllability and combinational
observability (CC, CO) values which are clustered with k-means clustering using
k = 3 in a simple Python script. During evaluation, we used sequential ISCAS
benchmarks with combinational or sequential Trojans. For each benchmark, we
insert Trojan instances with trigger nodes (r/q) = 5/6, 6/6, and 7/7. A low rare node
threshold of θ = 0.0001 was chosen for most benchmarks. θ is adjusted up to 0.05
when the tool is unable to generate feasible Trojans at θ = 0.0001.

The results from evaluating COTD with Trojan-inserted designs from the tool
are described in Table 3.2. We assume full-scan implementation for the original
design and non-scan for Trojan insertions. The benchmarks are listed in the first
column. The naming convention is B-T q, where B is the original benchmark, T

is the Trojan type (c, s, t for comb., seq., and template, respectively), and q is the
number of trigger nodes. For example, s13207-c2 is the s13207 benchmark infected
with a 2-node trigger combinational Trojan. If the number of rare nodes r < q, then
the naming is B-T r_q. The next three columns describe the tool configurations
in terms of number trigger nodes, rare threshold value θ , and the Trojan type and
number of instances. Columns 5 and 6 show the number of genuine signals and false
negatives (FN) and the number of Trojan signals and false positives (FP). The last
four columns provide information on the clustering itself by describing the cluster
centroid for Trojan Cluster 1 (high CC values) and Trojan Cluster 2 (high CO values)
and the minimum and maximum magnitude of the (CC, CO) pairs for genuine and
Trojan signals. From Table 3.2, we can make the following observations:

1. In the presence of combinational Trojans, the COTD technique has a high false
positive rate.

2. In the presence of sequential Trojans, the COTD technique has a low false
positive rate.

While COTD does not produce any false negative signals, using Trojans generated
from the tool caused COTD to generate false positives in all benchmarks. From
the second observation, the false positives can be attributed to the payload gate’s
effect on the remaining circuit. The original design |CC, CO| for s13207, s15850,
and s35932 are |1.414, 63.016|, |1.414, 139.717|, and |1.414, 12.018|, respectively.
In the Trojan-inserted designs, the payload propagates its high CC and CO values to
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its fan-in and fan-out. Moreover, the non-scan structure will automatically produce
low controllability and observability values in TetraMAX from the complexity of
sequential structures in ATPG tools [17]. From this, we can say COTD will most
likely result in higher false positives in the presence of partial-scan designs—a
common practice in industry to reduce area overhead and testing time compared
to full-scan implementations. Additionally, the false positive rate may be affected in
the cases where not all trigger nodes are rare which is the case for Trojans with r/q

as 5/6.
Table 3.3 presents the results of applying MERO with q = 2 and q = 4 on

Trojan designs from the tool. The first four columns are the same as in Table 3.2

Table 3.3 Compare MERO with random Trojan insertions

MERO

q = 2 q = 4

Benchmark

Trig.
nodes
(r/q) θ

Trojan type
(type, no.)

Trig
Cov
(%)

Troj
Cov
(%)

Trig
Cov
(%)

Troj Cov
(%)

Rare nodes
(rare/total)

c2670 – 0.05 – 100 95.724 98.717 89.781 30/1010

c2670-c1 1/1 0.05 comb (1) 100 96.881 98.764 93.975 30//1011

c2670-c2 2/2 0.05 comb (1) 100 96.850 98.606 93.770 32/1012

c2670-c3 3/3 0.05 comb (1) 100 95.106 98.440 90.036 33/1014

c2670-c4 4/4 0.05 comb (1) 100 95.138 98.163 89.367 34/1014

c3540 – 0.05 – 98.670 77.615 81.768 53.039 170/1184

c3540-c1 1/1 0.05 comb (1) 98.624 77.152 82.603 54.110 170/1185

c3540-c2 2/2 0.05 comb (1) 98.693 78.402 83.548 55.365 171/1186

c3540-c3 3/3 0.05 comb (1) 98.547 78.003 84.012 57.315 173/1188

c3540-c4 4/4 0.05 comb (1) 99.022 78.081 84.478 58.060 172/1187

c5315 – 0.05 – 99.717 87.746 88.107 57.347 99/2485

c5315-c1 1/1 0.05 comb (1) 99.769 88.101 88.126 56.112 99/2486

c5315-c2 2/2 0.05 comb (1) 99.728 88.375 88.156 57.522 100/2487

c5315-c3 3/3 0.05 comb (1) 99.738 88.164 88.251 58.547 100/2487

c5315-c4 4/4 0.05 comb (1) 99.727 87.471 87.595 56.288 100/2487

c6288 – 0.1 – 100 99.771 99.548 99.095 47/2448

c6288-c1 1/1 0.1 comb (1) 100 99.770 99.398 98.947 47/2449

c6288-c2 2/2 0.1 comb (1) 100 99.744 99.554 99.088 48/2450

c6288-c3 3/3 0.1 comb (1) 100 99.741 99.035 98.232 48/2450

c6288-c4 4/4 0.1 comb (1) 100 99.773 99.541 98.928 48/2450

s13207 – 0.2 – 17.534 3.288 0 0 1355/2504

s13207-s1 1/1 0.2 seq (1) 19.710 3.043 0 0 1357/2514

s13207-s2 2/2 0.2 seq (1) 17.797 2.404 0 0 1358/2515

s13207-s3 3/3 0.2 seq (1) 17.226 2.92 6.667 0 1363/2517

s13207-s4 4/4 0.2 seq (1) 16.208 2.315 5.556 0 1362/2517

– is not applicable
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which report the benchmark and the tool configurations. Columns 5–8 show the
trigger and Trojan coverage. The last column presents the number of rare nodes
reported from MERO over the total nodes. The low trigger and Trojan coverage for
the sequential benchmark s13207 can be attributed to the non-scan implementation
being used. In benchmarks c3540, c5315, and s13207 the original benchmarks
generally have lower trigger and Trojan coverage than the Trojan-inserted designs.
For the remaining benchmarks, the original benchmarks have higher trigger and
Trojan coverage than the Trojan-inserted designs. However, only the cases in which
the number of trigger nodes for MERO matched the number of trigger nodes in the
Trojan, MERO is likely to detect the Trojan. Therefore, MERO would only benefit
from detecting small Trojan insertions as increasing q increases runtime.

3.5 Summary

IP metrics and benchmarks are an important tool in the evaluation of novel
techniques developed by researchers. In hardware security and trust, existing
static trust benchmarks for Trojan detection provide a good foundation but are
limited in Trojan variety and robustness. They also do not evolve with new attack
modalities being discovered. We have presented a comprehensive automatic Trojan
insertion framework with associated algorithms that provide users the ability to
generate dynamic benchmarks with random Trojan insertions. Users can control
several parameters regarding Trojan trigger, structure, payload type, and rarity.
Additionally, future Trojan models are supported by allowing template Trojans. This
tool can be used to evaluate Trojan detection methods from a red team vs blue team
perspective demonstrated using a popular Trojan detection method.
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Chapter 4
Anomaly Detection Using Symbolic
Algebra

4.1 Introduction

The urge of high speed and high precision computations increases use of arithmetic
circuits in real-time applications such as multimedia and cryptography operations.
Optimized and custom arithmetic architectures are required to meet these high speed
and precision constraints. There is a critical need for efficient arithmetic circuit
security verification techniques due to Trojan proneness of non-standard arithmetic
circuit implementations. Hence, the automated security verification of arithmetic
circuits is absolutely necessary for efficient design validation.

A major problem with design validation is that we do not know whether an
anomaly exists, and how to quickly detect and fix it. We can always keep on
generating random tests, in the hope of activating the malicious functionality;
however, random test generation is neither scalable nor efficient when designs
are large and complex. Existing directed test generation techniques [1, 2, 8–
12, 18, 24, 28, 29, 31–33] are promising only when the list of anomalies is available.
In this chapter, we present a directed test generation technique that is guaranteed to
activate unknown bugs (if any). The generated tests would also help for faster bug
localization.

From the security point of view, it is important to prove that the design implemen-
tation is equivalent to its specification—nothing more, nothing less. Any deviation
from the specification may endanger the correct functionality, trustworthiness, and
the security of the design. Therefore, any errors in hardware designs threaten the
integrity and security of the overall design. Notably, gate-replacement errors in the
gate-level netlist can change the correct functionality of design and insert anomaly
in its implementation. Moreover, gate-replacement error may pose security threats
since it can act as a bit-flip (in comparison with the golden behavior) and cause
unauthorized transitions to protected states of the design, wrong results, and denial
of service. The situation gets worse when we consider such anomalies in arithmetic
circuits that provide the result of encryption operations. Any error in the outcome
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of such secure operation may threaten the security of the overall design. Gate-
replacement anomalies are small malicious modifications and have negligible effect
on physical characteristics (area, power, and energy) of the design. Therefore, they
cannot be detected during design review. Moreover, they cannot be easily activated
using random and constraint-random validation approaches. Considering the huge
complexity of SoCs’ gate-level netlist, gate-replacement errors are likely due to the
presence of rouge designers, EDA tool vulnerabilities, and optimization procedures.

Equivalence checking techniques seem promising to identify gate-replacement
errors. However, existing equivalence checking methods can lead to state space
explosion when complex and large IPs such as arithmetic circuits are involved.
Existing arithmetic circuits verification approaches have focused on checking the
equivalence between the specification of a circuit and its implementation. They use
an algebraic model of the implementation [13, 26] using a set of polynomials F .
The specification of an arithmetic circuit can be modeled as a polynomial fspec

using decimal representation of primary inputs and primary outputs. The verification
problem is formulated as mathematical manipulation of fspec over polynomials in
F . If the implementation is equivalent to the specification, the result of equivalence
checking is a zero polynomial; otherwise, it produces a polynomial containing
primary inputs as variables. We call this polynomial remainder. Any assignment
to remainder’s variables that makes the remainder to have a non-zero decimal
value generates one counter-example. Based on the location of a bug, remainder
generation may be expensive. However, the remainder generation is one time effort
and multiple counterexamples (directed tests) can be generated from one remainder.

Figure 4.1 shows different scenarios of a Trojan-inserted implementation.
Figure 4.1a illustrates the case when only one Trojan exists in the implementation.
Figure 4.1b shows the presence of two Trojans which do not share input cones
(Trojan with independent triggers which we call them independent Trojans). We
describe how to fix one or more independent Trojans in Sects. 4.3 and 4.4.1,
respectively. We refer to “activation independence” in the context of activating
independent Trojans as shown in Fig. 4.1b. In other words, independent Trojans
do not have any overlapping input cones. On the other hand, their effect can
be seen in different primary outputs. The effect of different Trojans (dependent

Fig. 4.1 Illustrative malicious scenarios for a given design with Trojan-specific input and output
cones. Each star represents one Trojan. Here, PI and PO refer to the primary inputs and primary
outputs, respectively. (a) Single bug. (b) Two independent bugs. (c) Two dependent bugs. (d)
Hybrid of dependent and independent scenarios
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Fig. 4.2 Overview of
different steps of the
presented security verification
framework. Independent
Trojans are located and
corrected using the first loop
(shown with dashed line) as
described in Sect. 4.4.1.
Detection/correction of
dependent Trojans is
discussed in Sect. 4.4.2

and independent Trojans) may appear in overlapping or nonoverlapping cones as
shown in Fig. 4.1. We present algorithms to locate and correct multiple independent
Trojans. In many cases, Trojans may share input cones (Trojans that have dependent
Trojans) as shown in Fig. 4.1c. In this chapter, we also present an algorithm to
automatically fix multiple dependent Trojans in Sect. 4.4.2. Generally, a Trojan-
inserted implementation can contain any combination of independent and dependent
malicious functionality as shown in Fig. 4.1d.

Figure 4.2 shows different steps of the presented equivalence checking approach
to locate and correct multiple Trojans for various scenarios depicted in Fig. 4.1. The
existence of a non-zero remainder as a result of applying the functional verification
between specification and implementation of an arithmetic circuit is a sign of an
untrustworthy implementation. However, there is no information about the number
of existing Trojans in the implementation. There can be a single Trojan or multiple
independent/dependent Trojans in the design. In Sect. 4.3, we present a single
Trojan correction algorithm. The main question is that how to know the number
of remaining Trojans in the design and which algorithm should be used to fix them.
In order to determine whether there is more than one Trojan in the implementation,
we try to partition the remainder R into sub-remainders Ri first. If the remainder can
be partitioned successfully into n sub-remainders, we can conclude that there are at
least n independent Trojans in the implementation as we discussed in Sect. 4.4.1.
Algorithms in Sect. 4.3 are used over each sub-remainder Ri to fix each Trojan.
However, if a single Trojan cannot be found for remainder Ri , there are multiple
dependent Trojans which construct the sub-remainder Ri . Therefore, we try to find
a single Trojan corresponding to remainder Ri first. If we can find such a Trojan, the
Trojan will be fixed. Otherwise, we try the proposed algorithm of Sect. 4.4.2 to find
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dependent Trojans responsible for sub-remainder Ri . The procedure is repeated for
all of the sub-remainders.

The remainder of this chapter is organized as follows: Section 4.2 reviews
symbolic algebra and how it can be used for verification purposes. Section 4.3
discusses the framework for directed test generation and Trojan localization/detec-
tion approach. Section 4.4 describes the security verification approach to detect and
correct multiple Trojans. Section 4.5 describes challenges in remainder generation
and presents an approach to address them. Section 4.6 presents the experimental
results. Finally, Sect. 4.7 concludes this chapter.

4.2 Fundamental of Verification Using Symbolic Algebra

In this section, we briefly describe Gröbner basis theory [14]. Next, we present the
application of Gröbner basis theory for verification of hardware designs.

4.2.1 Gröbner Basis Theory

Let M = x1
α1x2

α2 . . . xn
αn be a monomial and f = C1M1 + C2M2 + . . . + CtMt

be a polynomial with {c1, c2, . . . , ct } as coefficients and M1 > M2 > . . . > Mt .
Monomial lm(f ) = M1 is called leading monomial and lt (f ) = C1M1 is called
leading term of polynomial f . Let K be a computable field and K[x1, x2, . . . , xn]
be a polynomial ring in n variables. Then < f1, f2, . . . , fs >= { n∑

i=1
hifi :

h1, h2, . . . , hs ∈ K[x1, x2, . . . , xn]
}

is an ideal I . The set {f1, f2, .., fs} is called
generator or basis of ideal I. If V (I) shows the affine variety (set of all solutions
of f1 = F2 = . . . = fs = 0) of ideal I, I (V ) = {fi ∈ K[x1, x2, . . . , xn] :
∀v ∈ V (I), fi(v) = 0}. Polynomial fi is a member of I (V ) if it vanishes on
V (I). Gröbner basis is one of the generators of every ideal I (when I is other than
zero) that has a specific characteristic to answer membership problem of an arbitrary
polynomial f in ideal I . The set G = {g1, g2, . . . , gt } is called Gröbner basis of
ideal I , if ∀fi ∈ I, ∃gj ∈ G : lm(gj )|lm(fi).

The Gröbner basis solves the membership testing problem of an ideal using
sequential divisions or reduction. The reduction operation can be formulated as
follows. Polynomial fi can be reducible by polynomial gj if lt (fi) = C1M1 (which

is non-zero) is divisible by lt (gi) and r is the remainder (r = fi − lt (fi )
lt (gj )

.gj ). It can

be denoted by fi

gj−→ r . Similarly, fi can be reducible with respect to set G and it

can be represented by fi
G−→+ r .

The set G is Gröbner basis ideal I , if ∀f ∈ I, fi
G−→+ 0. Gröbner basis can

be computed using Buchberger’s algorithm [5]. Buchberger’s algorithm is shown in
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Algorithm 2: Buchberger’s algorithm [5]
Input: ideal I =< f1, f2, . . . , fs > �= {0}, initial basis F = {f1, f2, . . . , fs}
Output: Gröbner Basis G = {g1, g2, . . . , gt } for ideal I
G = F

V = G × G

while V �= 0 do
for each pair (f, g) ∈ V do

V = V − (f, g)

Spoly(f, g) →G r

if r �= 0 then
G = G ∪ r

V = V ∪ (G × r)
end

end
end
return set G

Algorithm 2. It makes use of a polynomial reduction technique named S-polynomial
as defined below.

Definition 4.1 (S-polynomial) Assume f, g ∈ K1, x2, . . . , xn] are non-zero poly-
nomials. The S-polynomial of f and g (a linear manipulation of f and g) is defined
as: Spoly(f, g) = LCM(LM(f ),LM(g))

LT (f )∗f
− LCM(LM(f ),LM(g))

LT (g)∗g
, where LCM(a, b) is a

notation for the least common multiple of a and b.

Example 4.1 Let f = 6∗x1
4∗x2

5+24∗x1
2−x2 and g = 2∗x1

2∗x2
7+4∗x2

3+2∗x3
and we have x1 > x2 > x3. The S-polynomial of f and g is defined below:

LM(f ) = x1
4 ∗ x2

5

LM(g) = x1
2 ∗ x2

7

LCM(x1
4 ∗ x2

5, x1
2 ∗ x2

7) = x1
4 ∗ x2

7

Spoly(f, g) = x1
4∗x2

7

6∗x1
4∗x2

5)
∗ f − x1

4∗x2
7

2∗x1
2∗x2

7 ∗ g = 4x1
2 ∗ x2

2 − 1
6 ∗ x2

3 − 2 ∗ x1
2 ∗

x2
3 − x1

2 ∗ x3

It is obvious that S-polynomial computation cancels leading terms of the
polynomials. As shown in Algorithm 2, Buchberger’s algorithm first calculates all
S-polynomials (lines 4–6) and then adds non-zero S-polynomials to the basis G
(line 8). This process repeats until all of the computed S-polynomials become zero
with respect to G. It is obvious that Gröebner basis can be extremely large so its
computation may take a long time and it may need large storage memory as well.
The time and space complexity of this algorithm are exponential in terms of the
sum of the total degree of polynomials in F, plus the sum of the lengths of the
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Fig. 4.3 Equivalence checking using symbolic algebra

polynomials in F [5]. When the size of F increases, the verification process may be
very slow or in the worst-case may be infeasible.

Buchberger’s algorithm is computationally intensive and it may affect the
performance drastically. It has been shown in [6] that if every pair (fi, fj ) that
belongs to set F = {f1, f2, . . . , fs} (generator of ideal I ) has a relatively prime
leading monomials (lm(fi).lm(fj ) = LCM(lm(fi).lm(fj ))) with respect to order
>, the set F is also Gröbner basis of ideal I .

Based on these observations, efficient equivalence checking between specifica-
tion of an arithmetic circuit and its implementation can be performed as shown in
Fig. 4.3. The major computation steps in Fig. 4.3 are outlined below:

• Assuming a computational field K and a polynomial ring K[x1, x2, . . . , xn] (note
that variables {x1, x2, . . . , xn} are subset of signals in the gate-level implemen-
tation), a polynomial fspec ∈ K[x1, x2, . . . , xn] representing specification of the
arithmetic circuit can be derived.

• Map the implementation of arithmetic circuit to a set of polynomials that belongs
to K[x1, x2, . . . , xn]. The set F generates an ideal I . Note that according to the
field K, some vanishing polynomials that constructs ideal I0 may be considered
as well.

• Derive an order > in a way that leading monomials of every pair (fi, fj ) are
relatively prime. Thus, the generator set F is also Gröbner basis G = F . As the
combinational arithmetic circuits are acyclic, the topological order of the signals
in the gate-level implementation can be used.
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• The final step is reduction of fspec with respect to Gröbner basis G and order >.

In other words, the verification problem is formulated as fspec
G−→+ r . The gate-

level circuit C has correctly implemented specification fspec if the remainder r

is equal to 0. The non-zero remainder implies a gate-replacement Trojan in the
implementation.

Galois field arithmetic computation can be seen in Barrett reduction [22],
Mastrovito multiplication and Montgomery reduction [23] which are critical part
of cryptosystems. In order to apply the method of Fig. 4.3 for verification of Galois
field arithmetic circuits, strong Nullstellensatz over Galois fields can be used. Galois
field is not an algebraically closed field, so its closure should be used. Strong
Nullstellensatz helps to construct a radical ideal in a way such that I (V

F2k ) = I +I0.

Ideal I0 is constructed by using vanishing polynomials x2k

i − xi by considering the

fact that ∀x2k

i ∈ F2k : x2k

i − xi = 0. As a result, the Gröbner basis theory can be
applied on Galois field arithmetic circuits. The method in [26] has extracted circuit
polynomials by converting each gate to a polynomial, and SINGULAR [21] has

been used to do the fspec
G−→+ r computations. Using this method, the verification

of Galois field arithmetic circuits like Mastrovito multipliers with up to 163 bits
can be done in a few hours. Some extensions of this method have been proposed

in [27]. The cost of fspec
G−→+ r computation has been improved by mapping the

computation on a matrix representing the verification problem, and the computation
is performed using Gaussian elimination.

The Gröbner basis theory has been used to verify arithmetic circuits over
ring Z[x1, x2, . . . , xn]/2N in [19]. Instead of mapping each gate to a poly-
nomial, the repetitive components of the circuit are extracted and the whole
component is represented using one polynomial (since arithmetic circuit over ring
Z[x1, x2, . . . , xn]/2N contains carry chain, the number of polynomials can be very
large). Therefore, the number of circuit polynomials is decreased. In order to

expedite the fspec
G−→+ r computation, the polynomials are represented by Horner

expansion diagrams [19]. The reduction computation is implemented by sequential
division. The verification of arithmetic circuit over ring Z[x1, x2, . . . , xn]/2N up
to 128 bit can be efficiently performed using this method. An extension of this
method has been presented in [15] that is able to significantly reduce the number
of polynomials by finding fanout-free regions and representing the whole region by
one single polynomial. Similar to [27], the reduction of specification polynomial
with respect to Gröbner basis polynomials is performed by Gaussian elimination
resulting in verification time of few minutes. In all of these methods, when the
remainder r is non-zero, it shows that the specification is not exactly equivalent
with the gate-level implementation. Thus, the non-zero remainder can be analyzed
to identify the hidden malfunctions or Trojans in the system. In this section, the use
of one of these approaches for equivalence checking of integer arithmetic circuits
over Z2n is explained. Although the details are different for Galois Field arithmetic
circuits, the major steps are similar.
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4.2.2 Verification of Arithmetic Circuits

Most of the traditional verification and debugging tools of arithmetic circuits
are based on techniques such as simulation, binary decision diagrams (like
BDDs,*BMD [4]), and SAT solvers [25, 30]. However, all of these approaches suffer
from state space explosion while dealing with large and complex circuits especially
arithmetic circuits. Furthermore, most of these approaches cannot provide concrete
suggestions to remove Trojans. It is important to introduce efficient, scalable, and
fully automated verification framework.

Computer symbolic algebra is employed for equivalence checking of arithmetic
circuits to address the limitations of traditional approaches. The primary goal is
to check equivalence between the specification polynomial fspec and gate-level
implementation C to find potential malicious functionality. The specification of
arithmetic circuit and implementation is formulated as polynomials. Arithmetic cir-
cuits constitute a significant portion of datapath in signal processing, cryptography,
multimedia applications, error root causing codes, etc. In most of them, arithmetic
circuits have a custom structure and can be very large so the chances of potential
malfunction are high. These Trojans may cause unwanted operations as well as
security problems like leakage of secret key [3]. Thus, verification of arithmetic
circuits is very important.

The arithmetic circuit equivalence checking problem formulation starts with
converting the design specification to a polynomial fspec which represents the
word-level abstraction of arithmetic circuits functionality using primary inputs and
primary outputs as variables. For example, the specification of an n-bit adder with
primary inputs A = {a0, a1, . . . , an−1} and B = {b0, b1, . . . , bn−1} and primary
output Z = {z0, z1, . . . zn} can be formulated as Z = A + B or can be written as
(2n.zn + . . . + 2.z1 + z0) − ((2n−1.an−1 + . . . + 2.a1 + a0) + (2n−1.bn−1 + . . . +
2.b1 + b0)) = 0, where {ai, bi, zi} ⊂ {0, 1}.

The functionality of logic gates (such as AND, OR, XOR, NOT, and buffer)
can be represented by polynomials such that the input and output signals of gates
act as variables of the corresponding polynomial. Each variable xi which appears
in a circuit polynomial belongs to Z2, where (xi

2 = xi). Equation 4.1 shows the
corresponding polynomial of NOT, AND, OR, XOR gates. Note that any complex
gate can be modeled as a combination of these gates and its polynomial can be
computed by combining the equations shown in Eq. 4.1.

z1 = NOT(a) → z1 = 1 − a,

z2 = AND(a, b) → z2 = a.b,

z3 = OR(a, b) → z3 = a + b − a.b,

z4 = XOR(a, b) → z4 = a + b − 2.a.b

(4.1)
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A gate-level netlist of a circuit can be modeled as a set of polynomials F

by modeling each gate as a polynomial. Suppose that we want to make sure an
arithmetic circuit implements correctly its specification. In other words, we want to
verify that there are no functional errors in the arithmetic circuit. The equivalence
checking starts with consecutively reducing the fspec over implementation polyno-
mials (Fimp) until either zero remainder or a remainder that contains only primary
input variables is reached. If the remainder is zero, it shows that the arithmetic circuit
performs the exact specification. However, the non-zero remainder shows that the
implementation is not trustworthy and there are some malfunctions.

Example 4.2 Suppose that we want to verify the functional correctness of a full-
adder implementation shown in Fig. 4.4. The specification can be formulated as:
(2.Cout +S−(A+B+Cin)) and each gate in the implementation can be modeled as
a polynomial based on Eq. 4.1. The topological order of the circuit (since the circuit
is acyclic) is chosen for reduction as Cout > {S, n3} > {n2, n1} > {A,B,Cin}. The
reduction starts from the most significant primary output and ends at primary inputs.
Variables in the curvy brackets have the same order and they can be reduced in one
iteration. Equation 4.2 shows the reduction process. It can be seen that the final
result (remainder) is a non-zero polynomial and implementation is not trustworthy.
It is easy to verify that the remainder would be zero if the NAND gate is replaced
with an AND gate. �

step0 : 2.Cout + S − A − B − Cin

step1 : S − 2.n3.n2 + 2.n3 + 2.n2 − A − B − Cin

step2 : 2.n2.n1.Cin − 4.n1.Cin + n1 − A − B + 2

step3(remainder) : 8.A.B.Cin − 4.A.Cin − 4.B.Cin − 2.A.B + 2

(4.2)

Fig. 4.4 The tampered
gate-level netlist of a
full-adder. The NAND gate
should be replaced by an
AND gate to correct the
Trojan
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4.3 Automated Security Verification Using Remainders

The framework uses the remainder that is generated by equivalence checking. If the
remainder is a non-zero polynomial, it means that the implementation is Trojan-
inserted; however, the source of the Trojan is unknown.

Example 4.3 Consider a 2-bit multiplier with gate-level netlist shown in Fig. 4.5.
Suppose that we deliberately insert a Trojan in the circuit shown in Fig. 4.5
by putting the XOR gate with inputs (A0, B0) instead of an AND gate. The
specification of a 2-bit multiplier is shown by fspec. The verification process
starts from fspec and replaces its terms one by one using information derived
from the implementation polynomials as shown in Eq. 4.3. For instance, term 4.Z2
from fspec is replaced with expression (R + O − 2.R.O). The topological order
{Z3, Z2} > {Z1, R} > {Z0,M,N,O} > {A0, A1, B0, B1} is considered to perform
term rewriting. The verification result is shown in Eq. 4.3. Clearly, the remainder
is a non-zero polynomial and it reveals the fact that the implementation is not
trustworthy. �

fspec : 8.Z3 + 4.Z2 + 2.Z1 + Z0 − 4.A1.B1 − 2.A1B0 − 2.A0.B1 − A0.B0

step1 : 4.R + 4.O + 2.z1 + Z0 − 4.A1.B1 − 2.A1B0 − 2.A0.B1 − A0.B0

step2 : 4.O + 2.M + 2.N + Z0 − 4.A1.B1 − 2.A1B0 − 2.A0.B1 − A0.B0

step3(remainder) : 1.A0 + 1.B0 − 3.A0.B0
(4.3)

This approach takes the remainder and the implementation as inputs and tries
to find the source of Trojan in the implementation and correct it. The presented
framework has three important steps. First, we use the remainder to generate
directed tests to activate malicious scenarios. Next, we try to localize source of the
Trojan by leveraging the generated tests. Finally, we use an automated correction
technique to detect and correct the existing Trojan which resides in the suspicious
area. We describe each of these steps in detail in the following sections.

Fig. 4.5 The Trojan-inserted
gate-level netlist of a 2-bit
multiplier
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It has been shown that if and only if the remainder is zero, the implementation
is Trojan-free [34]. Thus, when we have a non-zero polynomial as a remainder,
any assignment to its variables that makes the numerical value of the remainder
non-zero is a test to activate the Trojan(s). In the presented approach, we make
use of the remainder to generate test cases to activate unknown Trojans. The test
is guaranteed to activate the Trojan in the design. The remainder is a polynomial
with Boolean/integer coefficients. It contains a subset of primary inputs as its
variables. The approach takes the remainder and finds the possible assignments to
its variables such that it makes the numerical value of the remainder non-zero. As
shown in Example 4.3, the remainder may not contain all of the primary inputs.
As a result, the approach may use a subset of the primary inputs (that appear
in the remainder) to generate directed tests with “don’t cares.” Such assignments
can be found using a SMT solver by defining Boolean variables and considering
signed/unsigned integer values as the total value of the remainder polynomial (i �=
0 ∈ Z, check(R = i)). The problem of using SMT solver is that for each i, it finds at
most one assignment of the remainder variables to produce value of i, if possible. We
implemented an optimized algorithm to find all possible assignments that produce
non-zero numerical values of the remainder. Algorithm 3 shows the details of the
test generation method. The algorithm takes remainder (R) polynomial as well as
primary inputs (PI) as inputs and generates a set of directed tests T to activate the
Trojan. A remainder is constructed as a set of terms as R = T1+T2+. . .+Tn, where
each term Tj is a product of a coefficient Cj and a monomial Mj . The algorithm
tries different sets of binary values to PIs (si)s, and computes the numerical value of
R for assignment si . Mi is a product of binary variables. The value of Mj is either
one or zero as it is a product of some binary variables (line 7). Therefore, the term
value may be zero or equal to the term coefficient (Cj ). To compute the numerical
value of R for assignment si , the algorithm computes the sum of the values of all
the terms in the remainder (lines 4–8). If the sum of all the terms is non-zero, the
corresponding primary input assignments are added to the set of tests (lines 9–10).
The test generation algorithm can be implemented in a parallel fashion to improve
its performance (Table 4.1).

Example 4.4 Consider the tampered circuit shown in Fig. 4.5 and the remainder
polynomial R = A0 + B0 − 3.A0.B0. The assignments that make R to have a non-
zero numerical value (R = 1 or R = −1) are (A0 = 1, B0 = 0), (A0=0, B0=1),
and (A0 = 1, B0 = 1). These are the scenarios that make difference between
functionality of an AND gate and an XOR gate. Otherwise, the fault will be masked
since when (A0 = 0, B0 = 0), AND and XOR produce the same output. �

4.3.1 Trojan Localization

So far, we know that the implementation is untrustworthy and we have all the
necessary tests to activate the malicious scenarios. The goal is to reduce the state
space in order to localize the Trojan by using the tests generated in the previous
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Table 4.1 Directed tests to
activate the Trojan shown in
Fig. 4.5

A1 A0 B1 B0

X 1 X 0

X 0 X 1

X 1 X 1

Algorithm 3: Directed test generation algorithm
Input: Remainder, R
Output: Directed Tests T
for different assignments si of PIs in R do

Sum = 0
for each term Tj = Cj .Mj ∈ R do

if (Mj(si) �= 0) then
Sum+ = Cj

end
end
if ( Sum != 0 ) then

T = T ∪ si
end

end
return T

section. The Trojan location can be traced by observing the fact that the outputs
can possibly be affected by the existing Trojan. We apply the tests, simulate the
circuit, and compare the outputs with the golden outputs (golden outputs can be
found from the specification polynomials) and keep track of faulty outputs in set
E = {e1, e2, .., en}. Each ei denotes one of the erroneous outputs. To localize
the Trojan, we partition the gate-level netlist to find fanout-free cones (set of
gates that are directly connected together) of the implementation. Each gate whose
output is connected to more than one gate is selected as a fanout. For generality,
gates that produce primary outputs are also considered as fanouts. To partition the
implementation, gate-level netlist as well as a list of fanouts (Lf o) are taken into
consideration. In each iteration, one fanout-gate is chosen from list Lf o and gate-
level netlist is traced backward until the gate gi is reached. The inputs of gi can
come from one of the fanouts in the list Lf o or primary inputs. All of the visited
gates are marked as one cone. This process continues until all of the fanouts are
visited.

Algorithm 4 shows the Trojan localization procedure. Given a partitioned
erroneous circuit and a set of faulty outputs E, the goal of the automatic Trojan
localization is to identify all of the potentially responsible cones for the Trojan.
First, we find a set of cones Cei

= {c1, c2, . . . , cj } that constructs the value of each
ei from set E (lines 4–5). These cones contain suspicious gates. We intersect all of
the suspicious cones Cei

s to prune the search space and improve the efficiency of
Trojan localization algorithm. The intersection of these cones is stored in CS (lines
7–8).
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Algorithm 4: Trojan localization algorithm
Input: Partitioned Netlist, Faulty Outputs E

Output: Suspected Regions CS

for each faulty output ei ∈ E do
find cones that construct ei and put in Cei

end
CS = Ce0

for ei ∈ E do
CS = CS ∩ Cei

end
return CS

When the effect of the Trojan can be observed in multiple outputs, it means that
the Trojan resides in the intersection of cones which constructs the faulty outputs.
We use this information to detect and correct the Trojan. We describe the details of
anomaly correction technique in Sect. 4.3.2.

Example 4.5 Consider the faulty 2-bit multiplier shown in Fig. 4.6. Suppose that the
AND gate with inputs (M,N) has been replaced with an OR gate by mistake. So,
the remainder is R = 4.A1.B0 + 4.A0.B1 − 8.A0.A1.B0.B1. The assignments that
activate the Trojan are calculated based on method demonstrated in Sect. 4.3. Tests
are applied and the faulty outputs are obtained as E = {Z2, Z3}. Then, the netlist
is partitioned to find fanout-free cones. The cones involved in the construction of
faulty outputs are: CZ2 = {2, 3, 4, 6, 7} and CZ3 = {2, 3, 4, 6, 8}. The intersection
of the cones that produce faulty outputs is CS = {2, 3, 4, 6}. As a result, gates
{2, 3, 4, 6} are potentially responsible as the source of Trojan. �

4.3.2 Trojan Correction

After test generation and Trojan localization, the next step is Trojan detection.
The remainder is helpful since it contains valuable information about the nature
of the Trojan and its location. For example, when the tampered gate is located
in the first level (inputs of tampered gates are primary inputs), it creates certain
patterns in the remainder. These specific patterns are due to the termination of

Fig. 4.6 Malicious gate-level
implementation of a 2-bit
multiplier with associated
tests
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Table 4.2 Remainder patterns caused by gate misplacement Trojan

Suspicious gate Appeared remainder’s pattern Solution

AND (a,b) P1 : −a−b+2.a.b S1 : OR (a,b)

P2 : −a−b+3.a.b S2 : XOR (a,b)

OR (a,b) P1 : a+b−2.a.b S1 : AND (a,b)

P2 : a.b S2 : XOR (a,b)

XOR (a,b) P1 : a+b−3.a.b S1 : AND (a,b)

P2 : −a.b S2 : OR (a,b)

the substitution process in the algebraic rewriting after this level, which prevents
Trojans from propagating any further. In Example 4.3, the first level XOR gate is
placed by mistake instead of an AND gate. Let us consider the effect of a gate-
replacement Trojan from algebraic point of view. The equivalent algebraic value of
Z0 is M = A0 + B0 − 2.A1.B0 in the erroneous implementation; however, in the
correct implementation, Z0 should be equal to Z0

∗ = A0.B0. Thus, the difference
between Z0 and Z0

∗, (A0 + B0 − 3.A1.B0) will be observed in the remainder.
Therefore, whenever a + b − 3.a.b pattern is seen in the remainder and there is an
XOR gate with inputs (a, b) in the implementation, we can conclude that the XOR
gate is the source of Trojan and it should be replaced with an AND gate. Table 4.2
shows the patterns that will be observed for misplacement of different types of gates.
Note that gates with three (or more) inputs can be modeled as cascades of 2-input
gates. So, the patterns are also valid for complex gates.

From Sect. 4.3.1, we have a set of cones CS such that their gates are potentially
responsible for the trigger of the Trojan. First, the gates in CS are extracted and
they are kept in a set G. Next, the suspicious gates from the first level of G are
considered and the remainder is scanned to check whether one of the patterns in
Table 4.2 is recognized. If the pattern is found, the Trojan gate is replaced with the
corresponding gate. Otherwise, the terms of the remainder are rewritten such that
it contains output variable of first level gates (at this time, we are sure that the first
level gates are not the cause of the problem). We also remove the safe gates from G.
Then, we repeat the process over the remaining gates in G until we find the source
of the Trojan.

Example 4.6 Consider the untrustworthy circuit shown in Example 4.5. The
remainder is R = 4.A1.B0 + 4.A0.B1 − 8.A0.A1.B0.B1, and the potentially
malicious gates are numbered as 2, 3, 4, and 6. As we can see, remainder R does
not contain any patterns shown in Table 4.2. It means that the first level suspicious
gates 2, 3, and 4 are not responsible for the Trojan. Thus, we try to rewrite the
remainder’s terms with the output of the correct gates. In this step, we know that
gates 2, 3, and 4 are correct so their algebraic expressions are also true. As gate 6
is the only remaining gate, it is the answer. However, we continue the process to
show the final solution. By considering M = A1.B0 and N = A0.B1, R will be
rewritten as R∗ = 4.(M + N − 2.M.N) (signal’s weight is computed as shown
in [20]). Now, we consider the gates in the second level. This time R∗ matches
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with one of the patterns shown in Table 4.2. Based on Table 4.2, an AND gate with
(M,N) as its inputs has been replaced with an OR gate. The only gate that has these
characteristics is gate 6 which is also in G. It means that the source of the Trojan
has to be the gate 6 and if replaced with an AND gate, the Trojan will be removed.
�

Finding and factorizing of remainder terms in order to rewrite them would be
complex for larger designs. To overcome the complexity and obviate the need for
manual intervention, we present an automated approach shown in Algorithm 5.
The algorithm takes faulty gate-level netlist, remainder R, and potentially malicious
gates of set G (sorted based on their levels) as inputs. It starts from the first level
gate gi ; if gi is the source of the existing malfunction in the design, one of the
patterns in Table 4.2 should have been manifested in the remainder based on gi’s
type. Therefore, the anomaly correction algorithm computes two patterns (P1, P2)

with gi’s inputs (lines 7–12) and scans the remainder to check whether one of
them matches. If one of the patterns is found, the Trojan is identified and it can
be corrected based on Table 4.2 (lines 13–16). Otherwise, gi is correct and it will be
removed from set G and next gate will be selected. Moreover, the current algebraic
expression of gi is true and it can be used in subsequent iterations (gate gj from
higher levels gets the output of gi as one of its inputs, the expression of gi can
be used instead of its output variables). Since our goal is to compute patterns such
that they contain just primary inputs, we use a dictionary to keep the expression of
the gate output based on the primary inputs (line 19). The weight of each gates’
output is computed based on the weight of its inputs. The weights of the primary
inputs and primary outputs are known a priori. The weights of any internal signals
can be computed recursively utilizing forward as well as backward traversal. We
can also utilize the following properties for different gates. For XOR and OR gates,
the weight of the output is same as inputs weight. In multipliers, the weight of the
output of the first level AND gates is computed as multiplication of weights of the
inputs (they are responsible for partial products). On the other hand, the weights of
the output of other AND gates in the design is computed as the sum of weights of
the inputs (since they are mostly used in half-adders [20]). In adders, the weight of
the output of all AND gates is computed as union of weights of the inputs. This
process continues until the Trojan is detected or set G is empty. Since, the algorithm
starts from primary inputs, it will not reach a gate whose inputs do not exist in
the dictionary. Note that the anomaly detection approach does not need all of the
counter-examples to work. It works even if there is no counter-example (all of the
gates are considered as suspicious) or there is just one counter-example. However,
having more counter-examples improves the detection performance.

Example 4.7 We want to apply Algorithm 5 to the case shown in Example 4.6. We
start from gate 2 and compute P1 = −2.A1 − 2.B0 + 4.A1.B0 and P2 = −2.A1 −
2.B0 + 6.A1.B0 for gate 2. As these patterns do not exist in the remainder, gate
2 is correct and the dictionary will be updated as (M = 2.A1.B0). The same will
happen for gates 3 and 4, and the dictionary will be updated as (M = 2.A1.B0, N =
2.A0.B1) at the end of this iteration. When we consider gate 6, the Pis are as follows:
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Algorithm 5: Trojan detection/correction
Input: Suspected Gates G, Remainder R

Output: Trojan Gate and Solution
sort gi based on their levels (lowest level first)
for each level j do

for each gi ∈ G from level j do
(a, b) = inputs(gi)

if !( each of (a, b) are from PI) then
a = dic.get (a)

b = dic.get (b)

end
P1 = ComputeP1(a, b)

P2 = ComputeP2(a, b)

if (P1 is found in R) then
return gate gi and solution S1 from Table 4.2

end
if (P2 is found in R) then

return gate gi and solution S2 from Table 4.2 else
r

end
emove gi from G

dic.add(output(gi ), Expression(gi(a, b)))
end

end
end

P1 = 4.A1.B0 + 4.A0.B1 − 8.A1.B0.A0.B1 and P2 = 4.A1.B0.A0.B1. Considering
that R = 4.A1.B0 + 4.A0.B1 − 8.A0.A1.B0.B1, P1 of gate 6 can be observed in R.
So the Trojan is the OR gate 6, and based on Table 4.2 it can be fixed by replacing
with an AND gate. �

Signal inversion problem can be viewed in the same way as gate-replacement
Trojan. If we consider a wire as a buffer, it may be replaced with an inverter.
Therefore, it is a special case of gate-replacement Trojan, where a buffer can be
replaced with an inverter, or vice versa. For example, assume that signal a is inverted
by mistake in the actual implementation. Therefore, the difference between the
expected behavior and the implementation appears in the remainder by performing
the functional rewriting of the specification polynomial. In this case, instead of a we
encounter 1−a in the implementation, and the remainder is R = 1−a−a = 1−2∗a.
As a result, the appearance of the pattern 1 − 2 ∗ a in the remainder reveals the fact
that signal a is inverted by mistake.

4.4 Detecting Multiple Trojans

Section 4.3 presented algorithms for detecting, localizing, and correcting a single
Trojan. In this section, we extend these algorithms for detecting multiple Trojans.
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The threat model (gate replacement) as well as remainder generation process
remains the same. If the algebraic rewriting of an arithmetic circuit results in a
non-zero remainder, we know that the implementation is untrustworthy. However,
the sources of the Trojans are unknown. The plan is to use the non-zero remainder
in order to generate directed tests to activate the Trojans, localize the source of
Trojans, and correct them. First, we explain how we extend the approach presented
in Sect. 4.3 to correct multiple Trojans with independent triggers. Then, we present
an approach to automatically detect two Trojans with independent triggers.

If there is more than one Trojan in the implementation, the remainder will
be affected by all of them since all of the malicious gates are contributing in
the algebraic rewriting procedure as well as the remainder generation. In other
words, the remainder shows the effect of all Trojans in the implementation.
Example 4.8 shows how the remainder is generated when there are two Trojans
in the implementation.

Example 4.8 In the circuit shown in Fig. 4.7, the AND gate with inputs (A0, B0)

and the AND gate with inputs (A1, B1) are replaced with XOR and OR gates,
respectively (i.e., two Trojans in the implementation of a 2-bit multiplier). The result
of algebraic rewriting (remainder polynomial) can be computed as shown in Eq. 4.4.
�

fspec : 8.Z3 + 4.Z2 + 2.Z1 + Z0 − 4.A1.B1 − 2.A1B0 − 2.A0.B1 − A0.B0

step1 : 4.R + 4.O + 2.z1 + Z0 − 4.A1.B1 − 2.A1B0 − 2.A0.B1 − A0.B0

step2 : 4.O + 2.M + 2.N + Z0 − 4.A1.B1 − 2.A1B0 − 2.A0.B1 − A0.B0

step3(remainder) : R = A0 + B0 − 3.A0.B0 + 4.A1 + 4.B1 − 8.A1.B1
(4.4)

Detailed observation in the remainder generation procedure shows that the
overall remainder can be considered as the sum of different individual Trojan’s
effect in the algebraic rewriting process. For instance, the first part of the remainder
shown in Example 4.5 comes from the remainder shown in Example 4.3 (the same

Fig. 4.7 Gate-level netlist of a 2-bit multiplier with two gates replacement (dark gates) as well as
associated tests to activate them
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Trojan) as (A0 + B0 − 3.A0.B0), and the second part (4.A1 + 4.B1 − 8.A1.B1)
is responsible for the second Trojan. Clearly, the second part is equal to the
remainder that can be the result of the algebraic rewriting with an implementation
which contains only the second Trojan. Therefore, each assignment that makes the
remainder non-zero activates at least one of the existing malicious scenarios. Some
tests may activate all of the Trojans at the same time. Thus, Algorithm 3 can be used
to generate directed tests when there are more than one fault in the design.

Example 4.9 Directed tests to activate the malicious implementation of Exam-
ple 4.8 are shown in Fig. 4.7. The assignments make the first part of the remainder
non-zero (A0+B0−3.A0.B0), and activate the first Trojan. For example, assignment
(A1 = 1, A0 = 0, B1 = 0, B0 = 0) manifests the effect of the first Trojan in Z0.
On the other hand, the assignments that make the second part of the remainder non-
zero (4.A1 + 4.B1 − 8.A1.B1) are tests to activate the second Trojan. Assignment
(A1 = 1, A0 = 0, B1 = 0, B0 = 0) activates the second Trojan in Z2. However, the
assignment (A1 = 1, A0 = 0, B1 = 0, B0 = 1) activates both of these Trojans at
the same time (Z0 and Z2). �

To localize the source of Trojans, the circuit is simulated using the generated
tests to find faulty primary outputs. Malicious gates exist in the cones that construct
the functionality of faulty outputs. In order to prune the search space and localize
source of Trojans, we cannot directly apply Algorithm 4 as their intersection may
be a zero set. However, some information can be found from using Algorithm 4.
In the following sections, we describe the Trojan localization and correction of
multiple Trojans: (1) Sect. 4.4.1 covers Trojans with independent trigger cones
(independent Trojans), and (2) Sect. 4.4.2 covers Trojans which share some trigger
cones (dependent Trojans).

4.4.1 Removing Multiple Independent Trojans

We refer two Trojans as independent if they have different trigger cones (fan-ins).
Figure 4.7 shows two independent Trojans in a 2-bit multiplier. If multiple Trojans
are independent of each other, their effect can be observed easily in the remainder as
the sum of each individual Trojan’s remainder (sum of sub-remainders). Therefore,
if the remainder is partitioned into multiple sub-remainders based on the primary
inputs (each part representing the effect of one Trojan), each sub-remainder as well
as the associate malicious cones can be fed into Algorithm 5 in order to detect and
correct the source of multiple independent Trojans.

If the input cones (input fan-ins) of malicious gates are separate from each other,
a different set of primary inputs may appear in each sub-remainder. In order to
find the sub-remainders, each term of the overall remainder and its corresponding
monomial are examined to determine which sub-remainder it belongs. Algorithm 6
shows the remainder partitioning procedure.
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Algorithm 6: Remainder partitioning
Input: Remainder R
Output: Sub-remainders R
Sort terms of R based on their size
R0 = largestT erm(R)

R = {R0}
for each term t ∈ R do

for each sub-remainder Ri ⊂ R do
if (Ri contains some of the variable t) then

Ri = Ri + t

else
n

end
ew Rj = t

R = R ∪ Rj

end
end

end
return R

Algorithm 6 takes the overall remainder R as input and returns the partitioned
sub-remainders Ris. The algorithm sorts the terms of the R based on their monomial
size (the number of variables in each term) in descending order (line 5). In the next
step, it starts from the largest term of the remainder R and adds it to sub-remainder
R0 (line 6). Then, it examines all terms of R from the second largest term t to find
out which partition they belong to (lines 7–8). If some of the variables of the term
t already exist in the sub-remainder Ri , the term t will be added to sub-remainder
Ri (lines 9–10). Otherwise, the algorithm creates a new sub-remainder Rj and adds
t to it (lines 12–13). The process continues until all terms of the R are examined.
If the algorithm results in only one sub-remainder, it shows that malicious gates
do not have independent input cones. The computed sub-remainders are fed into
Algorithm 3 in order to generate directed tests activating the corresponding Trojan
of that sub-remainder. The generated tests are used to define the corresponding
faulty outputs of each Trojan. Example 4.10 illustrates the remainder partitioning
procedure.

Example 4.10 Consider the faulty multiplier design shown in Fig. 4.7 and cor-
responding remainder shown in Eq. 4.4. In order to find different possible sub-
remainders, the remainder is sorted as: R = −3.A0.B0−8.A1.B1+A0+B0+4.A1+
4.B1. The partitioning starts from term −3.A0.B0 and as there are no sub-remainder
so far, sub-remainder R1 is created and the term is added to it as: R1 = −3.A0.B0.
The second term −8.A1.B1 is examined and as R1 does not contain variables A1
and B1, new sub-remainder R2 is created. Similarly, rest of the terms of R are
examined and R1 and R2 are computed as: R1 = −3.A0.B0 + A0 + B0 and
R2 = −8.A1.B1 + 4.A1 + 4.B1. The directed tests are shown in Fig. 4.7.

The generated tests are applied and faulty outputs are defined. The faulty outputs
of each Trojan are fed into Algorithm 4 in order to find potential malicious cones.
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Algorithm 5 is used with each sub-remainder as well as corresponding potential
malicious gates as its inputs, and it tries to detect and correct each Trojan. In
other words, the problem of security verification of an untrustworthy design with n

independent Trojans is mapped to fixing of n malicious designs where each design
contains a single Trojan. We illustrate how to apply Algorithm 5 to remove multiple
independent sources of Trojans using Example 4.11.

Example 4.11 Having the directed tests shown in Fig. 4.7, faulty outputs Z0 and
Z2 as well as two sub-remainders computed in Example 4.10, Algorithm 5 is used
twice to find the source of Trojans. In the first attempt, the faulty output is Z0 and
the computed suspicious cone using Algorithm 4 contains only gate 1. In this gate,
gate 1 and R1 are fed into the bug correction algorithm (Algorithm 5). Two patterns
P1 = A0 + B0 − 3.A0.B0 (if the potential malicious gate 1 should be an AND gate)
and P2 = −1.A0.B0 (if the suspicious gate 1 should be an OR gate) are computed.
Therefore, gate 1 should be replaced with an AND gate to fix the first Trojan since
the P1 is equal to the remainder R1. The same procedure is used for the second
Trojan while the potential malicious gates are {2, 3, 4, 6, 7} since the only faulty
output is Z2. Trying different patterns results in a conclusion that gate 4 should be
replaced with an AND gate. �

4.4.2 Removal of Dependent Trojans

In this section, we describe how to detect and correct dependent Trojans that share
their triggers’ logic. The key difference here from the cases that we solved in
Sect. 4.4.1 is the fact that the remainder cannot easily be partitioned into sub-
remainders since some of the terms of the corresponding sub-remainder may be
canceled through other sub-remainders or they may be combined to each other.
The reason is that the Trojans share triggers’ logic (fan-ins) and their individual
sub-remainders may have common terms consisting of a set of primary inputs as
variables. When sub-remainders are combined to each other to form the overall
remainder, some term combinations/cancellations happen. Moreover, some of the
sub-remainders may be affected by lower level Trojans and the presented method
in Sect. 4.4.1 cannot solve these cases. We illustrate the fact using the following
example.

Example 4.12 Consider the faulty implementation of a 2-bit multiplier with two
Trojans as shown in Fig. 4.8. Assume that gates 6 and 8 are replaced with OR gates
to inject Trojans. It can be observed from Fig. 4.8 that two Trojans share some set
of input cones (gates {2, 3, 4} are common in input cones of Trojan gates 6 and 7).
Applying algebraic rewriting on the circuit shown in Fig. 4.8 results in a non-zero
remainder: R = 8.A1.B1 + 12.A1.B0 + 12.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1.
However, if only gate 6 is replaced with an OR gate in the implementation (single
Trojan), the remainder will be equal to: R1 = 4.A0.B1 +4.A1.B0 −8.A0.A1.B0.B1.
Similarly, when only gate 7 is replaced with an OR gate (single Trojan), the
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Fig. 4.8 Gate-level netlist of a 2-bit multiplier with two Trojans (dark gates) which shares some
input cones as well as associated tests to activate them

remainder will be computed as: R2 = 8.A1.B1 − 8.A0.A1.B0.B1. As it can be
observed, R �= R1 + R2. The reason is that corrupted gate 6 has an effect on the
generation of sub-remainder R2. As a result, R′

2 should be computed as: R′
2 =

8.A1.B1 +8.A0.B1 +8.A0.B1 −16.A0.A1.B0 −16.A1.B0.B1 +8.A0.A1.B0.B1. We
can observe that R = R1+R′

2. Note that there is not any monomial of A0.A1.B0.B1
in the remainder R; however, this monomial exists in both R1 and R′

2 with opposite
coefficients resulting in the term cancellation. �

As it can be observed from Example 4.12, term cancellation and lower level
Trojans’ effect are two main reasons that limit the applicability of the algorithms
presented in Sect. 4.4.1 to detect and correct Trojans with common input cones.
In this section, we present a general approach to correct and detect multiple gate
misplacement Trojans regardless of their positions.

The first step to fix dependent Trojans is to use Algorithm 3 in order to generate
directed tests to activate unknown Trojans. In the next step, the circuit is simulated
using the generated tests to define the faulty outputs (E) since the effect of Trojans
will be propagated to them. Algorithm 4 cannot be used to localize the potential
malicious cones since the intersection of the malicious cones may eliminate some
of the malicious gates. Instead, union of all of the gates that construct faulty
outputs should be considered as suspicious gate candidates to make sure that all
of Trojan candidates are considered. The next step is to define malicious gates and
their corresponding solutions using the remainder as well as potential malicious
gates. We construct two sub-remainders from each potentially malicious gates (e.g.,
considering if the current gate is suspicious and the type of gate is AND, the solution
can be either OR gate or XOR gate based on Table 4.2) and we store them in set R.
To be able to detect the Trojans, we are looking for n sub-remainders Ri ∈ R where
their union constructs the original remainder R.

In general, finding n dependent Trojans and constructing the respective remain-
der R map to “subset sum” problem and it has exponential complexity. In other
words, we need to find n potential sub-remainders such that their sum is equal to
the remainder R. Therefore, for each gate in a malicious region, we construct two
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patterns (sub-remainders) as shown in Algorithm 5 as total m sub-remainders. To
be able to detect and correct n dependent Trojans, we need to select

(
m
n

)
, where

r1 + r2 + . . . . + rn = R. The most naïve algorithm to solve this problem is to
consider all subset of m sub-remainders, and check whether the subset sums to R

for every subset. The complexity of this algorithm is in the order of O(2m). If we
use the naïve approach for finding two dependent Trojans, the complexity is O(m2).
By introducing Algorithm 7 and using a hash map, we could solve this problem in
linear time O(m) for two dependent Trojans.

Figure 4.1 shows all malicious scenarios that the current method can automat-
ically detect in linear time. As it can be seen in Fig. 4.1d, the method is capable
of handling 2 ∗ k dependent Trojans in linear time when we have k independent
malicious regions where each of them has at most two dependent Trojans. In other
words, Algorithm 6 partitions the remainder R into k sub-remainders where for each
sub-remainder ri , the method tries to find at most two dependent Trojans in linear
time.

To detect two dependent Trojans in a malicious region, we are looking for two
sub-remainders such that their sum constructs the overall remainder R. Note that
sub-remainder of an individual Trojan may be affected by the other existing Trojan
in the implementation (for instance, sub-remainder R′

2 which shows the effect of
Trojan gate 7 in Example 4.12 is also affected by Trojan gate 6). Algorithm 7
corrects two dependent Trojans by finding two sub-remainders R1 and R2 such
that their sum is equal to R (R = R1 + R2). The algorithm tries to find two
equal polynomials: R − R1 and R2. The algorithm takes the remainder and
potential malicious gates as inputs and it returns two malicious gates and their
correct replacement as output. The algorithm consists of three major steps. First,
polynomials corresponding to gate’s inputs (we have assumed that a gate has two
inputs for simplicity in representation) are computed based on primary inputs for
each potentially malicious gate gi (a and b are corresponding polynomials of gate gi

inputs). Computed polynomials are added to map dic (lines 6–8). Second, algorithm
constructs two patterns (P1 and P2) for each suspicious gates gi based on Table 4.2
regarding the functionality of their input gates (lines 9–12). Note that P1 and P2
can be constructed based on the fact that we have considered only three types of
gates (AND, OR, and XOR) so that each gate can be replaced by two other ones.
For example, if the suspicious gate is an AND gate, it can be replaced with either
an OR gate or an XOR gate to fix the Trojan. Therefore, we construct two patterns,
one showing the functionality of replacing the AND gate with an OR gate (P1),
and the other one shows the functionality of replacing the AND gate with an XOR
gate (P2). Computed patterns are added to set P (line 13). For computed patterns
P1 and P2, the algorithm computes the R − Pi and it stores the result in a map
R (lines 14–15). In the final step, each of the patterns Pj ∈ P is checked to see
whether it exists in the map R (lines 16–18). If Pj exists in map R, it means that
there were a pattern Pi in set P, where R − Pi = Pj . Therefore, Pi and Pj are the
sub-remainders R1 and R2 that we are looking for such that R1 = Pi and R2 = Pj .
The gates corresponding to Pi and Pj are the source of Trojans and their solution
can be found based on Table 4.2 (lines 19–20). Note that by using hash map R
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Algorithm 7: Fixing two dependent Trojans
Input: Suspicious gates G, remainder R

Output: malicious gates and their solution
P = {} /*A set that keeps patterns for all gates as well as corresponding solution of each
pattern*/
R = {} /*A map that keeps remainder minus all patterns as well as corresponding patterns*/
for each gate gi ∈ G do

(a, b) = computeInputPolynomials(gi )
dic.add(g,(a, b))

end
for each gate gi ∈ G do

(a, b)=dic.getInputPolynomials(gi )
P1 = computeP 1(a, b)

P2 = computeP 2(a, b)

P = P ∪ {P1, P2}
R.put ((R − P1), P1)

R.put ((R − P2), P2)

end
for each Pj ∈ P do

if Pj exists in R then
Pi = R.get (Pj )

gate gi = P.get (Pi) is malicious and get solution Si from Table 4.2
gate gj = P.get (Pj ) is malicious and get solution Sj from Table 4.2

end
end

the complexity of the algorithm is proportional to the number of malicious gates.
The complexity of the algorithm grows linearly with the number of suspicious gates
(suspicious gates can be obtained by Trojan localization phase).

Note that Algorithm 7 requires to construct the exact sub-remainder responsible
for the potential Trojans (it is not useful to find the pattern as some part of the
remainder). The exact sub-remainder is dependent on the gates that the corrupted
gates are connected in the next level of the design. To illustrate the point, suppose
that gate g1 is connected to only a half-adder with inputs g1 and g2. If fg1 and fg2

show the corresponding polynomials of gates g1 and g2 based on the functionality of
their inputs, gate g1 contributes to the functionality of the next level by polynomial

fg1 + fg2 − 2 ∗ fg1 ∗ fg−2(XOR) + 2 ∗ fg1 ∗ fg−2(AND) = fg1 + fg2

However, if the gate g1 is the source of the Trojan and its functionality is replaced
by polynomial fg1

′ , there would be a difference in the functionality of the design as:
� = fg1

′ − fg1 . If gate g1 is connected to a half-adder with inputs g1 and g2, the
reduction results in � + fg2 − 2.�.fg2 + 2.�.fg2 . Since fg2 should be included in
the correct functionality of the design, the exact sub-remainder can be computed as:
� − 2.�.fg2 + 2.�.fg2 = �. Patterns that are computed in Table 4.2 match with
� based on the polynomials of inputs of the malicious gate. In arithmetic circuit
implementations, most of the gates are connected to half-adders (or they are in the
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last level of the design). Therefore, if we consider them as Trojan candidates, their
constructed patterns are equal to the exact remainder.

However, if suspicious gate g1 is not connected to a half-adder, the exact sub-
remainder due to malicious gate g1 may include more terms besides the terms in �.
For example, if g1 is connected to an XOR gate g2, the exact remainder would be
equal to: � − 2.�.fg2 . The extra part −2.�.fg2 comes from vanishing monomial
propagated to the remainder due to the effect of the Trojan and no counterpart
monomials will appear to cancel them during backward algebraic rewriting.

Example 4.13 Consider the faulty full-adder shown in Fig. 4.9. The gate G2 has
been replaced by an OR gate to inject a Trojan in the gate-level implementation.
After the verification procedure, the remainder is: R = 2 ∗ (A + B − 2 ∗ A ∗ B) −
2 ∗ Cin ∗ (A + B − 2 ∗ A ∗ B). The remainder R has two parts: the first part shows
the difference of the functionality of the malicious gate (OR) and the correct gate
(AND) as: � = (A + B − A ∗ B) − A ∗ B = A + B − 2 ∗ A ∗ B. However, the
second part (−2 ∗ Cin ∗ (A + B − 2 ∗ A ∗ B)) represents the vanishing monomials
propagated to the remainder due to the Trojan.

In order to construct the exact remainder for a suspicious gate gi , we construct �

patterns based on Table 4.2. In the second step, we consider each gate gj such that
gi is its input and we compute the corresponding polynomial gj based on its inputs’
polynomials. The terms that contain � should be added to the remainder. Note that,
if we have two cascaded Trojans, the effect mentioned above only happens for the
higher level Trojan since the effect of the lower level Trojan is considered while
constructing the pattern of the higher level Trojan. Another important aspect is that
the weight of each gate should be considered as we described in Sect. 4.3.2.

Example 4.14 Consider the faulty full-adder shown in Fig. 4.9 where gate G2
has been replaced by an OR gate (it should be an AND gate in the correct
implementation). We know that the remainder is equal to R = 2 ∗ ((A + B −
2 ∗ A ∗ B) − Cin ∗ (A + B − 2 ∗ A ∗ B)) and the implementation is untrustworthy.
If we are suspicious about the G2 and we guess that it should be an AND gate, we
construct � = A+B − 2 ∗A∗B based on Table 4.2. Since G2 is only input of gate
G3, we construct the polynomial as

Fig. 4.9 Faulty netlist with
one Trojan (gate G2 should
have been an AND gate)
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fG4 + � − � ∗ fG4

Since the term fG4 is not dependent on �, it is a part of the correct functionality of
the implementation, and it should not be considered in the remainder. Therefore the
constructed remainder is

R′ = � − � ∗ fG4 = 2 ∗ ((A + B − 2 ∗ A ∗ B) − Cin ∗ (A + B − 2 ∗ A ∗ B))

As R = R′, we can conclude that gate G2 is corrupted, and it should be replaced by
an AND gate to fix the Trojan. We show that how exact sub-remainders are used to
detect two dependent Trojans in Example 4.15.

Example 4.15 Consider the faulty implementation of a 2-bit multiplier shown in
Fig. 4.8 with remainder: R = 8.A1.B1 + 12.A1.B0 + 12.A0.B1 − 16.A0.A1.B0 −
16.A1.B0.B1. Corresponding directed tests to activate existing Trojans are shown in
Fig. 4.8. Trojan candidates are computed based on faulty outputs Z2 and Z3 as gates
{2, 3, 4, 6, 7, 8}. Algorithm 7 creates two patterns for each of the suspicious gates
as shown in Table 4.3 column “Pattern.” For each pattern, the possible solution and
remainder minus patterns are listed in the third and fourth columns of Table 4.3,
respectively. Note that Table 4.3 is the combination of two lists, P and hash map
R, which are mentioned in Algorithm 7. Each pattern listed in the second column
is tested to find whether it exists in hash map R (part of hash map is shown in the
fourth column). As it can be seen in the table, P11 (highlighted polynomial in the
second column) is equal to R − P7 (highlighted in the fourth column). It means that
R − P7 = P11 → R = P11 + P7. Therefore, gates 6 and 8 are malicious since P7
and P11 are corresponding to these gates and they should be substituted with AND
gates. �

4.5 Challenges in Remainder Generation

Depending on the location of the Trojan, the remainder generation can be chal-
lenging. However, this detection approach works as long as the remainder exists.
The number of terms drastically grows when the bug is in the deeper stages of the
design. Therefore, it is essential to provide a mechanism that generates efficient and
compact remainders.

The reason for complexity growth is that the malicious gate may introduce new
terms during the intermediate steps of the specification polynomial’s reduction.
These extra terms are multiplied to polynomials of other gates and grow contin-
uously until the remainder contains only primary inputs (we call it remainder’s
terms explosion effect). Theoretically, a remainder can contain 2n terms, where
n is the number of primary inputs. The challenges of remainder generation may
limit the applicability of using symbolic algebra for security verification of Trojan-
inserted design, especially when the Trojan is deep inside the design. There are
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Table 4.3 Patterns for suspicious gates in Example 4.15

Gate# Pattern Solution Remainder minus pattern

2 (AND) 2.A1 + 2.B0 − 4.A1.B0 OR −2.A1 − 2.B0 + 8.A1.B1 +
16.A1.B0 + 12.A0.B1 −
16.A0.A1.B0 − 16.A1.B0.B1

2.A1 + 2.B0 − 6.A1.B0 XOR −2.A1 − 2.B0 + 8.A1.B1 +
18.A1.B0 + 12.A0.B1 −
16.A0.A1.B0 − 16.A1.B0.B1

3 (AND) 2.A0 + 2.B1 − 4.A0.B1 OR −2.A0 − 2.B1 + 8.A1.B1 +
12.A1.B0 + 16.A0.B1 −
16.A0.A1.B0 − 16.A1.B0.B1

2.A0 + 2.B1 − 6.A0.B1 XOR −2.A0 − 2.B1 + 8.A1.B1 +
12.A1.B0 + 18.A0.B1 −
16.A0.A1.B0 − 16.A1.B0.B1

4 (AND) 4.A1 + 4.B1 − 8.A1.B1 OR −4.A1 − 4.B1 + 16.A1.B1 +
12.A1.B0 + 12.A0.B1 −
16.A0.A1.B0 − 16.A1.B0.B1

4.A1 + 4.B1 − 12.A1.B1 XOR −4.A1 − 4.B1 + 20.A1.B1 +
12.A1.B0 + 12.A0.B1 −
16.A0.A1.B0 − 16.A1.B0.B1

6 (OR) 4.A0.B1 + 4.A1.B0 −
8.A0.A1.B0.B1

AND 8.A1.B1 + 8.A1.B0 + 8.A0.B1 −
16.A0.A1.B0 − 16.A1.B0.B1 +
8.A0.A1.B0.B1

4.A0.A1.B0.B1 XOR 8.A1.B1 + 12.A1.B0 + 12.A0.B1 −
16.A0.A1.B0 − 16.A1.B0.B1 +
4.A0.A1.B0.B1

7 (XOR) 4.A0.B1 + 4.A1.B0 + 4.A1.B1 −
8.A0.A1.B0 − 8.A1.B0.B1 +
4.A0.A1.B0.B1

AND 4.A1.B1 + 8.A1.B0 + 8.A0.B1 −
8.A0.A1.B0 − 8.A1.B0.B1 +
8.A0.A1.B0.B1

4.A0.A1.B0 + 4.A1.B0.B1 −
4.A0.A1.B0.B1

OR 8.A1.B1 + 12.A1.B0 + 12.A0.B1 −
20.A0.A1.B0 − 20.A1.B0.B1 +
4.A0.A1.B0.B1

8 (OR) 8.A1.B1 + 8.A0.B1 + 8.A0.B1 −
16.A0.A1.B0 − 16.A1.B0.B1 +
8.A0.A1.B0.B1

AND 8.A1.B1 + 12.A1.B0 + 12.A0.B1 −
16.A0.A1.B0 − 16.A1.B0.B1

8.A0.A1.B0 + 8.A1.B0.B1 −
8.A0.A1.B0.B1

XOR 8.A1.B1 + 12.A1.B0 + 12.A0.B1 −
24.A0.A1.B0 − 24.A1.B0.B1 +
8.A0.A1.B0.B1

approaches such as [17] to address the aforementioned challenge by generating
more compact remainders. This approach expedites the remainder generation time,
and it also reduces the number of terms in the remainder and makes it possible
to generate a remainder irrespective of the location of the Trojan. In other words,
this approach helps in remainder’s term explosion effect. More compact remainders
can be generated based on partitioning the input space of the design. The presented
approach is based on applying certain constraints on primary inputs and solve the
verification problem for each input constraint. If set M = {0, 1}n shows all input
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combinations of a design with input bits {x0, x1, . . . , xn−1} and if specification (S)

and implementation (I) are equivalent for all combinations of (S
M≡ I), they should

also be equivalent for any input combinations that belong to M (∀M ⊂ M, S
M≡ I).

If the implementation is Trojan-inserted, at least one of the intermediate reductions
will result in a non-zero remainder. Algorithm 8 shows the input partitioning
approach. Given the set of primary inputs K with a particular order, the algorithm
returns n different constraints on primary inputs, where n is the number of primary
inputs. Initially, the algorithm sets all of the inputs to zero except the first input in
set K which is kept in the symbolic form, and the algorithm adds them to the set of
results M (lines 5–8). In the next step, it keeps the first input in the symbolic form
and sets the second input of the ordered set as “1,” and sets other inputs to “0,” and
adds the constraints to the result. This process continues until all of the inputs are
kept in their symbolic form except the last one which is set to true. The variable
index presents the index of primary inputs that should be assigned to true (line 11).
The variables before the index variable are kept in their symbolic form, and variables
that come after the index are assigned to false (lines 12–15). In each iteration, the
index variable is updated (line 16). The algorithm returns the set of constraints as
output. This algorithm guarantees (see the proof in [17]) that the entire inputs’ space
is covered since all of the combinations of primary inputs are considered (each input
bit is assigned to either one, zero, or kept in the symbolic form which can take both
values).

Algorithm 8: Generation of input constraints
Input: Primary inputs K

Output: Set of Constraints Map M

new map M = {}; n = sizeOf (K)

M.add(0,K[0])
for i = 1; i < n; j + + do

M.add(i, f alse)

end
M.add(M), index = 1
for i = 0; i ≤ n; i + + do

M = {}
M.put(index, true)

for j = 0; j < index; j + + do
M.add(j,K[j ])

end
for j = index + 1; i ≤ n; j + + do

M.put(j, f alse)

end
index + +
M.add(M)

end
return M
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Fig. 4.10 Faulty netlist with one tampered gate (gate 8 should have been an AND)

Table 4.4 Input constraints
to efficiently verify the
untrustworthy circuit shown
in Fig. 4.10

A1 B1 A0 B0

A1 0 0 0

A1 1 0 0

A1 B1 1 0

A1 B1 A0 1

Example 4.16 Assume that we want to partition the input space of the 2-bit
multiplier shown in Fig. 4.10 using Algorithm 8. Suppose that primary inputs are
given in the following order: {A1, B1, A0, B0}. Table 4.4 shows the four different
constraints on primary inputs. It can be easily verified that these four constraints
cover the entire primary inputs’ space. The first and second rows cover two
combinations each, the third row covers four combinations, and the last row covers
eight combinations. Therefore, the four input constraints in Table 4.4 can cover all
sixteen combinations. �

In this chapter, we present an incremental remainder generation method using
the constraints computed based on Algorithm 8. The original verification problem is
mapped to n sub-problems where the specification and implementation polynomials
are updated by applying the corresponding constraints. In each sub-problem, a new
set of implementation polynomials is computed based on propagating the integer
values of the corresponding constraint and considering them while constructing
polynomials of each gate and each fanout-free region. Specification polynomial is
also updated by applying the conditions of primary inputs in the original specifica-
tion polynomial. In each sub-problem, the corresponding specification polynomial is
reduced over the related implementation polynomials. If the remainder is non-zero,
the given constraint manifests some Trojans in the design. The implementation and
specification of an arithmetic circuit are equivalent if remainders of each of the n

sub-problems is computed as a zero remainder.

Example 4.17 Consider the 2-bit multiplier shown in Fig. 4.10. We want to apply
the incremental equivalence checking approach of Algorithm 9 using all of the
input constraints shown in Table 4.4 to verify the correctness of the implementation.
Equation 4.5 shows the steps of the verification. Specification and implementation
polynomials are updated using each constraint. For instance, polynomial of gate 3 is
computed as: N = A0∗B1 = 0 as A0 and B1 are considered zero in the first iteration
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Algorithm 9: Incremental remainder generation algorithm
Input: Input constraint Mi , specification polynomial fspec , Gate-level netlist C

Output: Remainder r if the implementation is malicious
for each input constraints Mi ∈ M do

fspeci
=findSpecificationPolynomial(fspec , Mi )

Fi =findImplementationPolynomials(C, Mi )
ri = reduction of fspeci

over fj s ∈ Fi

if (ri ! = 0) then
Implementation is Trojan-inserted
return ri

end
end
return 0 /*correct implementation for constraint Mi*/

(first row of Table 4.4). Since the last iteration generates a non-zero remainder, the
implementation is malicious. �

F1 = {Z0 = 0,M = 0, N = 0,O = 0, R = 0, Z1 = 0, Z2 = 0, Z3 = 0}
fspec1 : 8 ∗ Z3 + 4 ∗ Z2 + 2 ∗ Z1 + Z0

step11(remainder) : 0

F2 = {Z0 = 0,M = 0, N = 0,O = A1, R = 0, Z1 = 0, Z2 = A1, Z3 = A1}
fspec2 : 8 ∗ Z3 + 4 ∗ Z2 + 2 ∗ Z1 + Z0 − 4 ∗ A1

step12 : 2 ∗ Z1 + Z0 + 8 ∗ A1

step22(remainder) : 8 ∗ A1
(4.5)

4.5.1 Ordering of Primary Inputs

Ordering of primary inputs to produce inputs’ constraints impacts the performance
of the incremental security verification approach when the implementation is
Trojan-inserted. The size of the remainder depends on the location of the Trojans.
The Trojan in the deeper stages of the design causes a larger remainder such that
generation of the remainder is impossible due to the remainder’s terms explosion
effect in traditional equivalence checking approaches. The remainder grows through
the procedure of reduction of fspec over implementation polynomials. The very first
time that the functionality of the tampered gate is involved in the intermediate steps
of reduction of fspec, the core of the remainder is formed by terms showing the
difference of the malicious functionality from the expected functionality (δ). Terms
of the remainder grow gradually during the reduction by substituting terms of the δ

with the functionality of gates in the input cone of the malicious cone. Therefore,
this approach is extremely helpful while verifying integer arithmetic circuits which
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contain long carry chain and the functionality of primary outputs is dependent on
earlier stages of the design. Therefore, the incremental equivalence checking is more
beneficial when it verifies the functionality of deeper stages of the design while
deactivating lower stage of the design in order to reduce the problem complexity
and reducing terms of the potential remainder. To make this approach applicable
for any Trojan in the design, we explore incremental remainder generation based
on dynamic ordering using binary search. We start from a predefined order of input
constraints (as shown in Table 4.4) and try the first row, if the first row generates
a non-zero remainder, we are done. We have the remainder and we can start the
security verification. Otherwise, we divide the table of the constraints into two and
select the first row in the second half of the table. If the constraints of this row lead
to a non-zero remainder, we continue dividing until we reach to (1) the last row of
the table and we still have a zero remainder, (2) to a row which generates a non-zero
remainder, (3) a row that using its constraints in remainder generation leads to a
number of terms which is higher than a predefined threshold. In the first case, we
can conclude that the design is correct since the last row has all of the variables in
the symbolic form. In the second case, the remainder is generated and we can use it
for Trojan detection. In the last case, the remainder cannot be generated due to term
explosion effect. In fact, all of the rows below this row will face the same problem
since the number of symbolic variables increases as we move towards the bottom
of the table. In this case, the upper rows may generate a more compact remainder.
The key observation is that from the last row that generates a zero remainder till
the row that has a term explosion effect, some new input conditions have triggered
the Trojan. If we give those input conditions higher priority, the remainder will be
generated in a more effective way.

4.6 Experiments

4.6.1 Experimental Setup

The directed test generation, Trojan localization, and Trojan removal algorithms
were implemented in a Java program and experiments were conducted on a
Windows PC with Intel Xeon Processor and 16 GB memory. We have tested
this approach on both pre- [13] and post-synthesized gate-level arithmetic circuits
that implement adders and multipliers. Post-synthesized designs were obtained by
synthesizing the high-level description of arithmetic circuits using Xilinx synthesis
tool. We consider wrong gate (gate-replacement Trojan) or signal inversion which
changes the functionality of the design as the threat model. Several gates from
different levels were replaced with an erroneous gate in order to generate faulty
implementations. The remainders were generated based on the method presented
in [17]. Multiple counter-examples (directed tests) are generated based on one
remainder. As each counter-example can be generated independent of others, so we
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used a parallelized version of the algorithm for faster test generation. We compared
the test generation method with existing directed test generation method [8] as well
as random test generation. Several Trojans are inserted in the middle levels of the
circuits to conduct this experimental results. We compared the detection/correction
results with most recent work in this context [20]. We use the benchmarks obtained
from the authors [20]. However, we have implemented their algorithm to compare
this method with their method. To enable fair comparison, similar to [20], we
randomly inserted Trojans (gate changes) in the middle stages of the circuits. We
improved the runtime complexity of presented method in [16] by using efficient
data structures such as hash maps and sorted sets.

4.6.2 Detecting and Fixing a Single Trojan

Table 4.5 presents results for test generation, Trojan localization, and Trojan
removal methods using multipliers and adders. The first column (“Type”) indicates
the types of benchmarks. The second (“Size”) and third (“#Gates”) columns show
the size of operands and number of gates in each design, respectively. Since the
sizes of adder designs are smaller than multiplier designs, we show results only for
higher operand sizes (bit-widths). The fourth column (“RG (s)”) shows the CPU
time to generate the remainder. The fifth column (“Dir. [8] (s)”) indicates results for
directed test generation method presented in [8] by using SMV model checker [7]
(we give the model checker the advantage of knowing the Trojan). The sixth
column (“Random (s)”) represents results of random test generation method (time to
generate the first counter-example using the random technique). The seventh column
(“Pro. TG (s)”) represents the time of the test generation method that generates
multiple tests. As it can be observed from Table 4.5, this method has improved
directed test generation time by several orders of magnitude. The eighth column
(“Trojan Loc. (s)”) shows the CPU time for Trojan localization algorithm. The
ninth column (“[20] (s)”) shows the detection/correction time of [20] using the
implementation of this approach in Java. The next column (“Pro. (TG+BL+DC)
(s)”) provides CPU time of the presented approach which is the sum of test
generation (TG), Trojan localization (BL) and detection/correction (DC) time. The
last column (“Improvement”) shows the improvement provided by the presented
framework. Clearly, this approach is an order of magnitude faster than the most
closely related approach [20], especially for larger designs as Trojan localization
has an important effect. The reported numbers are the average of generated results
for several different scenarios. For instance, if we zoom into test generation of the
first row (post-synthesized multiplier with 4-bit operands) of Table 4.5, the reported
results are the average of the nine possible scenarios shown in Table 4.6.

Table 4.6 presents the anomaly detection/correction results of 4-bit post-
synthesized multiplier. The first column (“Trojans”) shows a possible set of
gate-replacement Trojans. Time to generate the first counter-example using model
checker [8] and random techniques is reported in the second (“Dir. [8] (s)”) and
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Table 4.6 Test generation time for 4-bit multiplier with 8 bits outputs # Gates = 72

Trojans Dir. [8] (s) Ran. (s) #Tests Faulty outputs # Ran. tests Pro. TG (s)

XOR → AND 1.48 0.05 18 Z7, Z6, Z5, Z4 2632 0.01

XOR → OR 2.12 0.03 4 Z2 2945 0.01

XOR → AND 1.95 0.02 128 Z4 2292 0.01

XOR → OR 2.27 0.03 12 Z6, Z5, Z4, Z3 2945 0.05

XOR → AND 1.03 0.02 14 Z6, Z5, Z4, Z3, Z2 2369 0.02

AND → XOR 2.44 0.05 3 Z6, Z5, Z4, Z3, Z2 1881 0.01

AND → OR 2.20 0.002 2 Z7, Z6, Z5 2258 0.01

AND → XOR 0.89 0.04 148 Z7, Z6, Z5, Z4 2164 0.03

OR → AND 2.52 0.01 148 Z6 2920 0.01

Average 1.88 0.03 53 – 2489.55 0.01

third columns (“Ran. (s)”), respectively. The fourth column (“#Tests”) shows the
number of directed tests generated by this approach to activate the Trojan (each of
them activates the Trojan). The fifth column (“Faulty Outputs”) lists the outputs that
are affected by the Trojan (activated by the respective tests reported in the “#Tests”
column). The sixth column (“#Ran. Tests”) shows the number of random tests
required to cover all of the directed tests. It demonstrates that even for such small
circuits, using random tests to activate the Trojan is impractical. The last column
(“Pro. TG (s)”) shows the test generation time. As mentioned earlier, the average of
these scenarios is reported in the first row of Table 4.6.

The experimental results demonstrate three important aspects of this approach.
First, the test generation method generates multiple directed tests when the Trojan is
unknown in a cost-effective way. Second, this approach detects and corrects single
Trojan caused by gate replacement in a reasonable time. Finally, this method is not
dependent on any specific architecture of arithmetic circuits and it can be applied
on both pre-synthesized and post-synthesized gate-level circuits.

4.6.3 Detection/Correction of Multiple Trojans

Table 4.7 presents results for remainder generation, remainder partitioning, test
generation, Trojan localization, and detection/correction methods using multipliers
and adders with multiple independent Trojans. The first column (“Type”) indicates
the types of benchmarks. The second (“Size”) and third columns (“#Trojans”) show
the size of operands and number of Trojans in each design, respectively. The fourth
column (“RG (s)”) shows the CPU time to generate the remainder. The fifth column
(“RP (s)”) represents the required time for remainder partitioning, and the sixth
column (“TG (s)”) represents the time of the test generation method. The seventh
column (“Trojan Loc. (s)”) shows the CPU time for Trojan localization algorithm.
The eighth column (“DC (s)”) shows the detection/correction time to detect and
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correct all Trojans. The next column (“total (RP+TG+BL+DC) (s)”) provides CPU
time of the presented approach which is the sum of remainder partitioning (RP),
test generation (TG), Trojan localization (BL), and Trojan correction algorithm
(DC) times. The tenth column (“[20] (s)”) shows the required time of the method
presented in [20] using the implementation of this approach in Java. The next
column (“Improvement”) shows the improvement provided by this framework.
Clearly, this approach is an order of magnitude faster than the most closely
related approach [20], especially for larger multipliers as Trojan localization has
an important effect. However, the performance is comparable with [20] for security
verification of adders since the number of gates is small and the number of inputs
is large and test generation time may surpass the speed up of this method. The last
column shows the required memory for the whole approach.

Table 4.8 presents results for remainder partitioning, test generation, Trojan
localization, and detection/correction methods using multipliers and adders with two
dependent Trojans. The first column (“Type”) indicates the types of benchmarks.
The second column (“Size”) shows the size of operands. The third column (“RG(s)”)
shows th CPU time to generate the remainder. The fourth column (“RP (s)”)
represents the required time for remainder partitioning, and the fifth column (“TG
(s)”) represents the time of the test generation method. The sixth (“BL (s)”)
and seventh (“DC (s)”) columns show the CPU time for Trojan localization and
detection/correction time, respectively. Trojan localization time is relatively small

Table 4.8 CPU time and memory results for security verification of arithmetic circuits with two
dependent Trojans

Type Size RG (s) RP (s) TG (s) BL (s) DC (s) Total (s) Mem

post_syn. mul. 8 0.18 0.001 0.1 0.01 0.98 1.09 11.72 MB

16 1.43 0.002 0.35 0.02 2.23 4.04 40.97 MB

32 3.45 0.002 0.96 0.08 13.92 18.39 60.21 MB

64 14.3 0.004 3.77 0.2 77.12 95.4 83.3 MB

128 54.22 0.008 8.06 0.6 241.05 303.93 365 MB

256 310.13 0.012 31.8 36.02 1099.96 1477.92 1.36 GB

pre_syn. mul. 8 0.21 0.001 0.1 0.01 0.91 1.23 8.8 MB

16 1.52 0.001 0.77 0.01 5 7.3 22.4 MB

32 3.88 0.002 1.03 0.08 13.54 18.53 50.32 B

64 13.82 0.003 4.65 0.1 96.3 114.87 79.2 MB

128 59.13 0.005 7.88 0.6 220.22 287.83 293 MB

256 280.04 0.01 19.41 22.05 982.9 1584.45 1.02 GB

post_syn. mul. 64 0.5 0.001 01.18 0.01 0.55 2.24 3.3 MB

128 1.1 0.011 5.4 0.02 3.47 10 7.01 MB

256 3.7 0.011 16.09 0.1 9.42 29.32 11.96 MB

pre_syn. add. 64 0.4 0.003 1.13 0.01 0.53 2.07 2.9 MB

128 1.21 0.008 6.3 0.01 2.36 9.89 8.2 MBB

256 3.5 0.01 10.97 0.08 15.04 27.6 14.01 MB

Trojans are inserted in the middle stages of the design as well as close to primary inputs
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in comparison with other scenarios since the intersection of malicious cones is
not computed. The next column (“Total (s)”) provides CPU time of the presented
approach which is the sum of remainder partitioning (RP), test generation (TG),
Trojan localization (BL), and Trojan detection/correction algorithm (DC) times. As
the result shows, this approach can detect and correct multiple dependent Trojans in
reasonable time. We did not compare with any approaches since there are no existing
approaches for detecting/fixing multiple dependent Trojans. Finally, the last column
shows the required memory for security verification approach.

4.7 Summary

In this chapter, we presented an automated methodology for security verification of
arithmetic circuits. The methodology consists of efficient directed test generation,
Trojan localization, and Trojan correction algorithms. The presented framework
used the remainder produced by equivalence checking methods to generate directed
tests that are guaranteed to activate the source of the malicious functionality in
the design. This approach used the generated tests to localize the source of the
Trojan and find suspicious areas in the design. We also presented an efficient
security verification algorithm that uses the remainder as well as suspicious areas to
locate and correct the Trojan without any manual intervention. We showed that this
approach can be extended to automatically fix multiple Trojans. The experimental
results demonstrated the effectiveness of the presented approach to find anomalies
in large and complex arithmetic circuits in an efficient manner.
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Chapter 5
Trojan Localization Using Symbolic
Algebra

5.1 Introduction

Intellectual property (IP) outsourcing is a widely used practice in System-on-Chip
(SoC) design methodology to reduce the time to market and overall cost. However,
it raises major security risks as the attacker can embed malicious components in
third-party IPs. Such malicious components, widely known as hardware Trojans,
may affect the correct behavior and defeat the trustworthiness of the design by
leaking protected information such as secret keys. Hardware Trojans consist of
two parts: a trigger and a payload. The trigger is a set of conditions such that
their activation deviates the desired functionality from the specification and their
effects are propagated through the payload. The adversary designs trigger conditions
such that they are satisfied in very rare situations and usually after long hours
of operation [3]. Conventional structural and functional testing methods are not
effective to activate trigger conditions since there are many possible Trojans and
it is not feasible to construct a fault model for each of them. As a result, existing
EDA tools are incapable of detecting hardware Trojans and differentiating between
trustworthy third-party IPs and untrustworthy ones.

There has been a lot of research on hardware Trojan detection using logic testing
and side-channel analysis [1, 3, 7–11]. Logic testing focuses on generating efficient
tests to activate a Trojan and check the primary output values of specification and
circuit under test to detect Trojan. Side-channel analysis focuses on the difference
of the side-channel signature between the golden circuit and Trojan infected circuit.
These two types of methods answer the question of whether a circuit is infected with
Trojan, but they cannot identify the location of the Trojan. Approaches based on
structural/functional analysis [2, 6, 13, 19] have been proposed to identify/localize
the malicious logic. Unused circuit identification (UCI) [6] finds for unused portions
in the circuit and flags them as malicious. Sturton et al. show that many other types
of malicious circuits can evade the detection of the UCI algorithm [15]. The FANCI
approach [19] was proposed to flag suspicious nodes based on the concept of control
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values. However, FANCI flags about 1–8% of all nodes, which might be too many
suspicious candidates for experts to analyze for a large circuit. Moreover, FANCI
returns a set of suspicious nodes even when the circuit is Trojan free. A recent work
by Oya et al. [13] manually crafted templates for Trojans and was successful in using
these templates to identify Trojans in Trust-HUB benchmarks [18]. Unfortunately,
this approach is applicable only for specific types of Trojans; therefore, it is not
suitable to detect other types of Trojans that are not covered by their templates.
Side-channel analysis focuses on the side-channel signatures of the circuit [1, 9],
which avoids the limitations (low trigger probability and propagation of payload) of
logic testing. However, the abnormality in side-channel signatures for Trojan circuit
is sensitive to measurement noise and process variation, which makes side-channel
analysis not effective on large circuits. Narasimhan et al. [12] proposed the temporal
self-referencing approach on large sequential circuits. Recently, Yuanwen et al. [7]
proposed the multiple excitation of rare switching (MERS) approach to combine the
advantages of logic testing and side-channel analysis.

In this chapter, we propose an automated approach to identify untrustworthy IPs
and localize malicious functional modifications (if any). The technique is based
on extracting polynomials from gate-level implementation of the untrustworthy
IP and comparing them with specification polynomials. The proposed approach is
applicable when the specification is available. This approach is also useful when a
golden design has gone through non-functional transformations such as synthesis,
and we would like to ensure that the modified design is trustworthy. This approach
is scalable due to manipulation of polynomials instead of BDD-based analysis used
in traditional equivalence checking techniques. Experimental results using Trust-
HUB benchmarks demonstrate that this approach improves both localization and
test generation efficiency by several orders of magnitude compared to the state-of-
the-art Trojan detection techniques.

Figure 5.1 presents the overview of the proposed methodology. We extract a set
of polynomials from the specification (S). We also derive a set of polynomials (I)
from the implementation. Finally, we check the equivalency between two sets S and
I based on Gröbner basis reduction. Each of the polynomials from the specification,
fspeci

, is reduced over a set of corresponding implementation polynomials I and a
set of remainders R is generated. From symbolic computer algebra, it is known that
when ri = 0, gates in Rg (set of gates that contribute in reduction of polynomial
fspeci

is called region Rg) have successfully implemented fspeci
and it guarantees

that all gates in Rg are safe [5]. Any (ri �= 0) ∈ R shows a suspicious functionality
in the corresponding region Rg and all of the gates in Rg are suspicious candidates.
The malicious nodes can be pruned by removing the safe gates from the suspicious
candidates. When all of ri’s are equal to zero, the implementation is Trojan free. The
proposed method can recognize the Trojan-free implementation from the Trojan-
inserted one. This method reports a few gates to indicate the presence of a malicious
activity (change of functionality) in the implementation. Since the number of
malicious gates is very small, this approach is amenable for an exhaustive test
generation to activate the Trojan. This method is applied on Trust-HUB benchmarks
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Fig. 5.1 The proposed
hardware Trojan localization
flow

[18] and the experimental results show the effectiveness of the proposed approach
compared to existing methods.

The remainder of this chapter is organized as follows: Sect. 5.2 discusses the
framework for hardware Trojan localization and detection. Section 5.3 presents the
experimental results. Finally, Sect. 5.4 concludes this chapter.

5.2 Trojan Detection and Localization

In order to trust an IP block, we have to make sure that the IP is performing
exactly the expected functionality. The approach presented in Sect. 4.2.2 can be
extended to find whether a hardware Trojan, which changes the functionality, has
been inserted in a combinational arithmetic circuit. However, applying the same
approach on general IPs is limited due to several reasons. First, it is possible that
the specification of a general circuit cannot be described as one simple polynomial.
Second, the circuit may not be acyclic and loops may exist due to their sequential
nature. Third, unrolling may increase the complexity of the problem so the reduction
of fspec over implementation polynomials will face polynomial terms explosion.
Finally, the Trojan activation may require extremely large number of unrolling steps
which may be practically infeasible and also there is no specific information on after
how many cycles Trojan will be activated. In order to address these challenges, we
present a method to generate polynomials in an efficient way and use them in the
proposed algorithm to localize and detect Trojans in third-party IPs. The reminder
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of this section describes the three important tasks in the framework: polynomial
generation, Trojan localization, and test generation for Trojan detection.

5.2.1 Polynomial Generation

Suppose that we have two versions of a design, one is a verified IP (specification)
and the other is an untrusted third-party IP (implementation) after performing
non-functional transformations. The goal is to detect whether an adversary has
inserted hard-to-detect hardware Trojan during non-functional changes and has
made undesired functional changes. For example, a design house may send their
RTL design for synthesis or adding low-power features to a third-party vendor.
Once the third-party IP comes back (after synthesis or other functionality-preserving
transformations), it is crucial to ensure the trustworthiness of these IPs.

In the method presented in Sect. 4.2.2, specification is modeled as one poly-
nomial; however, here we generate a set of polynomials S representing the func-
tionality of the golden IP to be able to apply Gröbner basis theory for hardware
Trojan localization problem. The specification is partitioned into several regions
and each region is converted to a polynomial. The output of each region is either
inputs of a flip-flop (clock, enable, reset, etc.) or one of the primary outputs. The
inputs of a region are either from primary inputs or inputs/outputs of flip-flops. In
other words, we generate polynomials for regions which are limited to flip-flops’
boundaries. Then, corresponding equations (based on Eq. 4.1 in Sect. 4.2.2) of gates
inside a region are combined together to construct one polynomial representing the
functionality of the region.

Algorithm 10: Polynomial generation algorithm
Input: Circuit Graph Gr , Lout and Lin

Output: Polynomials S
Region = {}
for each gate gi ∈ Gr where its output ∈ Lout do

Region.add(gi )
for all inputs gj of gi do

if !(gj ∈ Lin) then
Region.add(gj )

Call recursively for inputs of gj over Gr

end
end
fi = convertToPolynomial(Region)
S = S ∪ fi

Region = {}
end
return S
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Algorithm 10 shows how we extract set S. The specification is converted to a
graph where each vertex is a gate (gi). The algorithm takes the circuit graph Gr , list
(Lout ) of allowed output variables (flip-flops’ inputs and primary outputs), and list
(Lin) of allowed input variables of a region as inputs and returns a set of polynomials
S as its output. The algorithm chooses a gate for which output belongs to Lout and
goes backward recursively until it reaches the gate gj , whose input comes from one
of the variables from Lin (lines 5–10). The algorithm marks all the visited gates as
a “Region.” The selected region may contain all of the basic gates except flip-flops.
Then, the “Region” is converted to a polynomial fi by combining corresponding
polynomials of the gates residing in “Region,” fi is added to set S (lines 11–12).

Example 5.1 Suppose that the circuit shown in Fig. 5.2 is a part of a verified IP
block and we want to use it as specification. Algorithm 10 is applied on it and
the polynomials are shown as: S = {fspec1 : n1 − (−2.A.n2 + n2 + A), fspec2 :
Z−(1−n1.B)}. Since the circuit shown in Fig. 5.2 contains one primary output and
one flip-flop, Algorithm 10 extracts two specification polynomials for this circuit.

Similarly, the implementation polynomials I are driven by modeling every
gate except flip-flops from the untrusted design as a polynomial based on Eq. 4.1
from Sect. 4.2.2 and Algorithm 10. In order to reduce the number of generated
implementation polynomials, we partition implementation to fanout-free cones (set
of gates that are directly connected together) and convert each fanout-free region
as one polynomial. In other words, I contains a set of polynomials where each
polynomial represents a fanout-free cone.

Example 5.2 The circuit shown in Fig. 5.3 is the Trojan-inserted implantation of
the specification shown in Fig. 5.2 (gate 6 is the Trojan trigger and gate 7 is the
payload). Gates in same pattern belong to a common fanout-free cone. As a result,
set I is computed by Algorithm 10. Each of the polynomials corresponds to one
fanout-free cone.

I = {n1 − (n2.w4.A − n2.w4 + w4 − n2.A + n2),

w4 − (A − n2.A),

Z − (n1.w4.C.B − n1.w4.C − n1.B + 1)}
(5.1)

Fig. 5.2 A part of a
sequential circuit
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Fig. 5.3 A Trojan-inserted implementation of circuit in Fig. 5.2

5.2.2 Trojan Localization

We generate the set S and I as described in Sect. 5.2.1. We assume that the name of
flip-flops, primary inputs, and primary outputs is the same between implementation
and specification or the name mapping can be done. We also assume that no
re-timing has been performed. These are valid assumptions in many scenarios
involving third-party IPs. The equivalence of two sets S and I is checked to find
any suspicious functionality which may serve as a Trojan.

To detect a Trojan, we need to reduce each polynomial fspeci
from set S over a

subset of polynomials from set I to check membership of every polynomial fspeci

in Ideal I constructed from polynomials from set I (I =< I >). To perform that, all
of the polynomials from I are hashed based on their leading terms (which contains
a single variable and this variable represents the output of the corresponding gate).
Every variable from fspeci

∈ S is replaced with the corresponding functionality
of that variable from I polynomials. The process continues until fspeci

is reduced
either to zero polynomial or a remainder polynomial which contains primary
inputs as well as flip-flop’s inputs/outputs. The non-zero remainder indicates that
implementation does not correctly implement the functionality of fspeci

and that
part of the implementation is suspicious. Note that, based on Gröbner basis theory,
when the remainder is zero for a specific region, we can be certain that the region is
safe. In other words, it is not possible for a smart attacker to insert malicious gates
in a way that the remainder becomes zero.

Example 5.3 Consider we want to measure the trust in the circuit shown in
Fig. 5.3, which is the untrustworthy implementation of design shown in Fig. 5.2.
Specification polynomials shown in Example 5.1 are reduced over implementation
polynomials as shown in Eq. 5.1. The result of the reduction is stored in set R. Each
fspeci

produces one remainder ri that can be either zero or a non-zero polynomial.
Gates {1, 2, 3, 4, 5} implement functionality of an XOR gate (these gates are
equivalent to XOR gate shown in Fig. 5.2). Thus, the remainder r1 is zero and
it means that the region containing gates {1, 2, 3, 4, 5} implements the fspec1
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correctly. However, the non-zero remainder r2 presents the fact that there are
malicious components in implementation of fspec2 and the region containing gates
{2, 4, 6, 7, 8} is suspicious.

fspec1 : n1 + 2.A.n2 − n2 − A

step11 : n2.w4.A − n2.w4 + w4 + n2.A − A

step12(r1) : 0

fspec2 : Z + n1.B − 1

step21 : n1.w4.C.B − n1.w4.C

step22(r2) : −1.n1.A.C + n1.n2.A.C + A.B.C.n1 − A.B.C.n1.n2

(5.2)

By using the proposed approach, a set of malicious regions are identified.
Suppose the adversary inserts some extra flip-flops as part of Trojans. These buggy
flip-flops do not have any correspondence in the specification. In other words, there
is no fspeci

which describes their inputs’ functionality. Therefore, the corresponding
region in the implementation is also considered as a suspicious region. However,
scan-chain flip-flops can easily be detected and removed from suspicious candidates
because of their structures.

The proposed method formally identifies the regions (between flip-flops bound-
aries) of the implementation that are safe and the regions that have suspicious
functionality. The adversary usually inserts the Trojan in deep levels of the circuit.
Therefore, the regions that actually contain the Trojan can be very large and may
include many gates (order of hundreds or thousands of gates). In order to improve
the approach further, we propose an algorithm to identify the gates that most likely
are responsible for the malicious activity. Since we know which regions are Trojan
free (based on remainder as zero), we remove the gates which are contributing
in the construction of these regions from suspicious regions. In other words, we
have formally proved that some of the regions are trustworthy so the gates that
construct these regions are essential for the correct functionality. The safe gates
may be inputs of Trigger or payload gates. However, they do not belong to the set of
malicious gates. Using this approach, we are able to prune the suspicious regions to
contain very small number of gates. This approach guarantees that all of the Trojan
trigger and payload’s gates are inside the suspicious region. Algorithm 11 shows the
proposed procedure.

The algorithm takes the gate-level implementation graph Gr as well as specifi-
cation and implementation polynomials as inputs, and in case the implementation
contains malicious components, it returns a set of suspicious gates as output. The
algorithm takes each of specification polynomials and reduces them one by one over
corresponding polynomials from set I. Each fspeci

may be reduced using several
gates gj and the result of the reduction is stored in ri (lines 4–5). The used gates
are marked to keep track of the gates that are utilized to implement the circuit
(line 6). If ri is equal to zero, it means that all of the gis are safe and they are
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Algorithm 11: Hardware Trojan localization algorithm
Input: Circuit implementation Gr , I and S

Output: Suspicious gates Gt

for each fspeci
∈ S do

ri = reduction of fspeci
over fj s ∈ I

Ri = Ri ∪ all gj s where fj = f unc(gj )

mark all gis as used
if (ri ! = 0) then

RT rjIn = RT rjIn ∪ Ri

else
RT rjFree = RT rjFree ∪ Ri

end
end

end
for each gate g ∈ RT rjf ree do

remove g from RT rjIn

end
return Gt = remaining in RT rjIn ∪ unused gates

stored as safe gates (RT rjFree); otherwise, all gis are stored as suspicious candidates
(lines 7–11). Every ri = 0 shows that all of the gates used in the construction of
functionality of the corresponding fspeci

are safe. Therefore, to narrow down the
potential suspicious gates, the gates of Gr which appeared in RT rjFree are removed
from RT rjIn (lines 12–13). Note that gates in both of RT rjFree and RT rjIn belong
to the implementation Gr . All of the unused gates should also be considered as
malicious candidates. Therefore, the union of the remaining gates in RT rjIn and
unused gates is returned as potentially malicious gates (Gt ). If all of the ris are
zero, the implementation is safe and there is no Trojan inside the implementation.

Algorithm 11 identifies the trust level of a third-party IP and in case of existence
of hardware Trojan, it returns a very small number of gates as suspicious candidates.
This algorithm guarantees that all of the actual Trojan trigger and payload gates are
inside the set Gt .

Example 5.4 Applying Algorithm 11 on the circuit shown in Fig. 5.3 will result
in non-zero remainder for region containing gates {2, 4, 6, 7, 8}. However, the zero
remainder of fspec1 shows that gates {1, 2, 3, 4, 5} are safe and they are vital to
construct the functionality of signal n1. Therefore, we remove gates {2, 4} from
potential candidates and gates {6, 7, 8} remain as suspicious.

5.2.3 Trojan Activation

As shown in Example 5.4, the small suspicious region still contains some safe gates
which are dedicated to the correct functionality in the absence of the Trojan (in
Example 5.4, gate 8 is benign but it is reported as suspicious node). In other words,
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these safe gates are only used to construct the functionality of one specific primary
output or flip-flop’s input. Thus, they will not be removed in the process of pruning
safe gates from suspicious regions since they are not contributing in functionality
of other primary outputs or flip-flop’s inputs. To be able to detect the exact gates
which are responsible for trigger and payload parts of Trojan, we generate tests
to activate the Trojan. Since the number of suspicious gates is small enough, we
try to activate each node in the suspicious gates and check whether the generated
test activates the Trojan. We use an ATPG to generate the directed tests. If none
of the tests detects the Trojan, we generate test to activate two of the nodes at the
same time. We continue the process until one of the tests activates the Trojan. The
proposed method is shown in Algorithm 12. This approach is feasible due to the fact
that the number of suspicious nodes that are reported using the proposed approach
is very small.

Algorithm 12: Test generation algorithm
Input: Suspicious gates Gt , Implementation C, Specification S
Output: Test vectors T

T={}
for each possible trigger scenario n over Gt do

generate test ti to activate n of nodes
for each possible payload scenario do

propagate effect of ti to the observable points
if trigger scenario is satisfied then

T = T ∪ ti
end

end
end
return T

Example 5.5 We are trying to activate the Trojan shown in Fig. 5.3. From Exam-
ple 5.4, we know that gates {6, 7, 8} are suspicious. As shown in Fig. 5.3, Trojan
will be triggered when output of gate 6 (w5) becomes true and B is zero at the
same time. In other words, gate 8 of the implementation receives one as its second
input (w6), while in the specification, the second input of the NAND gate receives
zero. These conditions cause difference between specification and implementation.
To propagate the effect of Trojan’s condition activation, n1 should be one since
n1 = 0 makes output Z = 1 independent of second input’s value and it will mask
the Trojan effect. The test vectors that activate Trojan are as follows (we assume the
initial value of n2 is equal to 0): A = 1, B = 0, C = 1.
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5.3 Experiments

5.3.1 Experimental Setup

The Trojan localization algorithm was implemented in a Java program and experi-
ments were conducted on PC with Intel Processor E5-1620 v3 and 16 GB memory.
We have tested the approach using widely used Trust-HUB benchmarks [18]
consisting of combinational and sequential Trojan triggers and payloads that
change the functionality of the design. The Trojan-free designs are considered as
specification. To show that this methodology is orthogonal to design structures and
library format, we synthesized Trojan-inserted benchmarks with Xilinx synthesis
tool and used them as implementation (we just map flip-flops’ inputs/output names).
Specification is partitioned into several regions and each region is represented
using one polynomial. These polynomials can be reduced over implementation
polynomials independently. Therefore, we used a parallel version of Algorithm 11
to implement the method. We also used logic reduction based rewriting schemes
presented in [14] to improve the equivalence checking time. We compared the
results with most relevant Trojan localization work [19]. Since this approach
essentially performs equivalence checking, we also compared with an equivalence
checking tool “Formality” [16] which has been designed to check the equivalence
between two versions of a design to demonstrate the efficiency of this work. When
the designers make non-functional changes in a design, Formality tries to detect
potential functional changes between two versions of a design.

Formality compares the points between two designs and tries to match them
using different algorithms including name-based matching and non-name-based
matching algorithms. Based on Formality’s user guide [4], it first compares the
points based on their exact names. Then, it tries to perform case-insensitive name
mapping or filtering out some characters. Name matching can also be done through
mapping driven/driving nets (name of nets) of points. In the second phase, it
attempts to match the remaining unmatched points using topological analysis of
the unmatched cones. In other words, it matches two points with different names if
they have equivalent structures. The final step is signature analysis which is based on
generating functional and topological signatures. Functional signatures use random
patterns simulation to generate primary outputs’ data or register’s output data to
match different points. However, if an adversary inserts a hard-to-detect hardware
Trojan, signature analysis may incorrectly match points since their simulation result
is same. As a result, Formality may not be able to detect inserted Trojans (as
indicated in Table 5.1). The proposed method is based on polynomial manipulation
of different regions of the circuit and it is not dependent on the simulation or pattern
generation. Thus, the proposed method outperforms Formality when there are hard-
to-activate Trojan in the implementation.
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5.3.2 Trojan Localization

Table 5.1 presents results for hardware Trojan localization. The first three columns
show the type of benchmarks, number of gates in the circuit, and number of
malicious gates (consisting of Trojan trigger and payload), respectively. The fourth
column shows the number of suspicious gates reported by “FANCI” [19] approach.
FANCI reports 1% to 8% of circuit nodes as false positive nodes on average (we
have reported suspicious nodes as false positive nodes plus actual Trojan gates). The
fifth column shows the number of suspected gates that can be found using Formality.
It reports some faulty flip-flops or primary outputs which may have different values
because of change in the functionality. However, there are so many gates in the cone
corresponding to the faulty primary outputs or flip-flops and all of these gates are
suspicious. In case Vga-lcd-T100, the Trojan effects are masked due to observability
issues and nature of the above-mentioned signature analysis, and Formality returns
no suspicious nodes. The sixth column shows the number of suspicious gates that
the proposed method finds. This method detects all of the Trojan circuit gates (no
false negative gates) plus very small number of false positive nodes (benign gates).
The seventh column shows the number of specification polynomials which is equal
to the number of flip-flops in the design plus the number of primary outputs. The
eighth column presents the number of implementation polynomials which is equal
to the number of fanout-free cones existing in the implementation. The CPU time
(in seconds) to localize the Trojan is reported for each benchmark in ninth column.
The time complexity of this method is linear with respect to the number of gates.
The tenth, eleventh, and twelve columns show the number of false positive gates
that the proposed approach, FACNI [19], and Formality [16] report, respectively.
Clearly, this approach returns only few false positive gates. We are aware of the
fact that comparison with FANCI is not fair since it does not require golden model.
However, FANCI returns a lot of suspicious gates that it may not include all of
the Trojan gates. For example, FANCI has reported top twenty suspicious gates for
S35932-T200, none of them are from Trojan gates. Moreover, FANCI returns a set
of suspicious gates even when the circuit is Trojan free. The next columns show
the improvement in comparison with FANCI and Formality based on the number
of false positive gates. This approach has a significant improvement compared to
existing approaches—this approach reports orders of magnitude less false positive
gates compared to [19] and [16].

5.3.3 Test Generation

For test generation, we used TetraMAX [17], the ATPG tool from Synopsys to
generate tests exhaustively to activate the reported suspicious nodes. Since the
suspicious candidates are few, we can exhaustively check several combinations
to activate the Trojan. However, without using the localization method or using
heuristic methods such as [19], exhaustive method will not work due to large number
of suspicious gates. Table 5.2 shows the number of tests needed for activation and
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Fig. 5.4 (a) Number of suspicious nodes, (b) Number of tests needed to activate Trojans

detection of Trojans with/without using the localization method. First column shows
the type of benchmark. The next two columns present the number of required tests
to activate trigger conditions one at a time without and with using the localization
method, respectively. The next column shows the improvement compared to without
using localization. The proposed approach improves the number of required test
vectors significantly. The next columns show the number of required tests to activate
trigger conditions of two and four nodes at a time without and with using the
localization method and the associated improvements, respectively. As it can be seen
from Table 5.2, it is impractical to generate tests to activate four-node triggers even
for these small benchmarks without the localization approach. If the localization is
utilized, the number of required tests is reasonable and would be less by several
orders of magnitude.

We also compared with MERO [3] for benchmarks S15850-T100 and S95932-
T200. We did not compare using the remaining benchmarks because [3] did not
report data for those benchmarks. Figure 5.4a shows the number of suspicious gates
reported by the proposed approach compared to MERO. Clearly, this approach
provides up to 44 times (40 times on average) reduction in suspicious gates
compared to MERO. Figure 5.4b compares the number of tests required to activate
the Trojan. As shown in the figure, this approach requires up to two orders of
magnitude (60 times on average) less test vectors compared to MERO.

The experimental results demonstrate four important aspects of this approach.
First, the number of false positive gates is very small and in some cases there are no
false positives. In these cases, this method is able to detect the whole Trojan circuit.
Next, all of the Trojan payload and trigger gates are inside the list of suspicious
gates. In other words, this approach does not produce any false negative result. This
approach detects both sequential and combinational Trojan circuits. Finally, this
approach generates very few suspicious nodes (less than 0.2% of original design,
less than 0.03% in most cases) that enable us to exhaustively generate tests to
activate various trigger conditions to detect the Trojan circuit.
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5.4 Summary

In this chapter, we presented an automated approach to localize functional Trojans
in third-party IPs. First, we identified whether a third-party IP contains malicious
functionality or it is trustworthy. Next, we presented an algorithm to localize the
suspicious area of the Trojan-inserted IP to a region which contains very few (less
than 0.03% of the original design in most cases) gates. This approach does not
require any unrolling or simulation of the design and it formally identifies the parts
of the circuit that is Trojan free as well as the remaining suspicious gates. In order
to further aid in Trojan detection, we proposed a greedy test generation method
to activate the Trojan. The experimental results demonstrated the effectiveness of
the proposed methodology on Trust-HUB benchmarks. The localization approach
reduces the overall Trojan detection effort (number of tests) by several orders of
magnitude compared to the existing state-of-the art techniques.
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Chapter 6
Vulnerability Assessment of Controller
Designs

6.1 Introduction

Ensuring the integrity of an IC is challenging due to the diversity of attacks and
attack goals. Malicious modifications [11], side-channel attacks such as power
analysis [13] and timing analysis [12], debug infrastructure vulnerabilities [1], and
fault injection attacks [2] can be exploited to affect security of a hardware design. A
design can be resilient against such vulnerabilities when the security is considered
from early design stages including controller and datapath design efforts.

Wide variety of solutions are proposed to protect datapath components [6, 8,
10, 19]. However, only a few studies addressed potential integrity issues of control
circuits. Control circuits are required to be resilient against different types of attacks
since they are responsible for controlling the functionality of the overall design and
any deviation from the expected behavior can lead to severe impacts on security of
the whole design. A finite state machine (FSM) of a secure design usually contains
protected states which control proper handling of secret information. Fault injection
attacks [2], existing EDA tools incompleteness [5] as well as designers’ mistakes
can compromise the security of a control circuit. An attacker’s goal is to utilize
existing FSM vulnerabilities to bypass authorized states and access the protected
states illegally to weaken the security of the design or leak secret information
such as cryptographic keys. Sunar et al. have shown that the secret key of RSA
encryption algorithm [3] can be leaked when fault injection attack is used against
the implementation of the Montgomery ladder algorithm [21]. It has been shown
that some FSM encodings are more vulnerable toward fault injection attacks and
an adversary can use the existing encoding vulnerabilities to have unauthorized
access to the protected states [16]. Therefore, it is vital to identify and remove the
vulnerabilities in the FSM architecture to protect them against any susceptibilities.

There are limited efforts to identify and address the security vulnerabilities of
a control circuit. Sunar et al. used triple module redundancy (TMR) and parity
checking methods to protect FSM of encryption algorithms against fault injection
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attacks [21]. However, the proposed technique introduces large area overhead
(200%) and cannot detect other adversarial models such as hardware Trojans and
vulnerabilities introduced by synthesis tools. In [22], a multilinear code selection
algorithm is used to make cryptographic algorithm robust against fault injection
attacks. However, this technique is not resilient against fault injection vulnerabilities
caused by synthesis tools [5]. It has been shown that synthesis tools may insert
additional “don’t care” states in implementation of FSMs by using RTL don’t care
conditions and create assignments to optimize the gate-level netlist. At the same
time, an adversary can use don’t care states as a backdoor to access protected states
and weaken the security of the overall design. In [5], authors use reachability as
a trust metric to identify gate-level paths to protected states which do not exist in
the RTL design. However, authors do not evaluate actual vulnerabilities caused by
don’t care states. They proposed an architectural change to state flip-flops in order
to remove the access to the protected states from unprotected ones. Their proposed
solution limits the functionality of the design. In [7], authors used mutation testing
to detect existing hardware Trojans in unspecified functionality. However, mutation
testing is very slow, and it may require significant manual intervention. Nahiyan et
al. have proposed a state reachability analysis using ATPG tools [16]. They generate
test patterns using the principle of n-detect-test [14] to extract the state transition
graph (STG) of a given circuit. However, this option does provide any guarantees,
e.g., in case one of their benchmarks they could not extract the whole STG. Sun et al.
have proposed an FSM traversal technique using symbolic algebra [20]. However,
their technique can only check the reachable states from a given state (e.g., initial
state) and their technique cannot detect don’t care states that may be introduced by
synthesis tools. Similarly, they cannot detect hardware Trojans inserted in FSMs
outputs.

In this chapter, we present a scalable formal approach that enables efficient
FSM anomaly detection in state transition functions as well as FSM outputs. The
proposed method models the specification of a given FSM as a set of polynomials
(Fspec) such that each polynomial is responsible for describing all of the valid states
that can be reached. Each output of the FSM also can be represented using one
specification polynomial. The specification polynomials can be derived from RTL
codes as well as design documents. We also partition the gate-level implementation
of an FSM based on the boundary of flip-flops, primary inputs, primary outputs,
and fanout-free regions. We model each region by a polynomial and add it to the
set of implementation polynomials (Fimp). In the next step, we use Gröbner basis
theory [4] to check the equivalence between two sets Fspec and Fimp. We reduce
each specification polynomial Fspeci

using a set of implementation polynomials.
If the reduction leads to a non-zero remainder, there are some vulnerabilities in
implementation of Fspeci

. Every assignment that makes the remainder non-zero
reveals the conditions that can activate the hidden malfunction.

This approach is fully automated and it is guaranteed to find hard-to-detect
FSM vulnerabilities in the implementation of an FSM when existing equivalence
checking approaches fail. Experimental results demonstrate the effectiveness of the
approach. Figure 6.1 shows the overall flow for anomaly detection using equivalence
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Fig. 6.1 Overview of FSM anomaly detection approach

checking. We demonstrated the merit of this proposed method by detecting the
vulnerabilities in various FSM designs, while state-of-the-approaches failed to
identify the security flaws.

The rest of the chapter is organized as follows. Section 6.2 illustrates how the
proposed approach detects FSM vulnerabilities. We show the effectiveness of the
approach using the experimental results in Sect. 6.4. Finally, conclusion is provided
in Sect. 6.5.

6.2 Finite State Machine Anomaly Detection

A state machine can be defined with six characteristics: an initial state Sinit , set of
possible states S where Sinit ∈ S, set of possible input events I, a state transition
function (FT ) that maps combination of states and inputs to states (FT : S×I → S),
a set of output events (O), and an output function (FO ) that maps states and inputs
to outputs (FO : S × I → O). Based on the function FT which defines transitions,
each state Si can be accessed through a set of immediate, authorized states as
well as a set of specific input events. Set ASi

= {(Sj , Ij )|Sj ∈ S & Ij ∈ I}
shows legal conditions to access state Si and set AS shows all of the legal ways to
access states S. If state Si can be accessed through the condition (Sm, Im) where
(Sm, Im) /∈ ASi

, it is a threat to the integrity of the design. In other words, state Si

should not be accessed through some illegal conditions/states which do not exist
in the specification. From the security perspective, it is important that a design
exactly performs as intended in the specification, nothing more nothing less. The
extra access path to state Si , (Sm, Im) may endanger the integrity of the design
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as it may create a backdoor to access the critical secrets/assets. The extra access
paths will create extra states and transitions to the gate-level implementation of
the FSM which do not exist in the behavioral specification. Formally, AS can be
converted to A

‘
S. The extra set of access paths to the states of S can be computed

as: AM = A
‘
S − AS.

Example 6.1 The state transition diagram of a simple FSM is shown in Fig. 6.2.
The FSM has three states: G, C, and protected state O representing with binary
encoding 01, 10, and 00 respectively as shown in Fig. 6.2. The FSM is responsible
for checking a password before starting a specific operation. Operation state (O)
should be accessed only from check password state (C) when a password is entered,
and it is valid (a = 1 and b = 1). An adversary may use the unspecified conditions
to insert illegal transitions to gain access to the operation state (protected state)
from the state G without even entering the correct password to bypass the security
protection (a = 1 and b = 0). On the other hand, the synthesis tool or the designer
mistake can also introduce some unintentional illegal access ways (don’t care states
D) to the protected state and compromise the security of the design. With respect
to the specification, AO should be equal to: {(C, “a = 1andb = 1”). However,
there are illegal access ways to state O in FSM implementation which is equal to:
AMO

= {(D, “a”), (G, “a = 1andb = 0”)}. An adversary can compromise the
security of the design by exploiting the existing vulnerabilities and attack the FSM.
One of the possible attacks is fault injection attack [16]. The strategy is that the
attacker tampers operating characteristics such as clock signal frequency, operating
voltage, or working temperature hoping to change different path delays and force the
FSM to capture next state incorrectly. One example would be to force the FSM to go
to the don’t care states which have access to protected states or attack target states.
For instance, an attacker can inject a fault during transition 01 → 10 (G → C)
to end up in don’t care state 11 which has an immediate access to the protected
state O and bypass password checking process in Example 6.1. The other possible
attack is that the adversary inserts hardware Trojan by manipulating state transition
graph in order to access certain states when a specific input event is triggered. In
this case, the adversary is considered as an in-house rogue designer or an untrusted
vendor/foundry. For instance, Example 6.1 shows that an adversary has inserted a
Trojan that provides an illegal access way to state O from state G. The Trojan is
typically hard-to-activate (from the unspecified design space) with negligible effect
on the design constraints such as area and power to avoid detection from existing
verification and debug flow. �

Based on above observations, any deviation of FSM implementation from the
specification (including extra access ways) can endanger the overall design integrity.
In the rest of this chapter, we propose a promising approach to analyze FSMs to find
potential malicious functionality. In this chapter, we consider illegal access paths as
threat model, and the goal is to identify them using symbolic algebra.

Although the presented approach of Chap. 4 is promising for verification of
arithmetic circuit, applying it on a general sequential circuit is challenging due to
several reasons. First, formulating the specification of a general circuit cannot be
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Fig. 6.2 The state diagram for checking a password in order to perform a specific operation.
Potential vulnerabilities are shown with dotted lines

modeled as one simple and comprehensive polynomial. The specification may be
modeled as a set of polynomials. However, finding the corresponding parts which
are only responsible for implementing a special specification polynomial is not
straightforward. Second, the implementation of a sequential circuit is not acyclic
and it contains several loops which make the reduction operation infinite. Finally,
time unrolling of the implementation is not efficient since it increases the design
complexity and makes the equivalence checking inefficient. Moreover, existing
Trojan may be activated after a large number of cycles (since the trigger condition
is rare); therefore, there is no specific information about the required number of
unrolling. In this chapter, we try to address the above-mentioned challenges to
apply symbolic algebra to verify the trustworthiness of any general FSM. We not
only check the given FSM for the correct expected behavior, but we also analyze
the FSM to find any potential malicious extra access ways that may endanger the
security of the FSM (nothing more). Finding extra access path especially from don’t
care states cannot be found using any formal methods such as model checkers
since they are not accessed through the normal operation path. The remainder of
this section describes the different parts of the approach: deriving specification
polynomials, generating implementation polynomials, and performing equivalence
checking in order to ensure the correctness of implementation and finding potential
extra vulnerabilities.
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6.2.1 Deriving Specification Polynomials

The specification of an FSM can be extracted from its state transition diagram or
from a high-level description of the design (e.g., HDL modules). State transition
graph can be derived from the design documentation as well as other high-
level behavioral description of FSM such as RTL codes. In other words, deriving
specification polynomials does not require a golden design/netlist.

Modeling the whole FSM using only one specification polynomial is not possible
without considering the time notation in the specification polynomial as transitions
between different states may be dependent on binary values of a specific input
variable over different clock cycles. For example, as it is shown in Fig. 6.2, state
C can be accessed from path G → C when in two consecutive clock cycles t1 and
t1 + 1 such that a = 0 in t1 and a = 1, b = 1 in t1 + 1. Writing these conditions
as a polynomial (part of the overall specification polynomial) without considering
the timing will lead to a zero polynomial as (1 − a).a.b = 0. However, if we
add timing notations to variables, the implementation also has to be time unrolled
to match with the specification which increases the complexity of the equivalence
checking problem. As a result, representing the functionality of an FSM using one
specification polynomial is not possible. We propose an approach to model the
specification of the FSM using polynomials without time unrolling the design.

Transitions of an FSM can be decomposed as: FT =
n⋃

i=1
ASi

, where n is

the number of states and ASi
shows all of the possible access ways of state Si

and FT is the transition function of the FSM. To derive a set of specification
polynomials which represent the whole FSM, we model each of ASi

as one
polynomial representing the legal access ways to state Si and we add it to the set
Fspec.

A valid transition to state Si happens when the current state is one of the
authorized states and the corresponding input conditions are valid. In other words,
Si will be reached in the next clock cycle when the current state is Sj and condition
Cj→i where (Sj , Cj→i ) ∈ ASi

are evaluated to true. Note that, we show the value
of variable x in the next cycle using x′ notation. Therefore, transition Sj → Si is
modeled to a polynomial as: fSj →Si

: Si
′ − (Sj .Cj→i ) = 0. The polynomials of

each of the conditions in ASi
should be XORed to derive a polynomial representing

the whole ASi
since only one of them should be valid at the same time. We illustrate

the approach using Example 6.2.

Example 6.2 In order to extract specification polynomials for FSM shown in
Fig. 6.2, we consider each of the states independently and write a polynomial to
represent conditions which update the next value of the state. For example, state O

should only be accessed from state C when a = 1 and b = 1 or when the current
state is state O and input a is equal to one. Since it should be accessed only from one
of these conditions at a time, the conditions should be XORed to each other to show
the effect of one condition at a time (the only exception is the condition of a = 0 in
state G that will be ORed to other conditions since it works as the reset signal). The
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O ′ shows the next value of state O. The specification of the FSM shown in Fig. 6.2
can be modeled as a set of three abstract polynomials (Fspec = {fG, fC and fO})
as shown in Eq. 6.1. �

Fspec : {fG : G′ − ((1 − a) ∨ (C.(1 − a.b) ⊕ O)) =
G′ − (1 − a + a.O + 2.a.b.C.O + a.C − 2.a.C.O − 1.a.b.C) = 0

fC : C′ − a.b.G = 0

fO : O ′ − (a.b.C) = 0}

(6.1)

We will describe how specification polynomials are used to check security
properties of an FSM in Sect. 6.2.3. Before performing the equivalence checking,
we need to refine specification polynomials to apply proposed FSM equivalence
checking process since the proposed method requires that specification variables’
names be the same as the corresponding variables in the implementation. We refine
specification polynomials based on the FSM encoding style as well as corresponding
names of state flip-flops in the implementation (name mapping between flip-flop
names and corresponding variables in specification polynomials). We refine the
variables which represent states in specification polynomials based on naming and
encoding information that can be found in the high-level description of the design
such as RTL modules as we describe in Example 6.3. As a result, the specification of
FSM outputs can also be modeled with word-level specification polynomials based
on state variables as well as primary inputs.

Example 6.3 Suppose that the RTL code shown in Listing 6.1 is the RTL version
of the state machine shown in Fig. 6.2. We can see that states G, C and O are
encoded as {01, 10, 00} respectively. The state variable and next states are presented
using variables {s0, s1} and {n0, n1}. Therefore, the variables shown in Eq. 6.1 can
be updated based on the above-mentioned information. For instance, variable G and
next state variable G′ can be modeled as (1−n1).n0 and (1−s1).s0, respectively. As
a result, the specification polynomials shown in Eq. 6.1 can be rewritten as shown in
Eq. 6.2. Note that, considering C encoded as s1.(1 − s0) and O as (1 − s1).(1 − s0),
the terms −2.C.O as well as 2.a.b.O.C of FG in Eq. 6.1 are evaluated in updated
specification polynomials). �

Fspec : {fG : (1 − n1).n0 − (1 − a.b.s1 + a.b.s0.s1 − a.s0) = 0

fC : n1.(1 − n0) − (a.b.(1 − s1).s0) = 0,

fO : (1 − n1).(1 − n0) − (a.b.s1.(1 − s0)) = 0}
(6.2)

Specification polynomials can be extracted directly from the RTL modules by
using some specific rules. The logical operations in “If” statements can be mapped
to polynomials. For example, by considering the encoding, line G : if (a ==
1‘b1&&b == 1‘b1)n <= C can be modeled as equation n1.(1 − n0) =
a.b.(1 − s1).s0 In the next step, the corresponding polynomials of “If Then Else”
are XORed together to achieve the exclusive nature of these statements. The derived
specification polynomials will be used in the equivalence checking procedure.
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Listing 6.1 RTL module of FSM shown in Fig. 6.2
module fsm ( input c lock , a , b ; output v a l i d ) ;
reg [ 1 : 0 ] s , n ;
parameter O=2 ’ b00 , G=2 ’01 , C=2 ’ b10 ;
always @( a , b , s ) begin
case ( s )

G: i f ( a == 1 ’ b1 && b == 1 ’ b1 ) begin
n <= C ;

end e l s e i f ( a == 0) begin
n <= G; end

C : i f ( a == 1 ’ b1 && b =1 ’ b1 )
n <= O;

e l s e
n <= G; end

O: n <= G;
end
always @( posedge c l o c k )
begin

i f ( a ==1 ’ b0 ) s <= G;
e l s e s <= n ; end

end
endmodule

6.2.2 Generation of Implementation Polynomials

The goal is to partition the design and find the regions that are responsible for
implementing each of the states and represent them as implementation polynomials.
In order to perform this task, a mapping between state names and their correspond-
ing gate-level state flip-flop names is needed. Here, we assume that the name of
state inputs, outputs as well as state flip-flops are same between specification (RTL,
state diagram, etc.) and implementation, or name mapping can be done based on
existing methods in [15]. For the ease of the illustration, we explain how to extract
the implementation polynomials when the FSM encoding is binary encoding. The
proposed approach works for any state encoding.

After name mapping, we partition the gate-level implementation of the FSM
based on state flip-flops. The state region construction starts from the input of
the corresponding state flip-flop. The region construction continues with the inputs
of the state flip-flop and moves backward recursively until it reaches to primary
inputs or flip-flop outputs. The constructed region is converted to a polynomial by
converting each of its gates to a polynomial as shown in Eq. 4.1 and combining them
to each other to create one polynomial representing the whole region. We illustrate
the approach using Example 6.4.

Example 6.4 Figure 6.3 shows the gate-level netlist which implements the FSM
shown in Fig. 6.2. In the implementation, FSM states are encoded using binary
scheme (two flip-flops are used to implement the functionality of three states shown
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Fig. 6.3 Implementation of FSM in Fig. 6.2 using binary encoding

in the state diagrams of Fig. 6.2). The implementation is partitioned starting from the
input of state flip-flop ni and it is continued until reaching either primary inputs or
outputs of state flip-flops (si). In the next step, the corresponding polynomial of each
partition is derived by combining polynomials of each gate in the region to represent
the functionality of next state variables (ni). The implementation polynomials are
shown in Eq. 6.3. �

Fimp : {n0 − (1 − a.b.s1 − a.s0 + a.b.s0.s1) = 0,

n1 − (a.b.s0 − a.b.s0.s1) = 0} (6.3)

When a gate’s output goes to more than one gate, it is called a fanout. A fanout-
free region is a set of gates that are directly connected together. Therefore, we
partition the implementation to fanout-free regions and model each of them as one
polynomial. The corresponding polynomials of each next state variable (nis) can be
computed by combining the polynomials of the corresponding fanout-free regions.
Polynomials of fanout-free regions are calculated in order to reduce the efforts of
implementation polynomial generation since one fanout-free region may be used in
constructing the functionality of several nis. Note that, in the implementation shown
in Fig. 6.3, the functionality of each ni is constructed with only one fanout-free cone.

Note that, the implemented functionality of FSM’s outputs also can be for-
mulated as a function of FSM inputs and states and presented as polynomials.
In order to find implementation polynomials corresponding to FSM’s outputs,
each output gate is considered and traversed backward until it reaches to either
input/output of state flip-flops or FSM inputs. The traversed gates are modeled using
one polynomial showing the functionality of the corresponding output, and those
polynomials are added to set Fimp.
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6.2.3 Equivalence Checking

From the security point of view, it is important to make sure that the implementation
of a design performs exactly its specification. We check the functional equivalence
between a control logic specification and its implementation in order to establish
the trust of the control logic. In this chapter, we formulate the FSM equivalence
checking as ideal membership testing based on Gröbner Basis theory. Implemen-
tation polynomials Fimp are formed as an ideal I based on particular order >

(the topological order which exists in the implementation). FSM implementation
is trustworthy if all of the specification polynomials in set Fspec are the member of
ideal I =< Fimp >.

In order to check the trustworthiness of the implementation, each specification
polynomial Fspeci

from set Fspec is reduced over polynomials in Fimp. All of
the variables in specification polynomials (except primary inputs and flip-flops’
outputs) are substituted with the corresponding functionality of the variable from
the implementation polynomials. Note that, the reduction procedure is done using
sequential polynomial division as shown in Sect. 4.2.2. The reduction process
continues until a zero remainder or a non-zero polynomial which contains a
combination of primary inputs and flip-flop outputs is reached. If reduction Fspeci

over set Fimp results in a zero remainder, it means that Fspeci
belongs to the

ideal I =< Fimp >. In other words, set Fimp has successfully implemented the
specification Fspeci

. Otherwise, the implementation of Fspeci
is not trustworthy

(implementation is not equal to specification). If all of the remainders are equal
to zero polynomials, it means that the overall implementation is equal to FSM’s
specification since set Fspec includes specification of the FSM states as well as
specification of FSM’s outputs (specification polynomials cover all specification
space). Algorithm 13 shows the equivalence checking procedure.

Algorithm 13: FSM equivalence checking algorithm
Input: Gate-level netlist imp and specification polynomials Fspec

Output: FSM anomalies E
Fimp=findImplementationPolynomials(imp)
for each fspeci

∈ Fspec do
ri = reduction of fspeci

over Fj s ∈ Fimp

if (ri ! = 0) then
Ti = f indNonZeroAssignments(ri )

E.put (fspeci
,Ti )

end
end
return E

Algorithm 13 takes the gate-level netlist imp of a given FSM as well as the
specification polynomials Fspec as inputs and tries to find any existing anomalies in
the FSM. First, it computes the implementation polynomials (Fimp) as described
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in Sect. 6.2.2 (line 4). In the next step, every specification polynomial fspeci

(corresponding to state Si) in Fspec is reduced over a set of implementation
polynomials Fj s using Gröbner Basis theory in order to find the remainder ri (line
6). If the remainder is non-zero, it means that there are some malicious functionality
in implementing specification polynomial fspeci

. Every assignments that make the
remainder non-zero activates the malicious access path to Si . The algorithm stores
the anomalies in the map E (lines 7–9).

Example 6.5 Consider the specification polynomials of Eq. 6.2, gate-level netlist in
Fig. 6.3 as well as implementation polynomials shown in Eq. 6.3. Equation 6.4
shows the equivalence checking procedure with respect to topological order
{n1, n0} > {s1, s0, a, b}. Note that, reducing of variables {n1, n0} happen at the
same time as their orders are the same. However, we show the reduction of Fspec1
in two steps to illustrate the procedure better. �

Fspec1 : fG : (1 − n1).n0 − (1 − a.b.s1 + a.b.s0.s1 − a.s0)

stp11 : (1 − a.b.s0 + a.b.s0.s1).n0 − (1 − a.b.s1 + a.b.s0.s1 − a.s0)

stp12 : (1 − a.s0 − a.b.s1 + a.b.s0.s1) − (1 − a.b.s1 + a.b.s0.s1 − a.s0) = 0

Fspec2 : fC : n1.(1 − n0) − (a.b.(1 − s1).s0)

stp21 : (−a.b.s0.s1 + a.b.s0) − (a.b.(1 − s1).s0) = 0

Fspec3 : fO : (1 − n1).(1 − n0) − (a.b.s1.(1 − s0))

stp31 : (a.s0 − a.b.s0 + a.b.s1) − (a.b.s1 − a.b.s1.s0) =
(remainder) : a.s0 − a.b.s0 + a.b.s0.s1

(6.4)

As shown in Eq. 6.4, specification polynomials of states G and C are reduced to zero
which means that they are safely implemented by the gate-level netlist. However,
the reduction of specification polynomial of the protected state O results in a non-
zero remainder. The remainder reveals potential vulnerabilities in the gate-level
implementation of the design to access the protected state O. Every assignment that
makes the remainder non-zero discloses an unauthorized access path to the state O.
Table 6.1 shows the malicious access paths. As it can be observed from Table 6.1,
don’t care state {s1, s0} = 2‘b11 can access the protected state O due to synthesis
tool optimization (when input a is true). There is another malicious access path to
the state O from state G when a = 1 and b = 0. This extra access is a hardware
Trojan that was inserted by an adversary or a rogue designer.

Table 6.1 Malicious access
paths to the protected state O

shown in Fig. 6.2

s1 s0 a b

1 1 1 X

0 1 1 0
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6.2.4 FSM Security Property Checking

There may be some signals in the implementation such as reset signal that indirectly
influences the state transition but considering it in specification polynomials make
them very complex. In this section, we are proposing a security property checking
technique to formally verify the security properties of a given FSM. In other words,
we want to make sure that there is no unintentional mistakes or hidden FSM Trojans
(hidden among other functionalities of the gate-level netlist) that endanger the
integrity of the overall implementation. In the proposed approach, we perform effi-
cient property equivalence checking in order to verify security properties of a given
state. We consider security properties such that there should be no additional access
path to a given state other than the access paths that are listed in the specification.
In other words, we want to formally verify that a given state Sj (e.g., a protected
state) cannot be accessed when all of the valid transitions ASi

are not active. To
formally verify that, we generate the specification polynomials as described in
Sect. 6.2.1 for a given FSM. For each specification polynomials fspeci

, we compute
every assignment to the variables that make the whole specification polynomial
evaluated to zero. We expect that in the presence of such assignments (conditions),
the corresponding implementation polynomial is also reduced to a zero polynomial.
However, if applying such assignment leads to a non-zero remainder, there is a mali-
cious access path to the given state Si . Algorithm 14 presents the proposed approach.

Algorithm 14 takes gate-level netlist imp of a given FSM with state space S

as well as the specification polynomials Fspec as inputs and finds the anomalies
exist in the FSM. First, it finds the corresponding specification of polynomial
fspeci

for each state Si ∈ S (line 5). In the next step, the algorithm tries to find
all of the assignments that make fspeci

zero and put them in set N (line 6). For
each assignment Nj , we extract the corresponding implementation polynomial Fj

representing the behavior of implementation of Si under conditions Nj (line 8).
We expect Fj is reduced to a zero remainder for a safe implementation. However,
if Fj is reduced to a non-zero polynomial, there is a malicious access path to Si

when all of the valid transactions to Si are inactive. Every assignment that makes
the Fj (remainder) non-zero activates the malicious access path to Si . The algorithm
stores the anomalies in the map E (lines 9–15). In the proposed approach, instead of
performing the common equivalence checking that only check the implementation
of ASi

for state Si , we check that there is no other transition except the transition
listed in ASi

to access state Si (nothing more). Since we check everything else except
the valid transitions, the checking may seem exponential. However, we control
the size of the problem by assigning don’t care values to existing variables in the
given specification polynomials. Moreover, by assigning values, the complexity of
constructing implementation polynomials is decreased. Example 6.6 illustrates the
approach.

Example 6.6 Consider the protected state O shown in Fig. 6.2 as well as the
corresponding specification polynomial (property) shown in Eq. 6.2 which is equal
to (1 − n1).(1 − n0) = (a.b.s1.(1 − s0)). We want to make sure that there is no
malicious access path to protected state O, inserted either by synthesis tool or a
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Algorithm 14: FSM security property checking algorithm
Input: Gate-level netlist imp, state S and specification polynomials Fspec

Output: FSM anomalies E
for each Si ∈ S do

fspeci
= Fspec.get (Si)

N=findZeroAssignments(fspeci
)

for each Nj ∈ N do
Fj =findImplementationPolynomial(imp, Si , Nj )
if (Fj ! = 0) then

Tj = f indNonZeroAssignments(Fj ,Nj )

if (E.get (fspeci
)) == null) then

E.put (fspeci
, Tj ) else

end
Ti = E.get (fspeci

)

E.put (fspeci
, (Tj ∪ Ti )

end
end

end
end
return E

rogue designer. In the first step, we find the assignments that make the right side of
the equation (1 − n1).(1 − n0) = (a.b.s1.(1 − s0)) zero. The assignments are listed
in Table 6.2. In the next step, we construct an implementation polynomial modeling
the implementation of state O for each of the assignments listed in Table 6.2 using
the gate-level netlist shown in Fig. 6.3. The property checking procedure is shown
in Eq. 6.5. �

{s1, s0, a, b} = {0XXX} : fO1 = (1 − n1).(1 − n0) = a.s0 − a.b.s0

{s1, s0, a, b} = {11XX} : fO2 = (1 − n1).(1 − n0) = a

{s1, s0, a, b} = {100X} : fO3 = 0

{s1, s0, a, b} = {1010} : fO4 = (1 − n1).(1 − n0) = 0

(6.5)

As it can be seen in Eq. 6.5, condition {s1, s0, a, b} = {0XXX} generates a non-
zero polynomial fO1. The assignment that makes fO1 non-zero (we call it partial
remainder) is {s1, s0, a, b} = {0110} which shows the malicious extra path from
state G to state O as shown in Fig. 6.2. Moreover, condition {s1, s0, a, b} = {11XX}
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Table 6.2 Conditions that
inactivate all of the transitions
to state O shown in Fig. 6.2

s1 s0 a b

0 X X X

1 1 X X

1 0 0 X

1 0 1 0

generates a non-zero polynomial fO2. The assignment that makes fO2 non-zero is
{s1, s0, a, b} = {111X} which shows the malicious extra path from don’t care state
{s1, s0} = 11 caused by synthesis tool to state O as shown in Fig. 6.2. Using the
values to construct implementation polynomials not only enables us to perform
security property checking on FSM designs but also controls the size of partial
remainders and makes the overall approach scalable.

6.3 Effect of Encoding on FSM Vulnerabilities

As we mentioned earlier, most security vulnerabilities in an FSM are unintentionally
created by designer mistakes or by CAD tools. Traditional FSM design practices
are driven by cost and performance while security is largely ignored. For example,
FSMs are generally encoded in binary, gray or one-hot from the performance per-
spective. In [16], it was shown that certain encoding schemes are more susceptible to
fault injection attacks. Further, CAD tools can create additional vulnerabilities in an
FSM. In this section, we describe how vulnerabilities are introduced by traditional
FSM encoding schemes.

Binary Encoding In binary encoding scheme, states are encoded as a binary
sequence where the states are numbered starting from 0 and up. The number of
state flip-flops (FFS), q, required for binary encoding scheme is given by q =
log2(n); where, n is the number of states. From this equation, it is evident that
binary encoding scheme requires minimum number of state FFs. Therefore, binary
encoding scheme is better suited for FSM with a fewer number of states. However,
in terms of security, the binary encoding scheme makes the FSM more susceptible
to fault injection attack since any fault can create a valid state transition.

One-Hot Encoding In one-hot encoding, only one bit of the state variable is “1”
while all other state bits are zero. One-hot encoding requires as many state FFs as
the number of states, and therefore, one-hot encoding requires more state FFs than
binary. From the security perspective, it is inherently less vulnerable to fault attacks
since the probability of injecting one fault and ending up in a valid state is low (two
faults are needed). On the other hand, one-hot encoding could result in many don’t
care states. If any of these don’t care states has access to a protected state as a result
of synthesis, then there will be a vulnerability in the FSM.
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Gray Encoding In gray encoding, consecutive states only differ by one bit. Gray
code may require the same number of state FFs and combinational logic just as
complex (if not more) as binary encoding. From the security perspective, gray
encoding makes the FSM susceptible to fault attacks (similar to binary encoding).
In this section, we present two security-aware FSM encoding techniques. The first
approach (Scheme I) is based on making protected states more resilient against fault
attacks using combined benefits of one-hot and binary encodings, while the second
approach is used to secure prohibited transitions instead of every transition.

In this section, we present two security-aware FSM encoding techniques. The
first approach (Scheme I) is based on making protected states more resilient against
fault attacks using combined benefits of one-hot and binary encodings, while the
second approach is used to secure prohibited transitions instead of every transition.

Scheme I One-hot encoding is more resilient to fault injection attacks in compar-
ison with other encoding styles as discussed earlier. The first encoding scheme
exploits the benefits of one-hot style while reducing the number of don’t care
states. Algorithm 15 shows the proposed encoding. The algorithm takes as input
from the designer, the states specified as three different categories: the initial state,
normal states, and protected states. The primary goal is to make the protected states
more resilient against fault attacks. Therefore, the algorithm uses one-hot scheme
for protected states while it uses binary scheme for normal states. If the FSM
contains one initial state, N normal states, and P protected states, the algorithm
uses log(N) + P bits for encoding (line 5). The algorithm dedicates P upper bits
to one-hot scheme while it pads zero for the rest of log(N) bits in order to encode
a protected state (lines 7–9). To encode a normal state, the algorithm pads zero for
the N upper bits and uses binary encoding for log(N) lower bits (lines 10–12). It
always encodes the initial state with all zeros (line 13). This encoding approach
decreases the number of don’t care states (as compared to one-hot) while making
sure that it will be impossible for an attacker to access to a protected state from a
normal state with fault attacks since during normal state transitions, P upper bits
are fixed to zeros.

Example 6.7 The FSM in the controller circuit of SHA-256 digest engine is shown
in Fig. 6.4b. The FSM is composed of 7 states: “Reset,” “Data Input,” “Padding,”
“Block Process,” “Block Next,” “Valid,” and “Error.” Each of these states controls
specific operations in the SHA-256 digest engine. The digest algorithm operates on
two registers, w[0..64] which is responsible for loading the message and h[0..7]
which stores the intermediate digest results. These two registers are initialized
during “Reset” state. The final digest (H ) will be latched into the result register in
“Valid” state. In the SHA-256 FSM example, “Valid” is a protected state and “Block
Next” is the authorized state to access the protected state “Valid.” The FSM shown in
Fig. 6.4b can be securely encoded with Algorithm 15 as following: Reset=“00000,”
Block Process=“00001,” Block Next=“00010,” Padding=“00011,” Error=“00100,”
Data Input=“01000,” Valid=“10000.”
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Algorithm 15: Secure encoding—scheme I
Input: Protected States P, Normal States N, Initial State I

Output: FSM Encoding Map, SEN

P ← |P|, N ← |N|
l = P + log(N) Encoding Bit Length
for Pi ∈ P do

Ei = OneHotEncoding(i, P )||(00..0)l−p concat (l-p) zeros with one-hot encoding
SEN .add(Pi, Ei)

end
for Ni ∈ N do

Ei = binaryEncoding(i, N)||(00..0)l−N)

SEN .add(Ni, Ei)
end
SEN .add(I, (00..0)l) initial state
return SEN

Reset

PaddingData Input

Block Next

Block process

Valid

Error

Padding

= { , , . . , }

Hash

Digest

Opera�ons

(a) (b)

Initialize h[0..7],w[0..64]

w[0..15] � Msg 

Compute h[0..7] from 
w[0..64]

H �� h[0..7]

Fig. 6.4 (a) High-level diagram of SHA-256, (b) FSM of SHA-256 digest engine. Red States
show the protected states in FSM of SHA-256 digest [17]

Scheme II Note that, every access to a protected state from an unauthorized state
does not necessarily introduce a security threat based on the attack objective. For
example, it can be observed from Fig. 6.4b that an unauthorized access to Data
Input state from Block Process may not be a security threat if the attacker’s objective
is to bypass the digest operation. In other words, an FSM may be secured against
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fault attacks if the state encoding provides protection for only prohibited transitions
instead of every transition to the protected states. This property enables us to
introduce another FSM encoding scheme which is similar to binary scheme, but also
tries to reduce the number of don’t care states that exist in the previously proposed
encoding (Algorithm 15).

Algorithm 16 shows the second proposed encoding approach. The algorithm
takes an initial state, state names, and a list of the prohibited transitions as inputs
and generates an optimal length encoding as output. A list of prohibited transitions
includes state(s) that should be prohibited during a transition from state u to v using
fault attacks. Moreover, it can contain information about which transitions should
not be bypassed. If there are n states, the algorithm searches different encoding
lengths (l) where log(n) ≤ l ≤ n−1 and tries almost all of the combinations to find
a secure encoding (lines 4–8). The goal is to find an encoding that does not have any
conflict with the list of prohibited transitions. The initial state is encoded with all
zeros. To check whether an attacker can inject a fault during a transition from state
u to v and gain access to state t , a mask is generated from the temporary encodings
of states u and v to identify which bits have changed during this transition (line 10).
The changed bits are marked with “x” and the fixed bits are kept as they are in the
generated mask (e.g., “0101”→“1001”: mask =“xx01”). The encoding of state t is
compared with the generated mask. If the encoding has one-bit difference from the
fixed bits of the mask, the temporary assignment is safe (since reaching to t requires
changes in the fixed bits of transition u → v). Otherwise, the assigned encodings
are not safe and another combination should be tried (lines 11–12). The algorithm
returns an encoding as a result when there is no conflict with the list of prohibited
transitions (lines 13–14). Note that we also employ some heuristics to efficiently
reduce the computation cost of the algorithm (e.g., using one-hot scheme in l bits
and assign it to l states to limit the search space). If there is an optimal encoding, this
algorithm will find it. In the worst case, it uses one-hot scheme for all of the states
except the initial state like the previous approach. However, this approach requires
more inputs from the designer.

Example 6.8 Using Algorithm 16, the FSM shown in Fig. 6.4 can be securely
encoded as: Reset=“0000,” Block Process=“1000,” Block Next=“0100,”
Padding=“0010,” Error=“0111,” Data Input=“0001,” Valid=“1110.” Both of these
encoding showed in this example and Example 6.7 protect critical states of SHA-
256 algorithm (shown in red in Fig. 6.4) toward fault injection attacks.
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Algorithm 16: Secure encoding—scheme II
Input: State Names S, Initial State I , Prohibited Transitions T
Output: FSM Encoding Map, SEN

for log(N) ≤ l ≤ N − 1 do
for all of possible combinations do

SEN = {}
SEN .add(I, (00..0)l) initial state
SEN = f indEncoding(S, l) random encoding with length l

for Ti ∈ T do
m=generateMask(SEN .get (src(Ti)), SEN .get (dest (Ti)))
for prohibited states ti of Ti do

checkForConflicts(SEN .get (ti ), m);
end

end
if (There is no conflict) then

return SEN

end
end

end

6.4 Experiments

6.4.1 Experimental Setup

In order to evaluate the effectiveness of the FSM anomaly detection approach,
we have implemented the proposed algorithms using Java. The experiments were
run on a PC with Intel core i7 and 16 GB memory. We have applied this
method on various FSM benchmarks from “OpenCores” [18]. The benchmarks are
described using RTL modules (that we treat as the specification). To obtain the
gate-level implementation, we synthesize RTL modules using “Synopsys Design
Compiler” [9]. We extract specification polynomials from RTL modules of FSM
benchmarks considering their state transitions and output assignments. We have
implemented a Java program such that we define the valid transitions to states in
the form of abstracted polynomials and it generates one specification polynomial
representing all of the logical transitions to a given state. The same approach was
used to produce the specification polynomials for FSM outputs. On the other hand,
implementation polynomials are driven automatically from the synthesized gate-
level netlist using the proposed framework. In order to generate implementation
polynomials, gate-level netlist is partitioned into the fanout-free regions which are
restricted to flip-flops boundaries as well as primary input and primary outputs.
We use fanout-free regions to reduce the number of implementation polynomials.
We reduce specification polynomials over a set of implementation polynomials and
each non-zero remainder represents an FSM security threat. The goal is to find the
assignments to activate the vulnerabilities (if any).
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Table 6.3 Result of the proposed FSM anomaly detection technique using equivalence
checking

Benchmark Encoding #Gates #FF #States #Trans. DC Sts DC Tran. EQ (s)

TAP controller One-hot 136 16 16 33 3 6 80.63

AES encryption One-hot 88 5 5 11 0 0 6.26

AES encryption Binary 60 3 5 11 3 6 5.03

RSA encryption One-hot 114 7 7 9 0 0 18.48

RSA encryption Binary 76 3 7 9 1 1 6.2

SHA digest One-hot 153 7 7 47 121 121 50.89

Multiplier controller Binary 52 3 5 8 3 3 1.85

SAP controller Binary 135 4 12 25 0 0 17.23

6.4.2 Results

We have conducted two sets of experiments based on whether the vulnerability
is introduced by the synthesis tool (unintentional) or an attacker (intentional). In
the first set of experiments, the gate-level implementations are Trojan-free, and all
the potential vulnerabilities are caused by the synthesis tool. Note that different
encoding styles and values can create different vulnerabilities. In the second set of
experiments, we have inserted hardware Trojans in state transitions as well as state
outputs of the implementations in order to show the effectiveness of this approach.
The results are shown in Table 6.3 and Fig. 6.5, respectively.

Table 6.3 represents the result of proposed FSM equivalence checking approach
for eight different benchmarks. The first column shows the type of the benchmark.
The second column represents the encoding style of the FSM design. We have
considered binary and one-hot encoding methods to show that the proposed
approach is not dependent on the encoding approach. The third, fourth, and fifth
columns represent the number of gates, number of state flip-flops, and the number
of states, respectively. The sixth column represents the number of transitions in the
FSM design. The next two columns indicate the number of don’t care states and
don’t care transitions that the method finds, respectively. Note that this method does
not report the don’t care states that are not connected to any other states. Finally,
the last column shows the CPU time that the proposed equivalence checking (EQ)
approach to find anomalies in FSM benchmarks.

To show that the proposed approach can also detect hardware Trojans inserted
in the state transition function as well as in the logic that generates the outputs of
the FSM, we inserted hardware Trojans by exploiting the unspecified functionality
of different benchmarks. Figure 6.5 shows the required time to detect the injected
Trojan. The attributes of the benchmarks are the same as shown in Table 6.3.

The experimental results demonstrated that the approach could detect the hidden
vulnerabilities introduced by synthesis tool optimization while Formality fails to
detect them. Note that some state encodings are more likely to have vulnerabilities
caused by synthesis tools. For example, the synthesis tools tend to map all of the
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Fig. 6.5 Time required to detect hardware Trojans in output logic and state transition function

don’t care states to a state with all zero’s encoding (e.g., 3’b000) assuming that
the state represents reset or ideal state. If the protected state is mapped using this
encoding, there may be a direct access to the protected state from some don’t care
state caused by the synthesis tool.

6.5 Summary

It is critical to make sure that FSMs are correctly implemented, and there is
no deviation from the specified functionality of the FSM since any unexpected
functionality can endanger the integrity of the whole design. FSM vulnerabilities
can be caused intentionally through an adversary by inserting hardware Trojan in
the implementation or unintentionally using CAD tools such as synthesis tools. In
this chapter, we presented an approach to formally detect anomalies in finite state
machines using symbolic algebra. The proposed approach models the specification
of an FSM as a set of polynomials such that each polynomial represents all of the
valid transitions to one of the states of the FSM. We modeled the implementation
of an FSM as a set of polynomials. We check the equivalence of the specification
polynomials and implementation polynomials using Gröbner basis theory. We have
showed the approach can detect hidden vulnerabilities created by both synthesis
tools or an adversary.
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Chapter 7
SoC Security Verification Using Property
Checking

7.1 Introduction

Functional properties have been widely used in pre-silicon verification to for-
mally model the expected behavior of the design and its specification. Functional
properties can significantly reduce verification and debug efforts as they can be
used in formal verification tools (e.g., model checking tools) to automatically
prove/disprove whether all aspect of design functionality have been correctly
implemented and they are aligned with the specification. Functional properties can
also be used in simulation-based validation to pinpoint the source of functional
violations automatically [3]. Moreover, these properties can be synthesized and
placed on silicon to monitor particular events at the run-time or provide closures
for post-silicon validation [22]. Similar to functional properties, we need to create
security properties for SoC security verification and validation to either prove the
trustworthiness of the design or find a counterexample in the case of security
violations in an automatic fashion. In other words, security properties help to
provide provable guarantees against various vulnerabilities. Security properties
formally describe the expected behaviors and rules that a trustworthy design is
required to follow for each type of SOC vulnerability.

SoC security can be compromised through information leakage, timing and
power side-channel attacks, implementation of malicious functionality [50],
exploitation of design-for-test (DFT) and design-for-debug (DFD) infrastructures
[15], fault injection attacks [38], and unsafe design transformations. These
vulnerabilities can be introduced by untrusted third-party vendors, the rogue
employees of the design house, an untrusted system integrator, or an unreliable
foundry. These vulnerabilities can also be introduced unintentionally by designers’
mistakes or lack of knowledge about the security requirements. Moreover,
computer-aided design (CAD) tools can introduce additional security vulnerabilities
in the design [18, 39]. These vulnerabilities can create a backdoor to leak sensitive
information (e.g., encryption/decryption keys, random numbers, configuration bits,
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etc.) of the design, create a denial of service, or grant the control of the design to
an attacker. Therefore, it is very important to identify the security vulnerabilities
during design test and verification stages and address them as soon as possible
while we still have the flexibility to change the design if needed. In this chapter, we
show that how security properties can be extracted/generated for automatic security
verification and validation of an SoC.

Once security properties are generated, they should be checked using various
tools to ensure the secure behavior of the design. Security properties can be tested
statically using formal tools such as model (property) checking [47], equivalence
checking, [20], and information flow tracking techniques [25, 51] to formally
provide proofs for lack of security vulnerabilities or identifying violations. Security
properties can be checked dynamically as well by simulation. These properties
can be synthesized and placed on silicon to monitor specific events at the run-
time. Moreover, they can be mapped to a reconfigurable fabric to enforce security
policies/rules during execution and ensure convenient upgradability to cover zero-
day attacks. Additionally, security properties can be used for directed test generation
to activate hard-to-detect security events [1–3, 6, 7, 11, 12, 16, 21, 28, 32, 33, 37,
42, 44]. The test generation technique will be described in Chap. 8.

The remainder of this chapter is organized as follows: Sect. 7.2 provides an
overview on functional properties. Section 7.3 presents various properties that
should be checked for vulnerability analysis of an SoC. Section 7.4 presents various
tools to check security properties. Finally, Sect. 7.5 concludes the chapter.

7.2 Background: Writing Properties

A property in the context of verification is a statement that can check assumptions,
conditions, and expected behaviors in a design. A property can be in the form of an
assertion or cover statement. An assertion can check that if everything is working
correctly in the design and notify if an illegal event has happened. Assertions
can also be used for consistency checking [9]. A cover statement can check if a
scenario has ever occurred in the design (during simulation or run-time execution).
Therefore, cover statements can provide coverage information for design validation.
There is a single bit associated with assert which indicates the pass or fail status
of the assertion. The cover assertion triggers at the end of the execution when the
assertion is not covered during the run-time. Properties can check design behaviors
in two main ways: (1) immediate statements and (2) concurrent statements. An
immediate property can check if the expected functional scenario is correct in a
procedural block (similar to if-else statement) at an instance of time. In other words,
an immediate assertion can check if a particular block of code has been executed if
pass conditions are met. On the other hand, concurrent functional properties check
for a design behavior over a period of time for the whole module (instead of a
procedural block). Moreover, in concurrent properties, sampling of variables can
occur in some instance of time and the evaluation of the whole property can be done
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during another time frame (called observe time). Concurrent assertions are more
powerful and can be used to describe and check more complicated events.

These days, designers mostly use one of the powerful assertion languages such
as PSL (property specification language) [23] and SystemVerilog Assertions [54]
to describe interesting behavioral events of a design. These languages use temporal
logic representations such as linear temporal logic (LTL) [40] and computational
tree logic (CTL) [14]. Languages based on LTL and CTL usually describe design
behaviors and properties in four layers: Boolean expression, sequence, property
specification, and assertion directive layers. These layers can be used on top of
different HDL languages including Verilog and VHDL. Boolean expressions are
the most fundamental layer of a property which describe Boolean events on a signal
or a combination of signals [52]. Logical operators AND, “&&”, OR, “||”, and
NOT “!” can be used to evaluate Boolean expressions. Once Boolean expressions
are evaluated, the sequence of these expressions is checked in the sequence layer.
For example, property (req) [wait for two cycles] (ack) checks that if two Boolean
expression req == 1 and ack == 1 are evaluated to true and ack == 1 happens
two cycles after signal req is asserted.

Temporal sequences can be shown using different operators. Note that to show
the operators, we use the notations used in SystemVerilog Assertions. However, the
same operators can be found in other languages. Operator ## can be used to the
number of clock cycles needed for an event to happen. For example, a##3b.ended

shows that b completes three cycles after a happens. Operator “:” is used for
concatenation and operators [low : high], [∗], [=], or [− >] present the notation of
bounded or unbounded repetition. Operator [∗] shows the repetition of zero or more
consecutive instances; however, [=] and [− >] denote one or more non-consecutive
repetitions. In [=], the last value of the expression should not be necessarily true.
For example, a[= 2 : 3] means that a has been true for 2 or 3 non-consecutive
clock cycles (with possible clock cycles at the end that a is not true). Sequences can
be combined using several match operators such as “and,” “intersect” (when both
expressions are expected to be true at the same time), “or,” “until,” “throughout”
(the first expression should be true at every clock cycle that the second expression
is being evaluated), “whitin” (the first expression should be true at at least one time
when the second expression is being evaluated), “s_eventually,” etc.

Sequences can be combined to create another sequence or a property. Properties
can be constructed using “not,” “and,” “or,” “if. . . else,” and implication “|− >”
operators. For example, a|− > b until (c||d) shows signal a is asserted, signal
b must be asserted, and must stay true until one of the signals c or d is asserted.
Properties can have different evaluation directives such as “assert” (making sure
the described statement is always true), “cover” (checking whether the described
scenario has happened during simulation), “assume” (assume this statement is
true when evaluating other properties), and “expect” (making sure the described
statement is always true in a procedural block). An active edge of the clock usually
accompanies properties (usually the rising edge of the clock is considered as
default). In general, properties can be classified into the three following groups,
and different layers, operators, and directives help to construct them.
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• Invariant properties describe conditions that should be always true (obligation
mode) or never should be true (conditional mode). For example, A FIFO should
not be written a new value when it is full.

• Sequential properties describe a set of conditions happening in a particular order
over a period of time. For example, a “ready” signal should be followed in 2 or 3
clock cycles by the assertion of “enable” signal.

• Eventually properties describe a condition that should be followed by another
condition in any number of clock cycles. For example, an access request to a
shared bus should be eventually granted.

Example 7.1 Suppose that we have three design properties: first, whenever signal A

asserted, signal B is supposed to be asserted within next three cycles. The following
assertion describes this property:

p r o p e r t y A_1 ;
@( posedge c l k ) (A |−> [ ∗ 1 : 3 ] B ) ;

e n d p r o p e r t y
A 1 _ a s s e r t i o n : a s s e r t p r o p e r t y ( A_1 ) ;

Consider a second property where we would like to cover functional scenarios
such that C and D signals are not true at the same time. This property can be
formulated as:

p r o p e r t y A_2 ;
@( posedge c l k ) ( ! (C && D ) ) ;

e n d p r o p e r t y
A2_cover : c o v e r p r o p e r t y ( A_2 ) ;

The third property is signal E may be asserted only during the time frame
beginning with signal F and continuing until signal K rises. This property can be
formulated as:

p r o p e r t y A_3 ;
E [ = 0 : $ ] w i t h i n ( F # # [ 0 : $ ] $ r o s e (K) )

e n d p r o p e r t y
A 3 _ a s s e r t i o n : a s s e r t p r o p e r t y ( A_3 ) ;

Note that $ denotes a finite but unbounded maximum. Function $rose() checks if
signal K has changed from 0 to 1. �

For simplicity, we just show the core part of properties in the following sections
of this chapter.

7.3 Creating Security Properties

Since designers may not have sufficient knowledge about the security requirements
due to the huge complexity of SoC designs and their attack surfaces, it is difficult
for them to manually analyze the design implementation in different levels of
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abstractions to identify potential vulnerabilities. Moreover, it is very costly for a
design house to keep a large number of security experts that know all aspects of the
design, and they can detect security issues. Therefore, it is necessary to generate a
set of security properties that can be checked automatically to generate formal proof
and check-marks for security assurance. To generate security properties, we convert
each vulnerability to a set of rules and each rule to a set of properties. Here are some
of the example rules:

• Asset confidentiality: the sensitive information of the design should not be leaked
to observable points of the design, such as primary outputs, DFT, or DFD
infrastructure.

• Memory and type safety: the content of memory should be protected from
unauthorized modifications.

• Non-interference and isolation: the interaction of low-security entities with high-
security entities should be protected to ensure that low-security entities are not
able to observe any differences in the behavior of the system and high-security
entities. Moreover, two entities with the same level of security should not be able
to affect the integrity and confidentiality of each other.

• Resiliency toward side-channel attacks: timing dependencies of different com-
ponents should be checked to prevent leakage of secret information through
side-channel characteristics of the system. Hardware micro-architecture units
such as branch predictors and speculation execution units should not leak the
information of secret propagation in the design and create covert-channel attacks
such as Spectre [29] and Meltdown [31].

• Resiliency toward fault injection attacks: different controller designs of an SoC
should be resilient toward fault injection attacks to prevent changes in the
flow of the design in order to skip some instructions or bypassing the security
mechanisms of the design.

Mapping each vulnerability and corresponding rules to a set of security properties
is a challenging task since a vulnerability may involve several SoC IPs and their
interactions over multiple clock cycles. Generally, SoC security properties can be
generated based on the following characterizations: (1) the type of vulnerability, (2)
the type of the functionality and its granularity (IP-level, micro-architectural-level,
and SoC-level), (3) design abstraction (RTL, gate-level, layout-level), and (4) time-
to-check.

Based on the type of vulnerability, we may need to identify assets, critical
data, and related information as well. In the next step, we select the IPs as well
as SoC transactions that either contain/exhibit those vulnerabilities or involve in
propagating the corresponding assets. For example, if we are concerned about
information leakage, the focus of the generated properties should be on crypto
IPs, TRNG modules, and asset management units. On the other hand, we need
to focus on halt units and exception handlers in the SoC if we are concerned
about denial of service attacks. In the next step, we create abstract properties
that formulate the security rules for identified units to prevent vulnerabilities.
Security properties formulation can be done in two general ways: (1) checking
forbidden behaviors (i.e., conditional assertion statements) and (2) checking the
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correct implementation of expected security policies (i.e., assertions in obligation
mode and cover statements) [22]. Next, we need to define the appropriate level of
abstraction that those properties should be checked and tune the abstract security
properties in a way to capture information at that level of abstraction. If a property
targets a vulnerability that may happen in different levels of abstractions, we will use
property mapping techniques to generate the same properties for other abstraction
levels as well. Finally, we define the time that properties should be checked. Some
properties should be statically checked at the design time using formal tools. For
example, the registers which contain critical data should be accessed through only
valid ways, and any undefined access to these registers is considered as a threat.
Another example would be checking the initial values of intermediate buffers.
Designers may decide to initialize some buffer values to don’t cares for power and
energy optimization purposes. However, if these buffers can control some critical
functionality and be accessible from observable points of the design, their values can
be maliciously set at the reset time by adversaries to bypass the security mechanisms
of the system. Therefore, such properties can be statically checked using model
checkers at the design time to find counterexamples of when they are violated. On
the other hand, some properties should be checked at the run-time. For example,
we need to create properties that check who can have access to the bus when
encryption/decryption keys are transferred to corresponding units at the boot-time.
We illustrate the security property generation approach with the following example.

Example 7.2 Suppose our design is the hardware implementation of AES encryp-
tion algorithm which has several components (e.g., the controller module, SBox,
cipher and decipher blocks, key unit, etc.) as shown in Fig. 7.1. Our security goal
is the absence of information leakage in the SoC. As a result, we need to focus on
components that either perform security-critical applications or contain/propagate
keys. The threat of information leakage can be considered as lack of confidentiality
or integrity. As a result, two types of security properties can be generated:

1. Confidentiality:

(a) Any linear function of key (K) value should not be leaked to the output (O)

no_key_leakage_to_output := assert (O �= linear_f unc(K))

(b) Any linear function of key (K) value should not be leaked to design-for-test
(DFT)

no_key_leakage_to_DFT := assert (DFT �= linear_f unc(K))

2. Integrity

(a) Key register should be only accessed through valid ways:

Saf e_key_register_changeassertKaccess /∈V ={V1, V2, .., Vn}|−>Kt==Kt+1
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Fig. 7.1 AES encryption module. (a) AES encryption data path (b) FSM of the AES encryption
controller [38]

The above assertion shows that the key register should be updated only through
valid ways where V presents all the legitimate ways to update the key register
(reset, from key management units, etc.). Otherwise, the key register should keep
its value.

3. Side-channel vulnerability:

(a) The secret key should not affect the cipher-text ready (R) signal otherwise
there will be a side-channel leakage

no_side_channel_leakage := assert (P,Kt �= Kt+1)|− >

(R == 0[∗t : t + C + 1], R == 1, R == 0[∗t + C : t + 2C − 1], R == 1)

The above assertion shows that if we have a valid plain-text (P ) and two valid
encryption keys which will be received in cycles t and t+1, cipher-text ready
signal should be asserted only in cycles t+C and t+2C. In other words, the
different values of the key should not define when the cipher-text ready signal
is asserted. The only parameter that defines the cipher-text ready signal is the
number of rounds (C) in the implementation of the AES algorithm.

Now, suppose that we need to check there are no hardware Trojans imple-
mented in the AES implementation. Here is one sample assertion:

4. Malicious functionality:

(a) There should not be any functional scenario where the plain-text (P ) or any
part of it is sent to cipher-text (O) unencrypted for all input assignments (I ).

no_bypass_encryption := assert (i ∈ I |− > (O �= P))
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Moreover, the following are some sample rules and properties that need to be
checked regarding access controls in the controller design of the AES design.

5. Access controls:

(a) The cipher-text ready signal (R) should be only asserted from Final Round
state.

saf e_ready_assertion := assert$rise(R)|
− > $past (state) == “Final Round”

(b) Critical state Final Round should only be accessed through Do Round state.

Saf e_state_access := assert (state == “FinalRound”)|
− > $past (state) = “Do Round”

The similar properties can be checked for the decryption unit. �
Each of the above-shown properties can be mapped to several properties when

the abstract functions and symbols are replaced with real ones. In general, several
properties can cover one security rule, and several rules can cover one security
vulnerability. Security metrics can be used to not only identify vulnerabilities but
also to define the security level of design. Metrics can also be used to establish
security rules and properties. Moreover, the coverage of security properties can be
used as a metric for determining the security level of the design. Figure 7.2 shows
the relation between security vulnerabilities, rules, properties, and metrics.

Unique vulnerabilities can be introduced at different levels of design abstrac-
tions: RTL, gate-level, and layout. Therefore, some specific security rules and
properties should be checked at those levels. For example, Property 1.b from
Example 7.2 should be checked at gate-level since design-for-test and design-
for-debug architecture can be defined at that stage. Similarly, properties 5.a and
5.b should be checked at RTL to ensure the correct implementation and lack of
malicious modifications; they should also be tested at gate-level to make sure
that the synthesis tool did not introduce any additional states during RTL to gate-
level transformation [39]. Checking security rules and properties at different levels
of abstraction may be the result of some other requirements such as scalability,
flexibility, and the need for higher precision. For example, side-channel leakage
properties can be checked at RTL if we need to address the potential vulnerabilities
at the early stages of the design. However, if high precision is required, these
rules and properties should be checked at gate-level or layout when the physical
characteristics of the design are available.
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Fig. 7.2 The relation between security vulnerabilities, rules, properties, and metrics

7.4 Checking Security Properties

Different tools and techniques should be used to verify the extracted security
properties. For example, integrity properties can be checked using model checking
tools. On the other hand, confidentiality properties are easier to be checked using
information flow tracking and taint analysis techniques since there are several ways
that a secret value can be leaked to observable points of a design. Properties related
to safe design transformation can be checked using equivalence checking tools.

7.4.1 Security Validation Using Model Checking

Model checking is a famous technique in design verification which checks a design
for a set of given properties. To solve the model checking problem, the design and
the given properties are converted to a mathematical model/language, and all of the
design’s states are checked to see whether the given properties are satisfied. A class
of model checkers is designed based on temporal logic formula [14]. The properties
are described using LTL formulas to specify the expected behaviors of the design.
The properties are checked using the model checkers. A model checker either proves
the correctness of a given property over all of the possible behaviors of the design
or finds a counterexample when the property fails.

A model checker tries all of the possible states of a design to prove a given
property using a binary decision diagram (BDD). However, the number of design
states can be huge since every bit introduces two states in the design. For example, a
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32-bit register can add 232 states to the design state space. Although some techniques
such as slicing, abstracting, etc. have been proposed [13, 53], state space explosion
still is the primary limitation of using model checking in property verification.
Bounded model checking (BMC) is introduced to address the state space explosion
problem by selectively constructing and storing different states of a design for few
cycles [5]. BMC tries to find a counterexample in the first K cycles during execution.
If a counterexample is found within K cycles, the property does not hold. Otherwise,
K can be increased in the hope of finding a counterexample in higher bounds. BMC
is not able to prove a property since it unrolls the circuit for a specified number of
clock cycles. However, it can provide a statistical metric for a given property when
the model checker fails (e.g., no counterexample can be found in K clock cycles).
The BMC problem can be mapped to satisfiability problem, and SAT-solvers can be
utilized to solve the problem. Therefore, the BMC addresses some of the state space
explosion problems associated with BDDs in model checking. Figures 7.3 and 7.4
show the model checking and bounded model checking approaches, respectively.
Clearly, bounded model checking cannot provide proof for property P . However, it
can reveal if the property P is violated within K clock cycles.

Security properties describe the expected behaviors which a trustworthy design
is required to follow. Model checkers can be used to ensure safety properties. An
SoC designer and a third-party vendor can agree on certain security properties
that the design should satisfy. When the design is sent to the SoC integrator, the
SoC integrator converts the design to a formal description to check the security
properties using a model checker. If all of the security properties are verified,
the expected security behaviors are met. Rajendran et al. have proposed a Trojan
detection technique which is based on using bounded model checking [47]. They
have considered the threat model as an attempt to corrupt the critical data such as
secret keys of a cryptographic design, and random numbers which are required by
most of the cryptography algorithms or stack pointer of a processor. The assumption
is that these critical data should be stored in some specific registers and accesses
to these registers should be protected. In other words, the registers which contain
critical data should be accessed through valid ways, and any undefined access to

Fig. 7.3 Verification using
model checking
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Fig. 7.4 Verification using
bounded model checking

these registers is considered as a threat. The safe access conditions to these registers
are formulated as properties (assertions), and a bounded model checker is utilized
to find a counterexample when the security properties are violated.

Example 7.3 Suppose that the program counter (PC) register is considered as a
critical data. The only valid ways to change the PC register is either using a reset
signal (V1), by CALL instruction which increments the PC register V2 or using RET
instruction which decrements the value of the PC register V3. Otherwise, the PC
register should keep its value. The safety property of PC register can be formulated
as:

Saf e_PC_change : assert PCaccess /∈ V={V1, V2, V3}|− > ##1PCt=PCt−1)

When this property is fed into a bounded model checker alongside with the
processor design, a counterexample is expected to be found whenever PC register
or a part of it is changed using an unauthorized access [47]. �

Security property checking can be done in two general ways: (1) checking
forbidden behaviors and (2) checking expected security properties. The malicious
behavior of design is formalized and checked using model checkers in [49]. The
method can be applied only for known Trojan types. Hasan et al. have proposed
a hardware Trojan detection technique using LTL and CTL security properties to
generate hardware Trojan monitors in order to improve the resiliency of hardware
designs against malicious functionality [24]. The attacker is considered as an
untrustworthy third-party designer that can insert Trojans in the IP, and the defender
is SoC integrator. The SoC integrator needs to formulate dangerous behaviors as
security properties to perform vulnerability verification using model checkers. The
generated counterexample and the involved signals are provided to the in-house
designers to produce a guideline for efficient run-time security monitors.

The success of using model checking-based approaches to prove security prop-
erties is highly dependent on the size of the design, SAT-engine, and the quality of
the given properties. The model checker cannot guarantee non-existence of security
violations corresponding to vulnerabilites that we do not have properties to cover
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them. Coverage of security properties can provide a trust metric. Moreover, property
checking can be used for automated generation of directed tests [8, 10, 17, 19, 27,
34–36, 41, 43, 45].

7.4.2 Security Property Checking using Information Flow
Tracking

Researchers have proposed techniques based on formal methods to prove security-
related properties that would violate confidentiality requirements. These methods
are particularly effective for detecting information leakage inside cryptographic
designs. One such method looks for confidentiality and integrity property violation
[25, 26]. Confidentiality property requires that secret information never leaks to an
unsecured domain, and integrity property requires that untrusted data never enters
the secured domain. Information flow is traced by assigning a taint bit to it. In
another approach [48], a base property is used to detect information leakage which
may imply the existence of a Trojan. The base property checks whether any input
sequence exists such that it triggers secret information leakage to an observable
point. The security properties check whether there is an input assignment (or a
sequence of input assignments) I which triggers the leakage of secret data S to
output ports or observable points (O) of the design.

∃i ∈ I → (S == O)

The property and formal description of the design are fed into a bounded model
checker to find the possible leakage. However, the above-mentioned property has
several challenges. If the secret information S contains n bits, the model checker
needs to check 2n different values. Checking all possible values may not be feasible
when n is in the order of hundred (which is normal for encryption algorithms).
These kinds of properties can be checked using information flow tracking tools. A
gate-level information flow tracking (GLIFT) [51] technique has been proposed
to measure illegal flows of a tainted value at the Boolean level. This technique
instruments the design with taint analysis logic for every gate in the design to
track all implicit and explicit information flows. However, this approach introduces
a huge design overhead as the size of the instrumented circuit grows quickly.
Several methods have been proposed at the higher levels of abstractions to address
this limitation [4]. Typed security languages have been also introduced to check
information flow tracking using the structure of hardware description languages
[30, 55]. However, the scalability of all of these techniques should be improved.
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7.4.3 Equivalence Checking for Testing Security Properties

The security of a SoC can be compromised by exploiting the vulnerabilities of
the finite state machines (FSMs) in the SoC controller modules through fault
injection attacks. These vulnerabilities may be introduced by designer mistakes,
Trojan insertion, or CAD tools. Potential threats introduced by third-party EDA
tools are considered in [46]. It is possible that an adversary modifies a design using
non-transparent EDA tools such as synthesis tools. A synthesis tool may optimize
some registers and unsafely modify the FSM. The authors have proposed a hardware
Trojan detection technique which is based on property coverage analysis to ensure
that a gate-level netlist is free from hardware Trojans inserted by synthesis tools.
The proposed Trojan detection method is based on both security property checking
as well as state coverage to mark suspicious unused circuit states. Figure 7.5 shows
the different ways to insert Trojans in an FSM.

Example 7.4 Consider the FSM shown in Fig. 7.5a. Whenever the current state is
A, the next state should be either A or B. The property can be formulated using an
LTL formula as shown below:

assert always (cur_state==A)|− > ##1(next_state=A|| next_state=B)

Note that, X symbol shows the next cycle and → shows implication. �
The equivalence checking method presented in Chap. 6 can effectively check

such properties since it formally identifies any additional access paths to FSM states
(such as unauthorized access to a protected state), and generates counterexample in
case of a security problem.

Fig. 7.5 Trojans in an FSM: (a) A Trojan-free FSM, (b) Trojan can be inserted into an FSM using
different ways: (i) changing the state output (e.g., state B), (ii) modification of state transitions
(e.g., extra transition from state A to C), and (iii) adding extra states (e.g., state D) and transitions
(such as state transitions B → D and D → C ) to FSM [38].
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7.5 Chapter Summary

In this chapter, we presented several security properties to cover SoC vulnerabilities
to perform automatic security verification. We discussed different tools should
be used to check various properties effectively. Defining a comprehensive set
of security properties allows detection of security violations and flows at earlier
stages of design, which leads to cost minimization and easier adoption o required
countermeasures.
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Chapter 8
Automated Test Generation for Detection
of Malicious Functionality

8.1 Introduction

A Trojan is expected to be covert and difficult to detect, i.e. an intelligent adversary
will likely insert a Trojan circuit in a way that evades detection during post-
manufacturing functional/parametric testing, but manifests itself during long hour
of in-field operation. This can be achieved by externally triggering its operation or
by making it dependent on rare circuit conditions inside an IC. The condition of
Trojan activation is commonly referred to as trigger condition, which can be purely
combinational or sequential, i.e. related to the clock or a sequence of rare events in
the state elements (e.g., flip-flops of registers). The internal circuit nodes affected
by a Trojan activation are referred to as payload of a Trojan. Figure 8.1 shows
some example Trojan circuits including a combinational and a sequential Trojan.
For example, a Trojan circuit could be triggered only when a data bus attains a
unique rare value or when the number of times it attains the rare value equals to a
particular count. The malicious effects of Trojan payloads can range from passive,
such as leakage of secret information to altering the original functionality of the
chip in a critical or destructive fashion.

The underlying assumption for Trojan insertion is that an adversary is fully aware
of the design functionality and therefore can hide the Trojan in a hard-to-find place.
The adversary may use very rare internal transitions to trigger the Trojan, and it may
be impossible to detect (due to exponential state space) during traditional testing
and validation. The major challenges for generating high-quality test vectors are as
follows: (1) we are not sure of the location where the Trojan is inserted in the circuit;
(2) the Trojan is stealthy and has very low activity when it is not triggered. These
characteristics have made random tests not effective in magnifying the side-channel
signal for Trojan detection. Figure 8.2 shows two example Trojan instances. The 4-
trigger Trojan will only be activated by the rare combination 1011 and the 8-trigger
Trojan will only be activated by the rare combination 10110011. If the possibility of
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.4

.4

Fig. 8.1 Example of a combinational and a sequential Trojan with triggers from two rare internal
nodes A and B. (a) Combinational Trojan. (b) Sequential Trojan

each rare node to take its rare value is 0.1, the probability to have these two Trojans
fully triggered is 10−4 and 10−8, respectively.

To detect a hardware Trojan with testing, we need to (1) trigger the rare activation
conditions and (2) propagate the effects to observable outputs. Trojans have been
carefully crafted and implanted so that they can remain dormant for almost all
the functionality testing and manufacturing testing. Even in some cases the Trojan
is activated, its effects might not be able to propagate to observable outputs and
thus it will not be detected. These special characteristics of hardware Trojans have
posed great challenges for test generation strategies to detect them. We will describe
several approaches that focus on test generation in order to face these challenges in
the rest of this chapter.
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.4

.4

Fig. 8.2 Trojans with rare nodes as trigger conditions. The 4-trigger Trojan will only be activated
by the rare combination 1011 and the 8-trigger Trojan will only be activated by the rare
combination 10110011. (a) A 4-trigger Trojan. (b) An 8-trigger Trojan
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8.2 Mutation-Based Random Test Generation

A major problem with formal methods and ATPG based Trojan detection methods
is the scalability issue. Formal methods face the state space explosion issue when
design is large. ATPG can be used to activate a Trojan if all the triggers are known.
However, this is not feasible for Trojan detection since Trojans are likely to have
unknown number of triggers hidden at stealthy locations. It would be practically
infeasible to use ATPG to test all possible trigger conditions. MERO [4] takes the
advantage of N-detect test (see [21] of Chap. 10) to maximize the trigger coverage
by activating the rare nodes. The test generation ensures that each of the nodes
gets activated to their rare values for at least N times. It is shown that if N is
sufficiently large, a Trojan with trigger condition based on these rare nodes is likely
to be activated by the generated test set. Saha et al. [36] improve the test pattern
generation of MERO [4] by using genetic algorithm and Boolean satisfiability for
ATPG. Their approach could more effectively propagate the payload of possible
Trojan candidates. Since MERO is the most prominent in mutation-based random
test generation for hardware Trojan detection, we explain the detailed steps of
MERO in this section.

Figure 8.3 shows the flowchart for MERO methodology. Given a circuit netlist
and a set of parameters, it first determines the rare nodes using the RO-Finder

Fig. 8.3 The MERO framework for rare occurrence determination, test generation, and Trojan
simulation [4]
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(rare occurrence finder). These rare nodes will be the trigger points where potential
Trojans embed themselves in the circuit. For example, a q-trigger random Trojan
instance is created by randomly selecting the trigger nodes from the list of rare
nodes. The Trojan trigger conditions will be justified with TetraMAX to eliminate
false Trojans. Then random test patterns are generated. Their MERO algorithm will
work on top of random test patterns, and turn them into a high-quality test set by
mutating the random test vectors to achieve good coverage on rare nodes. Finally
MERO patterns and random patterns are compared in terms of trigger coverage and
Trojan coverage.

The MERO algorithm works as follows. They start with the golden circuit netlist
(without any Trojan), a list of rare nodes (L), and the number of times to activate
each node to its rare value (N ). First, a random pattern set (V ) is generated as the
seeds. For each rare node in L, they count the number of times that it encounters a
rare value. For each random pattern vi in V , they count the number of nodes (CR)
whose rare value is satisfied, and sort vectors in decreasing order of CR . In the next
step, they mutate one bit at a time for each seed vector. Mutated vector is accepted if
it can increase the number of nodes satisfying their rare values. The process repeats
until each node in L satisfies its rare value at least N times. The output test patterns
will be a minimal test set that improves the coverage compared to random patterns.

Figure 8.4 shows the trigger and Trojan coverage for a ISCAS-85 benchmark.
Along with the increasing values of N , we can clearly see that both the test
length and the quality of test set are improving. The trigger coverage and Trojan
coverage obtained with the MERO approach increase steadily with N . This trend is
similar to N − detect tests for stuck-at-fault where defect coverage improves with
increasing N .

Table 8.1 lists the detailed results for a set of combinational and sequential
benchmarks from the ISCAS benchmarks. The trigger and Trojan coverage for

Fig. 8.4 Trigger coverage and Trojan coverage of MERO [4]
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stuck-at ATPG patterns, weighted random patterns, and MERO test patterns are
compared. It also shows the number of rare nodes and total nodes in each circuit.
Initially the signal probabilities were simulated with a set of 100,000 random
vectors. For combinational circuits, 100,000 random Trojan instances are simulated.
For sequential circuits, 10,000 random Trojan instances are simulated to reduce
the runtime of TetraMax. The parameters for MERO include the number of rare
occurrences (N = 1000), the number of Trojan triggers (q = 2 and q = 4), and rare
probability threshold (θ = 0.2). The ATPG patterns provide poor coverage results
compared to MERO patterns, and it is more obvious in the case of higher number
of trigger pointers. We can also see that Trojan coverage is consistently smaller
compared to trigger coverage. For a Trojan to be covered, we do not only need all of
its triggers to be covered, but also need its payload to be propagated to observable
primary outputs. In many cases, the trigger condition is satisfied, but the malicious
effect is not propagated to outputs and the Trojan is undetected.

As the reader might have realized, MERO has its shortcomings. (1) MERO starts
with a random set of 100,000 patterns. It is a fairly small search space to mutate
one bit at a time to generate new vectors. (2) For Trojans with very rare triggers
(for example, very “hard-to-trigger” Trojans with triggering probability in the range
of 10−6 or less), the test vectors generated by MERO were found to have poor
coverage [36]. It was found that best coverage was achieved for θ in the range 0.08-
0.12. (3) Another problem with MERO algorithm is that the payload of Trojan might
not get propagated to any primary output. In other words, MERO focuses only on
the triggers of a Trojan while it ignores the propagation of payload effects.

Several improvements to MERO has been proposed to further improve coverage
as well as its application in side-channel aware test generation. Saha et. al. [36]
improved MERO by boosting the test generation with genetic algorithm and SAT-
based approach. This can greatly relieve the first two limitations mentioned above.
They also made the test generator to select test patterns which are payload-aware for
the third limitation. Huang et. al. [20, 21] proposed test generation for side-channel
analysis based Trojan detection. They targeted on taking advantage of high-quality
test generation to be side-channel aware, and the generated tests will magnify the
side-channel signals for Trojan detection.

8.3 Directed Test Generation Using Formal Methods

For any bug/defect/Trojan to be detected, the quality of the test vectors matters.
If we already know where the location of the Trojan is, we can generate directed
tests which target on the specific location. The stealthy feature of Trojans implies
that they are usually implanted at hard-to-trigger locations. If we can get these rare
locations, directed test generation can help us in detecting Trojans.

Directed tests are carefully designed to check particular behaviors of the design.
They are very promising in reducing the overall validation effort since a drastically
small amount of tests are required compared to random tests to obtain the same
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coverage goal. Directed test generation is mostly performed by human intervention.
Formal methods like SAT-based approach and model checking approach can help
with directed test generation. Automatic test pattern generation (ATPG) can also
help with targeted test generation. In this section, we will describe these directed
test generation approaches in detail.

8.3.1 Test Generation Using SAT Solvers

Given a Boolean formula, the satisfiability problem relies on finding Boolean values
to the formula’s variables such that the formula is evaluated to true. If such an
assignment does not exist, the formula is called unsatisfiable. It means that any
possible assignments to formula’s variables force the formula to be evaluated to
false. The Boolean formula is constructed from AND, OR, and NOT operators
between various variables which can be either assigned to true or false. Many of
the validation and debugging problems can be mapped to satisfiability problems.
One of the applications is to check the equivalence between the specification of the
circuit and its implementation using SAT solvers. Figure 8.5 shows the equivalence
checking using SAT solvers. If the specification and implementation have the same
functionality, the output of the XOR gate should always be false. If the output of
XOR gate becomes true for any input pattern, it implies that the implementation and
the specification do not have the same functionality for the same input pattern. In
other words, if the circuit shown in Fig. 8.5 is converted to conjunction normal form
(CNF), a SAT solver can be used to check the equivalence between the specification
and implementation. If the SAT solver reports unsatisfiable, we can conclude that
specification and implementation are equivalent. Otherwise, they are not equivalent
and the root of mismatch should be found.

Equivalence checking can be done using SAT solvers to identify hardware
Trojans [19]. If hardware Trojans exist in the implementation, the SAT solver finds
assignments to the internal variables to reveal the hidden Trojan. However, this
method requires a golden model and suffers from scalability issues. The SAT solver
may encounter state explosion when the design is large, and the specification and
the implementation significantly differ from each other.

Several works explore the existence of Trojans in unspecified functionality [16,
17]. Therefore, the Trojan does not alter the specification of the design, and existing
statistical or simulation-based methods cannot identify the Trojan-inserted design
[18]. Fern et al. propose a SAT-based technique to detect Trojans which exploit

Fig. 8.5 Equivalence
checking using SAT solvers



8.3 Directed Test Generation Using Formal Methods 161

the design signals in their unspecified functionality to cause malfunction. Fern et
al. try to address unspecified Trojan detection where the Trojan targets information
leakage [18]. Suppose that the function “f unc” is unspecified when internal signal
“s” is under condition “C”. Suppose that signal s can have two possible values: v0
and v1. Under condition C, Eq. 8.1 should be unsatisfiable if the design is Trojan-
free. Therefore, any assignment which makes Eq. 8.1 satisfiable is a trace to detect
the covert Trojan.

C ∧ (f unc(s = v0) ⊕ f unc(s = v1)) (8.1)

To detect Trojans in an unspecified functionality of the design, pairs C and s

should be identified. For any function in the design, several s and C pair can be
found, and the process of marking the potential pairs is not automatic yet. For every
pair (s, C), one CNF formula is constructed and an SAT solver (for Boolean values)
or a Satisfiability Module Theory solvers (SMT-solvers) can be used to find the
potential threats. The Trojan can be detected when the CNF formula is satisfiable.
The success of this approach is dependent on the SAT solvers and identifying (s, C)

pairs. Moreover, the approach requires manual intervention.

8.3.2 Test Generation Using Model Checking

Model checking is a famous technique in design verification which checks a design
for a set of given properties. A model checker tries all of the possible states of a
design to prove a given property using a binary decision diagram (BDD). However,
the number of design states can be huge since every bit introduces two states in the
design. For example, a 32-bit register can add 232 states to the design state space.
Although some techniques such as slicing, abstracting, etc. have been proposed
[10, 37], state space explosion still is the largest limitation of using model checking
in property verification. Bounded model checking (BMC) is introduced to overcome
the amount of memory that a model checker requires for constructing and storing
different states of a design [3]. BMC tries to find a counter-example in the first
K cycles during execution. If a counter-example is found within K cycles, the
property does not hold. Otherwise, K can be increased in the hope of finding a
counter-example in upper bounds. BMC is not able to prove a property since it
unrolls the circuit for a specified number of clock cycles. However, it can provide a
statistical metric for a given property when the model checker fails (e.g., no counter-
example can be found in K clock cycles). The BMC problem can be mapped to
satisfiability problem, and SAT solvers can be utilized to solve the problem. There-
fore, the BMC addresses some of the state space explosion problems associated
with BDDs in model checking. Figure 8.6 shows the bounded model checking
approaches, respectively. Clearly, bounded model checking cannot provide proof
for property P . However, it can reveal when property P is violated within K clock
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Fig. 8.6 Verification using bounded model checking

cycles. There is a vast literature in directed test generation using SAT-based BMC
[5–9, 13–15, 23–25, 30–32].

As described in Chap. 7, security properties describe the expected behaviors
which a trustworthy design is required to follow. Model checkers can be used to
ensure safety properties. A SoC designer and a third-party vendor can agree on
certain security properties that should be held on the design. When the design
is sent to the SoC integrator, the SoC integrator converts the design to a formal
description to check the security properties using a model checker. If all of the
security properties are verified, the expected security behaviors are met. Rajendran
et al. have proposed a Trojan detection technique which is based on using bounded
model checking [35]. They have considered the threat model as an attempt to corrupt
the critical data such as secret keys of a cryptographic design, random numbers
which are required by most of the cryptography algorithms, or stack pointer of
a processor. The assumption is that these critical data should be stored in some
specific registers and accesses to these registers should be protected. In other words,
the registers which contain critical data should be accessed through valid ways,
and any undefined access to these registers is considered as a threat. The safe access
conditions to these registers are formulated as properties (assertions), and a bounded
model checker is utilized to find a counter-example when the security properties are
violated.

8.3.3 ATPG for Trojan Detection

ATPG has been widely used in chip design and manufacturing to detect defects
in circuits. It searches for test patterns which can distinguish between the correct
circuit behavior and the faulty circuit behavior caused by defects. The generated
patterns are used to detect such defects and assist with failure analysis for root-
cause of the defects. Metrics to evaluate the effectiveness of ATPG include the
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number of modeled faults (fault coverage) and the test application time. ATPG
efficiency is influenced by the fault model (the stuck-at faults, transistor faults,
bridging faults, opens faults, or delay faults etc.), the type of circuit under test
(full scan, synchronous sequential, or asynchronous sequential), and the level of
abstraction used to represent the circuit under test (gate, register-transfer, switch).
Even for a pattern set with 100% fault coverage for a certain fault model, it does
not mean it can detect all possible defects in the circuit. So as it comes to Trojan, it
cannot guarantee that there is no Trojan in circuit. A well-crafted Trojan might still
hide itself through ATPG test patterns. But still, it would help us gain some basic
level of trust of circuit in the battle against Trojans.

ATPG can also help generate test patterns for the formal methods for Trojan
detection. As for the verification using BMC in Fig. 8.6, the success of BMC is
dependent on the SAT-engine (it may fail for large and complex designs) and precise
definition of security properties which needs prior knowledge of all safe ways to
access a critical register. The performance of the presented method can be improved
using ATPG to ensure the trustworthiness of the assets for a large number of clock
cycles. In the next section we will discuss such a hybrid approach which combines
the advantage of both model checking and ATPG.

8.4 Test Generation Using ATPG and Model Checking

ATPG works well on full-scan designs, whereas model checking is suitable for logic
blocks without scan chain. Due to overhead considerations, partial-scan chain inser-
tion is the standard practice today. Unfortunately, neither ATPG nor model checking
is suitable for partial-scan designs. We propose a hybrid approach [11, 12, 22] which
combines ATPG and model checking. We use model checking on the subset of
non-scan elements and ATPG on the scan elements to avoid common pitfalls of
running the original design. Experimental results demonstrate the effectiveness of
tests generated for Trojan detection on Trust-hub benchmarks.

As shown in Fig. 8.7, this approach identifies suspicious branches/gates which
may be used as triggering conditions for hardware Trojans. In order to generate
tests to activate rare nodes, scan replacement is done in the next step. We generate
security properties that targets activation of equivalent signals/gates of rare nodes in
the gate-level netlist. The scan replaced netlist as well as the security properties are
used by the model checker. We generate a set of constraints using model checker to
facilitate directed test generation using ATPG tool.

Algorithm 17 shows the major steps in the framework shown in Fig. 8.7.
Algorithm 17 takes a design D, and outputs a set of test vectors T. The set of rare
nodes R is identified in the design which are used by the constraint Generation
and test Vector Generation procedures. The constraint Generation procedure uses
model checking to produce a set of signal traces S. Finally the test Vector Generation
method uses ATPG with the design, rare nodes, and signal traces to produce a set of
test vectors for activating each rare node.
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Fig. 8.7 The overview of test generation using model checking and ATPG [22]

Algorithm 17: Trojan detection using ATPG
Input: Design D
Output: Set of testvectors T
procedure TROJAN DETECTION(D)
R,S,T =
/* Step 1: Identify suspicious points */
R = identifyRareBranches(D)
/* Step 2: Model checking */
S = constraintGeneration(D,R)
/* Step 3: ATPG test generation */
T = testVectorGeneration(D,R,S)
return T

Rare Branch Identification For each IP, initial analysis is performed at the RTL
level to determine suspicious gates in the design. In a design, rare branches are
branches that are not covered after running random tests up to millions of cycles.
Mapping the RTL branches to gate-level netlist after synthesis is done in two phases.
The first phase identifies any suspicious boundary and register nets and uses the
synthesis tool commands to attempt to preserve suspicious signal nets. In these
cases, identifiable naming will be preserved after synthesis. If any rare branch is
not accounted for, then, the second phase constructs a structural dependency graph
of the two representations and attempts to match these graphs using approximate
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Fig. 8.8 Comparison with ATPG, model checking and MERO [22]

graph matching heuristics. Other statistical or functional methods for determining
rare nodes at RTL or gate-level such as FANCI [38] and MERS [20] are equally
applicable.

Constraint Generation For each of the rare nodes identified, this step generates
a set of signal traces to be used in ATPG. The algorithm takes the design, D,
and replaces the scan FFs with pseudo-primary inputs. A property specified as the
negation of the activation is generated for each rare node r ∈ R. Model checker then
outputs a signal trace for each property.

Test Vector Generation The activation levels of all relevant internal signals from
the suspicious nodes fan-in cone and scan replacements are extracted from the trace
(from previous step) and combined together with an ATPG primitive AND gate
referred to as stuck-at circuit. The addition of these primitives are for test generation
purposes only and have no effect on the design functionality. A stuck-at 0 fault is
added to the tools fault list for each stuck-at circuit. The ATPG tool is then run using
full-sequential ATPG to generate test vectors that trigger each fault.

Figure 8.8 shows the comparison of this approach against ATPG, model check-
ing, and MERO for Trojan detection. We can see the ATPG tool took a significant
amount of time in generating test patterns to trigger the rare branch. Similarly model
checking fails to generate a pattern due to state explosion and the tool experiencing
a memory overflow (MO). The hybrid technique is able to generate test vectors even
when the circuit structure has sufficient non-scan FF depth and structure. The results
show that we can achieve up to four orders of magnitude faster execution times than
state-of-the-art methods. This speed up is achieved by leveraging the strengths of
each tool. Specifically, reducing the state space of model checking and removing
the non-scan sequential complexity encountered using ATPG.

8.5 Scalable Test Generation Using Concolic Testing

Concolic testing generates tests by effective combination of concrete simulation
and symbolic execution. Depending on the objective of the test generation, concolic
testing can maximize coverage by forcing execution through different branches
or can guide the execution towards a specific branch. It does so by alternating
between concrete simulation and symbolic execution of the design. The first step
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involves the simulation of the design. For initial simulation, usually random inputs
are used. The execution path taken by the simulation can be decomposed into a set
of constraints, referred as path constraints (C =< c1, c2, . . . , cn >). Next step is
to force the execution through an alternate branch. In order to do so, constraint of
the selected branch (ck) is negated and the desired path constraints for this alternate
path is formed (C′ =< c1, c2, . . . ,¬ck >). These new path constraints are then
symbolically solved using a constraint solver. If the solver comes up with a solution
input set, then for that input execution will go through this alternate branch. If no
solution is found, another branch is selected for negation. These steps are repeated
until required target branch is reached, or there is no solvable branch left. Other
termination criteria such as timeout or coverage goal can also be used. Concolic
testing avoids state explosion issue by exploring only one path at a time, instead of
trying to explore all possible paths at once. However, these concolic testing methods
only consider sequential execution models and are not applicable on hardware
(concurrent) designs.

In this section, we propose a concolic testing based directed test generation
approach for RTL designs [1, 2, 26–29, 33, 34]. This method utilizes distance feed-
back to quickly reach the desired security targets. As shown in Fig. 8.9, it consists
of three major steps: (1) design instrumentation, (2) obtaining security targets of
the design based on the identification of the rare branches and assignments, and (3)
directed test generation to activate the security targets. The remainder of this section
describes these steps in detail.

Design Instrumentation is needed to trace the execution paths during simulation
of the design. Instrumentation is done by inserting a display statement for each
functional statement. This insertion is automated and done during the abstract syntax
tree (AST) generation phase of the simulator. Note that the instrumentation will not
change the functionality of the design, since it only traces the executed statements.
This trace is later used to identify rare branches as well as to generate path
constraints for symbolic execution. The design needs to be instrumented only once.

Rare Branch Identification is achieved through random simulation to find rare
branches which can potentially host hardware Trojans. We simulate the instru-
mented design using random inputs. Next, the number of times each branch is
covered is counted. The branches that are covered less than a threshold number of
times are marked as suspicious branches. For example, having a threshold of zero
implies only uncovered branches as suspicious. The experiments uses a threshold of
zero. It gives the lowest probability of false positive. All the branches that fall within
the threshold are considered as security targets for the proposed Trojan activation
framework.

Coverage Guided Test Generation is illustrated in Fig. 8.10. The algorithm takes
an RTL design as well as security targets as inputs and generates directed tests
to cover the security targets. First, we perform a preprocessing step to reduce the
total number of security targets. The number of targets can be reduced based on the
dependency between them due to the fact that all branches within a rare branch are
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Fig. 8.9 Test geneartion framework using Concolic testing [2]

also rare. Covering the inside branch will also cover the parent branch, and thus it
can be removed from the target list. Such dependency can be resolved by looking
at the control flow graph (CFG) of the design. If a target is dominator of any other
target, it can be pruned. Here (Fig. 8.10a) shows the initial targets as B, D, and E.
However, B is a dominator of target D, hence can be removed. This is done statically,
without unrolling the design for multiple cycles. The static analysis only prunes part
of the dependent branches. Dynamic pruning with actual unrolling of design would
result in more pruned targets, but we do not use it in this work since it is susceptible
to state explosion.

After pruning step, one of the targets is selected for test generation. Distance from
the target is then evaluated by running breadth-first search (BFS) starting from the
target branch, and following predecessor edges in the CFG. An example is shown
in Fig. 8.10d. Here, D is selected to be covered first. Initially, target D is assigned
distance 0 and all other branches are assigned infinity. Next, we run BFS starting
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Fig. 8.10 Concolic test generation procedure [2]. Targets are shaded. (a) Initial targets. (b) Targets
after pruning. (c), (d) Selects one target, and evaluates distance for that target. (e) Runs concrete
simulation. Execution path is marked as red (solid line). (f) Selects an alternate branch and
symbolically solves for input

from D, and follow predecessor edge. After distance evaluation is finished, the
distance would be: B = 1, A = 2 and others infinity. This procedure is also done
statically without actually unrolling the design. Next, we apply concrete simulation
followed by symbolic execution for several iterations in order to generate tests to
activate the potential hardware Trojan. In each iteration, the instrumented design
is simulated for a specific number of clock cycles (i.e., unroll cycles) and a trace
file is produced (Fig. 8.10e). The information of the trace file is then converted
into path constraints. These constraints model the execution path taken by the
concrete simulation. In the next step, one of the alternate branches is selected to
be explored. We have selected the branch which has lowest assigned distance value.
In other words, we have given priority to the branches that are closer to our security
target. Path constraints that lead to that branch is then symbolically solved by a
constraint solver. If a solution exists, then we again do concrete simulation with that
solution, this time forcing execution through that alternate branch. This concrete
and symbolic execution steps are repeated until the target is covered (Fig. 8.10e–f),
or some terminating conditions are met (e.g., timeout). If all of the branches are
exhausted and no new input vector can be generated, algorithm returns generated
tests.

Intuitively, the iterative procedure effectively guides the execution path towards
the target. This approach avoids the state space explosion by examining one path
at a time in contrast to traditional formal methods that consider all of the paths
simultaneously. Therefore, it is capable of activating hard-to-detect Trojans in large
designs, as will be demonstrated in the experiments section.
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8.6 Summary

In this chapter, we focus on different test generation approaches for hardware
Trojan detection. Test generation is widely used for detecting bugs and helping us
analyze defects in circuit. When we apply test generation for Trojan detection, we
face the challenge that Trojans are stealthy in nature and can hide itself through
most common functional tests. Special care must be taken for test generation to be
effective for Trojan detection. We explain mutation-based random test generation
approaches like MERO. We explain the application of directed test generation which
uses formal methods (like SAT solvers and model checking) or ATPG apporach
to target on possible Trojan trigger conditions. Formal methods have limitations
when the design is large and search space is huge. We introduce a latest approach
which combines formal method (model checking) and traditional test generation
(ATPG). We also introduce concolic testing for test generation in hardware Trojan
detection. All these test generation approaches shed light on improving test coverage
and establishing trustworthiness of designs against hardware Trojan attacks.
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Chapter 9
Trojan Detection Using Machine
Learning

9.1 Introduction

Machine learning techniques have the capability to explore high-dimensional
feature space and find patterns that are not intuitive for analytic approaches. To
use machine learning techniques for hardware Trojan detection, we want machine
learning’s capability to extract relevant features and distinguish between Trojan-
free and Trojan-infected designs. Machine learning can be tuned for hardware
Trojan detection, almost in all aspects of hardware Trojan detection, i.e., logic
testing [14], side-channel analysis [13, 22], functional/formal analysis [8–10, 30],
runtime monitoring [5], etc.

For logic testing, machine learning can help generate test vectors that are more
likely to have Trojans triggered or partially activated. In [29] genetic algorithm
helps create test vectors that can active the Trojan. In [23] genetic algorithm
is used for generating high-quality test vectors for maximum Trojan switching.
For approaches based on structural or functional analysis, we can extract the
structural or functional properties as features [11, 27] and train machine learning
for classification. Approaches in [11, 27] can achieve more than 80% detection rate
while they have high false positive rate. The same authors improve their feature
selection and machine learning models in [12, 15] and manage to reduce false
positive rate to below 10%. Insertion of ring oscillators into the circuit can provide
features for genetic algorithm [18] or other machine learning approaches [19, 32] to
accurately detect Trojans. For side-channel analysis, machine learning can build the
pattern of side-channel fingerprints [16, 17, 26] of normal circuits and any outlier
will be a Trojan circuit. These side-channel fingerprints rely on the availability
of golden chips. Authors in [21] relieve this limitation by using fingerprints from
process control monitors. For runtime Trojan detection or monitoring, machine
learning can help as long as we can extract the runtime behavior into features
and train the model properly. In [20], the authors implement machine learning into
hardware for runtime monitoring of Trojans in the processor’s routing network.
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This chapter discusses some of the successful cases of using machine learning
in these aspects to inspire readers for more research in this exciting research
domain. This chapter is organized as follows. First, we briefly explain the basics of
commonly used machine learning techniques in Sect. 9.2. Next, we explain in detail
cases of how machine learning is used for Trojan detection. Section 9.4 discusses
in detail how genetic algorithm is used for test vector generation to active Trojans.
Section 9.4 describes how we can generate features from gate-level netlists and
train machine learning to classify circuits into Trojan-infected and Trojan-free ones.
Section 9.5 shows an approach which uses ring oscillator network to create features
for machine learning. Section 9.6 shows how one-class clustering can be used to
generate boundary of side-channel fingerprints for Trojan detection. Section 9.7
discusses how machine learning is implemented on hardware to detect Trojans in
routing network of many-core processors during runtime. Section 9.8 concludes the
chapter.

9.2 Machine Learning Techniques

In this section, we explain some of the most popular machine learning techniques,
which will be used in later sections for hardware Trojan detection. The reader who
is familiar with machine learning can feel free to skip this section.

Support Vector Machine (SVM) is one of the most popular machine learning
techniques for classification [25]. The training of SVM is to find the optimal
hyperplane that separate data points with the largest margin possible between the
two classes of data points. This hyperplane is the high-dimensional space which
might be transformed from the feature space either linearly or by other kernel
functions. The training of SVM involves selecting the kernel function (for example,
linear, polynomial, radius basis function, etc.) and choosing the best parameters
for the kernel. One-class SVM is a method which is based on the two-class SVM
algorithm. As the name implies, it constructs the classification model based on only
one class. It builds the separator hyperplane around the boundary of the training
data. Hence, if any new data is different from the training data, it will fall outside the
boundary and could be considered as outliers. Figure 9.1 illustrates the difference
between two-class SVM and one-class SVM. As for hardware Trojan detection,
we can use two-class SVM to classify a design as one of the two classes (i.e.,
Trojan-infected or Trojan-free), or use one-class SVM to classify a design as either
Trojan-free or an outlier (Trojan-infected).

K-Nearest Neighbors (KNN) algorithm is a simple and effective machine
learning method. It uses K training samples that are nearest to the new point in
the feature space to vote for a majority decision. The new point will be classified
as the same label as that of the majority. Thus for two-class classification, the value
K is usually set as an odd number to prevent a split decision. The distance metric
can be Euclidean distance or any other method of calculating distance. The distance
metric and the value of K determine the accuracy of classification, as well as the
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(b)(a) 

Fig. 9.1 Example of SVM hyperplanes: (a) two-class SVM finds the best hyperplane to separate
data into two classes, (b) one-class SVM finds the best hyperplane to mark the boundary of training
data

classification performance. Thus, it is important to search for an optimal K value for
a data set by balancing the mean error and computation cost.

Genetic Algorithms (GA) are inspired by the process of natural selection [24]
and widely used in computer science and operations research. They are commonly
used to generate high-quality solutions for optimization and search problems. A
typical setting of GA designs a vector to mimic the gene which usually has a
very large search space that is not feasible for exhaustive search. A profit function
defines the fitness of the vector (individual). By relying on bio-inspired operators
such as mutation, crossover, and selection, GA searches the search space for high-
fitness individuals or high-quality solutions. In each iteration (generation), the
high-fitness individuals will be kept to continue the evolution. With generation by
generation, GA drives the search towards solutions with higher and higher fitness.
In test generation domain, genetic algorithm is shown to be successful in fault
coverage [28] and Trojan detection [29].

The accuracy of classification algorithms depends on the data set, the features
selected, the chosen machine learning model, and the parameters chosen for the
model. The accuracy is quantified by these criteria: true positive rate (TPR), true
negative rate (TNR), false positive rate (FPR), false negative rate (FNR). In the
case of Trojan detection, true positive (TP) means the number of Trojans that get
detected, true negative (TN) means the number of Trojan-free designs that are
marked Trojan-free correctly, false positive (FP) means the number of Trojan-free
designs that are classified as Trojan-infected mistakenly, false negative (FN) means
the number of Trojan-infected designs that are classified as Trojan-free mistakenly.
These criteria are calculated as follows:
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TPR = TP

TP + FN

TNR = TN

TN + FP

FPR = 1 − TNR = FP

TN + FP

FNR = 1 − TPR = FN

TP + FN

For a good machine learning approach, we strive for high TPR and low FPR.
High TPR means that we want as 100% of Trojan-infected designs to get detected
if possible. Low FPR means that we do not want a Trojan-free design to be
mis-classified as Trojan-infected, because each mis-classified design will require
significant and unnecessary human effort to localize the Trojan.

9.3 GA-Based Test Generation for Trojan Detection

Logic testing in Trojan detection has been extensively explored, such as ATPG based
[2, 6, 7, 31] and N-detect test [4]. The MERO approach presented in [4] utilized the
idea of N-detect to achieve high coverage over randomly sampled Trojans, assuming
the trigger conditions of the Trojans consist of rare nodes only. The authors observed
that if the generated test patterns are able to satisfy all rare values N times, it is highly
likely that rare trigger conditions are satisfied when N is sufficiently large.

Huang et al. [13] extended the idea of N-detect test for side-channel analysis,
and proposed a test generation framework called MERS to maximize the sensitivity
of dynamic current. MERS generates compact test patterns to let each rare node
switch from its non-rare value to its rare value N times, increasing the probability
of partially or fully activating a Trojan. The side-channel sensitivity of MERS is
too small, typically less than 3% in most benchmarks [13], compared to large
environmental noise and process variations in today’s CMOS circuits.

As the difference of current switching in designs with/without Trojans comes
from the inserted circuits and the switching after payloads are activated and
propagated, the sensitivity can be improved if the test patterns can trigger rare
conditions. Given any test pattern u generated in the previous step, the goal is
to search for the best succeeding pattern v to maximize the sensitivity. There
are three main challenges in searching for the best succeeding pattern for u. (1)
Randomly selected pairs may not lead to high sensitivity, even if the two patterns
are similar. For example, for a pair of random vectors, the current switching in
G and GT may remain the same, revealing no side-channel footprint. (2) The
search space is exponentially large (2n, where n is the number of inputs in the
design). So, searching for the whole space is not feasible. (3) There is a tradeoff
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Fig. 9.2 Overview of genetic algorithm based test generation [23]

between introducing switching in the rare nodes and minimizing switching in the
golden design. Figure 9.2 shows an overview of the proposed approach. It has three
important steps. The first step finds the profitable initial test patterns. The next step
forms the effective pair of test patterns. Finally, the quality of the generated pairs of
test patterns needs to be evaluated. The remainder of this section briefly describes
these steps.

Generation of Profitable Initial Test Patterns The sensitivity of side-channel
analysis is maximized if the test pattern pairs are able to partially or fully activate
trigger condition. Thus, the first task is similar to other logic testing techniques,
such as ATPG or N-detect approach. We choose to use MERO [4] to generate N-
detect test patterns. As introduced in [4], the generated test patterns are compact and
can statistically achieve good coverage when N increases. MERO is used as a black
box, and the parameters are introduced in Sect. 10.4. We denote the generated l test
patterns as {ui} (i = 1, 2, . . . , l).

fitnessu(v) = rare_switchG
u,v

switchG
u,v

(9.1)

Searching for the Best Succeeding Pattern Genetic algorithm consists of four
major steps: initialization, fitness computation, selection, and crossover and muta-
tion. The fitness is defined in Eq. 9.1, where rare_switchG

u,v represents the current
switching of all rare nodes in G when applying the test pattern u followed by v.
A profitable test pattern should maximize the current switching in rare nodes to
increase the probability of activating a Trojan, and minimize the switching in the
golden design. The best succeeding pattern vi for a given preceding ui is the one
achieving highest fitness value over all generations. The first iteration of GA for c17
is shown in Fig. 9.3, assuming four individuals in each generation.

The first step is fitness computation. For each individual v, the golden design G

is simulated with the pair of test patterns (ui, v). Then the fitness of v is computed
by Eq. 9.1. For example, the fitness values for four candidates are shown in Fig. 9.3.
Selection is based on the fitness of each individual. Individuals with higher fitness
are more likely to be selected. The selection shown in Fig. 9.3 demonstrates that
the individuals with higher fitness values (such as 10100) are more likely to be
selected than the ones with lower fitness values (such as 11101). During crossover,
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Fig. 9.3 Iterations of genetic algorithm for test vectors exploration [23]

Fig. 9.4 The comparison of
cumulative distributions of
sensitivities by GA versus
MERS-s over 1000
Trojans [23]
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a single crossover point is randomly selected and crossover is performed on parents
to produce two children. During mutation, a randomly selected position is mutated
with a low mutation rate. For example, Fig. 9.3 shows only one mutation for four
individuals.

Figure 9.4 shows the cumulative distribution of the sensitivities over 1000
Trojans in s13207 and s35932 for the proposed approach and MERS-s [13]. The x-
axis is the sensitivity, y-axis is the number of Trojans that have sensitivities greater
than x, and the vertical line represents 10% sensitivity. For example in s13207,
almost all the Trojans have sensitivities greater than the sensitivity threshold in the
approach, while in MERS-s this number is 0. In other words, if we assume the
process variation is 10%, this approach can detect the majority of these randomly
sampled Trojans with high confidence, while MERS-s cannot detect any of them.
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9.4 Machine Learning Using Gate-Level Netlist Features

In [11, 27], the authors propose a static support vector machine (SVM) based
hardware Trojan classification method for gate-level netlists. The proposed method
classifies a set of the nets in a given netlist into Trojan nets and normal nets without
using functional simulations. First, they extract the five hardware Trojan features, or
Trojan features, based on the several known hardware Trojan-infected netlists. Then
they apply machine learning to the extracted features. They consider the five Trojan
features to be a five-dimensional vector and learn many five-dimensional vectors
using a support vector machine (SVM). Finally, they can successfully classify a set
of nets in a given unknown netlist into Trojan one and normal one by using the
learned SVM classifier. The flow is shown in Fig. 9.5. Machine learning enables
us to classify hardware Trojans automatically without simulating a given circuit or
actually running it.

They considered the following five Trojan feature values for every target net n in
a netlist to classify between Trojan nets and normal nets:

• LGFi (Logic Gate Fan-ins): The number of inputs of the logic gates two-level
away from the net n.

• FFi (Flip-Flop Input): The number of logic levels to the nearest flip-flop input
from the net n.

• FFo (Flip-Flop Output): The number of logic levels to the nearest flip-flop output
from the net n.

• PI (Primary Input): The minimum logic level from any primary input to the net
n.

• PO (Primary Output): The minimum logic level to any primary output from the
net n.

They used Gaussian radial basis function (RBF) for SVM learning. They decide
the parameter values γ and C in SVM using learning data so that the true positive

Fig. 9.5 The flowchart of learning and classification [11]
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Table 9.1 Trojan detection on TRUST-HUB benchmarks [11]

Data name Num. of all nets Num. of Trojan nets TPR TNR

RS232-T1300 307 9 89% 26%

RS232-T1500 314 12 83% 24%

s35932-T200 6435 16 100% 59%

s38584-T100 7399 9 100% 62%

s38584-T300 9110 1730 89% 66%

rate (TPR) is maximized where TPR is defined by TPR = TP/(FN + TP). In this
equation, TP shows the number of Trojan nets identified to be Trojan nets. FN shows
the number of Trojan nets identified to be normal nets mistakenly. As shown in
Table 9.1, the number of Trojan nets is relatively small compared to the total number
of nets in a given netlist. This is because malicious third-party vendors tend to hide
their presence in IC and try to pass the IC tests. Hence learning data for Trojan nets
in SVM-based Trojan classification method may be much smaller than those for
normal nets. It is very important to balance the learning data between Trojan nets
and normal nets.

They balance the number of learned normal nets and the number of learned
Trojan nets as follows: Assume that they have Nn normal nets and Nt Trojan
nets. Then SVM has learned every normal nets once but every Trojan net (Nn/Nt)
times. Overall, SVM has learned Nn normal nets and Nn Trojan nets because of
weighting. As we can see from the Table 9.1, they can achieve good true positive
rate, which means that their approach can detect more than 83% of all Trojan nets.
However the true negative rate is very low, which means they can have more than
50% of normal nets mistakenly classified as Trojan nets. It would take huge amount
of effort to deal with so many false positives. Their extended work [15] can achieve
the average TPR (True Positive Rate) becomes 73%, and reduce the average FPR to
10%.

9.5 Trojan Detection Using Ring Oscillator Network

Recent work [18, 19] builds ring oscillator network (RON) on the power supply
structure of an IC to detect hardware Trojan activity. In [19], principal component
analysis (PCA) was used as a means of feature reduction. The data set contained the
frequency data from eight ring oscillators (RO). A simple convex hull classification
method was then used to classify each IC as either Trojan-free or into one of
the 23 Trojan categories. While the RON is successful at detecting the difference
between Trojan-free and Trojan-infected circuits, the FPR was nearly 50%. For
these approaches to be practical in Trojan detection, we have to find ways to reduce
the FPR.
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Fig. 9.6 The ring oscillator network (RON) structure [18]

As shown in Fig. 9.6, ROs consisting of inverters and a NAND gate for activation
control are placed in a vertical orientation within the power structure of an IC.
The ROs are then provided test patterns from a linear feedback shift register and
a decoder. These outputs are then selected using a multiplexer and a counter
registering the number of oscillations from the selected RO. The ROs frequency
can then be derived from the number of oscillations. Any Trojan inserted into an IC
will result in extra noise in the power supply structure that would not otherwise
be present in a golden chip. By injecting the same test patterns into every IC,
the Trojans should at least be partially active and thus cause extra noise. Since a
ROs frequency is directly related to its power supply voltage, this Trojan caused
power supply noise should propagate to the ROs frequency and result in differing
measurements between clean and infected ICs. In [32], the authors can achieve
above 90% classification accuracy, while reducing the false positive rate to below
10%.

The authors in [32] conducted experiments on eight FPGA boards (Nexys4 DDR
development board). Each FPGA board is divided into four separate regions to
increase the sample size. Each region is considered as an individual IC and Trojan,
and the RON architecture is implemented in only a single portion at a time in order
to make sure that one portion (or an individual IC) does not interfere another. A
total of eight 41-stage ROs are used in each portion (i.e., IC). They distributed
combinational and sequential Trojans in one portion randomly. The classifier was
trained and optimized for three different sized data sets consisting of 6 chips, 12
chips, and 24 chips. Each sample size was then repeated for 20 trials and the average
accuracy.

As can be seen in Table 9.2, the SVM is very accurate. However, when trained
on fewer samples, it struggles with a high FPR. For 24 samples, it achieves a 97.4%



182 9 Trojan Detection Using Machine Learning

Table 9.2 SVM
classification results

Sample size

Metrics 6 samples 12 samples 24 samples

TNR 0.445 0.605 0.929

FPR 0.555 0.355 0.071

FNR 0.017 0.023 0.023

TPR 0.983 0.977 0.977

Accuracy 0.940 0.946 0.974

Fig. 9.7 Statistical
side-channel
fingerprinting [21]

classification accuracy and a 7.1% FPR (Table 9.2) and outperform the results
achieved in [18]. The authors believe that with a larger data set and increased
training set sizes, the SVM can become more accurate and reduce the FPR even
further. To further reduce the FPR, the authors proposed a simple voting ensemble
by combining three classifiers: KNN + SVM + Naive Bayes. At the 24 chip training
sample size, this can drive towards a 0% FPR, though it slightly reduces the
accuracy.

9.6 Trojan Detection Using Side-Channel Fingerprints

For various hardware Trojan detection techniques in the literature, statistical side-
channel fingerprints have been among the most heavily investigated ones. Starting
with the global power consumption-based method presented in [1] and the path
delay-based method introduced in [16], it became a popular direction to construct
fingerprints (signatures) of ICs based on side-channel parameters and use these
fingerprints to statistically assess whether an IC is contaminated by a hardware
Trojan or not. This idea can be further applied to other side-channel signatures,
such as power supply transient signals, leakage currents, temperature, wireless
transmission power, as well as multi-parameter combinations [3].

Figure 9.7 illustrates how side-channel fingerprint works for hardware Trojan
detection. A parametric signature of a chip is collected and compared to a trusted
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Fig. 9.8 Golden-chip free
side-channel
fingerprinting [21]

region in a multi-dimensional space. This trusted region is statistically established
so that, despite the uncertainty incurred by process variations, the fingerprint
of Trojan-free chips is expected to fall within this region while the fingerprint
of Trojan-infested chips is expected to fall outside. Assuming availability of a
representative set of trusted (i.e., golden) ICs, a classifier (e.g., neural network,
support vector machine, etc.) can be trained to learn the boundary separating Trojan-
free and Trojan-infested chips in the side-channel parametric space.

The drawback of these statistical side-channel fingerprints is the reliance on
the availability of golden chips. In [21], the authors demonstrate that an almost
equally effective trusted region can be learned through a combination of a trusted
simulation model, measurements from process control monitors (PCMs) which
are typically present either on die or on wafer kerf, and advanced statistical tail
modeling techniques.

Figure 9.8 shows the PCM based fingerprints. Let −→
mp = mp,1, . . . , mp,np denote

the np-dimensional PCM measurement vector and −→
m = m1, . . . , mnmdenote the

nm-dimensional side-channel fingerprint vector, where np and nm are the considered
number of PCMs and side-channel fingerprints, respectively. Based on the n

samples obtained by the Monte Carlo simulation, we can learn non-linear regression
functions to map the PCM measurement pattern −→

mp to the values of each side-
channel fingerprint of interest mj . In other words, we train nm regression functions
gj : −→

mp → mj as shown in Fig. 9.8. Such a simple and straightforward boundary
has two major weaknesses: (1) Monte Carlo simulation produces few devices at
the tails of the distribution, which is the area that matters the most when trying
to establish a classification boundary, and (2) it has no anchor point in silicon and
cannot reflect the process shifts that have taken place between the creation of the
Spice simulation model and the current operating point of the foundry. In order to
address the first weakness, the authors employ advanced tail modeling methods.
For example, they add the kernel density function (KDE) f (

−→
m) to generate an
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arbitrarily large volume of enhanced synthetic data. This can help accurately reflect
the tails of the distribution f (

−→
m). Based on the enhanced synthetic dataset of side-

channel fingerprints, we can again use a one-class classifier to learn an improved
classification boundary B2. Both B1 and B2 can be used for classification to identify
Trojan-infected chips.

9.7 Runtime Trojan Detection in Multicore Processors

In this section, we discuss a case of machine learning for hardware Trojan
detection in the routing network of a multicore processor. Assume that IP cores for
processing cores and memories are secured, the communication network on many-
core platform becomes an easy target of hardware Trojans. Attacks on a many-core
router can affect network packet transfer rate and processing core availability, and
may even cause interruption in core communication [5]. The router can be attacked
externally through memory architecture interface, specialized core interface or
internally by corrupting routing table. Typical attacks are traffic diversions, routing
loops, core spoofing attacks. All three attacks are denial of service (DoS) attack,
wherein a specific core under attack is made unavailable.

• Traffic Diversion Attack: Under this attack, the router selects a random core to
transfer the packet. This attack affects the deadline for other cores, which are
dependent on the packet under attack.

• Routing loop attack: Under this attack, the packets are routed back to the source
core. The source core is made unavailable to other communicating cores, thereby
causing latency in other core transfers.

• Core Spoofing Attack: This attack transfers all packets to randomly chosen
destination. The attack could saturate the core and make it unavailable to other
cores.

In [20], the authors propose a runtime Trojan detection architecture for a custom
many-core based on machine learning technique. Collecting relevant data based on
hardware behavior analysis is the first step for machine learning to succeed. Relevant
feature selection will increase the accuracy of Trojan detection and aid the hardware
implementation as well. Removing irrelevant features will reduce dataset thereby
decreasing hardware complexity and area overhead. Therefore, we select relevant
features based on feature correlation analysis. The authors consider the following
features for Trojan detection:
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• Source Core: Source core number.
• Destination Core: Destination core number.
• Packet Transfer Path: Packet transfer between the two cores has a unique path

which alters in case of Trojan. For a 88 NoC, i.e., many-core architecture with 64
processing cores, it has three levels of router hops. The highest number of hops
to be traveled by packet can be 5 for inter-cluster communication.

• Distance: At each router hop, distance vector is incremented by 1. For example,
when core 11 is transferring packet to core 62, distance vector is incremented
at R0_2, R1_0, R2_0, R1_3, R0_3. Since there will be six vertices (five router
hops and one processing core) and five edges, the distance is 6.

Figure 9.9 shows the 64-core test setup implemented on Xilinx Virtex-7 FPGA.
The setup consists of three major modules: (1) 64-core many-core architecture,
(2) attack detection module, (3) Trojan insertion module. The authors used a bio-
medical seizure detection algorithm as the application for testing out their Trojan
detection approach. The seizure detection algorithm is mapped on the 64-core
architecture. It takes 458 inter-cluster and 1088 intra-cluster communications, where

Fig. 9.9 Test setup for many-core platform with 64 processing cores on Xilinx Virtex-7
FPGA [20]. Each cluster has a Level 0 router R0 to connect 4 cores, and there are 4 Level 1
routers R1 to connect all 16 R0 routers, and finally the Level 2 router R2 connects all 4 R1 routers
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Table 9.3 Area overhead on Xilinx Virtex-7 FPGA

Logic utilization Many-core only Many-core with SVM Security overhead

Slice count 55,072 55,220 148 (0.26%)

Register count 49,472 49,830 358 (0.72%)

LUT count 142,008 142,281 273 (0.2%)

Memory count 11,244 11,244 –

each cluster consists of four processing cores to execute the application. For each
core-to-core communication, the packet is generated with data that needs to be
transferred and the address of the destination core. FeatureSample is updated
at each communication hop to build the feature vector for classification. At the
source core, FeatureSample is updated with two features, i.e., source core,
destination core, and other feature attributes are initialized as zeros. At each router
hop, FeatureSample updates other attributes, i.e., path and distance. Finally at
destination router before the destination core, FeatureSample is transferred to the
attack detection module which is designed based on SVM. Many-core architecture
is fully placed and routed in Xilinx Virtex-7 FPGA, which consists of 64 processing
cores. The distributed attack detection framework implements SVM kernel at two
different router levels. Each SVM kernel will detect intra-cluster attack separately
and hence reduction in latency of operations.

Table 9.3 shows area analysis and security overhead. The security overhead due
to attack detection module and peripheral combinational logic is less than 1% as
compared to router architecture. Security kernel adds three cycles to each data
transfer between 16-cores (intra-cluster), whereas three cycles for inter-cluster data.
The authors also report that SVM kernel achieves 93% average Trojan detection
accuracy for randomly inserted Trojans.

9.8 Summary

Machine learning algorithms are natural fit for hardware Trojan detection, wherein
Trojan affected designs should be distinguished from good designs. When suitable
features are extracted and good dataset feed to train the learning model, machine
learning algorithms can find patterns that are beyond the capability of human
analysis of circuit properties or side-channel signatures. In this chapter, we first
give a brief introduction of popular machine learning algorithms, including genetic
algorithm, support vector machines, liner regression, etc. Following this, we discuss
in detail a few cases where these machine learning approaches are applied to
detect hardware Trojans. We discussed five different scenarios in applying machine
learning algorithms for Trojan detection: (1) test vector generation using genetic
algorithm, (2) machine learning approach using circuit features, (3) utilization
of ring oscillator network, (4) Trojan detection using side-channel fingerprints,
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(5) a runtime Trojan detection in routing network of multicore processors. There
are many more possibilities of applying machine learning for detecting hardware
security vulnerabilities.
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Chapter 10
Trojan Detection Using Dynamic Current
Analysis

10.1 Introduction

Existing test generation solutions for hardware Trojan detection [18] can be broadly
classified into two categories: (1) logic testing and (2) side-channel analysis. In
logic testing approach, directed tests are generated to activate rare events in a
circuit and propagate the malicious effect of a Trojan in logic values to observable
outputs. Such approaches are known to be more effective in detecting ultra-small
Trojans (typically a few gates in size). The main challenge with logic testing
approaches, however, is the difficulty to trigger a Trojan and observe its effect,
particularly in the presence of complex sequential Trojans, and the inordinately large
number of possible Trojan instances that an adversary can exploit. On the other
hand, side-channel analysis approaches depend on the measurement and analysis
of physical “side-channel” parameters like power signature or path delay of an
IC in order to identify a structural change in the design. Unlike logic testing,
these approaches do not require Trojan activation in order to detect them. Side-
channel analysis (SCA), primarily based on supply current, has been extensively
investigated by large number of research groups and various solutions to increase
the signal-to-noise (SNR) have been proposed. A disadvantage of SCA arises from
the large process variations (e.g., 20× leakage power and 30% delay variations in
180 nm technology [3]) which can potentially mask the minute effect of a Trojan
in the measured side-channel parameter. A solution to the sensitivity problem can
be achieved by judicious test generation approach that aims at maximizing the
sensitivity for an arbitrary Trojan in unknown circuit location. In this chapter, we
focus on transient current or power as side-channel parameter of interest. Some of
the concepts however can be applied to other side-channel parameters. To maximize
sensitivity of a given Trojan, one needs to amplify activity inside the Trojan circuit
and simultaneously minimize the background activity (i.e., activity in the original
circuit). We present a novel statistical test generation framework that can maximize
the detection sensitivity for an arbitrary Trojan.
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The rest of the chapter is organized as follows. Section 10.2 presents related
work in side-channel analysis and functional test generation for Trojan detection.
Section 10.3 describes the proposed MERS test generation algorithm and the test
reordering algorithms to improve sensitivity of side-channel analysis. Section 10.4
describes the experimental setup and presents results on a set of ISCAS benchmarks
with detailed analysis. Section 10.5 presents results for two large designs (AES
cipher and DLX processor). Section 10.6 concludes the chapter.

10.2 Related Work

The underlying assumption for Trojan insertion is that an adversary is fully aware
of the design functionality and therefore can hide the Trojan in a hard-to-find place.
One way to address this issue is to obfuscate [4] or encrypt [9] the design such
that the adversary cannot figure out the actual functionality and therefore cannot
insert the Trojan in a covert manner. Unfortunately, smart attacker can effectively
bypass both obfuscation [23] and encryption [27] methods. A promising direction
is to develop efficient techniques for hardware Trojan detection. Prior research on
Trojan detection can be classified into two broad categories: side-channel analysis
and functional test generation.

Side-channel analysis approaches [8] are based on analysis of side-channel
signatures such as circuit transient current [1, 2, 25], power consumption [22, 29],
path delay [14], or intermediate values from debug infrastructure [11]. The basic
idea is to compare the side-channel signature with the pre-characterized golden
value for a Trojan-free IC (or a model of the IC). If the observed value of the
measured parameter differs by more than a threshold from the golden value,
the presence of a Trojan is suspected. Unfortunately, side-channel analysis has
a common issue, i.e., the sensitivity of side-channel signatures is susceptible to
thermal and process variations. Therefore, it would be difficult to detect small
combinational Trojans. We also rely on transient current (switching activity) to
identify Trojans.

Compared with [1, 2, 25], the proposed approach can greatly increase the side-
channel sensitivity of Trojan of any type or size, because we take advantage of
functional testing. In other words, the test vectors are generated in a statistical
way, and they are more effective in creating switching in Trojan, as well as
reducing background switching. The approach proposed by Banga and Hsiao
[1] partitions a design into circular regions (with a center and radius) for side-
channel analysis. A region is a group of flip-flops along with combinational gates
connecting them. However, there are two major drawbacks with their partitioning
approach. First, there are thousands of regions identified even for a small ISCAS89
benchmark s3271. It may be infeasible to generate targeted tests for each of the
regions in large designs. Next, regions identified by their approach may overlap
with each other, while the proposed approach can ensure the regions are disjoint.
Banga et al. proposed in [2] to partition a circuit into flip-flop groups based on
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structural connectivity. However, the scalability of the approach to large designs
with datapaths and control structure is limited. Moreover, it is difficult to judge
their effectiveness since they are only tested on very small circuits. Salmani et
al. [25] proposed a layout-aware approach for improving localized switching to
detect Trojan. Their approach is based on reordering the scan cells (flip-flops) in the
chip, which is orthogonal to the proposed approach of test generation for improving
switching.

Another category of Trojan detection approaches is to generate functional test
patterns that are likely to fully activate the Trojans [7, 12, 13, 16, 17]. These
approaches can overcome the effect of thermal and process variations on side-
channel signals. They rely on the fact that an adversary will choose a trigger
condition for the Trojan using a set of rare nodes. Various approaches tried to
maximize the rare node activation to increase the likelihood of activating Trojans.
ATPG for Trojan detection is investigated in [6, 30]. A major problem with ATPG
based Trojan detection methods is the scalability issue. ATPG can be used to
activate a Trojan if all the triggers are known. However, this is not feasible for
Trojan detection since Trojans are likely to have unknown number of triggers
hidden at stealthy locations. It would be practically infeasible to use ATPG to
test all possible trigger conditions. MERO [5] takes the advantage of N-detect
test [21] to maximize the trigger coverage by activating the rare nodes. The test
generation ensures that each of the nodes gets activated to their rare values for
at least N times. It is shown that if N is sufficiently large, a Trojan with trigger
condition based on these rare nodes is likely to be activated by the generated
testset. Saha et al. [24] improve the test pattern generation of MERO [5] by using
genetic algorithm and Boolean satisfiability for ATPG. Their approach could more
effectively propagate the payload of possible Trojan candidates. A design-for-test
(DFT) infrastructure technique by Salmani et al. [26] inserts dummy flip-flops to
increase the transition probability of low-transition nets, and therefore increases the
side-channel sensitivity for Trojan detection. Zhou et al. [32] further improved their
approach by selecting the most beneficial nets to insert dummy flip-flops based on
fanout analysis. Farahmandi et al. [10] attempted to localize Trojan using symbolic
algebra from a formal verification approach, while it is not scalable to large circuits.

Direct application of test generation approaches is not suitable for improving
side-channel sensitivity for Trojan detection. The objective of increasing side-
channel sensitivity is very different from the ones in both MERO [5] as well as its
enhanced version by Saha et al. [24]. Unlike these existing techniques, the proposed
approach requires the creation of a pair of test vectors to maximize switching
in rare nodes. This algorithm creates multiple excitation of rare switching which
is important in making side-channel based Trojan detection effective. The initial
idea [12] does not provide a scalable test generation framework for different DFT
structures. Moreover, it is important to simultaneously minimize the background
switching to maximize the relative switching.

The proposed test generation method also originates from N-detect test. Com-
pared with MERO [5], which focuses on logic testing with N-detect test, we target
generating vectors for side-channel analysis. The primary difference is that MERO
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tries to assign rare values (0 or 1), whereas the proposed approach tries to assign
rare transitions (0 → 1, or 1 → 0). Specifically, they have three important
differences. First, MERO’s goal is to generate tests which can fully trigger the
Trojan and observe the propagated Trojan effect. This algorithm aims at creating
more switching in possible Trojan triggers to greatly improve the side-channel
sensitivity and expose hideous Trojans. Next, MERO’s approach is mostly limited to
combinational Trojans with smaller number of triggers. MERO is not effective for
sequential Trojans or larger Trojans. The proposed approach focuses on switching
of rare nodes, which makes it effective to any type/size of Trojans hidden at any
location. Finally, by utilizing functional and structural partitioning, the proposed
approach is scalable to large designs with a large number of rare nodes or possible
triggering conditions.

10.3 Test Generation for Side-Channel Aware Trojan
Detection

In this section, we present the proposed methodology for side-channel aware test
generation in detail. The methodology is based on the concept of statistically
maximizing the switching activity in all the rarely triggered circuit nodes. The effec-
tiveness of a test pattern for side-channel analysis is measured in two ways: (1) the
ability to create most switching inside a Trojan or to activate a Trojan; (2) the ability
to create high Trojan-to-circuit switching. We measure DeltaSwitch as the switching
introduced by the Trojan, which is the difference of number of switches between
the golden circuit and the Trojan-infected circuit. We measure RelativeSwitch as
the ratio of DeltaSwitch to the total number of switches (TotalSwitch) in the golden
circuit. An effective test vector should be capable of creating large DeltaSwitch, and
more importantly it should create large RelativeSwitch, as it is directly related to the
sensitivity for side-channel analysis.

RelativeSwitch = DeltaSwitch/T otalSwitch (10.1)

As shown in Fig. 10.1, we provide the overview of the workflow for scalable test
generation for side-channel aware Trojan detection. We first simulate the circuit to
get the rare nodes, which have low probability to be 0/1. We partition the design
into regions, apply the MERS approach to generate tests, and also reorder the tests
for each region. The vectors from all regions are combined into a test suite that can
create high relative switching for arbitrary Trojans in the design.

Rare Nodes Identification In the experiments, we simulate the circuit with
100,000 random vectors and note down the probability of values for internal nodes.
Nodes with probability less than the rare threshold are identified as rare nodes. These
rare nodes are the candidates for Trojan triggers. We sample stealthy Trojans with
triggers from the rare nodes for evaluation of the test generation approach.
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Fig. 10.1 Scalable test generation for side-channel analysis based Trojan detection

Design Partitioning A major challenge of large designs is that the supply current
of a golden chip for a high-activity vector can be very large compared to the
additional current consumed by a small Trojan. If we can carefully partition a
circuit into nearly isolated regions (i.e., with low connectivity between them), we
can more effectively generate tests for each region. After partitioning the design,
test generation can target on the rare nodes inside each region, but also try to avoid
creating too many background switching.

Test Generation The test generation approach (MERS) is based on creating a set of
test vectors for each candidate rare node individually to have rare switching multiple
(at least N ) times. MERS utilizes the principle of N -detect [21] tests to increase the
likelihood of partially or fully activating a Trojan. MERS can generate a high-quality
testset for these rare nodes individually to have rare switching for N times. If N is
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sufficiently large, a Trojan with triggering conditions from these rare nodes is likely
to have high switching activity even though it might not be fully activated.

Test Reordering The order of test vectors matters as we are counting the switching
between two vectors. The goal is to further improve the side-channel sensitivity. The
challenge is to keep the high-quality in creating switching on rare nodes, and at the
same time to reduce the background switching. We introduce Hamming-distance
based reordering and simulation-based reordering to resolve this challenge.

Testset Evaluation In the experiments, we insert a Trojan into the design, then
apply all test vectors in the combined testset. The side-channel sensitivity is
reported as the maximum relative switching of the testset. To show that the
proposed approach has good coverage on Trojans hidden at different locations, we
experimented on 1000 Trojan samples to evaluate the effectiveness of testsets. From
a pool of potential rare Trigger nodes, a Trojan of given size is created by randomly
choosing the trigger nodes and the payload. After that we verify if this trigger
condition and payload make a functionally valid Trojan, i.e., it can be activated using
a valid input condition and its malicious effect propagates to any observable output.
Thus, we consider only valid random Trojans in the evaluation. The statistical nature
of MERS ensures that even if an adversary chooses different locations or trigger
conditions for inserting Trojans, the testset can maximize the detection sensitivity
for them.

Algorithm 18: Scalable test generation
Input: Circuit under test
Output: Test patterns for Trojan Detection

1 // Rare nodes identification
2 Simulation to identify nodes with low probability
3 Generate Trojan samples with triggers from rare nodes
4 // Design Partitioning
5 if Design partition is enabled then
6 if Design has natural sub-modules then
7 Functional partition into regions.
8 end
9 if Design (or any region) is large then

10 Structural partition based on connectivity.
11 end
12 end
13 // Test Generation
14 for each region do
15 Test generation with MERS (Algorithm 19)
16 Test reordering with Algorithm 20 or 21
17 end
18 // Evaluation of Test Patterns
19 Combine the testsets from all regions
20 Evaluate side-channel sensitivity on Trojan samples
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Algorithm 18 shows the steps for scalable test generation on large designs. We
first simulate the circuit to identify rare nodes and generate stealthy Trojan samples.
If design partitioning is enabled, the design is partitioned according to natural
boundaries based on functionality. If the design has no such natural boundaries,
or the partitioned region is still too large, we can perform structural partitioning
based on circuit connectivity. For each region, we apply high-quality test generation
approach MERS (Algorithm 19), followed by test reordering (Algorithm 20 or 21)
for further improvement in side-channel sensitivity. Finally, the test patterns from
all region will be combined together to evaluate the effectiveness of the proposed
test generation approach on the Trojan samples.

10.3.1 Design Partitioning

There are at least three advantages of dividing a large design into smaller regions.
(1) For a designated region, region-based MERS (Algorithm 19) will only target the
rare nodes in that region to have rare switching for N times. The quality of tests is
likely to improve and many rare nodes can achieve rare switching a lot more than N

times. (2) The rare nodes outside of the designated region will be ignored. Since the
test generation process does not try to switch those rare nodes, it is likely to create
fewer switching in the outside regions and reduce the background switching. (3)
Assuming that the sequential circuits are equipped with scan-chains, we can shift
0’s into the flip-flops (the pseudo primary inputs) that are outside of the designated
region. This can further reduce the background switching of other regions.

The partitioning approach should divide the design into regions, which have
minimum inter-connections between them. In other words, we want each region to
be functionally independent or have as few connections as possible to other regions,
so that the test generation process can increase the activity of one region (or few
regions) while minimizing the activity of all others. A complex circuit under test
usually comprises several functional modules (or regions), which are interconnected
according to their input/output dependencies. For the example in Fig. 10.2a, the
DLX processor has four pipeline stages (IF, ID, EXE, and MEM). It can be naturally
partitioned into four regions according to the functional modules: Fetch, Decode,
Execute, and Memory. We can fill the pipeline such that the different pipeline
stages are activated one at a time during test generation. An alternative to functional
partitioning is structural partitioning as shown in Fig. 10.2b. Structural partitioning
is the only choice when functional partitioning is not possible (e.g., flattened
netlist). Structural partitioning can use hypergraph partitioning approach [15] or
any other region-based partitioning approaches [1]. It is important to note that
this approach can effectively combine both partitioning techniques. For example,
after functional partitioning has been performed on DLX processor (Fig. 10.2a),
structural partitioning (Fig. 10.2b) can be applied on the Decode module (accounting
for 71% of the whole design area) to further partition it into smaller regions.
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Fig. 10.2 (a) Functional
partitioning: a design with
functional modules can be
naturally partitioned. (b)
Structural partitioning: a flat
design can be structurally
partitioned to find regions
with minimum
inter-connections being cut

a

b

We use structural partitioning to improve the side-channel sensitivity for the
three ISCAS sequential benchmarks: s13207, s15850, and s35932. Since these
benchmarks are flat netlists (i.e., we cannot easily identify any functional regions),
we use hypergraph partitioning [15] to find relatively isolated regions. The circuit
is transformed into a hyper-graph, where each gate is a vertex and the set of gates
sharing an edge is a hyper-edge. The goal of partitioning is to divide the graph into
two partitions of roughly same size1 (each contains 45–55% of the total number of
vertices). The constraint is that the minimal number of hyper-edges will be cut by
the partition process. This constraint is to ensure that the vertices inside each region
have high connectivity, while the connectivity between regions is minimal. This is
a well-studied problem in hypergraph, and we used the tool from [15] to satisfy
this purpose. The whole design is first partitioned into two regions of almost equal
size with minimal hyper-edge cuts. Each of the two regions can be partitioned into
two smaller sub-regions, and so on. In other words, we can partition the design in a
recursive manner to have two regions, four regions, and eight regions.

1We have performed structural partitioning [15] with partition factor p = 50%, which generally
achieves better SCS than a skewed partition. If the designer can afford the cost, different partition
factor p can be explored.
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Algorithm 19: Multiple excitation of rare switching (MERS)
Input: Circuit netlist (targeted region), rare switching requirement (N ), the list of rare nodes

(R = {r1, r2, . . . , rm}), the list of random patterns (V = {v1, v2, . . . , vn})
Output: MERS test patterns (T )

for each random vector v in V do
Simulate the circuit with the input vector v

Count the number of nodes (RV ) in R with their rare values satisfied
end
Sort vectors in V in descending order of RV

for each node ri in R do
Set its rare switching counter (Si ) to 0

end

Initialize previous vector tp as a vector of all 0’s
for each vector vj in V do

Simulate the circuit with vector pair (tp, vj )

Count the number of rare switches (RS )
Set v′

j = vj

for each bit in v′
j do

Mutate the bit and re-simulate the circuit with vector pair (tp, v′
j )

Count the number of rare switches (R′
S )

if R′
S > RS then
Accept the mutation to v′

j

end
end
Update Si for all nodes in R due to vector v′

j

if v′
j increases Si for at least one rare node then
Add the mutated vector v′

j to T

Set tp = v′
j

end
if Si ≥ N for all nodes in R then

Break
end

end
return MERS test patterns T

10.3.2 Multiple Excitation of Rare Switching (MERS)

The basic idea of MERS is that if we can make a rare node switch N times where
N is sufficiently large, it significantly improves the chance of switching in a Trojan
associated with that rare node. The rare switching in the algorithm specially refers
to a rare node switching from its non-rare value to its rare value. The reason to
choose this criteria is twofold: (1) it is more difficult to switch from non-rare to
rare value than from rare to non-rare value; (2) it defines the switching between
the previous vector and the current vector, and it usually helps to create an extra
switching between the current vector and the next vector. This will increase the
probability of switching of a Trojan which has rare nodes as its trigger conditions.
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This approach is also applicable to sequential Trojans, which requires the rare
condition to occur a certain number of times to be fully triggered.

Algorithm 19 shows the steps of MERS to generate high-quality tests for creating
switching in rare nodes, so as to assist side-channel analysis for hardware Trojan
detection. The algorithm is fed with the golden circuit netlist, the list of random test
patterns (V ) and a list of rare nodes (R) (which is obtained by random vector based
circuit simulation beforehand). First, we simulate each random pattern and count the
number of rare nodes (RV ) that take their rare values. We sort the random patterns in
descending order of RV , which means that the vector with ability to activate the most
number of rare nodes goes first. Next, we initialize the rare switching counter Si for
each rare node to 0. In the next step, we mutate vectors from the random pattern
set to generate high-quality tests. We mutate the current vector one bit at a time
and we accept the mutated bit only if the mutated vector can increase the number
of nodes to have rare switching. In this step, only those rare nodes with RS < N

are considered. The mutation process repeats until each rare node has achieved at
least N rare switches. The output of the test generation process is a compact set
that improves the switching capability in rare nodes, compared to random patterns.
The complexity of the algorithm is O(n ∗ m), where n is the total number of test
vectors mutated during the process, and m is the number of bits in primary inputs.
The runtime to generate MERS tests can be found in Table 10.1.

The testset generated by MERS is expected to be very effective in increasing the
likelihood of rare nodes to switch and thus increasing the activities in Trojans. In
other words, MERS testset is capable of maximizing the DeltaSwitch (the numerator
in Eq. 10.1). Further extension of this work also explores using genetic algorithm to
mutate the vector pairs, which can more thoroughly search the test vector space.
Readers can refer to [17].

MERS testset is already a very high-quality testset in terms of criteria for
DeltaSwitch. However, MERS testset also creates more switching in other parts
of the circuit, when it is making efforts to switch rare nodes. This characteristic
of increased TotalSwitch would be further illustrated in the Sect. 10.4. In order to

Table 10.1 Runtime comparison for MERO [5], MERS-h and MERS-s, with N = 1000,
rarethreshold = 0.1

Runtime (s)

Benchmark Nodes (rare/total) MERO [5] MERS-h MERS-s

c2670 63/1010 30051.53 13378.1 18296.09

c3540 331/1184 9403.11 6106.94 24264.45

c5315 255/2485 80241.52 45607.01 84669.78

c6288 45/2448 15716.42 4154.93 6957.47

c7552 306/3720 160783.37 81431.09 144908.08

s13207 592/2504 23432.04 12876.97 41576.67

s15850 679/3004 39689.63 20631.58 58084.93

s35932 896/6500 29810.49 7335.27 38496.78

Average 396/2857 48,641 23,940 52,157
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maximize relative switching, we need to have TotalSwitch in control as well. In the
following subsections, we propose two methods to tune the MERS testset, so that it
can: (1) still be effective for DeltaSwitch, (2) reduce TotalSwitch and improve the
effectiveness for RelativeSwitch. The first method is a heuristic approach based on
hamming distance of test vectors, which can reduce the total switching. The second
one is simulation based, in which we try to balance the rare switching and the total
switching while we explore all the candidate vectors.

10.3.3 Test Reordering

10.3.3.1 Hamming Distance Based Reordering

If two consecutive input vectors have the same values in most bits, it is very possible
that the internal nodes will also have a lot of values in common. A simple heuristic
to reduce total switching in circuit is to have similar input vectors. We use the
Hamming distance between two vectors to represent the similarity. Algorithm 20
shows an approach to reorder the testset by Hamming distance. The algorithm
is a greedy approach to explore all candidate vectors and take the best one in
terms of Hamming distance. We first check the Hamming distances between the
previous vector and all the remaining vectors, then we select the vector which
has the minimum Hamming distance as the next vector. The time complexity of
Algorithm 20 is O(n2), where n is the testset size. Fortunately, it is of low cost to
calculate the Hamming distance between two input vectors, so the actual runtime is
very short.

Algorithm 20: Tests reordering by hamming distance (MERS-h)
Input: List of Test Patterns (Torig = {t1, t2, . . . , tn}) produced by Algorithm 1
Output: Improved Test Patterns (Thamm)

Initialize Thamm = {}
Initialize previous test tp as a vector of all 0’s
while Torig is not empty do

mindist = int_max

bestidx = −1
for all remaining tests tj in Torig do

if mindist > hamming_dist(tp, tj ) then
mindist = hamming_dist(tp, tj )

bestidx = j

end
end
Add tbestidx

to the end of Thamm

Remove tbestidx
from Torig

Update tp = tbestidx

end
return Thamm
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10.3.3.2 Simulation-Based Reordering

The reordering problem to improve the relative switching is actually a multi-
objective optimization problem: maximize the DeltaSwitch and minimize the
T otalSwitch as in Eq. 10.1. We do not know the DeltaSwitch, because the
location and type of the Trojan is unknown. However, rare switching between
two vectors is a good indicator for DeltaSwitch, which means a large number
of rare switching would imply a large DeltaSwitch in Trojan. We redefine
the optimization goal as to maximize the rare switching and minimize the total
switching at the same time between vector pairs. We formalize the problem as
shown in Eq. 10.2. We need to explore the best weights to balance between the
two objectives:

maximize (w1 ∗ RareSwitch − w2 ∗ T otalSwitch) (10.2)

We propose an approach as shown in Algorithm 21 based on real simulation
of the test vectors to maximize the combined objective. We introduce a concept
of prof it to indicate the fitness of a test vector to follow the previous test vector.
prof it is defined as (C∗RareSwitch−T otalSwitch), where C is the ratio of two
weights w1 and w2. It is meant to maximize the rare switching (activity in Trojan
circuits) and minimize the total switching of the whole circuit. In the experiment
section, we will explore different weight ratios and check the influence of weight
ratios on side-channel sensitivity.

Algorithm 21: Tests reordering by simulation (MERS-s)
Input: List of Test Patterns (Torig = {t1, t2, . . . , tn}) produced by Algorithm 1
Output: Improved Test Patterns (Tsim)

Initialize Tsim = {}
Initialize previous test tp as a vector of all 0’s
while Torig is not empty do

maxp = int_min

bestidx = −1
for all remaining tests tj in Torig do

Simulate the circuit with vector pair (tp , tj )
Count the number of RareSwitch and TotalSwitch
prof it = C ∗ RareSwitch − T otalSwitch

if maxp < prof it then
maxp = prof it

bestidx = j

end
end
Add tbestidx

to the end of Tsim

Remove tbestidx
from Torig

Update tp = tbestidx

end
return Tsim
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Algorithm 21 shows the proposed approach to tune the testset by simulation with
prof it as a reordering criterion. By exhaustively checking the prof it between
the previous vector and all the remaining vectors, we select the vector which
has the maximum prof it as the next following vector. The time complexity of
Algorithm 21 is O(n2), where n is the test length. However, it is much slower
than Algorithm 20, because it is time-consuming to simulate input vector pairs and
calculate prof it .

10.4 Evaluation Results

10.4.1 Experimental Setup

The test generation framework, including the MERS core algorithms and the
evaluation framework, is implemented using C. As shown in Fig. 10.1, the test
generation framework can identify rare nodes, generate MERS testset, further
tune the testset, and evaluate the effectiveness of testsets on random Trojans.
We evaluated the approach on a subset of ISCAS-85 and ISCAS-89 benchmark
circuits, as well as two large designs AES cipher and DLX processor [19]. The
sequential circuits are converted into full scan mode. We also implemented the
MERO [5] approach with parameter N of 1000 for comparison. The experiments
were performed on a server with AMD Opteron Processor 6378 (2.4 GHz). The
runtime for different benchmarks and different methods is shown in Table 10.1. The
table also shows the number of rare nodes in each benchmark. We used 0.1 as the
rare threshold to select rare nodes. We can see that if we use Algorithm 3 to reorder
by Hamming distance, the runtime is about half of MERO on average. If we use
Algorithm 4 to reorder by simulation, the runtime is about 7% longer on average.
So it is reasonable to say that the generated testset is more effective than MERO
given the similar test generation time.

10.4.2 Evaluation Criteria

When applying a testset to a circuit with Trojan, there are four criteria to evaluate
the effectiveness of the testset:

• AvgDeltaSwitch: the average delta switch when applying the testset on this
Trojan-infected circuit.

• MaxDeltaSwitch: the maximum delta switch when applying the testset.
• AvgRelativeSwitch: the average relative switch when applying the testset.
• MaxRelativeSwitch: the maximum relative switch when applying the testset.

We choose this criterion as the side-channel sensitivity because this directly
determines whether a Trojan can be detected through side-channel analysis.
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AvgDeltaSwitch and MaxDeltaSwitch reflect the activity in Trojan, and AvgRela-
tiveSwitch as MaxRelativeSwitch reflect the sensitivity of the side-channel signal in
detecting the Trojan.

As for evaluation of testsets, we would expect a high-quality testset to have a
good coverage over all possible Trojans. In the experiments, each testset is applied
to 1000 randomly-inserted Trojan samples and these four values are computed for
each testset. We would then take the average of these four metrics, which would
reflect the capability of the testset to enable detection of different Trojans through
side-channel analysis. The average MaxRelativeSwitch would be most suitable
for side-channel sensitivity evaluation, which is to maximize the sensitivity for an
arbitrary Trojan in unknown circuit location.

10.4.3 Different Scan Modes

For sequential benchmarks, we assume that the sequential gates (i.e., the flip-flops)
have full-scan capability during test. The initial states of the circuit can be set by the
scan chain. Test vectors feed values to the primary inputs (PI) and the scan flip-flops
(also called pseudo-PI). The controllability of the circuit states largely depends on
the working mode of the scan chain. The transition test involves applying a vector
pair (V1, V2) to the circuit. The first vector is to launch the circuit into a desired state.
The transitions will be captured after V2 is applied. V1 will set the PI values as well
as the initial states of circuit through SFFs. V2 will feed the circuit with a different
set of PI values. V2 may or may not feed the SFFs with new values depending on
the scan mode. We measure the number of switching in the circuit for side-channel
analysis after V2 is applied.

A conventional scan chain can work in Launch-on-Shift (LoS) and Launch-on-
Capture (LoC) modes [20]. In both of these two modes, V2 only feeds the circuit
with new values to PIs. The flip-flops will have values either directly from V1 (shift
by 1) or after propagating for one clock cycle. For LoS mode, the second vector
V2 is immediately applied after V1 is shifted into SFFs. For LoC mode, the second
vector V2 waits for one clock cycle after V1 is applied to the circuit. An enhanced
scan chain can work in Enhanced mode [28, 31]. Compared to the LoS and LoC,
the enhanced scan chain has one extra redundant flip-flop attached to each of the
SFF. After the shifting process, the SFFs hold states for V1 and the redundant FFs
hold states for V2. This feature enables both V1 and V2 to feed arbitrary values to the
sequential gates. It comes at the cost of doubling the number of flip-flops. However,
it provides high controllability and testability into the sequential circuits. Unless
explicitly specified, the experiments assume that the enhanced scan mode is used
for the sequential benchmarks.
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10.4.4 Exploration of N

Figure 10.3 shows the distribution of MaxDeltaSwitch over 1000 random 8-trigger
Trojan samples for two ISCAS-85 benchmarks. We choose different N to generate
MERS testsets, to compare with the Random (10 K vectors) testset. For each testset,
the box plot shows (minimum, first quartile, median, third quartile, maximum)
values of MaxDeltaSwitch of the 1000 Trojan samples. It is clear from these plots
that the distribution of MaxDeltaSwitch is constantly improving with increasing N .
For c2670, the average MaxDeltaSwitch (as shown by the red lines) can reach 18.67
for MERS (N = 1000), while Random testset can achieve only 12.15. For c3540,
the average MaxDeltaSwitch can reach 11.13 for MERS (N = 1000), while for
Random testset it is only 9.19. The fact that the quality of MERS tests improves
with increasing N is not surprising. It is similar to N -detect tests for stuck-at faults,
where fault coverage is expected to improve with increasing N . The testset size also
increases with N . The sizes of testsets for MERS (N = 10, 20, 50, 100, 200, 500,

Fig. 10.3 Impact of N
(number of times that a rare
node has rare switching) on
MaxDeltaSwitch for
benchmarks (a) c2670 and
(b) c3540
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1000) are (71, 140, 347, 656, 1262, 3142, 6199) for c2670, and (161, 302, 742,
1441, 2858, 7070, 14250) for c3540. In most of the experiments, we choose a value
of N = 1000, which is a good balance between testset quality and testset size. For
fair comparison with Random testset, we will only take the first 10 K vectors of
MERS testset if it is larger than 10 K.

10.4.5 Effect of Increased Total Switching

Figure 10.4 shows the average MaxDeltaSwitch and the average T otalSwitch

of the testsets for 1000 8-trigger Trojan samples for different values of N . For
both of the two benchmarks, the average T otalSwitch increases with N as well
as the average MaxDeltaSwitch. It is obvious that all the MERS testsets have
much larger average T otalSwitch, compared with the Random testset. For c2670,
the average T otalSwitch for MERS (N = 1000) is 644.9, which is about 1.25X

Fig. 10.4 MaxDeltaSwitch versus TotalSwitch for different N for benchmarks (a) c2670 and (b)
c3540. MERS creates more switching in Trojan, as well as increased total switching
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Fig. 10.5 Side-channel sensitivity versus T otalSwitch for random, MERS, MERS-h, and
MERS-s (with different C) for benchmarks (a) c2670 and (b) c3540

times of that of the Random testset (515.7). For c3540, the average T otalSwitch

for MERS (N = 1000) is 808, while Random testset is only 649.2. The insight
that we can get from here is that MERS tends to increase the T otalSwitch of the
circuit, although it is designed to increase switches in rare nodes. The following
subsection will show that the proposed reordering methods would be effective to
reduce T otalSwitch and thus increase side-channel sensitivity.

10.4.6 Effect of Weight Ratio (C)

The effectiveness of the two reordering methods can be observed in Figs. 10.5
and 10.6. As shown in Fig. 10.5, MERS-h can reduce T otalSwitch and thus
increase the relative switching (i.e., the side-channel sensitivity), compared with
the original MERS testset. For MERS-s with different weight ratio C, side-channel
sensitivity improves steadily with a small C, and then goes down when C is too
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Fig. 10.6 Distribution of side-channel sensitivity for random, the original MERS, MERS-h, and
MERS-s (with different C) for benchmarks (a) c2670 and (b) c3540

large. As the weight ratio tries to balance DeltaSwitch and T otalSwitch, a large
C will outweigh the influence of T otalSwitch, which will make it less different
from the original MERS testset. In the following experiments, we choose the weight
ratio as C = 5, as it provides a good balance between the total switching and rare
switching.

Figure 10.6 shows detailed distribution of side-channel sensitivity for 1000
8-trigger Trojan samples with different choices of C. The reordering methods are
working well to improve side-channel sensitivity, which is built on the fact that
the original MERS testset is already of high quality in terms of DeltaSwitch, or
switching in Trojans.
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Fig. 10.7 Distribution of side-channel sensitivity (SCS) and delta SCS (1000 Trojan samples)
compared with random testsets and MERO [5]. (a) C260: distribution of SCS. (b) C3540:
distribution of SCS. (c) C260: distribution of delta SCS. (d) C3540: distribution of delta SCS

10.4.7 Increase in Trojan Activity

Figure 10.7 shows the distribution of the change in side-channel sensitivity for two
benchmarks, compared with Random testset and MERO [5]. In Fig. 10.7a, b, we
can see that the two approaches (MERS-h and MERS-s) can greatly improve the
SCS compared with Random testsets as well as MERO [5]. Figure 10.7c, d show
the Delta SCS when we look at each Trojan. Table 10.2 summarizes the percentage
of Trojans whose SCS increased with the proposed approaches. Compared with
Random testsets, more than 96.2% Trojans (for 1000 samples) have higher SCS
with the proposed approaches. Compared with MERO testsets, more than 89.1%
Trojans have higher SCS with the proposed approaches.

Table 10.3 shows that MERS (N=1000) is very effective in creating
DeltaSwitch caused by arbitrary Trojans due to its statistical nature. The average
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Table 10.2 Percent of Trojans (for 1000 Trojan samples) with SCS increased

Benchmark MERSh-Rand MERSs-Rand MERSh-MERO MERSs-MERO

c2670 96.2% 97.1% 89.1% 91.2%

c3540 99.8% 99.5% 92.3% 93.4%

Table 10.3 Comparison of MERS (N = 1000) with Random (10 K) for average MaxDeltaSwitch
and average AvgDeltaSwitch, over 1000 random 8-trigger Trojans

Average MaxDeltaSwitch Average AvgDeltaSwitch

Benchmark Random MERS Improv. Random MERS Improv.

c2670 12.15 18.67 53.67% 1.4289 6.8561 379.83%

c3540 9.19 11.13 21.16% 1.3716 2.9058 111.85%

c5315 9.51 13.80 45.16% 1.3116 3.9300 199.64%

c6288 6.63 7.26 9.63% 1.0636 4.8448 355.50%

c7552 8.53 12.00 40.76% 1.3488 2.7700 105.36%

s13207 6.63 8.83 33.18% 0.6428 0.9771 52.01%

s15850 7.53 10.84 43.99% 0.7465 1.3609 82.29%

s35932 15.16 15.37 1.35% 2.1803 6.8060 212.16%

Avg. improv. – – 31.11% – – 187.33%

Table 10.4 Comparison of MERS (N = 1000) with Random (10 K) for average
MaxRelativeSwitch (side-channel sensitivity) and average AvgRelativeSwitch, over 1000
random samples of 8-trigger Trojans

Average MaxRelativeSwitch
(Side-Channel Sensitivity) Average AvgRelativeSwitch

Benchmark Random MERS Improv. Random MERS Improv.

c2670 0.02469 0.03108 25.90% 0.00255 0.01054 314.14%

c3540 0.02670 0.01933 −27.59% 0.00214 0.00361 69.12%

c5315 0.00526 0.00766 45.72% 0.00075 0.00200 165.65%

c6288 0.00534 0.00395 −26.06% 0.00059 0.00219 270.68%

c7552 0.00452 0.00852 88.48% 0.00058 0.00113 94.65%

s13207 0.00756 0.00844 11.64% 0.00066 0.00085 28.22%

s15850 0.00593 0.00716 20.70% 0.00053 0.00082 54.25%

s35932 0.00523 0.00587 12.29% 0.00060 0.00223 268.54%

Avg. improv. – – 18.89% – – 158.16%

Max Delta Switch increases by 31.11% and the average Avg Delta Switch by
187.33% on average for different benchmarks, compared with Random testset. This
shows the effectiveness of MERS in creating Trojan activity.

Table 10.4 shows that MERS is also helpful in improving RelativeSwitch. The
average AvgRelativeSwitch increased by 158.16%, compared with Random testsets.
For average MaxRelativeSwitch (side-channel sensitivity), MERS has an average
improvement of 18.89%. However, side-channel sensitivity values for benchmark
c3540 and c6288 are not as good as those of Random testsets. This is due to the
fact that MERS testset also increases the total switching, when it is making efforts
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to cause rare nodes switching. This phenomenon is illustrated and explained in
Figs. 10.4 and 10.5, and this side effect can be improved by the two reordering
algorithms as shown in Tables 10.5 and 10.6.

10.4.8 Side-Channel Sensitivity Improvement

To this point, we have explored the parameters: N for MERS and C for MERS-
s. We choose N = 1000 and C = 5 in the following experiment to compare the
proposed schemes with Random testset and MERO. Tables 10.5 and 10.6 show the
improvement of proposed approaches on side-channel sensitivity for 4-trigger and
8-trigger Trojans.

Table 10.5 shows that MERS, MERS-h, and MERS-s have 10.37%, 138.44%,
and 152.26% improvement over the Random testsets, respectively. While the
original MERS testsets is 23.95% worse than MERO testsets, MERS-h and MERS-s
have 52.62% and 62.01% improvement over MERO. Table 10.6 shows the results
for 8-trigger Trojans. Compared to Random testsets, MERS, MERS-h, and MERS-s
can have 18.89%, 107.53%, and 96.61% improvement, respectively. The original
MERS testsets is 12.43% worse than MERO testsets. MERS-h and MERS-s testsets
can improve the side-channel sensitivity by 40.79% and 38.50%, respectively.

In this section, we explore the impact of different values of N for MERS and
observe the effectiveness of MERS to maximize Trojan activity as N increases.
We confirm the superiority of MERS testsets over Random testsets in Sect. 10.4.7
on creating switching activity in randomly sampled Trojans. We observed that the
total switching was also likely to increase while MERS made efforts to maximize
rare switching in Trojans. The two reordering methods (MERS-h and MERS-
s) successfully had the total switching under control while maintaining the rare
switching high.

10.5 Scalability to Large Designs

In this section, we investigate the scalability of the proposed approach to large
designs. We compare the controllability of different scan modes and their effects
on side-channel sensitivity. We apply region-based MERS on the three sequential
ISCAS benchmarks and side-channel sensitivity can improve as we divide the
design into more regions. We also generate tests for two large benchmarks (AES
cipher and DLX processor) from OpenCores and design partitioning can signifi-
cantly improve the side-channel sensitivity.
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Fig. 10.8 Comparison of Enhanced, LoC, and LoS modes. (a) Total switching, (b) side-channel
sensitivity

10.5.1 Controllability of Different Scan Modes

The scan modes have direct influence on the effectiveness of the region-based
MERS approach. Figure 10.8 shows the Total Switching and the side-channel
sensitivity when different scan modes are used for region-based MERS approach
(each benchmark has four regions in this example). In Fig. 10.8a, the Enhanced
mode can greatly reduce the Total Switching compared with LoC and LoS. In
Fig. 10.8b, the Enhanced mode can greatly improve the side-channel sensitivity
compared with LoC and LoS.

There are two factors that enable the Enhanced mode to do much better than the
LoC and LoS modes. (1) We try to reduce the background switching by assigning
0’s to the flip-flops that are outside of the targeted region. For the Enhanced mode,
we assign 0’s to both V1 and V2 for those flip-flops outside of the targeted region.
This enables the Enhanced mode to have full controllability to turn the other regions
“dark.” For the LoC and LoS modes, we assign 0’s to V1 for those flip-flops that are
outside of the targeted region, while V2 cannot directly assign values to flip-flops.
For LoC mode, the flip-flop states before capture will be the states after the circuit
propagates one cycle after V1. For LoS mode, the flip-flop states will be shifted by
1 from V1. (2) The Enhanced mode has the benefit of using V2 to assign arbitrary
values to the flip-flops inside the targeted region. In contrast, LoC has no direct
control over the states after one clock cycle and LoS has to assign the in-region
flip-flops to V1 shifted by 1. In MERS (Algorithm 19), we mutate both the PIs and
the pseudo-PIs (i.e., the values for the in-region flip-flops) to generate high-quality
test for each region. Under the Enhanced mode, we can mutate the vector V2 to find
beneficiary values for pseudo-PIs.

10.5.2 Effectiveness of Design Partitioning

Figure 10.9 shows the results for region-based MERS approach on the three
sequential benchmarks. We compare the MERS testsets produced by 1 region, 2
regions, 4 regions, and 8 regions. The Total Switching and side-channel sensitivity



10.5 Scalability to Large Designs 213

Fig. 10.9 (a) Total switching.
(b) Side-channel sensitivity
for in-region Trojans samples.
(c) Side-channel sensitivity
for cross-region Trojans

numbers are the averaged values of 1000 random in-region (out-region) Trojans.
Here an in-region Trojan means that its trigger edges and payload edge belong to
the same region. We have 125 random in-region Trojans from each of the 8 regions
to form a set of 1000 random Trojans for each benchmark.

As shown in Fig. 10.9a, the averaged Total Switching decreases drastically as
we partition the design into more regions. As the number of regions doubles, the
averaged Total Switching reduces almost by half. MERS with 8 regions can reduce
the Total Switching by 7.40X for s13207, 6.28X for s15850, and 8.12X for s35932,
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compared to MERS with only 1 region. As shown in Fig. 10.9b, side-channel
sensitivity improves significantly as the number of regions increases for in-region
Trojans. MERS with 8 regions can improve the side-channel sensitivity by 6.24X
for s13207, 7.51X for s15850, and 7.49X for s35932, compared to MERS with only
1 region.

Figure 10.9c shows the average SCS of 1000 cross-region Trojan samples. We
can still see the trend that SCS will greatly increase as we divide the design into
more regions. We observe slightly lower SCS compared with in-region Trojan
samples. For the benchmark s13207, cross-region Trojan samples have 16.1% less
SCS for 2 Regions, 14.0% less SCS for 4 Regions, and 7.9% less SCS for 8 Regions,
compared with in-region Trojan samples. For the benchmark s35932, cross-region
Trojan samples have 18.8% less SCS for 2 Regions, 22.5% less SCS for 4 Regions,
and 20.3% less SCS for 8 Regions, compared with in-region Trojan samples. Thus
the conclusion is that cross-region Trojans can still significantly benefit from the
proposed approach.

10.5.3 Test Generation for Large OpenCores Benchmarks

In this subsection, we apply the region-based MERS approach on two large designs
(AES cipher and DLX processor). AES cipher has 15086 nodes and DLX processor
has 18123 nodes. They are about three times as large as the largest ISCAS
benchmark s35932. The results show that this approach is scalable for large designs.
Direct application of MERS on AES takes about 7 days to generate and reorder
tests, and about 9 days for DLX. After functionally partitioning AES into three
regions, the largest region can finish in 4 days (we generate the tests for each region
in parallel). After functional partitioning of DLX and structural partitioning of its
decode module, we can finish the test generation and reordering for DLX in 3 days.
In this part, we assume that the designs are equipped with enhanced scan chain,
which provides us the most controllability for test generation.

10.5.3.1 AES

Figure 10.10a shows the abstracted representation of an AES cipher. We use
functional partition to segment it into three regions. It has two obvious submodules:
Key Expansion and Round Permutation, which we choose as two regions. The
third region contains the rest of the circuit, which is mostly the control logic and
input/output buffers.

Table 10.7 compares the side-channel sensitivity on 15 random Trojans for three
testsets: Random, MERS (whole design), and MERS-FP (with functional partition).
For the MERS and MERS-FP, we use the test generation detailed in Algorithm 19
and the test reordering detailed in Algorithm 20. Compared with the Random testset,
the MERS testset can improve the side-channel sensitivity by only 5% on average.
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Fig. 10.10 Design partition
for AES and DLX. (a)
Functional partition on AES.
(b) Functional partition on
DLX + structural partition on
decode

(a)

(b)

The MERS-FP testset can improve the side-channel sensitivity by 160% on average.
The functional partition significantly improved the side-channel sensitivity (about
2.6X) over the Random testset.

10.5.3.2 DLX

Figure 10.10b shows the abstracted representation of a DLX processor. We use
functional partition to segment it into four regions: Fetch, Decode, Execute, and
Memory. However, the Decode consumes majority of the chip area (accounting
for 71% of the whole design area). We used the hypergraph partitioning tool
hMETIS [15] to further partition the Decode region into four regions of roughly
equal size (in terms of number of gates/vertices).

Table 10.8 compares the side-channel sensitivity on 15 random Trojans for
four testsets: Random, MERS (whole design), MERS-FP (with functional parti-
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Table 10.7 AES testsets:
[Random, MERS, MERS-FP]

Testset Random MERS MERS-FP

Trojan 1 0.00125 0.00154 0.00568

Trojan 2 0.00119 0.00135 0.00538

Trojan 3 0.00136 0.00143 0.00525

Trojan 4 0.00170 0.00151 0.00573

Trojan 5 0.00125 0.00167 0.00568

Trojan 6 0.00107 0.00132 0.00196

Trojan 7 0.00105 0.00143 0.00235

Trojan 8 0.00148 0.00158 0.00196

Trojan 9 0.00090 0.00083 0.00110

Trojan 10 0.00083 0.00107 0.00127

Trojan 11 0.00267 0.00237 0.00389

Trojan 12 0.00227 0.00255 0.00356

Trojan 13 0.00235 0.00226 0.00952

Trojan 14 0.00262 0.00235 0.00635

Trojan 15 0.00235 0.00228 0.00354

Average SCS 0.00162 0.00170 0.00421

Average improve. – 5% 160%

Table 10.8 DLX testsets: [Random, MERS, MERS-FP, MERS-FP+SP]

Testset Random MERS MERS-FP MERS-FP+SP

Trojan 1 0.00045 0.00059 0.00059 0.00202

Trojan 2 0.00055 0.00067 0.00067 0.01515

Trojan 3 0.00066 0.00087 0.00087 0.00448

Trojan 4 0.00050 0.00062 0.00065 0.00448

Trojan 5 0.00079 0.00059 0.00059 0.00202

Trojan 6 0.00042 0.00085 0.00085 0.00285

Trojan 7 0.00061 0.00090 0.00090 0.00384

Trojan 8 0.00081 0.00099 0.00099 0.00632

Trojan 9 0.00051 0.00096 0.00096 0.00210

Trojan 10 0.00059 0.00086 0.00126 0.00673

Trojan 11 0.00045 0.00073 0.00078 0.02273

Trojan 12 0.00038 0.00067 0.00067 0.00202

Trojan 13 0.00075 0.00093 0.00093 0.00384

Trojan 14 0.00051 0.00079 0.00079 0.00210

Trojan 15 0.00050 0.00062 0.00062 0.01515

Average SCS 0.00056 0.00077 0.00081 0.00639

Average improve. – 37% 43% 1033%

tion), MERS-FP+SP (with functional partition followed by structural partition).
Compared with the Random testset, the MERS testset can improve the side-
channel sensitivity by about 37% on average, and MERS-FP testset can improve by
43%. The MERS and MERS-FP have very close side-channel sensitivity numbers,
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because the Decode region is very huge. The MERS-FP+SP testset can significantly
improve the side-channel sensitivity (about 11X times) over the Random testset.
The experiments on AES and DLX have shown that this approach is scalable to
large designs to greatly improve the side-channel sensitivity for hardware Trojan
detection.

10.6 Summary

We have presented a framework for scalable test generation, called MERS, which
can significantly improve the Trojan detection sensitivity in side-channel analysis
based Trojan detection. The approach aims at statistically increasing switching
activity in an unknown Trojan to amplify the Trojan effect in presence of large
process variations. Such a test generation approach will, in general, be effective
for any side-channel analysis approaches that rely on activity in Trojan circuits
(e.g., transient current, dynamic power profile, or electromagnetic emanation based
methods). MERS is effective for any Trojan forms/sizes, as long as a Trojan is
implanted through alterations in a circuit structure—the most dominant mode of
Trojan implantation. The simulation results on a set of benchmark circuits show
that the proposed approach can significantly improve the side-channel sensitivity by
97%, compared with random tests for a large set of arbitrary Trojans. Furthermore,
this approach is scalable to large designs (e.g., AES cipher and DLX processor),
which can improve side-channel sensitivity by 1.6X times for AES, and 10X
times for DLX. Further, the approach can work for different DFT configurations.
The results demonstrated that a scalable statistical test generation can serve as an
essential component in any side-channel analysis based hardware Trojan detection
framework.
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Chapter 11
Hardware Trojan Detection Schemes
Using Path Delay and Side-Channel
Analysis

11.1 Introduction

Hardware Trojans (HT) are deliberate and malicious changes to an electronic device
that adds or removes functionality or reduces reliability of an integrated circuit
(IC), printed circuit board (PCB), or system [6–9, 14, 23, 27, 52, 54]. The changes
can be designed to leak secret information, e.g., encryption keys or other types
of private internal information, or they may be designed to cause the system to
fail at some specific or predetermined time while the IC is in mission mode. The
business model of distributed and outsourced design, integration, manufacturing,
packaging, and distribution channels open up challenges such as intellectual
property (IP) piracy, reverse engineering of netlist from GDSII, integrated circuit
(IC) cloning, counterfeit attacks, and Trojan insertions. The shrinking integrated
circuit feature size and increased gate density per wafer have been made possible
with the advancements in photolithography techniques; however, this has caused
the manufacturing processes to become very complex and the cost reaching billions
of dollars. With the rapidly improving technology, the fabrication plant requires high
operating and maintenance cost; therefore, the business model of outsourcing and
off-shoring production process is observed in the leading semiconductor industry
for cost reduction. Additionally, because of increased complexity and integration of
system design, nearly every step of the modern design process, from architecture,
through RTL, layout, split manufacturing [46], packaging, IC testing, distribution,
and system integration is ‘farmed out’ to individual companies located all over the
world. This distributed IC production business and off-shoring of the manufacturing
operations and IC designers having less or no longer control on fabrication process
are becoming an important driver of emerging security and trust problems [53].
Adversaries design the HT to be difficult to discover, either accidentally via
manufacturing test or purposely using tests specifically designed to activate the HT.

Furthermore, in recent intellectual property IP-reuse based design flow in system
on chip requires additional IP protection schemes to avoid illegal modifications,
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piracy, and ownership issues. IPs can come in form of soft, firm, or hard IPs.
For example, IP reuse in the soft form are the synthesizable register-transfer-level
(RTL) description, firm IPs are the gate-level designs to integrate with the firmware
and hard IP is distributed in the form of GDSII design database. In this design
approach, IP are transparent at system design level, manufacturing facility, and
distribution chain, making it susceptible to security and privacy attacks at different
entry levels. Sophisticated HT insertion strategies consider resilience to advanced
HT detection methods that utilize high-resolution measurements of side-channel
signals, such as electromagnetic (EM) emanations, power consumption (steady-
state IDDQ or transient IDDT), delay testing, and temperature profiling. In addition
to these testing challenges, HT detection methods are further tasked to deal with
several other fundamental HT properties. First, the task of identifying an HT is
akin to finding a needle in a haystack, i.e., the adversary has a huge advantage
because he/she can choose to insert the HT anywhere while the trusted authority
is tasked with determining if the IC has in fact been modified and if so, finding
the unknown malicious function in a “sea” of gates. Second, HT and “bugs,” either
hardware or software, share the same characteristics, and it is widely accepted that
finding all the bugs in a complex program is generally infeasible. In fact, cleverly
inserted HT can be designed to appear as bugs, making it difficult to decide if the
malicious function, if discovered, was accidental or purposeful. Third, any attempt
by the trusted authority to increase the “ease” of HT detection may be visible to the
adversary, i.e., the adversary can reverse engineer the IC and avoid countermeasures
added by the trusted authority. Fourth, the adversary can choose to “selectively”
insert the HT into only a subset of the manufactured ICs, making it necessary to
verify all manufactured ICs. Last, HT designed to leak information may not cause a
change in the functional behavior of the IC, and, therefore, the trusted authority may
need to apply non-standard tests, e.g., tests for anomalous EM radiations. Moreover,
the appropriate detection strategy will vary greatly depending on the assumptions
made regarding the “insertion point,” i.e., design-inserted HT requires very different
detection techniques than those inserted into a layout description of the design.

The only advantage afforded to the trusted authority is that his/her detection
strategy can be “parallelized” because the HT needs to be detected only once and is,
in most cases because of mask cost issues, inserted in the same fashion in every
copy of the targeted IC population. Therefore, tests applied post-manufacturing
can be partitioned among multiple independent IC testers (referred to as automatic
test equipment or ATE) and applied in parallel. Unfortunately, even high levels
of parallelism “run out of gas” when the full extent of the search space, both
combinational and sequential, is considered.
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11.1.1 Threat Models

IC piracy and tempering the design for malicious objectives is a major security
concern in the trending business model of IP reuse and offshore manufacturing. It is
very important to understand different attack models and piracy act:

1. Reverse engineering: GDSII can be used to reverse engineer the netlist and
interpret the functionality to steal it.

2. Clones: An attacker in the system design flow can steal the IP or IC and with a
few modifications, claim the ownership and make illegal copies.

Overbuilding: Mass production of ICs from same masks reduces considerable
cost of fabricating extra chips and selling them in black. Without integration of
special techniques, identification of the individual parts is a challenge. Thus good
chips cannot be separated from the overbuild chips with the current design flow.

3. Counterfeit chips: Counterfeit chips are intended to deceptively represent an
authentic component that could be recycled or cloned chip.

4. Repudiation: In case of counterfeit chip detection, adversary can refuse the
reasonability.

5. Side-channel attacks: Key based security in designs can be broken by the side-
channel attacks. Advance active hardware obfuscation techniques require keys
to unlock functionality. Once the key is compromised, adversary can reverse
engineer the original netlist and remove all the keys, defeating the whole security
through obscurity.

6. Trojan detection: On successfully reverse engineering the design, adversary
can include Trojans, hidden malicious modifications to the circuitry. A Trojan
payload can be activated during the life cycle of IC without the knowledge of
user.

This chapter is specifically focused on surveying methods that utilize very precise
analog based testing to discover HT. The underlying basis of these methods can be
characterized by the Heisenberg principle or observer effect, i.e., any attempt to
measure or monitor a system changes its behavior. The testing methods described
herein attempt to determine if an adversary has inserted an HT that is “observing”
the evolving state of the IC, which is used by the adversary as the mechanism to
activate the HT. In particular, we survey path-delay-based testing methods which
are designed to detect subtle changes in delay introduced by the HT connections
and gate insertions, referred to as the trigger and payload of the HT, respectively.

The authors of [59] propose a generic characterization of these concepts as
shown in Fig. 11.1. The rest of this chapter is organized as follows. Section 11.2
presents a high-level view of HT insertion strategies and discusses the constraints
on the detection methods. Section 11.3 covers HT detection strategies designed
to detect layout or GDSII Trojans (other HT insertion points are detailed in other
chapters of this book) with subsections that survey detection methods that analyze
“side-channel” signals, e.g., power and delay. Section 11.4 describes important
fundamental concepts related to implementing path-delay-based HT methods. Sec-
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Fig. 11.1 Generic characterization of a hardware Trojan trigger and payload from [46]. Trigger
signals q1 through qq typically connect to nodes in the existing design and therefore add capacitive
load to these signals, creating an observer effect. Both the trigger signals and payload add delay to
paths in the existing design

tion 11.5 provides a survey of delay-based HT detection techniques, while Sect. 11.6
describes the proposed multiple-parameter side-channel techniques. Conclusions
are provided in Sect. 11.7.

11.2 Hardware Trojan Insertion

The horizontal dissemination of the IC design, fabrication, and test processes to
many distinct companies around the world has dramatically increased the potential
for malicious activities. Intellectual property (IP) block reuse has compounded this
threat by partitioning the design space itself among multiple third-party vendors.
Standardization activities have enabled multiple independently designed IP blocks
to seamlessly integrate into CAD tool flows. However, the electronic design automa-
tion (EDA) community developed this multi-party collaborative design system using
a model in which all parties are largely trusted. Unfortunately, the same types
of malicious activities endured by the software community are now presenting
themselves in the hardware design community.

All of the primary processes associated with design, manufacture, and test are
vulnerable to malicious activities where adversaries can add to, remove from, or
change the functionality of the IC. We refer to these opportunities as insertion points.
Figure 11.2 provides a graphical illustration of the major insertion points, which are
further distinguished by the following list:

• Designing third-party IP blocks
• Developing CAD tool scripts
• Integration activities where IP blocks and glue logic are assembled into system-

on-chip (SoC) ICs
• Behavior synthesis and place and route (PnR) carried out by CAD tools
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Fig. 11.2 Hardware Trojan insertion points

• Layout mask data generation and mask preparation
• Process parameter control mechanism used in the multistep fabrication process
• Supply chain transactions associated with transferring wafers from one facility

to another
• Generating test vectors using automatic test pattern generation (ATPG)
• Wafer-probing activities associated with measuring test structures and detecting

defects
• Supply chain transactions associated with creating and transferring dice
• Processes responsible for packaging ICs
• Applying ATPG vectors to packaged ICs using ATE
• Supply chain transactions associated with transferring packaged parts
• Printed circuit board (PCB) design and fabrication
• Processes responsible for installing PCB components (populating PCBs)
• Supply chain transactions associated with transferring boards
• System integration and deployment activities

The wide range and widely distributed nature of these activities presents an
overwhelming opportunity for subversion. Moreover, the wide diversity among
the tasks will require a very sophisticated and complex system to manage the
entire set of trust vulnerabilities from start to finish. The research community is
tackling the trust challenges one at a time and is focused on those that are the
most attractive insertion points for adversaries. For example, subversion of IP
blocks is a serious concern given the ease in which malicious functionalities can be
covertly inserted and the absence of alternate representations and models to which
the IPs can be compared [37]. Layout modifications and IC fabrication insertion
points represent another important focus area, especially given the huge complexity
associated with analyzing fabricated ICs at this lowest layer of design abstraction,
and the wide range of opportunities available to the adversary in designing HT
with sophisticated, sometime analog, triggering and payload mechanisms. Note that
significant differences exist in the HT countermeasures and detection strategies that
are applicable even when only considering these two insertion points.
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For example, golden models are not available at the IP block insertion point, but
architectural changes that obfuscate the design are available as countermeasures.
On the other hand, the layout insertion point allows layout design data to be used
to validate the functional and analog behaviors of the IC, but obfuscation is limited
to “dummy via” insertion and other nano-level manipulations of the design. Also,
side-channel information is not available or is not accurate enough to be useful
for IP blocks but can be leveraged as a very powerful HT detection method for
layout-level validation. The focus of this chapter is on HT detection methods, and
countermeasures where appropriate, that are applicable at the layout level. Other
chapters of this text survey techniques which target other insertion points.

11.3 Approaches to Detect Layout-Inserted Hardware
Trojans

A layout is a physical representation of the design, i.e., it is a set of geometric shapes
that rep-resent a physical model of the IC. The shapes define transistors, wires,
vias, and contacts. A layout is the lowest layer of abstraction in the design process
and contains all the logic gates that define the function as well as all the electrical
connections between the logic gates and the power supply rails. The complexity of
layouts increases as technology feature sizes shrink into the nanometer regime, and
additional wiring layers are added. Figure 11.3 shows several standard (std.) cell
layouts on the left and a tool-synthesized layout of a relatively small functional unit
called the Advanced Encryption Standard (AES). The layout of the AES IP block
contains approx. 12,000 std. cells and 50,000 wires and typically would represent

AES layout

500 �
m

4.48 �m

2-input NAND 4-input AND-OR-INVERT

500 �m

Fig. 11.3 Layout of std. cells (left) and AES layout (right)
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one IP block of several 100 on a modern SoC. The technology used in this example is
an IBM 90 nm process which provides nine vertically stacked layers for metal wires.
The image is a screen capture of the designer’s view of the layout using Cadence
Virtuoso. Most layout design tools provide this type of top-down view, with upper
metal layers obscuring the transistors in the bottom-most layer, i.e., nearly all of
what is shown in the AES layout are metal wires.

Once the physical model of the layout is completed as shown by the AES layout
in Fig. 11.3, a set of masks are generated. The masks decompose the layout into
a set of (x, y) planes, which can be vertically aligned to define the transistors and
wiring layers. Layout-inserted HT are characterized as changes in one or more of the
masks used in photolithography process to create physical instances of the IC. The
multitude of overlapping wires and the tightly packed form of the transistors define
a complex structure which represents the haystack in the “needle-in-a-haystack”
paradigm. Adversaries are free to add or change very small regions in the masks,
which can affect connectivity relationships between a small set of existing std. cells,
or new std. cells can be added. The latter is possible using “white space,” i.e., areas
in the lowest layers of the layout that contain non-functional filler cells or cells
implementing decoupling capacitors.

11.3.1 Layout-Oriented HT Detection Methods

HT detection methods which are designed to detect malicious modifications to the
IC layout fall into three fundamental categories [54]:

• Nondestructive logic-based testing methods
• Nondestructive side-channel-based testing methods
• Destructive physical inspection techniques

11.3.1.1 Nondestructive Logic-Based HT Detection Methods

Logic-based methods derive test vectors that attempt to activate the HT [3–
5, 14, 15, 48, 49]. Unlike manufacturing tests which activate and propagate faults on
each node individually within the fabricated IC, HT activation is akin to multiple
fault activation, which is rarely practiced in manufacturing test because of the
high time complexity for ATPG and high cost of applying very large numbers
of vectors. Also, unlike manufacturing defects which tend to distribute randomly
across circuit nodes, the adversary chooses a stealthy location for the HT, i.e.,
he/she inserts the HT on circuit nodes that are difficult to control or observe
[47, 61]. Unfortunately, the task of generating test vectors that provide coverage
of all possible states for these nodes is orders of magnitude more difficult than it is
for manufacturing defects, and, therefore, achieving high levels of HT coverage is
difficult or impossible given limited resources and existing manufacturing test cost
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constraints. The authors of [3–5, 14, 15, 48, 49] present alternative test generation
strategies that are optimized to deal with these challenges, either alone or in
combination with design modifications and side-channel-based testing approaches,
as detailed in other chapters of this text.

11.3.1.2 Side-Channel Analysis Approaches

Side channels refer to access and measurement techniques that bypass the designer
intended input–output mechanisms, e.g., the digital I/O pins of an IC. Side channels,
as the name implies, refer to auxiliary electrical and/or electromagnetic (EM) access
mechanisms, such as the VDD and GND (power supply) pins or the top-layer metal
connections in the physical layout of the IC. Side-channel attacks utilize these
auxiliary electrical paths to introduce signals, usually in an attempt to create a fault
while the IC is operational [26], or to measure signals, in an attempt to extract private
internal information [28].

Side channels can also be leveraged by the trusted authority to obtain information
regarding the integrity of the IC. For example, leakage current (IDDQ) and transient
current (IDDT) measurements have been widely used to detect manufacturing
defects [1, 2, 10, 43]. Moreover, the trusted authority can also introduce on-chip
design-for-testability (DFT) [26] and other types of specialized instruments [25, 30]
which allow access to additional side channels that are not directly accessible using
auxiliary channels to the IC. DFT components are designed to improve visibility
of the internal and localized behavior of the IC and include mechanisms to measure
path delays, localized transients, and temperature profiles. DFT added by the trusted
authority can also be leveraged by adversaries as “backdoor” access mechanisms to
internal secrets, e.g., encryption keys, so security features such as fuses must be
included to disable DFT after the IC is fabricated.

Path delay measurements, if measured at high resolutions, can also serve this
role. Unlike IDDx measurements which provide a large-area regional observation,
path delays are influenced by only those components that interact with the wires
and gates along the sensitized path (defined as a path that propagates a logic signal
transition). Therefore, path delay measurements can potentially be used to define
a high-resolution HT detection methodology. Unfortunately, path delays are also
affected by variations which occur in fabrication processing conditions, commonly
referred to as process variations. Path delay variations caused by process variation
effects are unavoidable and must be distinguished from delay variations introduced
by an HT. Failure to do so is costly both in terms of the time and effort involved
in verifying false alarms and, worse, in HT escapes that leave fielded systems
vulnerable to attack. Subsequent sections of this chapter investigate both the benefits
and challenges of using path delays as a HT detection method.
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11.3.1.3 Destructive Physical Inspection-Oriented Methods

A third tactic to determining whether a chip is free of malicious inclusions
is to apply destructive delayering and imaging techniques. Companies such as
TechInsights (http://techinsights.com/) and Analytical Solutions (https://sstp.org/
companies/analytical-solutions-inc) provide services that reverse engineer the phys-
ical characteristics of a chip to design data such as a schematic, which can
then be inspected to identify IP infringements or HT circuitry. Failure analy-
sis techniques, including scanning optical microscopy (SOM), scanning electron
microscopy (SEM), picosecond imaging circuit analysis (PICA), voltage contrast
imaging (VCI), light-induced voltage alteration (LIVA), charge-induced voltage
alteration (CIVA), are used as needed in the reverse-engineering process [50, 54].
The primary disadvantage of these methods is their high cost and long processing
times. Moreover, many destroy the chip and, therefore, cannot be used to validate
chips for field use.

11.4 Fundamentals of Delay-Based HT Detection Methods

This section introduces the three fundamental technical domains that need to
be considered by path-delay-based methodologies: (1) the test vector generation
strategy, (2) the technique employed for measuring path delays, and (3) the
statistical detection method for distinguishing between process variation effects and
HT anomalies. A commercially viable HT detection method must address each
of these in a cost-effective manner. We investigate the challenges associated with
each of these domains and describe proposed solutions in this section. Many of the
methods surveyed in Sect. 11.5 address only a subset of these technical domains and
therefore must be combined with other techniques to be fully operational in practice.

11.4.1 Path Delay Measurement Schemes and Other Concepts

When technology scaling entered the deep submicron era circa 2000, higher
frequency operation, within-die variations, coupling, modeling challenges, and
power supply noise drove the IC design and test community to more sophisticated
statistical modeling approaches for IC development and test [35, 40]. This era
also renewed interest in delay fault models [38], namely, transition fault, gate
delay fault, and path delay fault models, which were introduced earlier in previous
works [11, 34, 39, 51]. Although it became apparent that delay fault testing was
needed to keep defect levels low, workarounds were developed to allow the two-
vector sequences which define a delay fault test (described below) to be applied.
The workarounds became known as launch-on-shift (LOS) and launch-on-capture
(LOC). LOS and LOC allow two-vector delay tests to be applied while minimizing

http://techinsights.com/
https://sstp.org/companies/analytical-solutions-inc
https://sstp.org/companies/analytical-solutions-inc


230 11 Hardware Trojan Detection Schemes Using Path Delay and Side-Channel Analysis

the amount of additional on-chip logic needed to support this type of manufacturing
test.

Unfortunately, LOS and LOC delay test mechanisms also create constraints on
the form of the two-vector sequences, i.e., they do not allow the two vectors that
define a sequence to be independently specified. These constraints reduce the level
of fault coverage that can be attained for delay defects. More elaborate design-
for-testability (DFT) structures that do allow both vectors of the sequence to be
independently specified have been proposed [43] but are difficult to justify because
of their negative impact on area and performance, and the fact that they would only
be used during manufacturing test. These constraints continue to hold for modern
day SoCs. However, increasing awareness of hardware trust concerns may provide
the impetus for a paradigm shift which would justify additional on chip support,
particularly given the significant security and trust benefits associated with path
delay testing, as we discuss in the following.

11.4.1.1 Path Delay Testing Defined

Path delay tests are defined as a two-vector sequence V 1 and V 2, with the initializa-
tion vector V1 applied to the inputs of a circuit at time t0. The circuit is allowed to
stabilize under V1. At time t1, vector V2 is applied, and the outputs are sampled at
time t2. The Clk signal is used to drive both the launch flip-flops (FFs), which apply
V1 and V2 to the combinational block inputs, and the capture FFs which sample the
new functional values produced by V2. The time interval (t2 − t1) is referred to as
the launch-capture interval (LCI) and is typically set to the operational clock period
for the chip. Figure 11.4 shows the standard form of a path delay test. Note that the
standard form places no constraints on the values used for V1 and V2.

Fig. 11.4 Standard form of
path delay test

Combinational
block B1

capture

C
ap

ut
re

 F
F

s

1
V
2

V
1

Clk t0 t1 t2launch

LCl = Δt = t2 - t1

Clk

Clk

1
1

0
0

1
1 1

0
0

1
1

1
0 La

un
ch

 F
F

s



11.4 Fundamentals of Delay-Based HT Detection Methods 231

Fig. 11.5 Actual form uses
scan flip-flops

Unfortunately, external, off-chip access to the launch and capture FFs which
connect to the combinational blocks within an IC is not possible. Figure 11.5
shows a typical configuration with several cascaded combinational blocks B1
and B2, with interleaved FFs. The manufacturing test community introduced a
design-for-testability (DFT) feature called scan to address the difficulty of applying
manufacturing tests to embedded combinational blocks [43]. Scan provides a
second, serial path through all (or most) of the FFs in the IC. The second path is
commonly implemented by adding a 2-to-1 MUX before the input of every FF (as
shown in the figure). A scan-enable (SE) control signal is added as an I/O pin on
the chip to allow test engineers to enable the serial path and to shift in a sequence of
0s and 1s using a second, I/O pin referred to as scan-in (SI). The scan path allows
the internal FFs to be configured with test data that is designed to maximize fault
coverage. Once a test vector is scanned into the chip, Clk is used to apply a launch-
capture test, which captures the functional outputs of the blocks Bi in the capture
FFs. A second scan operation allows those values to be read out using a pin called
scan-out (SO).

The scan architecture shown in Fig. 11.5 allows only a single vector V1 to
be applied. Manufacturing tests that target defects which prevent circuit nodes
from switching (called stuck-at faults) can be applied directly using scan because
the process involves applying a fixed set of values to the combinational block
inputs (represented by V1) and determining if the outputs possess the correct
functional values. Stuck-at fault testing is referred to as a DC test because no
timing requirements exist, i.e., delays are irrelevant. As discussed at the beginning
of this section, the deep submicron era brought with it more occurrences of timing
related failures and the need to apply delay tests. The two-vector requirement
for delay testing can be solved in two ways as discussed earlier. Launch-on-shift
(LOS) derives V2 by shifting the scanned in vector V1 by 1 bit position using the
scan chain. Launch-on-capture (LOC) derives V2 from the outputs of the previous
combinational block, shown as B1 in Fig. 11.5 for testing paths in B2. In both cases,
it is not possible to choose V2 arbitrarily as shown for the standard form in Fig. 11.4.
It is important to recognize that these constraints exist (they are often ignored) and
that the effectiveness of deriving delay tests for detecting HT will be negatively
impacted by them.
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Fig. 11.6 (a) Reconvergent fanout and (b) circuit hazards

Another issue that is often ignored deals with obtaining accurate timing infor-
mation for paths. The timing diagram shown in Fig. 11.4 shows that it should be
possible to set the launch-capture interval (LCI), i.e., the interval of time between
the application of V2 at t1 and the capture event at t2, to any arbitrary value.
Unfortunately, this is not the case. The external tester (ATE) driving the clock
pin on the chip is limited in how close consecutive edges of Clk can be placed.
Moreover, most applications of delay tests for manufacturing defects only need to
determine if the chip runs at the operational clock frequency. Consequently, the
LCI is typically fixed for all tests, and only upper bounds on the delays of paths
within the chip can be obtained. Therefore, HT detection methods that require
picosecond resolutions for individual path delays will require alternative clocking
strategies and/or additional DFT components to be incorporated on the IC, which
are described below.

A last important issue regarding path delay testing is related to circuit hazards.
Combinational logic blocks often possess instances of reconvergent fanout. A
simple example is shown in Fig. 11.6a for a NAND gate implementation of the XOR
function. The integers inside the NAND gates represent one possible assignment of
gate delays. The test sequence AB D f01,11g is designed to test the highlighted path
but in fact propagates logic transitions along both branches of the fanout point C.
The timing diagram shown on the right side of Fig. 11.6b identifies a “glitch” on the
output F that is created by differences in the relative delays of these two paths.

Although this test is classified by the manufacturing test community as robust,
the glitch introduces uncertainty for the security community in cases where the
precise delay of the highlighted path is needed. The three transitions that occur on
F each represent the delay of a subpath in the circuit, with the first, leftmost edge
in this case corresponding to the highlighted path. Although subpath information
might prove useful in providing additional HT coverage, process variations render
this information challenging to leverage because of the difficulty associated with
deciding which edge corresponds to which subpath. In other words, the same test
applied to a different chip with different assignments of delays to the NAND gates
may reorder the edges or may in fact result in only single transition, i.e., the glitch
disappears altogether. All major synthesis tools are oblivious to hazards, making
them very common in synthesized implementations of functional units. Special
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logic synthesis algorithms are needed to construct circuits that are hazard-free, but
hazard-free implementations usually have large area overheads and therefore are
rarely used. Unfortunately, hazards are largely ignored in many proposed HT test
generation strategies even though they can invalidate tests and raise false alarms.

11.4.1.2 Similarities and Distinctions of Delay Test for Manufacturing
Defects and HT

Unlike logic-based testing, the goals of testing for defects and testing for HT
using path delay tests are very similar. Path delay tests for defects are designed
to determine if an imperfection introduced during the fabrication process causes
a signal propagating along a path to emerge later than designed. Similarly, path
delay tests for HT are designed to determine if an adversary has added fanout to
logic gate inputs and outputs, i.e., additional wires that monitor the state of the IC
(trigger) or inserted additional gates in series with the original design as a means
of modifying its function (payload). Both of these scenarios also cause the delay of
paths to increase.

The main distinguishing characteristic between defects and HT relates to false
positives. False positives are situations in which a test for an HT indicates it
is present when in fact it is not. This issue is less relevant for defects and can
be minimized using modern ATPG tool flows. False positives can occur for HT
when the detection method does not adequately account for normal delay variations
introduced by process variations. The cost associated with false-positive detection
decisions is very different for defects and HT. A false positive in manufacturing
test results in a defect-free chip is being falsely discarded, while a false-positive
HT detection can initiate a very expensive and time-consuming reverse-engineering
process of the IC.

False negatives, on the other hand, need to be handled by both manufacturing
defect and HT testing communities. False negatives are situations in which a defect
or HT exists, and it is not detected by the applied tests. False negatives can occur
in either application either because the measurement technique does not provide
sufficient resolution or because the applied tests do not provide adequate coverage.
The cost associated with false negatives can be high in either case, resulting in
system failure once the IC is installed in a customer application.

11.4.1.3 High-Resolution Path Delay Measurement Techniques

Delay-locked loop (DLL), phase-locked loops (PLLs), and digital clock managers
(DCM) are on-chip IP blocks responsible for maintaining phase alignment with
external oscillators and for creating multiple internal clocks at different frequencies
and with specific phase shifts. They can be used to create the Clk signal shown
in Fig. 11.4 for path delay testing. Although automatic test equipment (ATE) can
be used to carry out path delay testing, on-chip clock and phase shift mechanisms
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generally provide higher accuracy and resolution because off-chip parasitic resistor-
inductor-capacitor (RLC) components are eliminated and noise sources are reduced.
Many of the HT detection techniques described in subsequent sections depend on
high-resolution timing measurements, making on-chip techniques better suited.

Figure 11.7 shows three examples of measurement techniques that can be used
to provide fine-grained timing resolution. The first, called single-clock scheme
(or clock sweeping), requires repeated application of a two-vector sequence
(Fig. 11.7a). On each iteration, the frequency of C1 is increased, which moves the
launch and capture edges, i.e., the LCI, of the Clk signal closer together. The process
is halted as soon as a condition is met or violated, which is usually related to whether
the capture FF successfully captures the functional value produced by vector V2
(see Fig. 11.4). An estimate of the path delay is computed as 1/frequencyfinal where
frequencyfinal is the stop point frequency. Although this scheme requires the fewest
resources, i.e., only one clock tree is included on the chip, it lower bounds the length
of the path that can be measured.

For example, short paths would require a very high-frequency clock, which
creates undesirable secondary effects, e.g., power supply noise, that make it difficult
to obtain accurate timing measurements. Single-clock schemes which use an
externally generated (ATE) clock constrain the minimum path length even further.

The second, called dual-clock, scheme (or clock strobing), also requires repeated
application of the two-vector sequence [20, 31]. On each iteration, the phase of the
capture clock C2 is decremented by a small _t relative to C1 as shown in Fig. 11.7b.
The additional overhead introduced by the second clock tree is offset by the benefit
of being able to time a path of any length.

This is possible because the two clock networks are independent and modern
clock manager IP designs are capable of allowing the time base of C2 to be very
precisely shifted. Moreover, the power supply noise issue mentioned above is also
mitigated because only two clock edges are required to carry out a launch-capture
delay test instead of three.

The third timing mechanism, referred to as the RO scheme, is shown in Fig. 11.7c
[50] (a similar scheme called Path RO is proposed earlier by the authors of [55] but
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Fig. 11.8 Time-to-digital converter (TDC)

for application to design for manufacturability), it adds the components shown in
magenta to the design. Paths in the circuit are timed by creating a ring oscillator
(RO) configuration where the output of a path is connected back to the input of the
path using a MUX (and optionally a NOT gate as shown). A timing measurement
is performed by enabling the MUX connection and then allowing the path to “ring”
for a specific time interval. A counter (Cnter) is used to record the number of
oscillations. This is accomplished by tieing the output signal from the path to the
clock input of the counter. The actual path delay is obtained by dividing the time
interval by the counter value (note, the NOT gate and MUX add two gate delays
to the delay of the actual path). No launch-capture event is required in this scheme.
Therefore, the clock noise associated with high-frequency clocks in the single-clock
scheme is eliminated. The main drawback is related to the limited number of paths
that can be timed in this fashion. For example, paths that have hazards as discussed
in reference to Fig. 11.6 produce artifacts in the count values. As discussed, hazards
are very common in combinational logic circuits, and therefore, they will negatively
impact HT cover-age.

A fourth alternative, called a time-to-digital converter (TDC), is shown in
Fig. 11.8 [22, 25, 30]. Similar to the RO scheme, it eliminates clock strobing and,
therefore, is able to obtain path delay measurements that better represent mission
mode path delays. The TDC is an example of a “flash” converter, which is a class
of converters that digitize path delays very quickly. The path select unit shown on
the left is responsible for selecting a pair of paths, one of which can be the clock
signal. The delay chain unit shown on the right is responsible for creating a digital
representation of the relative difference between the delays of the two input paths,
PAx and PBx.

The arrival of a rising or falling transition on one path creates the first edge in
the delay chain (labeled first in the figure), while a transition on the second path
generates the trailing edge (labeled second). The width of the initial (leftmost) pulse
shown in red represents the delay difference between the two signals being timed.
The pulse propagates along the delay chain as shown by the annotations along
the top of the figure. The inverters in the delay chain include an additional series-
inserted NFET transistor as shown by the callout on the far right. An analog control
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signal labeled Calx is used to control the pull-down strength of the inverter, with
higher gate voltages allowing faster operation. The inverter chain is configured with
two such control signals, Cal0 and Cal1.

The combination of the two allows independent control over the propagation
speed of the first and second edges. A calibration process is carried out in advance
of making delay measurements to determine the best values of Cal0 and Cal1. These
analog control signals are set to allow the worst-case (widest) pulse to propagate
through most of the inverters before “disappearing.” The pulse disappears when the
second edge catches up to the first edge. The calibration process is described later in
Sect. 11.5. The output of the inverters in the delay chain also each connects to a “set-
reset” latch. The presence of a negative pulse (for odd inverters) or positive pulse
(for even inverters) changes the latch value from 0 to 1. A digital thermometer code
(TC), i.e., a sequence of 1s followed by zero or more 0s, is produced in the sequence
of latches after a test completes. The TC can be converted into a discretized delay
value (if needed) using pulse width information applied during the calibration
process. In addition to being very fast (less than 100 ns per measurement), the TDC
is also resilient to some types of circuit hazards. For example, a series of pulses can
be introduced by circuit hazards but only the widest one determines the TC value
(shorter pulses die out earlier in the delay chain). The EdgeCnt components in the
path select unit can be used to decide when hazards are present.

A fifth scheme, called REBEL in [10], also uses a delay chain to obtain timing
information. REBEL is a light-weight embedded test structure that combines the
delay chain component of the TDC (without the pulse shrinking characteristic)
with the clock strobing technique referred to in Fig. 11.7. A significant benefit of
REBEL over the TDC is complete resilience to circuit hazards. In fact, REBEL
is able to provide timing information regarding each of the edges associated with
hazards in a single launch-capture test. As indicated earlier, the edges produced by
circuit hazards each represent the delay of some internal segment in the functional
unit. Although process variations add uncertainty and diminish their usefulness,
as discussed above, the ability to instantly have knowledge of their presence adds
robustness to the delay measurement process and can help reduce the likelihood of
false-negative HT detection decisions.

11.4.2 Dealing with Process Variations

A significant benefit of techniques designed to detect HT in fabricated chips is the
availability of a golden model of the IC. The assumption made by most of the
techniques described in Sect. 11.5 is that the HT is introduced by changing the
layout, via mask manipulation or through other fabrication process-related steps.
Therefore, all design data prior to the mask and chip fabrication steps, e.g., HDL,
schematic, and even the geometric layout data itself, are considered trusted. A
golden model, and simulation data derived from it, provides a trusted reference
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to which hardware data can be compared. Path delay methods attempt to identify
anomalies in the hardware data that cannot be explained by the golden model.

The most significant challenge associated with detecting HT with path delay
testing is distinguishing between changes in delay introduced by an HT and those
introduced by process variation effects. Failing to distinguish between these two
types of delay variations leads to false-positive and false-negative HT detection
decisions. The former declares an HT is present when it is not, while the latter fails
to detect the presence of an actual HT. Minimizing false-positive and false-negative
rates is a critical design parameter of an HT detection technique.

There are three basic approaches for dealing with process variation effects
in HT methods. The first method, called GoldenChip-based, creates simulation
models or uses HT-free chips, respectively, to characterize the HT-free space. The
second, called PCM-based, uses data from process control monitors (PCM) to
“tune” the boundaries of the HT-free space derived from golden models using
chip-measured test structure data. The third, called Chip-Centric, creates a nominal
simulation model and calibrates and averages path delays to the nominal model
(or data from HT-free chips). All approaches create a bounded HTfree space
that represents normal variations in path delays introduced by process variations
and/or measurement noise. Data collected from the test chips is compared with
this bounded HT-free space. Data points that fall outside the boundaries are called
outliers, e.g., are path delays that exceed the limits defined by the HT-free space.
Chips that produce outlier data points are considered HT candidates.

The three approaches are graphically portrayed in Fig. 11.9 and are described in
more detail throughout Sect. 11.5 as needed. The 2-D shapes labeled “Simulations
with process variations modeled” and “Delay variations across chip population” can
in fact be multidimensional, with each dimension representing one path delay or one
of multiple features extracted from the set of path delays using statistical techniques
such as principle component analysis (PCA).

Fig. 11.9 Mechanisms to account for process variations using a golden model approach for HT
detection
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GoldenChip-based and GoldenSim-based techniques train a classifier using
HT-free data from chips or simulations, respectively. GoldenChip-based methods
measure delays from HT-free chips, which are then destructively validated to be HT-
free using techniques from Sect. 11.3.1.3. GoldenSim-based methods typically use
data from Spice-level simulations of a resistor-capacitor-transistor (RC-transistor)
model of the golden design. Both techniques can be expensive in terms of
reverse-engineering effort, model development, and simulation time. Delayering
technologies utilized for GoldenChip-based methods can take weeks or months. For
GoldenSim-based methods, CAD tools such as Mentor Graphics Calibre must first
be used to create the RC-transistor models of the layout using complex process
models obtained from the foundry in which the chips are fabricated. The modeling
files can be very large, e.g., 100s of MB, even for relatively small designs on order
of 20,000 gates, and simulation times can easily extend to weeks and months when
performing transient simulations with only a couple 100 input vectors. The effort
required to construct and/or confirm the HT-free boundaries using either technique
is very large and is often underreported.

Of even greater concern for GoldenSim-based techniques is the level of mismatch
that can exist between the simulation results and the hardware. Foundry models
in advanced technologies have become very complex, providing the user with a
variety of statistical evaluation methodologies including fixed corners and Monte
Carlo options. Fixed corner models are provided to enable the user to predict
worst-case and best-case performance of the chip by modeling the range of global
process shifts that can occur over time. Unfortunately, this typically expands the
HT-free space beyond what is required to represent the behavior of the chips
under test. The expansion leads to a decrease in the sensitivity of HT methods and
increases the level of mismatch between simulation and hardware data. Moreover,
foundry models typically provide limited capabilities for modeling within-die
variation effects, making it difficult to predict the uncertainties related to specific
hardware path delays. These modeling and simulation challenges are compounded
by measurement noise that occurs during chip testing and by non-zero jitter and
drift tolerances introduced by the tester during the generation and delivery of high
frequency clocks. Taken together, these issues work to increase in the possibility of
false-positive and false-negative HT detection decisions.

11.4.3 Test Vector Generation Strategies

The last issue deals with an important distinction that exists between fault models
used in manufacturing test and those required for detecting HT. The manufacturing
test community developed several fault models, including transition delay faults and
path delay faults, for dealing with timing problems resulting from a wide variety of
defect mechanisms. For example, the transition delay fault (TDF) model assumes
that defects occur on individual nodes in the circuit and that they manifest as slow-
to-rise and slow-to-fall signal behaviors at those nodes. The path delay fault (PDF)
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model, on the other hand, makes no such assumptions, i.e., it accounts for defects
which may in fact be distributed across one or more logic gates and wires that define
the paths, and as a result, the PDF model provides more complete information about
the integrity of the tested chip.

Unfortunately, obtaining 100% PDF coverage requires all (or a large fractions)
of the paths in a chip to be tested. For even moderately sized circuits, the
costs associated with the generation and application of a complete PDF testset is
prohibitive. This is true because the number of paths can be exponentially related to
the number of inputs to the chip (or functional unit). Therefore, most chip companies
generate and apply TDF vectors instead because the number of such tests is linear
to the number of circuit nodes in the design. Fortunately, for the security and trust
community, the TDF model is a better match to the types of malicious modifications
an adversary is likely to make to the layout. The node-oriented TDF model used for
defects is leveraged by a large fraction of the proposed HT detection techniques
described in Sect. 11.5.

There are two important points to consider with regard to test generation for HT
detection. The first relates to the options that are available when the TDF model is
used. Although far fewer tests are required under the TDF model to obtain high
levels of HT coverage (when compared to the PDF model), there are typically
many choices for the path that is sensitized through each of the nodes. A variety
of techniques are proposed by authors of published work including random vectors,
an incremental coverage strategy driven by the sequence of vectors generated so
far, traditional TDF vectors, or, in some cases, the test generation strategy which
is left unspecified. Others leverage the TDF model and direct ATPG to target the
shortest paths through the node because the additional delay added by the HT (via
fanout load or gate insertion) has a larger fractional impact on the path delay. The
traditional TDF model for defects, on the other hand, typically target the longest
paths as a mechanism to ensure that at least this subset of tested paths meet the
timing constraints.

The length of the path relates to the second important point regarding test
generation. Automatic test equipment is outfitted for manufacturing test, which is
focused on testing the longest paths. For test cost reasons, it is common that only
one clock frequency is used to apply TDF tests to the chip because the primary goal
of manufacturing test is to ensure that the delays of all tested paths are less than
the upper bound defined by the clock period. The most sensitive tests for defects
therefore are those that test the longest paths. This is true because the longest paths
minimize the slack, i.e., the difference between the clock period and the delay of the
tested path.

Many believe that these manufacturing test constraints for defects are not
sufficient for providing high levels of HT coverage. This is reflected in the proposed
use of clock sweeping, clock strobing, and other on-chip embedded test structures
for obtaining precise measurements of path delays. In other words, the slacks
inherent in tests for defects provide too many opportunities for adversaries to “hide”
the additional delay of the HT in the slack, and, therefore, a paradigm shift is
required regarding the manner in which delay testing is carried out on the test floor.
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Clock sweeping and clock strobing are expensive in terms of test time, and HT
detection techniques which use these clocking strategies need to account for the
higher levels of clock noise associated with high-frequency clocks and invalidations
introduced by circuit hazards. It remains to be seen how the economic trade-offs of
delay-based HT detection schemes will play out.

11.5 HT Detection Methods Based Path Delay Analysis

This section is dedicated to describing a selected subset of the proposed HT
detection strategies that have been proposed over the last decade. Our goal is to
describe methods that offer some unique perspective, and therefore, this exposition
does not provide an exhaustive survey of every published paper on the topic.
The choice to include a description of a published work was based on whether
it promoted the state of the art in at least one of the three technical domains
described earlier, including the path measurement technique, the statistical method
used to distinguish between HT anomalies and process variation effects, and the test
vector generation strategy. The techniques are presented chronologically instead of
by technical domain. The latter organization presented challenges because many
techniques propose solutions to more than one domain.

11.5.1 Early HT Detection Techniques and On-Chip
Measurement Methods

The first works on using path delays for HT detection are described in [24] and
[32]. The primary focus of each paper is on only one of the technical domains, in
particular [24] on a statistical method for distinguishing between process variations
effects and HT and [32] on a high-resolution on-chip measurement technique.

In [24] the HT detection method assumes that high-resolution path delay
measurements are available, i.e., no measurement strategy is proposed. Although
not explicitly stated, the test vector generation strategy appears to be based on
the standard transition delay fault model. They base their detection method on
the GoldenChip-based model described in Sect. 11.4.2. A multivariate statistical
technique is used to extract distinguishing features from the full set of path delays.
HT-free chips are used to construct the HT-free boundaries, which they refer to as
a fingerprint. The fingerprints define the boundaries of the shape labeled “Delay
variations across chip population” shown on the left side of Fig. 11.9. HT are
detected by comparing the delay fingerprints measured from the untrusted test chips
with the boundaries defined by the HT-free fingerprints.

They demonstrate their technique using simulations in which ATPG-derived two
vector sequences are applied to a DES functional unit. Principle component analysis
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Fig. 11.10 Convex hull characterization showing detection of an HT [24]

(PCA) is used to extract distinguishing features from a set of 10,432 simulated path
delays as a means of reducing the HT-free space to a 3-D structure. A statistical
technique based on a convex hull characterization of the HT-space is used to define
the boundaries for each of the 64 outputs of DES. Four HT are inserted into another
set of models, with three representing explicit payload HT and one representing an
implicit payload HT. The explicit payload HT inserts one or more additional gates in
series with paths in the HT-free design, while the implicit payload HT is represented
as a simple counter with no ability to change the functional characteristics of DES.
They show that the explicit payload HT are easily detected (see Fig. 11.10), while
the implicit payload HT is only detected approx. 36% of the time.

A high-resolution on-chip path delay measurement technique is proposed in [32],
which is extended in [44] to include a GoldenSim-based HT detection strategy. The
measurement technique is based on the dual-clock scheme described in reference
to Fig. 11.7. A set of shadow registers are added to each of the outputs from the
combinational components of the design, next to the capture FFs or destination
registers as shown in Fig. 11.11a. The second clock of the dual-clock scheme,
CLK2, is used to drive the clock inputs of the shadow registers. CLK2 is generated
as a “fine-phase-shift” adjusted version of CLK1 using a DCM on the FPGA.

The process of measuring the path delay of the combination path from Fig. 11.11
begins by setting the phase shift of CLK2 to a small negative value, on order of
10–100 ps (see Fig. 11.7). A two-vector sequence is applied to the source registers
using a launch-capture test. The comparator, also added to the design, is used to
determine if the captured values in the destination and shadow register are the
same or different. If they are the same, which is the case when the clock strobe
operation begins, the negative phase shift difference between CLK1 and CLK2 is
increased, and the same two-vector sequence is applied. This process is repeated
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Fig. 11.11 (a) On-chip path timing architecture proposed in [32] and (b) equation giving actual

until the comparator indicates the values are different. The actual delay of the path
is computed by multiplying the number of phase shifts, np, by the _tp provided by
each phase shift increment. Subtracting this value from the CLK1 period yields an
estimate of the path delay, tpath, as given by the equation in Fig. 11.11b.

The extended work in [44] investigates the detection capabilities of a GoldenSim-
based technique on an 8-bit Braun multiplier functional unit. HT are modeled
as series-inserted two-inverter chains. The proposed method derives a path delay
distribution using simulation data but is constrained by the measurement resolution
provided by the timing technique. Process variations are modeled by varying
transistor threshold voltage, Vth, and transistor channel length, Leff, in simulations
with and without HT. Data from these simulations is used to define the boundaries
of the shape labeled “Simulations with process variations modeled” shown on the
left side of Fig. 11.9. The amount of skew in the mean of the distributions is used
as the detection criteria. The results using four inserted HT show that three can be
detected and the last one is detectable on some outputs but not others.

11.5.2 Ring Oscillator-Based HT Detection Approaches

A distributed set of ring oscillators (RO) is proposed in [63] as a means of
detecting HT. The array of ROs is distributed uniformly across the (x,y) space of
the functional unit as shown in Fig. 11.4. The detection criteria are based on HT
power consumption. If an HT is present, the test stimulus applied to the functional
unit may cause at least some gates within the HT to switch (referred to as partial
activation in [54]), and the HT will necessarily consume power. The additional HT
power consumption creates localized voltage drops on the supply rail (VDD) that
can be detected by comparing the delay of a nearby RO with that of an HT-free chip
or simulation. The delay variations introduced by the HT-switching-induced voltage
drops in the RO are integrated by the RO over time and are reflected in a counter



11.5 HT Detection Methods Based Path Delay Analysis 243

Fig. 11.12 RO distribution
architecture proposed in [63]
for detecting HT switching
activity

value. A counter is connected to the RO using MUX2 as shown along the bottom
of Fig. 11.12. MUX1 is used to select and enable one RO at a time as a random,
LFSR-based test vector sequence is applied to the inputs of the functional unit. This
process is repeated for the n ROs (12 in figure) with the set of counts representing
the signature for the chip.

Process parameter variations are accounted for by collecting data from a large
number of HT-free chips (GoldenChip-based model), and a statistical analysis is
applied to the signature using principle component analysis (PCA) and correlation
analysis. One of the techniques, called advanced outlier analysis, analyzes data
obtained from pairings of ROs as a means of detecting regional power droop
anomalies. The results shown in Fig. 11.13 plot the RO pairings that show the best
detection capability for each of the six HT inserted into the design. The points
within each graph represent experimental results with process variations derived
from FPGA experiments. The separation of the red HT-inserted and blue HT-free
points illustrates that nearly all are detected in every FPGA.

The authors of [45] propose a design-for-trust (DFTr) technique designed to
detect HT by creating ROs from the functional paths in a design (a related design-
for-manufacturability scheme was proposed earlier in [55] for measuring critical
path delays). They propose an algorithm that selects paths with the maximum
number of “unsecured gates,” i.e., gates that have not already been included in other
ROs, i.e., a method characterized as an incremental coverage-driven strategy. For
each selected path, a MUX, a control signal, and optionally an inverter are added to
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Fig. 11.13 Subset of results from [63] using proposed advanced outlier analysis method on
FPGAs. (a) T7. (b) T8. (c) T9

the design to complete the ring. Automatic test pattern generation (ATPG) is then
used to generate input patterns that place nondominant values on the off-path inputs
of gates sensitized by the ring. Nondominant value refers to gate input values that do
not determine the gate’s output value by themselves, e.g., a “1” is the nondominant
value for an AND gate. Off-path inputs refer to side inputs of gates in the RO that
are not on the sensitized path of the RO. These conditions ensure that the RO will
“ring” when enabled by the control signal.

Figure 11.14 shows the ISCAS-85 benchmark circuit C17 configured with a
set of ROs.Simulation experiments with process variation effects modeled are
carried out to determine the golden frequencies, Fgolden (GoldenSim-based model).
HT detection is carried out by comparing Fmeasured obtained from each of the
untrusted test chips with Fgolden. The authors implemented their technique on a
Xilinx Spartan 3 FPGA using six ISCAS-85 benchmark circuits. The number of ROs
required to attain a specific level of HT coverage is given in Fig. 11.15a. As is typical
of test generation for manufacturing defects, coverage per RO drops dramatically
for coverage targets above 90%. Test times are given in Fig. 11.15b which shows
similar trends. Although the proposed technique is very promising, the authors do
not address hazards that occur within circuits with reconvergent fanout.
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Fig. 11.14 ISCAS-85
benchmark C17 configured
with a set of Ros using the
DFTs method proposed in
[45]

Fig. 11.15 (a) Number of
ROs required as a function of
coverage for six ISCAS-85
benchmark circuits, and (b)
test time required to obtain
Fmeasured for each chip [45]
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11.5.3 Lightweight On-Chip Path Timing Techniques for HT
Detection

Two on-chip delay measurement techniques, called TDC and REBEL, are proposed
in [10]. An HT detection method which leverages REBEL [29] is described in the
following. A second HT detection method which uses the TDC [22] is covered in
Sect. 11.5.11. REBEL is designed as an embedded test structure (ETS). ETS is
an instrument that is integrated directly into functional units as a mechanism to
obtain regional, high-precision in-formation about its operational characteristics.
ETS must be designed to be minimally invasive and low in overhead to avoid
violating power, area, and performance constraints associated with the functional
unit. REBEL satisfies these ETS attributes by leveraging components in the existing
scan chain architecture.

REBEL is designed to provide regional, high-resolution measurements of path
delays. It also addresses the clock noise issue discussed in Sect. 11.4.1 related
to using single-clock schemes to obtain timing information for short paths. The
architecture of REBEL allows paths within the functional unit to be extended
along a delay chain, effectively eliminating the need for high-frequency clocks.
The delay chain is created using the existing capture FFs attached to the outputs
of the functional unit. Figure 11.16a shows an example configuration with REBEL
integrated into a pipelined functional unit. A path under test (PUT) within the
functional unit is highlighted as well as the delay chain that is created through the
capture FFs. Row control logic is added to the design to enable one of the path
outputs to be selected as the target of the timing measurement process.

A path is timed by applying a two-vector sequence to the inputs of the functional
unit. The transition along the PUT emerges at the output and propagates along
the delay chain. The capture edge of the clock creates a digital snapshot of the
transition by storing in the capture FFs a sequence of digital values which represent
its behavior over time. Each of the snap-shots immediately reveal whether the
propagating signal has more than one transition, i.e., whether a hazard is present
or not. A sequence of digital snapshots is shown in Fig. 11.16b as rows labeled 120
to 180, which represent a clock sweeping sequence of LCIs as described earlier
in reference to the single-clock scheme of Fig. 11.7. For each successive LCI, the
propagating falling transition driving the input of the capture FF15 is given more
time to propagate along the delay chain. The path tested in this example does
not generate any type of hazard (is hazard-free); otherwise, one or more of the
snapshots would show interleaved “1s” in the sequence of “0s.” In practice, the LCI
test sequence is actually applied in reverse, starting with 180, because larger LCI
increases the amount of temporal information stored in the capture FFs regarding
the propagating transition. The larger time window provides a better opportunity to
detect hazards which can invalidate the HT test.

As proof of concept, a 90 nm chip is designed and tested which allows paths
in the functional unit (in this case, an eight-function floating point unit or FPU)
to be reconfigured with and without an HT. Although the experimental results
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regression analysis applied to path delays measured from 62 chips for an HT-free path (x-axis) and
a second path (y-axis) with and without the inclusion of HT

presented use hardware data to define the HT-free space (GoldenChip-based model),
the authors also acknowledge that a GoldenSim-based approach is possible.

The statistical method proposed in [29] is based on linear regression analysis.
Figure 11.16 shows a subset of the results in which delays from one HT-free path
(x-axis) and a second path that can be configured with and without HT (y-axis)
are compared. The HT-free space is highlighted in green and is delineated by three
sigma regression bands. It is derived using data from 62 copies of the test chips
configured without the HT included in the second path. The red and blue points
each represent the results with the second path configured with one of two possible
HT. All but one of the data points fall outside the regression limits and are therefore
classified as detected. Additional results for a larger set of HT are reported in the
paper.



248 11 Hardware Trojan Detection Schemes Using Path Delay and Side-Channel Analysis

11.5.4 Self-authentication: A Golden Model-Free HT
Detection Method

A golden model-free HT detection method is described in [33] which inserts a
framework of HT detection sensors into the layout representation of a design.
The sensors are designed as replicas of common sequences of logic gates (path
sequences) that already exist in the design1. Custom CAD tools are used to
decompose the timing graph of a design to identify a set of commonly occurring
delay features. Delay features correspond to layout-specific patterns of gates and
interconnect that share common geometries and sensitivities to process parameter
variations. Similarity among features is determined by evaluating the changes
in delay that occur when the path sequences are subjected to similar process
conditions. Two sequences are considered similar if the changes in their delay track
within a small error tolerance.

Once a set of target path sequences are identified in the design, a set of matching
sensors are integrated into the layout in close proximity to the targeted path
sequences. After fabrication, the delay fingerprints of the sensors and corresponding
full-length paths (that contain the path sequence(s)) are measured. Data from each
of the sensors is used to construct an HT-free delay range, which captures the
measurement noise profile for the sensor. A similar process is carried out for
each of the paths. The delay associated with other components of the full-length
paths, in which the path sequences are contained, is accounted for using variation-
aware expressions. A nominal simulation or static timing analysis estimate is
used to determine the nominal delay of the sensor, which, in combination with
the measured delays, allows the delay of the full-length paths to be predicted.
Correlation analysis is used to compare the predicted and measured delay ranges
for the sensors and paths. Outliers are considered anomalies introduced by HT in
either the sensor, the path, or both. Figure 11.17 provides a flow diagram of the
self-authentication process and shows examples of the HT insertion and detection
scenarios considered [33].

The authors assume on- or off-chip delay measurement schemes such as those
described in reference to Fig. 11.7 are available. The sensors act as silicon-anchor
points for calibration, and therefore the proposed HT detection technique shares
similarities to the process control monitor approach described in Sect. 11.4.2 and
referred to as “PCM-based.”

The authors apply the technique to the ISCAS-89 benchmark circuits, synthe-
sized to layouts using a 90 nm TSMC technology. Process variations are modeled in
the simulations by varying major device parameters within 10% of nominal using
a Monte Carlo selection process. A multilevel hierarchical model of the layout is
processed as a means of partitioning the design into regions where it is assumed that
process variations are more highly correlated. Sensors are identified and designed
but constrained to use no more the 15% additional area in the layout. A set of

1A self-referencing technique is also proposed earlier in [19] but is based on the correlation of
transient power supply currents produced by replicas of the functional unit.
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Fig. 11.17 (a) Self-authentication chip testing process proposed in [33] and (b) sensor (both
simulated and measured) and measured full-length path delay range illustrations under three
HT attack models. Mismatches in the overlap among the sensor distributions or low levels of
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paths are randomly selected to serve as the HT insertion points for evaluation of
the method. A set of 30 HT are inserted into each path with varying amounts of
delay to determine sensitivity, and 10 K process models are created and simulated
(300 K per path). HT detection rates are shown to improve from between 2 and 16%
when compared to a similar method that does not leverage sensors as a sensitivity
enhancing technique.

11.5.5 Linear Programming Methods and Test Point Insertion
for HT Detection

Linear programming method is proposed to derive leakage, power, and delay
characteristics of individual gates based on solving a system of equations, referred
to as gate-level characterization (GLC) [42, 56, 57]. Chip measurements of power
and delay are used in the system of equations, along with estimates of measurement
errors, to derive scaling factors for the parameters associated with the logic gates in
the design.



250 11 Hardware Trojan Detection Schemes Using Path Delay and Side-Channel Analysis
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GLC is combined with a test point insertion technique in [57] as a means
of improving coverage of HT. The authors propose to add FFs (test points)
to components of the design that exhibit reconvergent fanout. An example of
reconvergent fanout is shown in Fig. 11.18 from [57] where both the fanout and
reconvergence points are identified. The task of generating path delay tests for
circuits which contain complex reconvergent fanout networks is an NP-complete
problem. Automatic test pattern generation (ATPG) algorithms can fail to determine
two-vector sequences that are able to test the individual paths within reconvergent
fanout blocks, such as those labeled “path 1” and “path 2,” even when such tests
exist. Although in the example it is trivial to derive test patterns that test these two
paths individually (node assignments are shown that allow path 1 to be tested by
itself), there are other more complex configurations which require an exhaustive
search, proportional to 2n, to find suitable two-vector sequences.

The authors propose an algorithm that first identifies all paths that can be easily
tested and then a set of paths in reconvergent fanout logic structures that are the best
candidates for test point insertion. A SAT-based process is proposed to select input
vectors that maximize the number of independent linear equations for application of
GLC. A second circuit partitioning scheme based on maximum fanout-free cones is
proposed in [56] to increase the number of delay access points within the circuit as
a means of improving coverage further for large designs.

11.5.6 Process Calibration and Test Vector Selection for
Enhancing HT Detection

A delay calibration technique is described in [12] that leverages information
obtained from test structures as a means of detecting HT delay anomalies that
are very small, i.e., within the margin of those introduced by process parameter
variation effects in advanced technologies. The test structure measurements are used
to estimate the global mean shift in delay introduced by variations in the process
parameters for each chip. Based on the estimate, the mean value for the paths in the
region of the embedded test structures is calibrated to eliminate the mean shift.

The process flow proposed in [12] is shown in Fig. 11.19. The first step is to
extract information from the embedded test structures, such as ring oscillators, as
a means of obtaining process parameter information for each chip. Test structures
are added to the layout in regions close to the functional unit to be tested. This
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ensures that both global process variations and systematic within-die variations are
accurately captured in the measurements. Path selection and vector generation are
carried out such that test cost is minimized. ATPG is constrained to generate robust
tests (when possible) for critical (longest) paths passing through each possible HT
site, and therefore test generation is based on the traditional TDF model.

Path delays are measured using the dual-clock scheme shown in Fig. 11.7 as a
means of minimizing clock noise and obtaining high-resolution measurements. The
integration of silicon anchor points for calibration of process variations classifies
the proposed technique as PCM-based. An estimate of the mean shift in each region
of the chip is computed using test structure data and a minimum mean square
(MMSE) estimator. The MMSE finds the mean that minimizes the sum of the
squared differences between the test structure data and the computed mean as given
by Eq. 11.1. This estimator can then be used to calibrate all the path delays for a
given chip by simply subtracting the mean from each measurement.

M∑

i=1

(di − μ)2 (11.1)

A novel nonparametric hypothesis testing method based on a likelihood-ratio test
is proposed which leverages integer linear programming (ILP) for determining the
number of chips that need to be tested to achieve a specific confidence level against
false-positive and false-negative HT detection decisions.

The technique is evaluated on a set of inverter chains of length 2 through 12
with and without HT insertions. HT are modeled using a minimum size inverter
connected to the output of the first inverter in the chain. Monte Carlo simulations
were performed using circuit models with different types of global and within-die
process variations modeled, referred to as case I (global only), case II (across-chip
random and systematic within-die only), and case III (local random and systematic
within-die only). Figure 11.19b shows that the best results are obtained for case
III which uses simulation models with only local process variations included. The
proposed calibration method in this case makes this possible by eliminating case I
and case II via the test structure measurements, which minimizes the _/_ statistical
variation parameters as well as the number of required chips.

This technique is extended in [13] to address the best paths to target for HT
detection. In contrast to their earlier work, the authors argue that the shortest
paths through each HT site maximize detection sensitivity (see shortest path TDF
discussion in Sect. 11.4.3). The column labeled _/_ in Fig. 11.19b expresses the
impact of the HT on path delay and is the focus of the current work. Given that the
adversary’s goal is to minimize the impact of the HT on path delay, shorter paths
are better suited to reveal these small delay variations because the (constant) delay
added by the HT becomes a larger fraction of the total delay for short paths. A
similar argument regarding the effect of process variations also holds. In particular,
the _ of variations is approx. Proportional to the nominal delay of the path, i.e.,
shorter paths have smaller _. This characteristic is illustrated in Fig. 11.20 which
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TABLE V. DELAYS MEASURED ON VARIOUS INVERTER CHAINS (L: INVERTER
CHAIN LENGTH, s ;  STD. DEV.. OF DELAY, Δ: EXTRA DELAY INDUCED BY A
TROJAN, μ: MEAN DELAY, AND N: THE NUMBER OF CHIPS TO BE TESTED)

Inputs: Process variations model

Circuit layout (or netlist), for blocks with less than 100μm x 100μm

Extract process variations information from test structures
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Fig. 11.19 (a) Process flow model proposed in [12], (b) simulation-derived delay statistics
obtained by applying the proposed method under different types (global and within-die) process
variations

shows the path distributions for a long path (top) and short path (bottom) with
and without HT. The HT, represented as an “additional fanout,” creates a more
distinguishable shift in the short path distribution when normalized as a fraction
of the total width of the distribution. In both cases, the HT adds only 8 ps to the path
delay but the smaller _ corresponding to the shorter path provides a higher level of
confidence in detecting the anomaly.

The authors also argue that shorter paths are more likely to be the targets
of an HT insertion because longer paths, particularly critical paths, increase the
chance of accidental discovery. Moreover, generating vectors for shorter paths is
generally “easier” for ATPG tools to accomplish because fewer side inputs need to
be “justified” (forced to specific values) in order to sensitize the path from PI to PO.
The main benefit of short paths, however, according to the authors, is the reduction
in the number of chips that need to be tested (see column labeled N in Fig. 11.19b).
On the downside, shorter paths are harder to time, especially when using the single
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Fig. 11.20 Impact on path delay distribution for a long and short path, with short path showing
larger fractional change [13]

clock scheme from Fig. 11.7, because the chip needs to be tested at much faster than
at speed to obtain precise delay measurements. The dual-clock scheme provides a
solution, but it also requires the addition of a second clock tree as described in [32].
An algorithm is presented that both selects the shortest path through each circuit
node (each HT site) and enforces constraints on the robustness of the test to ensure
the target path is in fact the path tested by the two-vector sequence. The authors
present simulation results using the ISCAS-89 benchmark circuits that show a 2.1×
improvement in test cost over a traditional TDF strategy. They further show that
the improvement increases to 4.51× when combined with the calibration technique
proposed in [12].

11.5.7 Clock Sweeping for HT Detection

The authors of [60] propose a clock sweeping method to address sensitivity issues
associated with using a traditional TDF model and the path delay fault (PDF) model
for detecting HT. Clock sweeping refers to the single-clock scheme referenced
earlier in Fig. 11.7 in which the clock frequency is incrementally increased (by a
fixed step size) and a two-vector sequence is applied repeatedly until a delay fault is
detected in the capture FFs for one or more of the tested paths. The authors propose
to generate tests using the TDF model described earlier and acknowledge that short
paths whose delay is smaller than the maximum frequency are not testable because
of the limits of ATE and clock noise. The algorithm that they propose is shown in
Fig. 11.21a. It partitions TDF tests into two groups, those sensitizing long paths to
be tested in the proposed HT delay technique and those sensitizing short paths to
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Fig. 11.21 (a) Algorithm proposed for HT detection in [42], (b) chip signatures recording the first
failing frequency for pattern (Px) and capture FF (FFx), and (c) MDS/convex hull results for 2 HT

be tested using a power-based HT method. They argue that long paths experience
less switching activity because more conditions need to be met in order to sensitize
them. Therefore, power-based methods are less effective for detecting HT on these
paths.

The failing frequencies for long paths are recorded in a table as shown in
Fig. 11.21b. Chips are listed on rows, while the columns identify the pattern, Px, and
Capture FF, FFx, of the tested paths. A multidimensional scaling (MDS) statistical
method is proposed for distinguishing between delay variations introduced by
process variation effects and those introduced by HT. MDS leverages PCA to map
from a higher-dimensional space to a smaller space. Unlike the technique proposed
in [24], however, they configure MDS to preserve signature components that
represent dissimilarities introduced by HT delay anomalies in the lower-dimensional
space. A 3-D convex hull is constructed using signatures from HT-free chips and
outlier data points from the untrusted chips are classified as HT candidates. Their
detection technique therefore is based on the GoldenSim-based or GoldenChipbased
model described in reference to Fig. 11.9.

An ISCAS-89 benchmark circuit s38417 is used in their simulation experiments
to validate the technique. Simulation models representing process variations are
constructed by varying threshold voltage, oxide thickness, and channel length over
5% of nominal both globally and locally to model within-die variations. A total
of six HT are introduced in a layout representation of the benchmark circuit with
varying trigger and payload configurations. The clock frequency range and step size
used for clock sweeping is set to 700 MHz to 1.5 GHz and 10 ps, respectively. The
results of applying MDS and constructing a convex hull are shown in Fig. 11.21c.
The detection rate for HT #1 is 64%, while the rate for HT #2 (and the remaining
four HT not shown) is 100%. A similar set of results are obtained in hardware
experiments using a set of 44 FPGAs.
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11.5.8 A Golden Chip-Free Method for HT Detection

The authors of [36] propose the use of process control monitors (PCMs) that are
designed to eliminate the need for a set of HT-free golden chips. PCMs are in-line
test structures traditionally inserted by process engineers for tracking wafer-level
variations in transistor parameters such as threshold voltage. The authors use the
delay of a special path as a surrogate for a PCM as a silicon calibration method.
Path delays from this PCM are measured from the test chips and used to improve
the accuracy of the classification boundary first obtained from simulation data. This
detection strategy is therefore PCM-based as discussed in Sect. 11.4.2.

The authors employ nonlinear regression and kernel mean matching techniques
to learn the relationship between PCM data and side-channel fingerprints, in this
case, output power measurements from a set of 40 wireless cryptographic chips
which instantiate AES with and without HT. A series of “learned” boundaries are
incrementally tuned as each of five statistical transformations are applied using
simulation data obtained from the PCM and AES process models and from the
PCM and power measurements from the test chips; Fig. 11.22a shows the first set of
transformations which are derived from simulation data, illustrating transformations
that take place in the shape and boundaries of the HT-free space. The remaining
transformations are derived using PCM and path delay data measured from a set of
HT-free chips and are illustrated in their paper. Figure 11.22b shows experimental
results in which all 80 HT are correctly classified as HT infested, while only three
of the HT-free chips are classified incorrectly, i.e., are false positives.

Fig. 11.22 (a) Initial simulation-based statistical transformations designed to iteratively learn the
best boundaries associated with the HT-free fingerprint space for a wireless cryptographic IC from
[57], (b) top three principle components from PCA analysis after application of proposed statistical
learning process. All 80 HT are detected, and all but three of the HT-free chips (of 40) are classified
correctly
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11.5.9 HT Detection by Comparing Paths with Structural
Symmetry

An HT detection method based on validating delay consistency among instances of
distinct transistor-level paths with the same topology is proposed in [62]. Symmetry
is defined by considering both the structural characteristics of the logic gate(s)
and state assignments on its inputs under each of the vectors of an applied two-
vector sequence. For example, a NAND gate exhibits symmetry in delay by having
two identical pull-up paths through its two time, during a delay test. An HT
detection algorithm is proposed that first identifies PMOS transistors and when input
transitions are crafted to exercise each of these paths, at a times, during a delay test.
An HT detection algorithm is proposed that first identifies transistor-level symmetry
in the netlist or layout and then adds constraints to ATPG algorithms to test pairs of
pairs that exhibit this symmetry. A self-referencing detection algorithm is proposed
that compares the delays of symmetrical paths and classifies a chip as having an HT
when the two path delays are not identical within a threshold.

The authors present an example of transistor-level symmetry using the ISCAS-
85 c17 benchmark circuit, which is reproduced with enhancements in Fig. 11.23.
The gate-level netlist of c17 is shown on the far left, while transistor-level netlists
representing subsets of the netlist are shown in (a) through (d). The transistor-
level diagrams are annotated with numbers to enable the NAND gates to be cross
referenced to the c17 schematic. The transistor level schematics along the top and
bottom rows represent the two paths that exhibit symmetry. The first two-vector
sequence of the symmetry pair is labeled α1 and α2, while the second two-vector
sequence is labeled β1 and β2. The two-vector sequences used as the tests are given
as (α1, α2) and (β1, β2).

The red highlighted components show the pull-up and pull-down paths that
connect the output of each NAND gate to one of the supply rails, which is
determined by the logic state imposed by each of the four vectors. For example,
the outputs of the three NAND gates in (a) are connected to VDD, GND, and
VDD for gates labeled 2, 3, and 5. The key observation is the consistency of the
highlighting between (a)–(c) and (b)–(d) and the fact that the actual gates in these
pairs are different except for one of the gates. In other words, the application of the
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Fig. 11.23 Transistor-level symmetry illustration adapted from [56]
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two vector sequences tests the same pull-up and pull-down paths in the NAND gates
but do so along different paths in c17. Given that the NAND gates have identical
layout structures, the path delays are expected to be nearly identical. Therefore, if an
adversary inserts one or more payload gates in series with either of these paths, the
delays will be different and can be flagged as a malicious modification. Simulation
and FPGA results are shown to demonstrate this concept.

The delay changes introduced by global shifts in process variations (and within-
die variations to some degree) are eliminated because the comparisons are made
between paths on the same chip and preferably in close proximity. Therefore, none
of the golden model techniques referenced in Sect. 11.4.2 for dealing with process
variations is required. However, margins are needed to account for measurement
noise and routing differences in the two paths; otherwise, the false-positive rates
will be high. The authors indicate that finding structural symmetries in the layout
and then deriving qualifying test patterns can be challenging given the large number
of constraints that must be satisfied to ensure consistency in the behaviors of the
pull-up and pull-down components of the tested paths. This feature can be argued as
a benefit because it makes the task difficult for the adversary to carry out and then
defeat the technique by inserting the HT such that the delays of symmetrical pairs
of paths remain consistent.

11.5.10 HT Detection Using Pulse Propagation

A high-resolution HT detection method is proposed in [18] that is based on
propagating pulses along digital logic paths. HT detection is accomplished by
detecting whether pulses survive, i.e., do not die out, before reaching the capture
FF where they are detected. Minimum pulse widths that allow the gates along the
path to sustain the pulse are constrained by only one of the gates along the path,
in particular, the gate that has the largest rise C fall time. The authors argue that
this characteristic greatly enhances the HT detection sensitivity of their method to
capacitive loading effects over other delay testing methods, particularly for long
paths and when considering process variation effects.

Delay variations introduced by process variation effects are cumulative, and,
therefore, the HT-free boundaries or margins associated with standard delay meth-
ods must be increased for longer paths, which reduce their sensitivity to small,
fixed-sized variations in delay introduced by HT. On the other hand, pulses will
shrink when they encounter the capacitive load of an HT and will die out at the gate
that was used to determine the minimum pulse width for the path (note: this assumes
the HT insertion occurs before the gate that was used to define the minimum-sized
pulse). Therefore, the authors argue that HT detection sensitivity remains constant
and is independent of the length of the path. The embedded components needed for
pulse generation and pulse detection can be designed as shown in Fig. 11.24a, b,
respectively, and these components can be shared among multiple FFs, as shown for
the pipelined architecture in Fig. 11.24c.
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An algorithm is presented that uses n random test patterns that are each evaluated
through simulation using k pulses of different widths. Test for paths that are
able to propagate the pulse from a launch FF and to a capture FF is deemed
valid. The authors refer to these paths as single-path sensitizable2. Simulations
are again used to determine the minimum pulse width for each path using worst-
case process models. HT are emulated on each node of every path using different
capacitive loads to determine the minimum capacitance that succeeds in “killing”
the propagating pulse.

The proposed method is validated using simulation experiments on a chain of
NAND gates, a ripple carry adder and 4 × 4 multiplier. Process variations are
modeled by changing threshold voltage (Vt) by +/− 10% globally and +/− 10%
locally. The detection results for the chain of NAND gates are shown in Fig. 11.24d,
with “pulse test” results corresponding to the proposed technique and “delay test”
identifying results using a standard delay test strategy. The columns labeled “Min
Cap Detected” represent the smallest HT capacitive load that was detectable for
the paths of different lengths specified by the rows. The last column expresses the

2Single-path sensitizable refers to paths that are hazard-free robust testable, indicating all side-
inputs along the path must remain constant under both applied vectors.
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improvement in sensitivity of the proposed method over the standard delay test
method and supports the claim that the pulse method remains sensitive to small
HT even when the path length becomes very large. Similar results are obtained for
the other functional units as reported in [18].

11.5.11 Chip-Centric Calibration Techniques for HT Detection

The authors of [21, 22] propose HT detection methods which use actual path delay
measurements, in contrast to PCMs and other types of on-chip test structures,
as a mechanism to calibrate for global shifts and within-die process variation
effects3. These methods represent variants of the chip-centric technique described
in Sect. 11.4.2. Chip-centric techniques can potentially provide higher levels of
sensitivity to HT because the path delays used in the detection method also serve as
the basis for calibration. Moreover, by using chip-measured path delays to shrink
the HT-free space, as depicted on the right side of Fig. 11.9, such methods can
also simplify the development of a simulation-based golden model, as demonstrated
in [22].

The authors of [21] average path delays measured from a set of chips to
reduce the adverse impact of both inter-chip and intra-die process variation effects
on HT detection sensitivity. The proposed golden model is based on hardware
measurements of delays from HT-free chips, i.e., design and simulation data are
not used to develop the HT-free space. The data collected from the chips is
multidimensional. The authors use # to symbolize the chip number, P to represent
the pattern (two-vector sequence) number, Np to represent the number of patterns,
to identify functional unit outputs (Capture FFs), and Nα to represent the number
of outputs. Calibration of inter-chip (global) process variation effects on path delays
uses a centering operation in which the delays D under all patterns P to an output
α for chip # are averaged and subtracted from each of the raw delays as given by
Eq. 11.2. Therefore, the method uses the distribution of delays to each output α

for calibration of the global mean shift in path delays that occurs within chip #. A
second centering operation is then performed to further reduce intra-die variations
which averages the globally calibrated delays to each output α across all chip
outputs as given by Eq. 11.3. This chip-wide average is then subtracted from the
raw path delays for a chip to provide a set of locally calibrated delays.

The ratios of two locally calibrated delays for a pattern P are used in the
formulation of a golden model, each referred to as a relative performance metric,
RPP,α,β as given by Eq. 11.4. A matrix of relative performances is constructed for
each chip #, and the mean value RP P,α,β computed across all HT-free chips, NGM ,
is used as the references for comparison of the RPP,α,β values computed from the
untrusted chips. A margin referred to as the coefficient of irrelevance is proposed
for dealing with false-positive HT detections. It is defined as the standard deviation

3Note, the path delay technique described in [59] is based on the same concept presented earlier in
[58] which uses leakage currents.
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Fig. 11.25 HT detection results as presented in [21]

of the RPP,α,β computed using NGM HT-free chips. The threshold that bounds the
HT-free space is given by Eq. 11.5 and is referred to as a distinguisher.

Dp(α, #) = D(P, α, #) −
∑

p(P, α, #)

Np

(11.2)

Dp,α(#) = Dp(α, #) −
∑

α Dp(α, #)

Nα

(11.3)

RPP,αβ(#) = Dp,α(#)

Dp,β(#)
(11.4)

Dg#test
P ,α,β = RPP,α,β(#test ) − RP P,α,β(#GM)

σP,α,β

(11.5)

The technique is validated using a set of four Xilinx Spartan FPGAs programmed
with an AES-128 functional unit and modified in a second design to include one
combinational and one sequential HT. The golden model is built using delays
measured from the AES-128 without the HT. The single-clock scheme (or clock
sweeping from Sect. 11.4.1.3) is used with a step size of 35 ps and a frequency
range from 100 MHz to 121.2 MHz. Test vector selection is performed randomly,
i.e., no test vector generation strategy is proposed. A set of 50 patterns (plaintexts)
are used as the test vector set, and paths from all 128 bits of the AES are monitored.
Path delays shorter than 8.25 ns (1/121.2 MHz) are ignored. The authors report on
a subset of the distinguishers, in particular, the distinguishers which produced the
maximum value for each of the 128 outputs when computed using the HT-free data
and data from the two HT experiments. The results are shown in Fig. 11.25, with
highlights indicating the outputs that provide the highest levels of confidence in
detecting the two HT.
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Although the technique proposed in [21] is demonstrated to work well, the
averaging techniques that the authors employ do not deal directly with intra-chip
process variations. The technique presented in [22] (discussed below), on the other
hand, averages delays across chips for each path and two-vector sequence, instead
of across vectors and outputs. Within-die variations have been shown to have a
significant random component in each chip instance [16], and, therefore, a path-by-
path averaging strategy is likely to be more effective in reducing unwanted intra-chip
variations. Moreover, the strategy proposed in [21] only calibrates for the global
shift in the mean values of path delays introduced by inter-chip process variation
effects. The technique described in the following also considers scaling effects.

A chip-averaging HT detection method that calibrates for both intra-chip and
inter-chip process variations and measures path delays using an on-chip time-to-
digital converter (TDC) is proposed in [22]. The TDC was described earlier in
reference to Fig. 11.8 in Sect. 11.4.1.3. The TDC provides approx. 25 ps of timing
resolution, is very fast, e.g., no clock strobing or clock sweeping operation is
required, and can be multiplexed and shared across a large number of the functional
unit outputs. The method is also classified as chip-centric but unlike [21] does not
depend on a set of golden chips. Rather, a golden simulation model is used to
characterize the HT-free space. The development of the golden model requires only
a single nominal simulation to be run for each of the applied two-vector sequences,
and therefore the approach significantly reduces the level of effort and time required
over previously proposed simulation-based golden model approaches.

This is possible because the calibration processes are geared toward deriving a
nominal chip-averaged-delay (CAD) value for each path from hardware data, and
therefore, process variation effects do not need to be accounted for in the golden
model.

Calibration and chip averaging are designed to reduce performance differences
and the adverse effects of process variations on delay while preserving any type
of systematic variation that shows up in all (or a large subset) of the tested chips.
Chip averaging leverages a key difference between random process variations and
HT anomalies; random variations average to 0, while HT anomalies introduce
systematic differences that survive the averaging process.

The authors validate the method using data collected from 44 copies of an ASIC
fabricated in a 90 nm technology which has two exact copies of the layout of an AES
functional unit, one representing the original design and one with five embedded
HT. A layout of the chip showing the two copies of the AES and four instances of
the TDC is shown in Fig. 11.26a. The two 8-to-1 multiplexers shown in the block
diagram of the TDC from Fig. 11.8 connect to 15 of the 128 outputs of the AES
(the 16th input is connected to the Clk). The two copies of the TDC in each AES
instance allow signals propagating to 30 of the outputs of AES to be timed against
the Clk.

The calibration process used to reduce inter-chip process variations is carried
out in advance of the HT detection procedure on each chip separately. Similar
to the HT detection process, calibration involves measuring delays from paths of
various lengths within the functional unit on each chip. Unlike HT detection, the
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values shown on far right, and (c) configurations of HT added to AES2

goal of calibration is to tune the control signals, Cal0 and Cal1, of the TDC as
a means of shifting (and scaling) the delay distribution obtained for each chip to
a fixed mean value. From Sect. 11.4.1.3, the output of the TDC is a thermometer
code (TC), i.e., an integer value between 0 and 120, that represents the relative
delay difference between the Clk and the path being tested. The fixed mean value
is set to the halfway point (60). By using the same fixed mean value for all chips,
this process effectively standardizes the TCs, thereby eliminating most of the delay
variations introduced by chip-to-chip process variation effects. The chip-averaging
technique is designed to remove the remaining intra-chip variation that exists in
the path delays. Once the TDC is calibrated, a set of TDF-based vectors designed
to test each possible HT site in a hazard-free fashion is applied to the chips. The
HT detection method is applied once data from all or a large sample, e.g., 50
or more, chips is collected. A chip-averaged-delay (CAD) value is computed for
each tested path by averaging the TC delays obtained from all chips. The CAD
averages and ideally eliminates random within-die variations, making it possible to
observe very small systematic differences which occur in the chip values but are
not present in a Spice-level simulation of the nominal model. As an illustration,
Fig. 11.26b plots the raw TC values for 5 HT-free paths of different lengths. The
x-axis lists the chip, 1–44, for each TC value on the y-axis. The two curves
represent the data collected from each of the two nearly identical AES instantiations
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shown in Fig. 11.26a. The variations in the data points across chips and between
the AES instantiations are what remain after calibration and are attributed to intra-
die variations and measurement noise. The CAD values for each of the five paths
are shown as the last point of the waveforms on the far right. The chip-averaging
effect is reflected in the “closeness” of the two points computed from the 44 chips
of each AES instantiation. The layout of the two AES instantiations is identical,
and, therefore, ideally, the CAD values should be superimposed. Although this
is not the case, the CAD values are closer than most of raw TC values for any
given chip. This reduces the boundaries associated with the HT-free space, which
in turn, improves the HT detection sensitivity of the proposed method. The authors
validate the detection sensitivity of the method by measuring the delay anomalies
introduced by five layout-inserted HT. Figure 11.26c gives schematic-level diagrams
illustrating the structure and insertion points of the HT, which are highlighted in
red. Four fanout HT and one series-inserted HT are added to the layout of AES2 by
replacing filler cells and connecting the inputs and outputs of the HT as shown by
the schematic. A nominal simulation model of the AES layout and TDC is created
using Mentor Graphics Calibre XRC extractor and the foundry-provided models
for the 90 nm technology in which the chips were fabricated. Transient simulations
using Cadence Spectre are carried out to obtain the TC values associated with the
nominal model.

The graphs shown in Fig. 11.27 plot two sets of results, (a) plots the simulation
nominal model data against the HT-infested AES2 data, while (b) plots the
simulation data against the HT-free AES1 data for the same 20 paths. The y-
axis plots a DCAD value, which is simply the difference between the simulation
TC value and hardware-derived CAD values. HT that introduce larger anomalies
therefore generate larger DCAD values. The paths are sorted left to right according
to the magnitude of the HT delay anomaly, with the largest DCAD values on the
left. The red curves represent data collected from paths that include one of the HT
shown in Fig. 11.26c, while the black curves represent data from HT-free paths.
The displacement of the red curves upward with respect to the black curves in (a)
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portrays the presence of the delay anomaly introduced by the HT. The curves in (b),
on the other hand, show that the DCAD values for these same paths from AES1
(which does not include the HT) are interleaved with the HT-free (black) curves.

11.6 Power Consumption Based Side-Channel Analysis for
HT Detection Approaches

Side-channel signals are typically analog in nature and can provide detailed, high-
resolution information about the internal timing and regional signal behavior of
the IC. For example, IDDT measurements reflect performance characteristics of
individual gates as logic signals propagate along one or more paths in the circuit.
This type of temporal information can be reverse engineered and compared with
simulation-generated data to validate the structural characteristics of the fabricated
layout, i.e., to ensure the chip is consistent with the golden model representation
described by the design data.

As discussed earlier in Sect. 11.3.1.2, other common methods of power analysis
based Trojan detection include current analysis during static and transient states.
The static current analysis technique can detect the inactivated Trojans that are large
enough to impact the change in the current drawn because of addition or modi-
fication of reconvergent paths and gates. On the other hand, the transient current
analysis allows the activated Trojan that changes the current during operation [8, 9]
and [1, 2, 10, 25, 26, 28, 30, 43].

The authors of [41] leverage correlations between maximum operating fre-
quency, Fmax, and transient current, IDDT, as a mechanism to enhance the HT
detection sensitivity of IDDT. Multiparameter side-channel analysis refers to the
joint analysis of two or more circuit parameters, such as power and delay, as a means
of accounting for process variation effects or to provide higher levels of confidence
that an HT exists through corroborative evidence, or a lack thereof, from multiple
signal sources. This concept is portrayed in Fig. 11.28a which plots IDDT against
Fmax. Here, simulation experiments are used to show an embedded HT effect
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IDDT because of additional HT switching activity but does not impact Fmax. The
mismatch in the correlation of IDDT and Fmax allows the HT to be identified in the
“tampered” IDDT curve that would otherwise not be possible. Fmax is effectively
used to track process variation effects. The distinction is blurred to some degree
with the addition of random within-die variations as shown in Fig. 11.28b, but the
correlation and benefit provided by Fmax remain apparent in the displacement and
separation of the red (HT) and blue (HT-free) data points. The authors note that
any path or set of paths can be used for the correlation analysis to make it nearly
impossible for the adversary to defeat the technique.

The authors propose a test vector generation strategy that first partitions the
multi-module design into nonoverlapping functional blocks as a mechanism to
amplify the HT IDDT contribution (signal) over normal background IDDT (noise).
Vectors optimized to target HT nodes are selected and directed at testing one of
the blocks while simultaneously minimizing activity in other functional blocks. The
test vectors for IDDT and a separate set for Fmax are used in the proposed test flow
to optimize correlations as shown in Fig. 11.28. Simulation and FPGA results are
presented which validate their approach.

Wilcox [58] proposes a MSP technique, in combination with a power signal
calibration and a chip averaging method to reduce the hardware Trojan signal-to-
noise ratio to capture small leakage anomalies introduced by Trojans and separate
it from large leakage current anomalies caused by the defects such as broad area
leakage current and shortening defects. The technique measures steady state leakage
current IDDQ from multiple (16 VDD and GND ports ) topology distributed power
ports on the chip and applies chip averaging method (as discussed in Sect. 11.5.10)
for eliminating within-die variation and improving hardware Trojan signal-to-noise
detection sensitivity of the statistical based detection method. The layout of the chip
AES and FPU engines is shown in Fig. 11.22. The instrumentation setup is shown in
Fig. 11.29. Large low resistance M9 wires are routed from a set of VDD and GND
pads, to a 4 × 4 grid of tap points distributed at 250 μ m intervals across the macros
[17].

Fig. 11.29 Instrumentation
setup
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The currents are measured from the adjacent pairings of power ports and are
used in combination to outlier analysis to distinguish random defects and the
leakage anomalies introduced by the hardware Trojans. The technique uses golden
model that can be from the simulation models or from the Trojan free chips. The
ellipse statistical limits are derived from the golden reference chips data using
principle component analysis. The chip averaging technique is applied [21, 58],
which is a very effective tool for identifying systematic current anomalies that occur
across chips. PCA results after the chip averaging shows that the Trojan-free data
is enclosed in the ellipse whereas the Trojan data is seen as outliers as shown
in Fig. 11.30. Histogram results validate their approach, with zero false positive
detection for all the leakage patterns.

11.7 Summary

Hardware Trojans (HT) represent a serious threat and a significant challenge. Side-
channel techniques, such as power and delay analysis, can be argued as the most
sensitive and cost-effective strategies for detecting HT. This chapter surveyed a wide
variety of delay-based approaches that have been proposed over the last decade.
Important technical aspects and distinctions that characterize the proposed HT
detection methods can be summarized as follows:

• Path delay measurement strategy for obtaining precise measurements of path
delays:

Clock sweeping implemented by adjusting the frequency of applied clock
Two clock approaches which tune the phase between launch and capture

clocks (clock strobing)
On-chip, embedded test structures which create (tunable) delay chains
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• Side-channel signals are analog in nature and can provide detailed, high-
resolution information about the internal timing and regional signal behavior of
the IC
IDDT and IDDQ techniques are used for transient and steady state currents

• Test stimulus strategies for HT detection: Random vectors
Vectors generated using the traditional transition fault delay (TDF) model
Vectors generated from a pseudo-TDF model targeting shortest sensitizable paths
Pulse stimulus-based techniques

• Approaches to account for process variation effects, both chip-to-chip and
within-die: HT-free space created from process simulation models
HT-free space created from data collected from golden (HT-free) chips (which
are validated using destructive delayering techniques)
Simulation-derived HT-free space calibrated with hardware data from process
control monitors (PCMs), ring oscillators (ROs), critical paths, etc.
Techniques which average path delays measured from (untrusted) chips and
compared against (nominal) simulation models or golden HT-free chips
Techniques which correlate multiple side-channel signals

• Design-for-trust additions, modifications, and analyses to support HT detection
methods: Techniques which create ROs from functional unit paths
Techniques which add a distributed set of ROs designed to detect HT switching
activity
Methods designed to find structural symmetry in path delays for comparison
Techniques which add symmetrical components to enable calibration using chip
data

• Statistical HT detection methods: Simple thresholding and linear regression-
based methods
Advanced statistical analysis techniques which employ nonlinear regression,
kernel mean matching, principle component analysis, multidimensional scaling,
and convex hull construction
Ad hoc statistical techniques which leverage path delay differences, ratios, and
other mathematical transformations

Taken collectivity, three critical features emerge as requirements for a fully
specified and effective HT detection method:

• First, traditional manufacturing test methods are not capable of providing precise
measurements of path delays, which is a requirement of nearly all proposed
HT detection methods. Therefore, a paradigm shift is required in the way path
delaytesting is carried out by automatic test equipment and/or in the capabilities
of design-for-testability support structures included on the chip. Several low-cost
embedded test structures were described that support high-resolution on-chip
measurements of path delays.

• Second, both within-die and chip-to-chip process variations pose significant
limits on HT detection sensitivities and must be dealt with in a cost-effective
manner. Golden model-based methods must be based on realistic assumptions
regarding the availability of golden chips and the amount of simulation time and
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effort required to define the boundaries of a multidimensional HT-free space.
Golden model-free methods must have validation techniques to guard against
subversion by the adversary.

• Third, a low-cost test vector generation strategy must be developed that is
effective at detecting subtle HT loading effects and which also provides high
levels of HT coverage while minimizing test cost.

Achieving all these goals is very challenging, but the commercial acceptance of path
delay testing as a mainstream HT detection strategy critically depends on low-cost
solutions to all three of these technical domains.
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Chapter 12
The Future of Security Validation and
Verification

12.1 Introduction

System-on-Chip (SoC) is the brain behind the computing devices today. Unlike
microcontroller based designs in the past, even resource constrained Internet-
of-Things (IoT) devices nowadays incorporate one or more complex SoCs. A
typical SoC consists of multiple intellectual property (IP) cores including processor,
memory, network-on-chip, controllers, converters, input/output devices, etc. Drastic
increase in SoC complexity has led to significant increase in SoC design and
validation complexity. Reusable hardware IP based SoC design has emerged as
a pervasive design practice in the industry to dramatically reduce design and
verification cost while meeting aggressive time-to-market constraints. Growing
reliance on these pre-verified hardware IPs, often gathered from untrusted third-
party vendors, severely affects the security and trustworthiness of SoC computing
platforms. Hardware-level vulnerabilities should be fixed before deployment since
it affects the overall system security. Based on Common Vulnerability Exposure
(CVE-MITRE) estimates, if hardware-level vulnerabilities are removed, the overall
system vulnerability will be reduced by 43% [12, 16]. Given the widespread
acceptance of SoC designs in the electronic industry, it is critical to ensure their
correctness from both functional and security perspectives.

12.2 Summary

This book provided a comprehensive overview of state-of-the-art security validation
and verification techniques for designing secure and trustworthy SoCs [2, 13–15, 18,
21–24, 38]. The previous chapters covered SoC security verification using a wide
variety of techniques including formal verification, simulation-based validation,
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side-channel analysis, and machine learning. The topics covered in this book can
be broadly divided into the following four categories.

12.2.1 Introduction to Security Validation

The first two chapters introduced SoC security vulnerabilities due to potentially
untrusted semiconductor supply chain and presented the fundamental challenges in
detecting and mitigating SoC security vulnerabilities. The third chapter described
security metrics and benchmarks.

• Chapter 1 introduced the role of semiconductor supply chain in today’s SoC
design methodology. Specifically, it highlighted various types of potential threats
during different design stages. It provided an overview of various SoC security
vulnerabilities including malicious implants (e.g., hardware Trojans).

• Chapter 2 outlined the fundamental challenges in verifying SoC security vul-
nerabilities. Specifically, it highlighted the limitations of applying the existing
functional validation methods for security verification. For example, in case
of malicious implants, it highlighted the difficulty of detecting Trojans due
to rareness of its trigger conditions. Similarly for finite state machines, it
highlighted the exponential search space of finding illegal states and transitions.
These challenges form the stepping stone for the security validation approaches
described in the subsequent chapters.

• Chapter 3 described security metrics and benchmarks, which are vital compo-
nents in evaluating the trustworthiness of SoCs. It described both static and
dynamic benchmarks and highlighted the importance of dynamic benchmarks
to compare the quality of security verification techniques. It presented a Trojan
insertion tool that can generate dynamic benchmarks by inserting a wide variety
of Trojans.

12.2.2 Formal Verification of Security Vulnerabilities

The next four chapters described various formal verification techniques to detect
SoC security vulnerabilities.

• Chapter 4 presented an automated methodology for anomaly detection in com-
plex arithmetic circuits. It used the remainder produced by equivalence checking
methods to generate directed tests that are guaranteed to activate the source of
the malicious functionality in the design. It used the generated tests to localize
the source of the anomaly and find suspicious areas in the design [17, 19].

• Chapter 5 described an automated approach to localize hardware Trojans in
third-party IPs using symbolic algebra. The technique is based on extracting
polynomials from gate-level implementation of the untrustworthy component
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and comparing them with specification polynomials. It also presented a greedy
test generation method to activate hardware Trojans [21, 22].

• Chapter 6 highlighted the importance of securing finite state machines (FSMs)
since any unexpected functionality can endanger the integrity of the SoC design.
This chapter presented an approach to formally detect anomalies in FSMs using
symbolic algebra. It models both FSM specification and implementation using
polynomials and checks the equivalence using Gröbner basis theory [18].

• Chapter 7 deals with SoC security verification using property checking. Defining
a comprehensive set of security properties allows detection of security violations
at early stages of design cycle. It discussed efficient property checking techniques
for SoC security verification.

12.2.3 Security Validation Using Simulation and Learning
Methods

The next two chapters deal with SoC security validation using simulation-based
validation as well as machine learning.

• Chapter 8 focused on efficient test generation approaches for hardware Trojan
detection. Test generation for Trojan detection is challenging since Trojans are
stealthy in nature and it is hard to activate the triggering conditions. This chapter
presented several test generation approaches including ATPG, statistical test
generation, and directed test generation using formal methods [7, 8, 10, 11, 29, 32,
35, 40]. It also presented a scalable test generation technique using an effective
combination of concrete simulation and symbolic execution [1, 3, 31, 33, 41].

• Chapter 9 discussed machine learning techniques for detection of hardware
Trojans. When suitable features are extracted and the model is sufficiently
trained, machine learning algorithms can find patterns to differentiate between
Trojan-infected and Trojan-free designs that are beyond the capability of human
analysis or side-channel signatures.

12.2.4 Security Validation Using Side-Channel Analysis

The next two chapters presented SoC security validation utilizing side-channel
signatures such as dynamic current and path delay analysis [27, 28, 30, 31].

• Chapter 10 presented a framework for scalable test generation, which can
significantly improve the Trojan detection sensitivity in side-channel analysis
based Trojan detection. The approach aims at statistically increasing switching
activity in the suspicious regions while reducing the switching activity in the rest
of the design. As a result, it can amplify the Trojan effect in the presence of large
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process variations, making it suitable for Trojan detection using dynamic current
analysis.

• Chapter 11 surveyed a wide variety of delay-based side-channel analysis
approaches for detection of hardware Trojans. It described the requirements
of path-delay-based Trojan detection methods. It summarized a wide range of
proposed approaches and evaluated their strengths and weaknesses.

12.3 Future Directions

In spite of extensive research efforts in developing scalable and automated security
validation techniques over the years, there are still many challenges remain to
design secure and trustworthy SoCs. A promising direction in security validation
is to effectively utilize machine learning. While directed tests can check for
known vulnerabilities, machine learning can extend the scope for both known and
unknown (e.g., known vulnerabilities with minor or major variations) SoC security
vulnerabilities. Existing data in verification environment traces can be clustered into
several buckets such that each bucket contains traces that have failed as the result
of the same cause. Therefore, wasted effort in debugging of known security failures
can be avoided. The future research will explore machine learning techniques for
different classes of SoC vulnerabilities and develop suitable feature extraction and
training mechanisms. Since an adversary will be aware of the machine learning
models for security verification, it is likely that an adversary will try to tamper the
machine learning models (in addition to tampering SoC IPs). In such an adversarial
machine learning scenario, there will be significant research effort in developing
techniques to verify robustness of machine learning models against adversarial
attacks.

While design-time security validation techniques can detect certain types of
vulnerabilities, it is infeasible to remove all possible vulnerabilities during pre-
silicon security validation. Due to observability constraints in fabricated SoCs,
post-silicon security validation approaches have to rely on observability-aware
techniques (e.g., observability-aware test generation [5, 20]). In order to defend
against attacks on debug infrastructure (e.g., trace-buffer attack [25, 26]), there will
be renewed effort in developing secure debug architecture design (e.g., security-
aware signal selection [4, 42, 43]). The future research needs to employ both
post-silicon security validation [37] and runtime security monitoring techniques.
For example, system-level security monitoring approaches can utilize dedicated
hardware design to check the operation of an embedded processor instruction-by-
instruction. Any deviations from the expected behavior (which may come from
runtime attacks) can be treated as a security threat [6, 39, 44]. Future approaches
need to make such security mechanisms smart and energy efficient. There will also
be a significant emphasis on detecting unintentional vulnerabilities. For example,
existing electronic design automation (EDA) tools can introduce several types of
security vulnerabilities. There will be big push in designing EDA tools that are
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guaranteed to produce correct designs as per specification—nothing more, nothing
less. Clearly, someone has to deal with the hard task of developing a complete and
accurate specification at the first place, and keep updating the specification when
there are any changes [9, 34, 36]. Finally, security validation tools need to check for
various security vulnerabilities across different phases in the design cycle.

There are several classes of hardware security vulnerabilities such as access
privileges, buffer errors, resource management, information leakage, numeric errors,
crypto errors, and code injection. These vulnerabilities coupled with a wide variety
of software and firmware attacks threaten the security and integrity of computing
systems. A vast majority of hardware security research have focused on malicious
modifications such as hardware Trojans. The future research needs to address
diverse hardware security vulnerabilities and develop effective countermeasures.
This book highlighted security verification methods using formal verification,
simulation-based validation, machine learning as well as side-channel analysis.
Each of these methods has its inherent merits and demerits. There will be a need
for developing hybrid approaches combining the inherent advantages of different
security verification methods to detect a wide variety of security vulnerabilities in
emerging SoCs.
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