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Preface

This book is largely based on a yearly lecture, “Computer Supported Statis-
tics” (Computergestützte Statistik), for statistics students regularly held and
improved by the authors since winter 1999/2000 at the TU University Dort-
mund (Germany). The exercises are based on those prepared for this lecture
and other related lectures. For the book, the material of this lecture was thor-
oughly revised, extended, and modernized. This is particularly true for Chap-
ters 4 and 8.

This book is not “yet another treatise on computational statistics”. In fact,
there is, as of this writing, no other book on the market that has a similar
emphasis, for at least three reasons.

1. All the textbooks on computational statistics we know of present concise
introductions to a multitude of state-of-the-art statistical algorithms with-
out covering the historical aspect of their development, which we think is
instructive in understanding the evolution of ever more powerful statisti-
cal algorithms. Many of the older algorithms are still building blocks or
inspiration for current techniques. It is therefore instructive to cover these
as well and present the material from a historical perspective before ex-
plaining the current best-of-breed algorithms, which naturally makes up
the main body of the book.

2. With the chosen chapter titles, we try to emphasize certain recurring
themes in all statistical algorithms: Computation, assessment and verifi-
cation, iteration, deduction of theoretical properties, randomization, repe-
tition and parallelization and scalability. Students should not only under-
stand current algorithms after reading this book, but also gain a deeper
understanding of how algorithms are constructed, how to evaluate new al-
gorithms, which recurring principles are used to tackle some of the tough
problems statistical programmers face, and how to take an idea for a new
method and turn it into something practically useful.

3. The book contains two chapters on topics neglected in other books. One
chapter is dedicated to systematic verification, a topic that is not covered
in any other statistical computing book we know of. Instead of focusing on

xvii
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contrived test examples, we show how to derive general classes of worst
case inputs and why it is important to systematically test an algorithm over
a large number of different inputs. And another chapter covers the upcom-
ing challenge of scaling many of the established techniques to very large
data sets and how the availability of many CPU cores will change the way
we think about statistical computing.

To summarize, this book is based on a new and refreshingly different ap-
proach to presenting the foundations of statistical algorithms. Therefore, this
book provides a great resource for both students and lecturers teaching a
course in computational statistics.
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Notation

Unless otherwise noted, we use the following symbols and notation through-
out the book.

Abbreviations

Abbreviation Meaning

API Application Programming Interface
BCV Bootstrap Cross-Validation
BFGS Broyden-Fletcher-Goldfarb-Shanno
BLAS Basic Linear Algebra Subroutines
cov(·, ·) covariance of two random variables
Cov(·) covariance matrix of a vector of random variables
cp. compare
CV Cross-Validation
DFP Davidon-Fletcher-Powell
E(·) expected value
EM Expectation Maximization
gcd greatest common divisor
GFLOPS Giga (billions of) Floating-Point Operations Per Second
GPGPU General Purpose Graphics Processing Unit
GPU Graphics Processing Unit
GS Gram-Schmidt
HPC High-Performance Computing
ICMCMC Independence Chain Markov Chain Monte Carlo
iff if and only if
iid independent identically distributed
LCS Linear Congruential Sequence
LHD Latin Hypercube Design
LAPACK Linear Algebra PACKage
LINPACK LINear algebra PACKage
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LLS Linear Least Squares
LM Levenberg-Marquardt
LOOCV Leave-One-Out Cross-Validation
MCMC Markov Chain Monte Carlo
MFLOPS Mega (millions of) Floating-Point Operations Per Second
MGS Modified Gram-Schmidt
MPI Message Passing Interface
MWC Multiply-With-Carry
NLS Nonlinear Least-Squares
NN Nearest Neighbor
PLS Partial Least Squares
R Software R

RCV Repeated Cross-Validation
RNG Random Number Generator
RS Random Sequence
SCV Stratified Cross-Validation
SIMD Single Instruction Multiple Data
SS SubSampling
TM Turing Machine
URS Uniformly distributed Random Sequence
var(·) variance

Basic Symbols

Symbol Meaning

:= equal by definition, defined by
∀ universal quantifier: for all
∃ existential quantifier: there exists
⊘ empty set
∼ distributed as
x,y,z Lower case letters represent scalar variables
X ,Y,Z Upper case letters denote random variables
x,y,z Vectors are represented using bold lower case letters
X,Y ,Z Upper case bold letters are used for matrices
X = [xi j] matrix X with elements xi j

x= [xi]
T (column) vector x with elements xi
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Mathematical Functions

Symbol Meaning

+̂ finite precision addition with appropriate round-off
−̂ finite precision subtraction with appropriate round-off
∗̂ finite precision multiplication with appropriate round-off
÷̂ finite precision subtraction with appropriate round-off
L(m,n) set of all real-valued m×n matrices
∇ f (β) gradient (vector) of function f (β) : Rn→ R in β

∇2 f (β) Hessian (matrix) of function f (β) : Rn→ R in β

J f (β) Jacobian (matrix) of function f (β) : Rn→ R
m in β

‖β‖1 L1 norm of β ∈ R
n

‖β‖2 L2 norm of β ∈ R
n.

‖β‖ L2 norm of β ∈ R
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‖β‖∞ L∞ norm of β ∈ R
n

‖X‖2 spectral norm of matrix X
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im(X) image of the matrix X

ker(X) kernel of the matrix X

det(X) determinant of the matrix X

rank(X) rank of the matrix X

Bin(n, p) binomial distribution with n replications and success proba-
bility p

Exp(λ ) exponential distribution with parameter λ

N (µ,σ2) normal distribution with expected value µ and variance σ2

R[a,b] continuous uniform distribution on the interval [a,b]





Chapter 1

Introduction

This book gives an overview of the most important foundations of statistical
computing with particular emphasis on the historical development. The book
will not provide a description of all numerical algorithms in current use for
statistical computations. Instead, the book focuses on the most important con-
struction principles for these algorithms. Our aim is to enable the reader, after
working through the material covered in the book, to quickly understand the
main ideas of modern numerical algorithms because he or she has seen and
understood the underlying principles of these algorithms. We feel this ca-
pacity is much more valuable to both practitioners and theorists than having
memorized the current, and soon to be outdated, set of popular algorithms
from computational statistics.

In Chapter 2 we lay the basis for statistical computation. When we use
a computer for solving a statistical problem, most of time we trust the com-
puter that the solution will be (at least approximately) correct. Today, nearly
no statistician thinks about such basic questions like “What can a computer
compute?”, “How does a computer compute?”, or “How exact does a com-
puter compute?”. We just “trust”. Knowledge about such basic facts threatens
to disappear since we nearly always act as if the computer always produces
the correct answer. To understand that this is not true is one of the aims of
this chapter. In particular, we will discuss the above questions and what the
answers mean for statisticians.

Systematic verification of the results of numerical algorithms is one of
the most important and, at the same time, one of the most neglected tasks
in the development of such algorithms. On the one hand, there is the well-
established field of software engineering that studies how to design and verify
large software systems so that they adhere to formal specifications. On the
other hand, the verification of the exactness of numerical results is obviously
restricted to problems for which the correct solution is well-known a priori.
Moreover, in order to be able to verify the results in the general case, there is

1
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a need for such correct solutions for all degrees of (numerical) difficulty. For
this, one has to fully understand the numerical problem to be solved, and there
has to be a general theory for the generation of test problems with exactly
known solutions. For this purpose, a systematic approach is necessary, i.e.
some sort of an experimental design of testing. Testing sporadic examples will
likely show a completely distorted image. In particular, the well-established
practice of testing new algorithms on standard problems from literature does
not in any way assess the general capabilities of the algorithm under test.

Chapter 3 demonstrates how a general verification procedure can be con-
structed. In order to be able to rigorously understand the problem to be solved
for being able to assess the difficulty of data situations for this problem, we
concentrate on probably the most used model in statistics, the linear model
y = Xβ+ ǫ. For its popularity alone, it should be of particular importance
to analyze the numerical problems in the estimation of unknown coefficients
for this model.

For the linear least squares (LLS) problem we could derive a closed-form
analytic solution. When we used this solution to derive an algorithm to solve
the LLS, numerical instabilities surfaced and different algorithms that try to
mitigate these problems were introduced. In Chapter 4 we will study solution
strategies for problems where no closed-form analytic solution is known - in
fact, where even no closed-form solution may exist.

We will therefore resort to methods that improve an initial solution in each
iteration of the algorithm. Hence all the methods presented in this chapter are,
at their core, methods that, given a solution, return a new, improved solution.
We then iterate these until we reach either a fixed-point or some other termi-
nation criterion. This idea is a powerful general concept. Instead of trying to
solve a problem in one big step, we can develop a, usually simpler, method
that only improves a given solution. By iteration, this method will then reach
something akin to a locally optimal solution. While we will focus on classical
statistical optimization problems in this chapter, this concept can be applied
to a much broader set of problems.

Often, intuition comes first when building an algorithm. “Couldn’t we
compute this in that way?” This leads to many so-called heuristics, which
do not stand the practice test if their theoretical properties are unsatisfactory.
Only if one can prove favorable theoretical properties for an algorithm, then
there is a very good chance that it will be used in practice for a longer time.
In Chapter 5, we will study two meanwhile established algorithms regarding
their theoretical properties:

www.allitebooks.com
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– The Partial Least Squares (PLS) algorithm regarding its optimality proper-
ties and

– the Expectation Maximization (EM) algorithm regarding its convergence.

On the one hand, randomness is the basis for statistics. If you do not
accept the concept of randomness, then you cannot practice statistics. On
the other hand, statistical algorithms are, for the most part, deterministic.
Even though they might produce so-called random numbers, they are usually
designed to generate reproducible numbers. Indeed, reproducibility is even
one of the intrinsic requirements for scientific studies. This kind of pseudo-
randomness will be discussed in Chapter 6.

First, we will introduce a method for the generation of sequences that one
might be willing to call (uniformly distributed) random. We will discuss crite-
ria for randomness of such sequences, and we will demonstrate how to choose
certain parameters adequately so that these criteria may be fulfilled. Then, we
will introduce methods with which uniformly or otherwise distributed random
sequences can be generated.

In Chapter 6 we will introduce two different kinds of methods for the
generation of random numbers. By the first kind, only random realizations
of the desired distribution are generated. Unfortunately, such methods fail,
especially in the multidimensional case. Since the 1980s, however, quite an-
other type of methods has been more and more in use which try to generate
tentative points of a desired density by means of simplified approximating
densities that are either accepted or rejected. Two of the most flexible and
promising types of such methods are the rejection method and the Markov
Chain Monte Carlo (MCMC) methods, which will be discussed in Chapter 6
up to implementation details.

If you wish to obtain an impression of the distribution of, say, an estimator
without relying on too many assumptions, you should repeat the estimation
with different unique samples from the underlying distribution. Unfortunately
in practice, most of the time only one sample is available. So we have to look
for other solutions. New relevant data can only be generated by means of
new experiments, which are often impossible to conduct in due time, or by a
distribution assumption (see Chapter 6 for random number generation). If we
do not have any indication of what distribution is adequate, we should beware
of assuming just any, e.g. the normal, distribution. So what should we do? As
a solution to this dilemma, resampling methods have been developed since
the late 1960s. The idea is to repeatedly sample from the only original sample
we have available. These repetitions are then used to estimate the distribution
of the considered estimator. This way, we can at least be sure that the values



4 INTRODUCTION

in the sample can be realized by the process. In Chapter 7 we will study
how to optimally select repetitions from the original sample. After discussing
various such methods, the ideas are applied to three kinds of applications:
Model selection, feature selection, and hyperparameter tuning.

In Chapter 2 we studied what is computable and how much effort it takes
to compute certain solutions. For this we used the Turing machine, an abstract
model of a computer that sequentially executes a sequence of instructions
stored on a tape. Real-world central processing units (CPUs) in computers are
conceptually similar. They sequentially read instructions and data from mem-
ory, process them, and write them back to memory. Increasing the execution
speed of such a machine amounts to increasing the number of instructions or
data words read and processed per second.

In Chapter 8 we will study the empirical scalability of statistical algo-
rithms and especially how the availability of parallel computing resources
has changed and will continue to change the way we develop and deploy sta-
tistical methods.

There are two main reasons why statisticians should know more about
parallel computing and scalability. First, we are now living in a world with
very large and unstructured data sets from which we derive our information.
Second, the development of new statistical methods has shifted away from
studying designs that are purely grounded in theory to methods that incor-
porate and possibly even actively build upon the vast computing resources
available today. A good example of this is the new breed of ensemble learn-
ing methods being developed which actively exploit the availability of parallel
computing resources by training many classifiers or regression models in par-
allel on, possibly smaller, data sets, and then combining these models into a
more powerful predictor.

History

Let us now arrange the different chapters and their contents in history. Ta-
ble 1.1 gives the, to our knowledge, first appearances of some of the basic
ideas introduced in this book. In at least one aspect the book follows history,
namely that we start with the historical basics in Chapter 2 (“Computation”)
and end with the very new developments on scalability and parallelization”
in Chapter 8. The oldest ideas, discussed in the book and relevant even today,
are the golden section (300 b.c.), the algorithm (825), and the Newton method
(1668). The most modern ideas and algorithms discussed are likely the evo-
lutionary strategies (1971) and their current state-of-the-art incarnation the
CMA-ES (1996). The main basics of Chapters 3, 4, and 5 (“Verification”,
“Iteration”, and “Deduction of Theoretical Properties”) were founded in the
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1960s and 1970s. Some ideas from Chapter 6 (“Randomization”) are newer,
namely from the 1980s and 1990s, and a modern view of evaluation by repe-
tition (Chapter 7) was first mentioned in the early 2000s. By 1970 the idea of
parallel computing had emerged as the dominant idea to increase performance
(see Chapter 8, “Scalability and Parallelization”). However, only the introduc-
tion of powerful graphics processors in the 2000s that could be programmed
to perform general arithmetic allowed scientists to perform calculations on
their desktop computers that previously required medium-sized computing
clusters. Note that Table 1.1 only gives the first appearances of some ideas.
Newer developments in the fields are given in the chapters themselves.

The Structure of the Chapters

Each chapter contains examples and exercises. Solutions to the exercises can
be found in a separated Solutions volume. Where appropriate, tables and fig-
ures are included to reinforce the concepts presented in the text. We provide a
website with supplementary material, e.g. program code for selected figures,
simulations, and exercises.

Each chapter contains the following elements:

1. Motivation and relevance

2. Preliminaries

3. Selected theory

4. Examples, applications, and simulations

5. Implementation in R

6. Summaries, conclusions, and outlook

7. Exercises

Note that the mathematics mentioned in the preliminaries of the chapters is
assumed to be well-known in advance and is thus neither proven nor cited.

The exercises in each chapter are organized by section. So for example
Exercise 2.3.1 is related to the material covered from Section 2.3. Most exer-
cises are focused on applying the covered concepts in practice by implement-
ing relevant algorithms and studying their behavior. Typically the exercises
are meant to be solved using the programming language R and some even
require the use of R.

Covered Statistical Methods

Once more, notice that this book does not aim at full coverage of algorithms
for statistical methods. Nevertheless, we cover many different statistical top-
ics, in particular
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– the determination of univariate statistics like median, quantiles, and vari-
ance,

– univariate and multivariate sampling,

– various kinds of regression methods like linear, nonlinear (especially neu-
ral nets), and L1,

– various kinds of classification methods like data independent rules, Bayes
rules, nearest neighbors, Linear Discriminant Analysis (LDA), Support
Vector Machine (SVM), and logistic regression,

– maximum likelihood estimation,

– multivariate modeling like Partial Least Squares (PLS),

– clustering like k-means clustering and

– the parallelization of some of these methods.

Notice, however, that we do not discuss these methods in blocks concerning
there purpose, but in connection with the foundation oriented structure of this
book. If you are interested in algorithms for special purposes, please refer to
the Index of the book.

Webpage

Some data, R code, particularly for examples and exercises, possibly a list of
errata we try to avoid, and other additional material you need to conveniently
follow the contents of the book can be found under the following URL: http:
//www.statistik.tu-dortmund.de/fostal.html.



Chapter 2

Computation

2.1 Motivation and History

When we use a computer for solving a statistical problem, most of the time we
trust the computer that the solution will be (at least approximately) correct.
Today, nearly no statistician thinks about such basic questions like “What can
a computer compute?”, “How does a computer compute?”, or “How exact
does a computer compute?”. We just “trust.” Knowledge about such basic
facts threatens to disappear since we nearly always act as if the computer
always produces the correct answer. To understand that this is not true is one
of the aims of this chapter. In particular, we will discuss the above questions
and what the answers mean for statisticians.

What Can a Computer Compute? (see Section 2.2)
Computability is the basis of all computational statistics. Naturally, by means
of a computer only such problems can be solved whose solutions are com-
putable by a machine. Fortunately, the following two theses (in a way) guar-
antee that computers can do what we want them to do:

Church-Turing thesis: The class of intuitively computable functions is
equivalent to the class of Turing computable functions (Church and Turing,
1930s).

This thesis is not provable since the term intuitively computable is not
well defined and cannot be exactly formalized. By this we understand all
functions that could in principle be calculated by humans. It is standard to
assume that this thesis is true. This leads to the possibility to prove that a
function is not computable.

Therefore, in this book we will concentrate on Turing computability, also
since there is another thesis that relates general machine computability to this
term:

Thesis M: Whatever can be calculated by a machine is Turing (machine)
computable (Gandy, 1980).

A function is defined to be Turing computable if the function’s value can

9



10 COMPUTATION

be computed with a Turing machine. So, as an abstract example of a mechan-
ical calculating machine, we will introduce the Turing machine which is an
idealized computer named after A.M. Turing (1912 – 1954). Though Turing
machines are surely a very old idea and in their pure form they are not utilized
in practice, nevertheless, the basic ideas of today’s computers can be easily
represented by Turing machines. The introduction of Turing machines, both
facilitates the discussion of computability and builds the bridge to today’s real
computers.

The term Turing computable is fundamental to the term algorithm, sum-
marizing instructions for the solution of a problem. Indeed, computable func-
tions are the formalized analogue of the intuitive notion of an algorithm. In
order to assess the quality of an algorithm, at least two different aspects are
important, complexity and accuracy. Complexity means the calculation ef-
fort to solve the problem and is obviously important for the applicability of
the algorithm. We will introduce so-called complexity measures, and will ex-
emplify the complexity of different algorithms for the solution of the same
problem by the practically very important problem of sorting n items. The
other important quality aspect, i.e. the accuracy of the computed result, will
be discussed when we study the question “How exact does a computer com-
pute?”.

How Does a Computer Compute? (see Section 2.3)
Today’s computers mainly utilize so-called floating-point numbers. There-
fore, the realization of floating-point operations is basic for all statistical cal-
culations. In particular, the notion of a rounding error is based on the def-
inition of floating-point operations. Rounding errors are fundamental for the
error propagation caused by typical algorithms of computer statistics, and the
extent of error propagation is important for the trustworthiness in such algo-
rithms.

How Exact Does a Computer Compute? (see Section 2.4)
Floating-point calculations are inexact by nature. One of the main problems of
numerical methods is the determination of the accuracy of their results. Basic
for today’s view of rounding errors on computers is the work of Wilkinson in
the early 1960s (Wilkinson, 1965). He used a simple but generally useful
way to express the error behavior of floating-point operations, namely the
concept of significant digits, i.e. relative errors. We are interested in the error
propagation caused by algebraic operations, i.e. to what extent relative errors
already present in the inputs are amplified (increased) or damped (decreased)
by floating-point operations.

One consequence of the inexactness of floating-point operations is that
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some mathematical laws of arithmetical operations are not valid anymore on
computers. We will derive that the associative laws are not valid for floating-
point operations with important consequences for the formulation of algo-
rithms. We will see that such laws are only approximately true leading to
new operations for floating-point comparison aiming at the assessment of
the relative difference between floating-point numbers.

In order to discuss the second quality aspect, i.e. the accuracy of results,
we will introduce so-called condition numbers characterizing the amplifi-
cation of errors caused by the algorithm. We will exemplify this notion by
looking at different ways of numerically calculating the sample variance of
n observations.

Having answered the above three questions, we have built the basis for
higher order characterizations of statistical algorithms in the next chapters.

2.1.1 Preliminaries

Definition 2.1: Vector Norm
We call a function ‖·‖ : Rn→ R

+ a vector norm if

1. For β ∈ R
n, ‖β‖= 0 iff β = 0 and for β 6= 0, ‖β‖> 0.

2. For any scalar a ∈ R, ‖aβ‖= |a|‖β‖.
3. For β1,β2 ∈ R

n, ‖β1 +β2‖ ≤ ‖β1‖+‖β2‖.
In particular we will use the following common vector norms:

– ‖β‖1 := ∑
n
i=1|βi|, the L1 norm of β ∈ R

n.

– ‖β‖2 :=
√

∑
n
i=1 β 2

i , the L2 norm1 of β ∈ R
n.

– ‖β‖∞ := max1≤i≤n|βi|, the L∞ norm of β ∈ R
n.

2.2 Models for Computing: What Can a Computer Compute?

2.2.1 Algorithms

2.2.1.1 Motivation and History: Models for Computing2

Computability is the basis of all computational statistics. Naturally, by
means of a computer, which is not more than a big calculator, only such prob-
lems can be solved whose solutions are computable.

The various reflections about the term computability lead to very differ-
ent concepts and definitions. All these definitions, however, proved to be by

1The index 2 is usually omitted if there is no risk for confusion.
2Partly based on Maurer (1969, pp. 14 – 16) and on Böhling (1971, pp. 50 – 53).
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and large equivalent. In this book we choose to use the Turing computability

as our notation of general computability, since Turing machines are a concrete
and intuitive model of computation.

A function is defined to be Turing computable if the function’s value can
be computed with a Turing machine. For more details on Turing machines see
Section 2.2.2.

The Church-Turing thesis (following Alonzo Church and Alan Turing)
makes a statement about the capabilities of a Turing machine:

Church-Turing thesis: The class of intuitively computable functions is
exactly the same as the class of Turing computable functions.

As already mentioned above, this thesis is not provable since the term
intuitively computable is not well defined and cannot be exactly formalized.
It is standard, however, to assume that this thesis is true. This leads to the
possibility to prove that a function is not computable.

Do not confuse the Church-Turing thesis and the different proposition
Thesis M with regard to the capabilities of Turing machines (Gandy, 1980):

Thesis M: Whatever can be calculated by a machine is Turing (machine)
computable.

It is this thesis, however, which allows us to concentrate on Turing com-
putability in this book, since this thesis relates general machine computability
to Turing computability.

The term algorithm is fundamental for the definition of what Turing com-
putable means. We will now give a somewhat intuitive definition. Based on
this notion we will then define the Turing machine in the next section.

Definition 2.2: Algorithm
An algorithm is a procedure with which an answer is given to a certain com-
plex of questions by a prefixed method. Algorithms have to be specified un-
ambiguously in every detail. In particular, the instructions stating the algo-
rithm have to be given by a text of finite length.

Example 2.1: Euclidean Algorithm to Determine the Greatest Common Di-
visor (GCD) of Two Natural Numbers
For two natural numbers a1 and a2 with a1 ≥ a2 > 0, natural numbers
q2,q3, . . . can be determined by continued division with remainder so that

a1 = a2q2 +a3 with a3 < a2

a2 = a3q3 +a4 with a4 < a3

a3 = a4q4 +a5 with a5 < a4

...
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The sequence (ai) reaches the value 0 after a finite number of steps.
If an > 0 and an+1 = 0, i.e. an is the last element of the sequence (ai) different
from 0, then an = gcd(a1,a2).

Sample calculation: Let a1 = 810, a2 = 246, then:

810 :246 = 3
738

246 :72 = 3
216

72 :30 = 2
60

30 :12 = 2
24

12 :6 = 2
12

0

Verify by reformulating the above scheme as in the proof below:

246 = 216+30 = 3 ·72+30 = 7 ·30+3 ·12 = 17 ·12+7 ·6 = 41 ·6 and

810 = 3 ·246+72 = 3 ·246+2 ·30+12 = 3 ·246+5 ·12+2 ·6 = 135 ·6 .

The Euclidean algorithm for the calculation of the greatest common divisor
of two natural numbers delivers the answer after a finite number of steps and
is therefore a terminating algorithm.

Proof. The algorithm delivers the gcd(a1,a2) because of the following argu-
ments: If a3 = 0, then a1 is divisible by a2 and therefore a2 = gcd(a1,a2). If
a3 6= 0, then a3 is the greatest candidate for the gcd. If then a2 = a3q3 (i.e.
a4 = 0), then a1 = (q2q3 +1)a3, and a3 = gcd(a1,a2). . . .

Example 2.2: Calculation of All Integer Roots of a Polynomial
Let x ∈ Z with y(x) = 0 a root of the polynomial y. We are looking for an
algorithm to calculate all integer roots of a polynomial.

Consider, e.g., a polynomial y(x) = x3 + ax2 + bx + c (where a,b, and
c 6= 0 are integers). A possible algorithm would be:

Among all divisors of c, determine all those divisors d1,d2, . . . ,dn for
which y(di) = 0.

Obviously, this is not an algorithm in the strict sense since the instructions
do not describe every detail of the calculation. For example, there are no in-
structions on how to find the divisor of a number or how to check if y(di) = 0.
However, the given instructions can be amended so that they are complete.
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Some examples:

y(x) = x3−1 = 0 ⇒ x = 1

y(x) = x3−8 = 0 ⇒ x = 2

Generally, it has to be true that x3 + ax2 + bx = (x2 + ax+ b)x = −c. This
motivates to search only among the divisors of c.
Notice: This algorithm is obviously superior to the naive approach of check-
ing all x ∈ Z until all roots are found.

Algorithms as Transformations

In the theory of algorithms mainly algorithms are analyzed that transform
words (finite character strings) over an alphabet into words over a (possibly)
different alphabet.

Example 2.3: Continuation of Example 2.2
The instructions to calculate all the integer roots of a third-degree polynomial
can be regarded as follows: The word

x ↑ 3+2 · x ↑ 2+2 · x+1

over the alphabet

{x,0,1,2,3,4,5,6,7,8,9,+,−, ·,↑}

is transformed into the word −1 over the alphabet

{+,−,0,1,2,3,4,5,6,7,8,9},

since −1 is the only integer root of the polynomial x3 +2x2 +2x+1.

By the above intuitive Definition 2.2 it is expressed that an algorithm
is not just a method but also the method’s description. This can be realized
in a natural or an artificial (algorithmic) language (e.g. in a programming
language) or by means of a graph (e.g. a flowchart). Essential for this is the
uniqueness of the description by means of a finite text.

In the theory of algorithms it is assumed that linear character strings
(words over a given alphabet) are transformed by the analyzed algorithm.
Such words may be interpreted as code words for specific items worked upon.

In the context of an (algorithmic) language a sequence of words over the
alphabet of the algorithm is generated from an initial word (starting word,
input word) by means of a given system of so-called rules (transformation

rules). One gets a so-called deduction corresponding to the considered algo-
rithm.
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Algorithms as a Sequence of Operations

An algorithm is uniquely determined by the specification of a set of items

(input items, intermediate items, and output items), a set of basic operations

(elementary operations), and the instruction that specifies in which order (or
step of an iteration) the operations are to be performed.

The system of operations has to be complete, i.e. each operation specified
in the instruction has to be executable in the desired step. Also, the order of
the operations has to be uniquely determined.

Executing operations (for the manipulation of items) are distinguished
from testing operations (comparing operations, logic operations), which
generally result in binary decisions.

Characterization of Algorithms

In summary, algorithms can be characterized as follows:

1. An algorithm operates on specific items (e.g. characters).

2. An algorithm is given by a finite instruction I.

3. The operations prescribed by I are followed stepwise.

4. I specifies the execution of the operations in every detail.

5. The execution of I has to be reproducible.

6. The execution of I does not need any additional information.

Notice: The results of the stochastic algorithms, which are discussed in the
following, are also reproducible if all the parameters determining the stochas-
tic behavior are fixed. This includes, e.g., starting values of a random number
generator (see Chapter 6).

Classes of Algorithms

Algorithms can be classified according to various aspects. We will discuss
only two of them.

Definition 2.3: Classes of Algorithms
An algorithm is called terminating if it delivers an answer for the considered
complex of questions in finitely many steps. Otherwise, the algorithm is called
non-terminating.
An algorithm is called unbranched if it is executed linearly and branched if
it contains jumps.

An unbranched algorithm is always terminating. If a branched algorithm
leads into a cycle in which it steadily remains, the process is non-terminating.
If an algorithm describes an infinite process (according to time measurement)
the algorithm is also non-terminating.
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Example 2.4: Algorithm for the Calculation of a Square Root
No algorithm for the calculation of the square root of a natural number in
decimal representation can be terminating if only one digit of the solution can
be generated per step (cp. Section 2.2.2), since a square root normally has an
infinite number of digits.

Besides the natural termination of an algorithm (e.g. of the Euclidean al-
gorithm for the determination of the greatest common divisor of two natural
numbers), artificial terminations are in use (e.g. with all mathematical ap-
proximation processes).

For algorithmic control, though, e.g. in process control, a termination is
undesired, since the process ideally should continue without break.

Universal Algorithm

Algorithms should not only be applicable to a specific task but to a whole
class of tasks. This is achieved by defining as many as possible operations
for variables with deliberately selectable values.

Superposition and linking of special algorithms may lead to more general
ones. This leads to the question of whether there is something like a “univer-

sal” algorithm. However, the question cannot be answered without further
specification of the term algorithm.

The notion of an algorithm is specified very differently, e.g., by A.
Church, A. A. Markov, E. L. Post, and A. M. Turing. These notions mainly
differ with regard to different specifications of the transformation rule system
and the allowed formation of deductions. Although these different specifica-
tions are based on very different ideas, nevertheless, the fundamental theo-

rem of the classical algorithm theory proves that all the proposed notions
of algorithms are equivalent. Therefore, these notions of algorithms are called
Turing complete. We thus generally define so-called computable functions
as follows.

Definition 2.4: Computable Functions
Let M be the set of permissible input words and N be the set of permissible
output words. A function f : M → N is called (effectively) computable iff
there is a terminating algorithm delivering the corresponding function value
f (a) ∈ N for each a ∈M.

This notion is further specified in Section 2.2.2 in terms of Turing.

History

Following the Uzbek mathematician Ben Musa al-Chwarizmi, who pub-
lished the first Arabian book on algebra in the 9th century, the term algorithm

was originally only relevant for purely numerical methods.
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The Euclidean algorithm for the determination of the greatest common
divisor of two natural numbers is a classical example.

However, also outside mathematics there are algorithmic processes in
which, following prescribed instructions based on a set of given operations,
certain input items are stepwise transformed via intermediate items into out-
put items.

The modern theory of algorithms is very much influenced and stimu-
lated by the requirements and results of computer engineering and data pro-
cessing, by information theory and newly developed research areas like bio-
informatics and learning theory. Moreover, algorithmic processes play an im-
portant role in control theory.

2.2.1.2 Theory: Complexity of Algorithms3

The example of the Euclidean algorithm for the determination of the gcd al-
ready shows that the purpose of an algorithm is not always easily visible. In
other words, the relationship between algorithm and problem is potentially
unclear.

In particular, different algorithms may be developed for the same prob-
lem and all of them may significantly differ in the proximity to the problem.
Indeed, our first important criterion for the quality of an algorithm is by no
means its proximity to the problem but the so-called complexity of an algo-
rithm, meaning the calculation effort to solve the problem.

Before illustrating proximity to the problem and complexity by means of
sorting algorithms, we will define so-called complexity measures. A natural
candidate is, e.g., the calculation time needed by the algorithm. Therefore,
the term time complexity is used.

Time Complexity

Calculation time naturally depends on the used computer. Therefore, the
number of (elementary) operations (approximately) needed for solving the
problem is often used instead. For our purposes, operations are arithmetic
operations like addition, subtraction, multiplication, and division, but also
comparison- and interchange-operations. If operations are used that need dif-
ferent effort, a common unit for the effort might be useful. Obviously, the
number of operations depends on the amount of data to be processed. Nat-
urally, the number of operations increase with the amount of data.

The following complexity measures mainly indicate how strong the
number of operations increase with the size of the data. Thus, complexity

3Partly based on Wegener (1992, pp. 16 – 19).
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measures are functions mapping the size of the input data to the number of
operations needed by the algorithm.

Generally, only the order of the number of operations is important. A
typical statement is, e.g.: “The number of operations increases on average
with the number of data n” instead of “The number of operations is on average
c1 ·n.” There is hope that the relative complexity does not depend on the exact
prefactors, since very large and very small prefactors are seldom. However,
the function 20n is only smaller than the function ⌈n3/125⌉ if n > 50. Here,
the order estimation n≤ n3 is only valid for medium-size data sets because of
the prefactors 20 and 1/125. Even more problematic can be orders that only
differ in logarithmic factors. For example, the function 10n is only smaller
than the function ⌈(1/2)n log2 n⌉ if n> 220. In such cases the exact prefactors
might be interesting as well.

However, prefactors are often nevertheless ignored since:

– An exact determination of prefactors is often impossible.

– Calculation time is most of time only relevant for large data sets.

– Most relevant is the speed of growth of calculation time dependent on the
size of the data set.

Definition 2.5: Characterization of Complexity
Let f ,g :N→R

+
0 be complexity measures for the dependency of the number

of operations of two algorithms on the number of data n. Then we call:

1. f = O(g) (in words: f increases not faster than g) if
∃c, n0∀n≥ n0 : f (n)≤ cg(n).

2. f = Ω(g) ( f increases at least as fast as g), if g = O( f ).

3. f = Θ(g) ( f and g are of the same order) if f = O(g) and g = O( f ).

4. f = o(g) ( f increases slower than g), if f (n)/g(n) is a null sequence.

5. f = ω(g) ( f increases faster than g) if g = o( f ).

The two symbols capital O and small o are often called Landau symbols
after the mathematician Edmund Landau (1877-1938). For better understand-
ing, all these terms will be illustrated by examples:

Lemma 2.1: Complexity Properties

1. ∀k > 0 : nk = o(2n).

2. Let p1 and p2 be polynomials of degree d1 and d2 of n, where the coeffi-
cients of nd1 and nd2 are positive. Then,

(a) p1 = Θ(p2)⇔ d1 = d2.

(b) p1 = o(p2)⇔ d1 < d2.
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(c) p1 = ω(p2)⇔ d1 > d2.

3. ∀k > 0, ε > 0 : logk n = o(nε).

4. 2
n
2 = o(2n).

Proof. By graphical illustration.

Table 2.1 reinforces for typical calculation times that the complexity order
is decisive for the assessment of calculation time. Notice that all statements
relate to the arbitrarily fixed 1000 operations per second in the case f (n) = n.

Table 2.1: Maximum Number of Data for Different Calculation Times

Calculation Time =
f (n) = 1 sec 1 min 1 h

n 1000 60000 3600000
n · log2 n 140 4893 204433

n2 31 244 1897
n3 10 39 153
2n 9 15 21

Figures 2.1 and 2.2 illustrate the relationship between time budget (run-
time) and possible problem size. Let a machine be able to carry out 1000
elementary operations per second, and let the time budget be t seconds. How
large is the largest problem that an algorithm that needs n, n · log2 n, n2, n3, or
2n operations to solve the problem can solve in t seconds?

That means given a time budget and an exact complexity of an algorithm,
the graphics show the largest problem one can solve. Especially interesting is
the comparison between the problem sizes n for t, 2t, or t2, showing what can
be gained by doubling the time budget (or optionally by a jump from 1000 to
2000 operations/sec) or by squaring the budget.

In order to verify the curves in Figure 2.1, the following sample calcula-
tions might be helpful:

f (n) = 1000 ·200 min = 1000 ·12,000 sec = 1.2 ·107 = n

f (n) = 1000 ·330 min≈ 1000 ·20,000 sec = 2 ·107 ≈ 106 · log2(106)

f (n) = 1000 ·1666 min≈ 1000 ·100,000 sec = 108 = (104)2

Figure 2.2 shows the same relations on log scale and Table 2.2 shows how
technological progress influences the magnitude of calculation time. Note that
Figure 2.2 can be derived directly from Table 2.2. How much can the number
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Figure 2.1: Problem size dependence on runtime.
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Figure 2.2: Problem size dependence on runtime: log10 scale.

of data be increased for a given calculation time if the computer is 10 times
faster? Here, constant prefactors do not play any role. The used relationships
are shown directly below the table.

Table 2.2 shows the structural difference between the calculation times
n, n log n, n2, and n3 on the one side and 2n on the other side. In the first
four cases the number of data increases by a constant factor, depending on
the degree of the calculation time polynomial. In the last case the number
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Table 2.2: Maximum Number of Data Dependent on the Technology

Technology
f (n) Old New (i.e. 10 times faster)

n p 10p

n log n p (almost 10)p

n2 p 3.16p

n3 p 2.15p

2n p p+3.3

Note: log(10p) = log p+ log10 ≈ log p, 3.162 ≈ 10, 2.153 ≈ 10, and 23.3 ≈
10.

of data increases only by a constant summand. This motivates the following
definition.

Definition 2.6: Classes of Complexity
Let f : N→ R

+
0 be a complexity function.

1. f increases polynomially (or is called polynomially constrained) if there
exists a polynomial p with f = O(p).

2. f increases exponentially if there exists an ε > 0 with f = Ω(2nε
).

If at all possible, algorithms whose runtime is not constrained by a poly-
nomial should be avoided. Unfortunately, some problems are likely not solv-
able in polynomial time. For example, there is no known algorithm with
polynomial runtime that will, given a set of n integers, tell us if there is a
(nonempty) subset for which the sum of the integers in the subset is zero.
Calculating such a subset is therefore “hard,” but given a subset, it is easy to
check if it is truly a subset and if its sum is zero. Both checks can be done in
polynomial time. Another practical example of a hard problem is finding the
shortest round-trip through n cities. This problem is commonly referred to as
the traveling salesperson problem.

Notice that complexity is a random variable, since f (n) generally de-
pends not only on the number of data n, but also on the (random) ordering
of the data. However, since any statement on the complexity of an algorithm
should be independent of the input, the distribution of the complexity is of-
ten characterized by a location measure, typically by means of the expected

value. This leads to the so-called mean complexity. Additionally, the distri-
bution might be characterized by its range, i.e. by its smallest and its largest
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value (if they exist), which describe the most and the least favorable case.
Since the most favorable case is often considered as not so important, only a
worst case analysis is carried out in such cases.

2.2.1.3 Example: Sorting Algorithms

In the following the complexity of different algorithms for the solution of the
same problem is exemplified by the practically very important sorting of n

data according to some ordering (usually largest to smallest or vice versa).
We will discuss different examples of sorting algorithms. In order to explain
their structure step-by-step, we will start with an intuitive algorithm, which is
however rarely used in practice.

We use the above complexity characteristics for the comparison of algo-
rithms. The complexity is determined in the worst case as well as in the mean.

Question

Do you know applications of sorting algorithms in statistics?

Example 2.5: Bubble Sort4

Method: If only the repeated interchanges of neighboring data elements are
permitted as movements of data elements, we can obviously generate a data
sequence ordered by ascending values as follows.

We run through the list a1, . . . ,an of data elements considering any two
neighboring elements ai and ai+1, 1≤ i < n. If ai > ai+1, then we interchange
ai and ai+1.

After the first pass the largest element has reached its correct position at
the right-hand end of the list. Then again, the sequence is passed another time
exchanging neighboring elements if necessary. This passing of the sequence
is repeated until no interchanges appear anymore, i.e. until all pairs of neigh-
boring elements are correctly ordered. Finally, the list a is sorted in ascending
order.

In this sorting algorithm, larger elements obviously have the tendency to
rise slowly like air bubbles in water. This analogy induced the name Bubble
sort.

Sample example: Apply bubble sort to the vector a= [15 2 43 17 4 8 47]T .
In the first pass, the following interchanges of neighboring elements are

carried out:

4based on Ottman and Widmayer (1996, pp. 73 – 76)
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15 2
2 15 43 17

17 43 4
4 43 8

8 43 47
After the first pass the ordering of the list a looks as follows: 2, 15, 17, 4, 8,
43, 47.
The second pass delivers the ordering: 2, 15, 4, 8, 17, 43, 47.
The third pass delivers at last: 2, 4, 8, 15, 17, 43, 47,
i.e. the input elements are in ascending order. Another pass would not cause
any more interchanges. The bubble sort has successfully ended.

The pseudocode of bubble sort is given in Algorithm 2.1.

Algorithm 2.1 Bubble Sort

Require: n = number of observations; a = list of inputs
1: j← 1
2: while j > 0 do

3: j← 0 { j = number of interchanges in the pass}
4: for i = 1 to n−1 do

5: if ai > ai+1 then

6: ai↔ ai+1

7: j← j+1
8: end if

9: end for

10: end while

Note that the pseudocodes given in this book are most of the time not
algorithms exactly specified in all detail, but can be easily completed to have
this property. For example, in Algorithm 2.1 the interchange operation is not
specified.

Also note that in Algorithm 2.1 we always pass the whole list, though
after the ith pass the i largest elements are already in the correct ordering at
the right-hand end. We thus would receive an efficiency improvement by, e.g.,
inspecting only the positions 1, . . . ,(n− i)+1 in the ith pass.

Analysis: The estimation of the number of comparisons in the most fa-

vorable and the least favorable case is simple.
If the list a is already sorted in ascending order (best case), the for-

loop of the above algorithm is passed exactly once without any interchanges.
Therefore, the minimum number of comparisons is Cmin(n) = n− 1 and the
minimum number of movements Mmin(n) = 0.
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In the least favorable case (worst case) for the algorithm bubble sort the
list a is initially sorted in descending order. Then, the element with the min-
imal value advances one position to the left in each pass of the while-loop.
Therefore, n passes are necessary until it has reached the left-hand end, and
until no interchange is needed anymore.

It is easy to see that in this case in the ith pass, 1 ≤ i < n, (n− i) in-
terchanges of neighboring elements are needed, i.e. 3(n− i) movements (left
element into auxiliary storage, right element to the place of the left element,
and contents of auxiliary storage to the place of the right element), and natu-
rally each time n− i comparisons have to be carried out.

Therefore:

Cmax =
n−1

∑
i=1

(n− i) = n(n−1)− n(n−1)
2

=
n(n−1)

2
= Θ(n2)

and

Mmax =
n−1

∑
i=1

3(n− i) = Θ(n2)

One can show that this complexity characterization is also valid in the mean
(average case):

Cmean(n) = Mmean(n) = Θ(n2).

We do not prove this here, since bubble sort is surely an intuitive and
popular but very bad elementary sorting method. Only in cases where the
list is already nearly sorted are a small number of comparing operations and
movements carried out. Moreover, the method is very asymmetric concerning
the passing direction. If the original sequence is, e.g., already nearly sorted in
the sense that for a1, . . . ,an it is true that ai ≤ ai+1, 1 ≤ i < n− 1, and an is
the minimal element, then n− 1 passes are necessary in order to bring an to
the left-hand end of the list.

In order to repair this weakness, we could pass the list alternately from left
to right and vice versa. This slightly better variant is known as shakersort.

The next sorting algorithm is using a different idea. It immediately finds
the correct place for a new list element.

Example 2.6: Insertion Sort5

Method: Assume that we have already sorted the first i data, i.e.

a1 ≤ . . .≤ ai, i = 1, . . . ,n−1.

5based on Wegener (1992, pp. 58 – 59)
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Now, a new piece of data ai+1 should be arranged in order. For this there are
i+1 possible positions.

Before a j there are j positions, behind a j another i+1− j. Therefore, we
compare ai+1 first with a j for j = ⌈(i+1)/2⌉. In that range in which ai+1 lies,
we continue analogously. This way, ⌈log2(i+1)⌉ comparisons are enough to
find the correct position of ai+1.

Let, e.g., i = 7. Then, because of the continuing split, 3 comparisons are
enough to arrange the new piece of data ai+1 in order. If, e.g., ai+1 is smaller
than all a j, j = 1, . . . , i, then we first compare it with a4, then with a2, and
finally with a1.

After we have found the correct position k for ai+1, it is stored in an
additional storage place. After shifting the data ak, . . . ,ai one position to the
right, ai+1 takes the position k.

The pseudocode of insertion sort is given in Algorithm 2.2.

Algorithm 2.2 Insertion Sort

Require: n = number of observations; a = list of inputs
1: for i = 1 to n−1 do

2: r← i {r = right range limit}
3: if a1 ≥ ai+1 then

4: [a1, . . . ,ai+1]← [ai+1,a1, . . . ,ai] {ai+1 leftmost: NEXT i}
5: else if ai > ai+1 then

6: l← 1 {l = left range limit} {ai+1 not rightmost: Find correct posi-
tion for ai+1}

7: loop

8: j← ⌈(l + r)/2⌉
9: if a j ≤ ai+1∧ai+1 ≤ a j+1 then

10: [a1, . . . ,ai+1]← [a1, . . . ,a j,ai+1,a j+1, . . . ,ai]
11: break loop
12: else if a j > ai+1 then

13: r← j

14: else

15: l← j

16: end if

17: end loop

18: end if

19: end for

20: return a



26 COMPUTATION

Note that Algorithm 2.2 assumes that the element ai+1 is initially at the
right end of the list.

Analysis: In the worst case the total number of comparisons is

n−1

∑
i=1

⌈log2(i+1)⌉=
n

∑
i=2

⌈log2(i)⌉< log2(n!)+n.

We will study the term log2(n!) in more detail since it appears frequently.
Following the Stirling formula the ratio of n! and

√
2π nn+1/2e−n converges

toward 1:

log2(n!)≈ log2(⌊
√

2π nn+1/2e−n⌋) = n log2(n)−n log2(e)+O(log2(n)).

Since log2(n) ≪ n for large n, n is dominated by the term n log2(n), and
thus O(log2(n)) gets small relative to the first term. Therefore, the following
approximation is very good:

log2(n!)≈ n log2(n)−1.4427n.

Theorem 2.1: Insertion Sort - Worst Case
In the worst case insertion sort approximately needs

n log2(n)−0.4427n+O(log2(n))

comparisons.

Therefore, for comparisons insertion sort is definitely better than bubble
sort. However, the data transport is very “expensive,” even in the average

case, for which we consider all n! permutations of the ordered sequence as
uniformly probable inputs. For the average case analysis we assume without
loss of generality that the ordered sequence has the form 1, . . . ,n.

Theorem 2.2: Insertion Sort - Average Case
In the average case insertion sort needs Θ(n2) interchange operations.

Proof. We count only the operations that move one piece of data one place to
the right. There are (n−1)! permutations π with π(i) = j.

Therefore, ai ends with probability (n−1)!
n! = 1

n
at position j assuming uni-

form distribution of inputs. If j > i, ai has to be moved on average ( j− i)
times one place to the right. In the average case, the number of movements of
ai to the right is thus

1
n
(0+ . . .+0+1+ . . .+(n− i)) =

(n− i)(n− i+1)
2n

.
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Therefore, the total number of movements to the right in the average case is

1
2n

n

∑
i=1

(n− i)(n− i+1) =
1

2n

n

∑
i=1

(i−1)i =
(n2−1)

6
.

However, even in the worst case O(n2) operations are sufficient!
From this analysis, we learned something general about the construction

of sorting algorithms. On average, we cannot avoid quadratic runtime if the
data are only “creeping” in one direction, i.e. are making steps of length 1 in
one pass.

Example 2.7: Quick Sort6

This sorting algorithm introduced by Hoare (1962) is nowadays one of the
most commonly used sorting methods. It is an application of the divide-and-
conquer principle to sorting.

Method: At first, one piece of data is chosen, e.g. according to one of the
four most widely used variants:

1. Choose the first element of the input list.

2. Choose a position of the input list by means of a random number generator,
i.e. choose the position and thus the piece of data randomly.

3. Choose three pieces of data in the list: the first one, the middle one, and the
last one (if the number n of data is even, choose, e.g., the left of the two
middle ones). Calculate the median of these three pieces of data.

4. Choose three positions randomly and determine the median of the corre-
sponding data.

Then, this first chosen piece of data is brought into its correct position,
i.e. the data on its left should not be larger, and on its right, not smaller. Then,
quick sort is applied recursively to the two sublists to the left and to the right
of the chosen piece of data.

Sublists of length 0 or 1 are already sorted so that the procedure can be
stopped. There are implementations in which short lists, e.g. with at most
10 data, are analyzed by means of insertion sort in order to avoid the higher
organizational effort of quick sort.

This effort is mainly related to the fact that there are two sublists that both
have to be analyzed. We have to decide which sublist should be analyzed first,
and we have to put the other sublist on a so-called recursion stack.

6based on Wegener (1992, pp. 60 – 63)
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Algorithm 2.3 Quick Sort

Require: a = list of inputs; l0 = leftmost index; r0 = rightmost index
1: if r0− l0 ≥ 1 then

2: l← l0
3: i← RANDOMELEMENT ∈ {l0, . . . ,r0}
4: r← r0

5: while l 6= r do

6: while (al ≤ ai)∧ (l < i) do

7: l← l +1
8: end while

9: while ar > ai∧ r > i do

10: r← r−1
11: end while

12: al ↔ ar

13: if l = i then

14: i← r

15: else if r = i then

16: i← l

17: end if

18: end while

19: a← Quick sort(a, l0, i−1)
20: a← Quick sort(a, i+1,r0)
21: end if

22: return a

For the decomposition of the list into a chosen piece of data and those
sublists of data that are not larger and not smaller than the chosen piece of
data, respectively, there are again different implementations. We introduce
one implementation that also works correctly if some data of the list are equal,
and which manages to get along with the minimum number of n−1 compar-
isons:

1. Assume that the list has positions 1, . . . ,n and that ai is chosen first.

2. Starting from a1 we search for the first piece of data al > ai. This is true
for at least l = i.

3. Starting from an we search for the first piece of data ar ≤ ai. Again, this is
true for at least r = i.

4. If l = r = i, then STOP. Otherwise, interchange al and ar. Notice that the
first chosen piece of data ai could have changed its position now. Therefore,



WHAT CAN A COMPUTER COMPUTE? 29

let i = r, if l = i, and i = l, if r = i otherwise, in order to change the index i

along with the corresponding element ai. Continue the search as in steps 1
and 2, starting at positions l and r. In all cases where ai is not affected by an
interchange, we could start at l+1 and r−1 in order to reduce the number
of comparisons. This is omitted in the pseudocode of Algorithm 2.3 in
order to simplify and shorten its representation.

The pseudocode of quick sort is given in Algorithm 2.3.
Note that this is the only exception where we specify a recursive definition

of the algorithm, since its implementation is very natural and will typically
happen in languages like C. In R, as an example of a statistical programming
language, we won’t be able to sort even reasonably sized data using a recur-
sive implementation due to R’s stack usage restrictions, which stem from its
scoping rules. An iterative implementation would involve dealing with stacks
that keep information about the subsets of the data that have to be sorted dur-
ing the next iterations.

The method needs n− 1 comparisons since ai is compared with every
other piece of data exactly once. The number of interchanges is also at most
n−1, since every piece of data except ai is interchanged at most once.

Sample example: Let n = 13, i = 7, and ai = 53 chosen first. In what
follows, the first element chosen is italicized and the elements identified to be
interchanged in bold.

15 47 33 87 98 17 53 76 83 2 53 27 44

15 47 33 44 98 17 53 76 83 2 53 27 87
15 47 33 44 27 17 53 76 83 2 53 98 87
15 47 33 44 27 17 53 76 83 2 53 98 87
15 47 33 44 27 17 53 53 83 2 76 98 87
15 47 33 44 27 17 53 2 83 53 76 98 87
15 47 33 44 27 17 53 2 53 83 76 98 87

After this first run, position 9 has received its final piece of data. Quick sort
is now called for the position intervals [1,8] and [10,13].

Analysis: In the following we only study the number of comparisons. The
number of interchanges cannot be higher.

In variants (1) and (2) (see page 27) ai can be the smallest piece of data.
Therefore, in the worst case the number of comparisons is

Cmax(n) =Cmax(n−1)+n−1 = 1+2+ . . .+(n−1) =

(
n

2

)
=

n(n−1)
2

,

since then the chosen element has to be compared with all other pieces of data
((n− 1) comparisons) and the next list includes (n− 1) elements. Thus, we
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have found one case with (n−1),(n−2), . . . comparisons. At least this many
comparisons we have to budget.

The maximal number of comparisons is also restricted by
(

n
2

)
, since no

pair is compared twice. Therefore, in the worst case
(

n
2

)
comparisons are car-

ried out.
For variants (3) and (4) (see page 27) the situation is somewhat more

favorable. For the determination of the median we need 3 comparisons in
the worst case. This median then has to be compared only with the (n-3)
remaining data, and the chosen piece of data is at worst the second smallest or
the second largest piece of data so that the next list is at most (n−2) elements
long. In total, the maximum is not very much changed by this, though.

For these variants we have:

Cmax(n) =Cmax(n−2)+n = n+(n−2)+(n−4)+ . . .= Θ(n2).

Indeed, all Quick sort variants need Θ(n2) comparisons in the worst case.
For variants (1) and (2) we now derive the mean number of necessary

comparisons. For variants (3) and (4), see the next example.
First notice that the variants (1) and (3) are essentially different from the

variants (2) and (4). In the first case, we have to consider the average over all
inputs. In the second case, we can calculate the mean number of comparisons
because of the use of random numbers. Having made this clear, we can work
jointly on cases (1) and (2).

In the end, the chosen object stands at position j, 1 ≤ j ≤ n, with proba-
bility 1

n
. Then, problems of sizes j−1 and n− j have to be solved. Therefore,

Cmean(0) =Cmean(1) = 0 and for n≥ 2 :

Cmean(n) = n−1+
1
n

n

∑
j=1

(Cmean( j−1)+Cmean(n− j)).

Exemplarily, we solve this recursion equality abbreviating Cmean by C.
Obviously,

n

∑
j=1

C( j−1) =
n

∑
j=1

C(n− j), hence

C(n) = n−1+
2
n

n

∑
j=1

C( j−1) and

nC(n) = n(n−1)+2
n

∑
j=1

C( j−1).
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In this equality the full set of C( j) appears. In order to reduce the number
of different C-values to two, we consider the above equation for n− 1 and
subtract this equation from the equation for n:

(n−1)C(n−1) = (n−1)(n−2)+2
n−1

∑
j=1

C( j−1)

⇒ nC(n)− (n−1)C(n−1) = n(n−1)− (n−2)(n−1)+2C(n−1)

⇒ nC(n)− (n+1)C(n−1) = 2(n−1)

⇒ (division by (n+1)n) :
C(n)

n+1
=

C(n−1)
n

+
2(n−1)
n(n+1)

Now, it appears to be natural to study Z(n) := C(n)
n+1 instead:

Z(n) = Z(n−1)+
2(n−1)
n(n+1)

= Z(n−2)+
2(n−2)
(n−1)n

+
2(n−1)
n(n+1)

= · · ·
= Z(1)+2

n

∑
j=2

j−1
j( j+1)

Since C(1) = 0, also Z(1) = 0. Moreover:

1
j( j+1)

=
1
j
− 1

j+1
.

Therefore,

Z(n) = 2
n

∑
j=2

(
2

j+1
− 1

j

)

= 2

(
n+1

∑
j=3

2
j
−

n

∑
j=2

1
j

)

= 2

(
n

∑
j=3

2
j
+

2
n+1

−
n

∑
j=3

1
j
− 1

2

)

= −1+2
n

∑
j=3

(
1
j

)
+

4
n+1

.

The series 1+ 1
2 + . . .+ 1

n
occurs so often that it has gotten the special name

harmonic series H(n). Thus,

Z(n) = 2H(n)−4+
4

n+1
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and therefore

C(n) = (n+1)Z(n) = 2(n+1)

(
H(n)−2+

2
n+1

)
= 2(n+1)H(n)−4n.

Considering Riemann sums, for H(n) it is valid that

∫ n+1

1

1
x

dx≤H(n)≤ 1+
∫ n

1

1
x

dx, i.e. log(n+1)≤H(n)≤ 1+log(n).

One can even show that (H(n) − log(n)) converges. The limit γ ≈
0.57721 . . . is called Euler constant. Finally, log(n) = log2(n) log(2).

Overall, we have proved the following theorem:

Theorem 2.3: Quick Sort - Worst and Average Case
In the worst case all Quick sort variants need Θ(n2) comparisons. For the
variants (1) and (2) the average number of comparisons is:

Cmean(n) = 2(n+1)
n

∑
j=1

1
j
−4n

≈ 2(n+1)(0.57721+0.69315 · log2(n))−4n

≈ 1.386n log2(n)−2.846n+1.386log2(n)+1.154.

Example 2.8: Clever Quick Sort7

Method: Clever quick sort we call the variants (3) and (4) of quick sort.
There, we choose three objects x, y, and z from the input list. Then, the median
of these three objects is calculated and used as the dividing object. Obviously,
this object only has to be compared with the remaining n−3 objects.

Analysis: In order to calculate the median of the three objects x, y, and z,
on average 8

3 comparisons are sufficient and necessary.
As the first comparison, w.l.o.g., the comparison between x and y can be cho-
sen. Let, w.l.o.g., x > y. Because of the larger-smaller symmetry we can then
choose, w.l.o.g., the comparison between x and z. If z > x, then x is the me-
dian. Otherwise, z and y also have to be compared.

Without additional information we assume that z falls with equal proba-
bility 1

3 into each of the intervals (−∞,y), (y,x), and (x,∞). Hence, we need 3
comparisons with probability 2

3 and 2 comparisons with probability 1
3 . There-

fore, on average we need 8
3 = 3 2

3 +2 1
3 comparisons. For the first step we thus

need on average n− 1
3 instead of n− 1 comparisons. In return, the dividing

object has the tendency to lie nearer to the median of the whole list. We will

7based on Wegener (1991, pp. 8 – 17)

www.allitebooks.com

http://www.allitebooks.org
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study whether clever quick sort lives up to its name. We calculate the mean

complexity of this algorithm.
For this we need the probability that the dividing object takes position j in

the sorted list. We choose 3 from n objects. For this there are
(

n
3

)
possibilities.

The median of these three objects only takes position j if the largest object
takes one of the n− j posterior positions, the median object takes position
j, and the smallest object takes one of the j− 1 anterior positions. For this,
there are ( j−1)(n− j) possibilities. The sought-after probability is therefore
( j−1)(n− j)

(n
3)

.

Numerical example: Let n = 5, then for j = 1, . . . ,5 we have:

( j−1)(n− j)(
n
3

) =
( j−1)(5− j)12

120
= 0,0.3,0.4,0.3,0.

Obviously, here we are not concerned with an equal weighting of positions as
for quick sort.

For the average number Cmean(n) of comparisons needed by clever quick
sort, we then have

Cmean(0) =Cmean(1) = 0, Cmean(2) = 1, and for n≥ 3,

Cmean(n) = n− 1
3
+

(
n

3

)−1 n

∑
j=1

( j−1)(n− j)(Cmean( j−1)+Cmean(n− j)).

With this recursion equality we could principally calculate the value of
Cmean(n) for every n. Nevertheless, what we need is an explicit formula for
Cmean(n). The effort to calculate, e.g., Cmean(100,000) would be too high for
a recursion even with a computer.

Unfortunately, although the corresponding transformation of the recur-
sion formula is very “artful,” it is also very tedious and does not aid in un-
derstanding the sorting algorithm. Therefore, the derivation is skipped (see
the above literature for a detailed presentation). The result, however, is very
remarkable:

Theorem 2.4: Clever Quick Sort - Average Case
The average number of comparisons needed by clever quick sort is

Cmean(1) = 0, Cmean(2) = 1, Cmean(3) =
8
3
, Cmean(4) =

14
3
, Cmean(5) =

106
15

and for n≥ 6,

Cmean(n) =
12
7
(n+1)

n−1

∑
j=1

1
j
− 477

147
n+

223
147

+
252
147n

≈ 1.188n log2(n−1)−2.255n+1.188 log2(n−1)+2.507.
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Figure 2.3: Bubble sort. Left: Initialization; Right: Snapshot during the pro-
cess.

Now it is easy to calculate Cmean(100,000) by means of a computer. One
can show that clever quick sort asymptotically exceeds the minimum of the
expected number of comparisons only by 18.8%. Additionally, since the lin-
ear term has a relatively large negative prefactor, clever quick sort is much
more efficient than the other introduced methods.

2.2.1.4 Practice and Simulation

Sorting Algorithms on the Internet

There are many simulators for sorting algorithms on the internet, for example
http://www.ansatt.hig.no/frodeh/algmet/animate.html.

Inspired by this simulator, Figures 2.3 and 2.4 show snapshots of the process
of sorting for bubble sort and for quick sort.

Please note that in Figures 2.3 and 2.4, on the y-axis the current posi-
tion of the elements with the true rank given at the x-axis is indicated. After
sorting, a diagonal should result.

The progress of the different sorting algorithms can also be presented
schematically, as illustrated in Figure 2.5. The slow movements of the ele-
ments for bubble sort and the block-by-block process for quick sort are obvi-
ous.

Outlook: Algorithms

Although the term algorithm is very old, it is still very important today. With-
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Figure 2.4: Quick sort. Left: Initialization; Right: Snapshot during the pro-
cess.
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Figure 2.5: Schemes. Left: Bubble sort; Right: Quick sort.

out algorithms the realization of statistical methods on the computer would
be unthinkable. The decomposition of mathematical methods into a sequence
of generic single steps that are realizable in a computer language builds the
basis for today’s methodological thinking. However, it should be stressed that
here an algorithm is understood as a helping aid for the determination of the
solution fixed by the mathematical method. Therefore, for an algorithm, not
only the determination of its complexity is important, but also the exactness of
the found solution has to be tested. The introduced sorting algorithms always
reach the correct solution reliably. However, numerical algorithms often have
difficulties with this, dependent on the data situation (cp. the term condition

number in Sections 2.4.2, 2.4.4.2, and 3.1.2).
The term Turing machine introduced in the next section clarifies the de-
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composition of a mathematical method into generic single steps in a way
similar to that of today’s machine languages.

2.2.2 Turing Machines8

2.2.2.1 Motivation and History: Turing machines

A Turing machine is an idealized computer named after A.M. Turing (1912
- 1954) that specifies the notion of a mechanical or algorithmic calculating
machine.

The Turing machine has an external storage in the form of an infinitely
long tape that is subdivided into single cells each containing one character of
a common finite alphabet {a0,a1, . . . ,an}.

The machine works in discrete successive steps. During each step the in-
formation on the tape (one character a j of the alphabet) is read and processed
according to the current machine instruction.

The machine only has a finite number of instructions, so-called states,
l1, l2, . . . , lm. The input information a j and the current instruction lk determine
the output information ak j, which overwrites the character a j. Both a j and lk
also determine whether the tape is moved to the left, to the right, or not at all.
After execution of the instruction the machine takes the new state lk j, and a
new step starts.

For given starting information Ia, i.e. a preprinted tape, the Turing ma-
chine:

1. May stop after finitely many steps representing the information Ib - in this
case the Turing machine is said to be applicable to the starting informa-
tion.

2. May never stop - in this case the Turing machine is said to be not applica-

ble to the starting information.

Each Turing machine realizes a fixed algorithm. For example, one can
construct a Turing machine for the addition of two natural numbers (see be-
low). The larger the problem, the more complex is the corresponding ma-
chine.

Turing machines are not physically realized but only used for the exact
definition of an algorithm. The Turing machine is a pure “thought exper-
iment,” particularly since a computer with infinite storage can never exist.
Additionally, as a practical computer the Turing machine would be unusable
because of its extremely awkward operation. However, the Turing machine

8based on Böhling (1971, pp. 34 – 40, 48 – 49)
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input information output information

transformation

argument rule value

Figure 2.6: Turing machine as character transformation.

is of great theoretical and methodological value for the practical construc-
tion of computers and for the conceptual clarification of basic problems in
mathematics and logic, especially in the theory of algorithms. Moreover, the
Turing machine, a so-called paper computer, is a good model for today’s
computers.

Functional Description

A Turing machine (TM) is a mechanism for the effective calculation of a
function. Such a calculation can be regarded as a transformation of char-

acter strings. Each given character string (in the domain of the function) is
transformed according to a predefined rule into another character string (in
the codomain).

Example 2.9: Turing machine as Character String Transformation
The operation + on the natural numbers can be considered as follows:
Given the alphabets A = {1,2,3, . . . ,9,0,+} and B = {1,2,3, . . . ,9,0}, let f

be a mapping f : A∗ → B∗, where A∗ and B∗ are the sets of all words with
characters from A and B, respectively (finite character strings over A and B).
For example, f should transform 1347+90+1 (∈ A∗) into 1438 (∈ B∗). This
process should proceed purely mechanically without any “thinking.”

The interpretation of arguments and function values is in the domain of
people, not of the mechanism.

In order to specify the mechanism we need:

1. An agreement about the usage of characters for the encoding of objects,

2. a storage medium for these characters, and

3. a facility for the execution of operations on these characters.

The calculation process is illustrated in Figure 2.6.

2.2.2.2 Theory: Definition

For a TM, storage medium and operation have a special form. Since character
strings are the material to be worked upon, a tape can be used as the storage
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+ f a K r - b

Figure 2.7: Form of storage of a Turing machine.

medium. This tape is subdivided into cells which represent work areas (see
Figure 2.7).

The transformation of character strings is carried out stepwise: The TM
always considers exactly one cell, the so-called working cell. The content
of this cell and the state (i.e. the actual instruction) of the TM determine the
operation to be performed and the next state.

One operation consists of two suboperations:

1. Change of character in working cell,

2. transfer to a new cell.

The transformation of character strings consists of a finite sequence of oper-
ations of this kind.

Let us discuss the technical construction and the operation of a TM

in more detail. Let A = {a0,a1, . . . ,an} be the alphabet from which a valid
character string is to be built. a0 is of special importance. It represents the
blank, written as b.

The machine consists of:

1. The control unit CU with:

a. An input register IR,

b. an instruction (or command) register CR,

c. an operation register OR,

d. a cell selector CS.

2. The tape unit TU with:

a. A read/write head RW,

b. the tape guide apparatus TG.

3. The program storage PS.

4. The information storage, the tape.

The purpose of a TM is the planned transformation of words from A∗ into
words from (w.l.o.g. also) A∗.

Explanations

4: On the tape there are the words on A to be worked upon. The tape is
decomposed into cells. Into each of these cells “fits” exactly one character
from A. A cell is called empty if it contains the character a0 = b. The tape is
arbitrarily extendable to the right. The cells are numerated, starting from zero
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ith instruction

i a0 ai0 vi0 li0
...

...
...

...
...

i an ain vin lin

Figure 2.8: TM instruction as quintuple.

at the left. Apart from cells with b, the input only consists of finitely many
cells with elements from A.

3: A TM works according to a Turing program TP, which consists of
finitely many instructions. The instructions are stored in cells of the PS. The
cells are numerated starting with 1. Each instruction is uniquely determined
by the number of the cell in which it is stored. The number of such cells can
be arbitrarily enlarged.

2: The read/write head RW reads and writes exactly one cell. Writing
means overwriting, writing a b means erasing. The cell underneath the RW is
called working cell WC. The symbol < > is used to identify the content of a
part of the TM. There are three different shift instructions S:

– R directs the cell right to the WC under the RW.

– L directs the cell left to the WC under the RW.

– N (neutral) leaves the cell under the RW as WC.

1: The cell selector CS chooses the instruction that is to be executed next.
It contains the number i of the cell in which this instruction is stored. In an
alphabet with the characters a0, . . . ,an a complete instruction contains n+ 1
implications (subinstructions) of the form:
< IR >= a j→ write ai j into WC and

write vi j (R, N or L) into OR and
load the li jth instruction into CR.

The ith instruction is briefly written as n+ 1 times a quintuple (see Fig-
ure 2.8). In this way, it is fully determined what to do for each possible content
of the input register IR.

Execution of a TM

The working of a Turing machine can be summarized as follows: The TM
works in steps. Each step consists of five so-called operating cycles (see
Figure 2.9):

1st cycle: The content of a cell with number i as indicated in the cell selector
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4th  cycle

5th cycle

2nd cycle

3rd cycle

CU                                    CS                                                                       PS

CR

IR OR

TU

RW, TG                             tape

1st cycle

3rd cycle

i 1 a0 a10 v10 l10
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aj aij vij lij i aj aij vij lij
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● ●

Figure 2.9: Scheme of a Turing machine.

is brought into the command register. The TM takes the state i:

(〈CS〉= i)−→ (〈ith cell〉 −→ CR)

2nd cycle: The RW reads the character in the WC and the TU gives it to the
IR:

〈WC〉 −→ IR

3rd cycle: The CU determines the operation ai jvi j and the next instruction li j

writes the operation into the OR and the number li j of the next instruction
into the CS:

[〈IR〉;〈CR〉] CU−−→ [〈OR〉;〈CS〉]
4th cycle: The TU takes the character ai j from the OR and the RW writes it

into the WC:
〈OR〉 ∋ ai j −→WC

5th cycle: The TU takes the shift character vi j from the OR and the TG exe-
cutes the shift operation:

〈OR〉 ∋ vi j −→ TG

The TM regularly stops iff the content of the CS is zero. The TM stops
irregularly, if
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1. the zeroth cell of the tape is WC and < OR >∋ L (the TM is blocked).

2. < CS > is empty.

In the beginning, e.g., < CS >= 1, i.e. the program starts with instruction 1.

The TM as Mathematical Structure

A TM is uniquely determined by the following items:

1. The set of states (= set of instructions) I,

2. the character alphabet A,

3. the Turing program P, where a subinstruction is corresponding to a map-
ping I×A→ A×S× I,

4. the starting state l0 ∈ I,

5. the set of final states F ⊆ I.

Therefore, a TM can be represented by a quintuple: M = (I, A, P, l0, F).
Notice that the shift alphabet S is equal to {R, N, L} for all Turing machines.
This is the reason why it is not mentioned in the characterization.

Binary Turing machines

An important special case of Turing machines is machines over the binary al-
phabet {b, I}. Such Turing machines are particularly similar to today’s com-
puters.

TM as a Model for a Computer:

1. Information: The binary TM operates on a binary alphabet A = {b, I},
and sequences of elements of A are used to encode other objects by adequate
interpretation. E.g., in the example program “add” (see below) a natural num-
ber n is encoded as n+ 1 times I, i.e. a sequence of K times I is interpreted
as the natural number K− 1. Today’s computers also use a binary alphabet
(power, no power) and the characters utilized by the human user are encoded
by the machine itself into binary sequences.
2. Storage: The storage of a TM is absolutely comparable with the storage of
a computer. It consists of a linear arrangement of single storage spaces. Each
space has a fixed address and a variable content, which is determined by the
human user by means of a program.
3. Control unit: The control unit controls and organizes the process of the
whole activity of the machine.
4. Instructions: The instructions of a TM have the structure of quintuples.
Instructions of a computer also have tuple structure. For example, on the an-
cient IBM System/370 (1976): AER R1,R2 denoted
add (A) “short normalized” (E) two numbers whose addresses are stored in
the registers (R) with the numbers R1 and R2.
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Table 2.3: Turing machine “add”

1 b b R 2
1 I I R 0

2 b I R 3
2 I I R 2

3 b b L 4
3 I I R 3

4 b b R 0

4 I b L 5

5 b b R 0

5 I b L 6

6 b b R 0

6 I I L 6

The term short normalized corresponds to single-precision normalized
floating-point inputs and output (see Section 2.3).
5. Programs: The programming language of a TM is very simple. A pro-
gram mainly consists of a sequence of instructions that are logically related,
building a sensible entity this way. On a computer this corresponds to the
programming in so-called machine languages.

2.2.2.3 Example: Addition

Example 2.10: Turing machine “add”
Let A = {a0 = b, a1 = I}, let the Turing Program P be given by Table 2.3,
and let the content of the input tape be “b I b I b b . . .”. The result
of the application of the program to this input is given in Table 2.4.

Notice that the position of the read/write head is indicated by a bar over
the corresponding character.

In order to characterize the purpose of the different statements in the
above TM, please realize that instruction 2 identifies the first summand and
instruction 3 the second. Instructions 4 and 5 both erase one I. One I is erased
because of the coding of the natural numbers (see above, a zero is repre-
sented by one I), the other because of the filling of the gap between the two
summands by one I in instruction 2. Instruction 6 stops the program regularly.

In passing, notice that some subinstructions are redundant! Which?

www.allitebooks.com

http://www.allitebooks.org
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Table 2.4: Execution Progress of the Turing machine “add”

b I b I b b b . . . 1 (instruction)
b I b I b b b . . . 2
b I b I b b b . . . 2
b I I I b b b . . . 3
b I I I b b b . . . 3
b I I I b b b . . . 4
b I I b b b b . . . 5
b I b b b b b . . . 6
b I b b b b b . . . 6
b I b b b b b . . . 0

Please check the subinstructions that end with the instruction number 0. The
redundant subinstructions were only included for the sake of completeness.
In general, they are omitted.

We can summarize the result of the above computation of the TM as fol-
lows:

P(bIbI) = bI.

More generally, the program provides

P(b I . . .I︸ ︷︷ ︸
(x+1)-times

b I . . .I︸ ︷︷ ︸
(y+1)-times

bb . . .) = b I . . .I︸ ︷︷ ︸
(x+y+1)-times

.

This is the reason why this program is called add. Which two numbers were
added in the above example?

2.2.2.4 Practice and Simulation

In the internet there are different simulators for Turing machines, which, how-
ever, utilize different “programming dialects.”

Example 2.11: TM Example 1
See http://ironphoenix.org/tril/tm/ for a Turing machine simulator.
Notice the very different notation of the instructions relative to the above no-
tation, e.g. for the Turing machine “subtraction” in Table 2.5. The instructions
are read as follows. The first subinstruction means that if in instruction 1 the
input _ (= b) is observed, then the next instruction to be executed is again
instruction 1, a _ has to be written on tape and the tape has to be shifted to
the right. Obviously, this is not a binary machine. The alphabet includes _, 1,
-, =. Moreover, left and right shifts are coded <, >.



44 COMPUTATION

Table 2.5: Turing machine “subtraction”

1,_ 1,_,>

1,1 1,1,>

1,- 1,-,>

1,= 2,_,<

2,1 3,=,<

2,- H,_,<

3,1 3,1,<

3,- 4,-,<

4,_ 4,_,<

4,1 1,_,>

Table 2.6: Turing machine “adding”

0 _ _ R 0

0 1 1 R 1

1 _ 1 R 2

1 1 1 R 1

2 _ _ L 3

2 1 1 R 2

3 _ _ L 3

3 1 _ L 4

4 _ _ R stop

4 1 1 L 4

Example 2.12: TM Example 2
See http://www.turing.org.uk/turing/scrapbook/tmjava.html for
another Turing machine simulator. Notice that here the notation of the instruc-
tions is similar to our notation above, e.g. for the Turing adding machine in
Table 2.6.

Outlook: Turing machines

Turing machines are surely a very old idea (1936). Moreover, Turing ma-
chines in their pure form are not utilized in practice. Nevertheless, the basic
ideas of today’s computers can be easily represented by Turing machines.
This constitutes their value even today. If you are interested in an actual view
on Turing machines you may want to look into, e.g., Wiener et al. (1998).

Summary

In this section we introduced algorithms and Turing machines. Algorithms

are basic for today’s thinking about computer programming. Algorithms are
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characterized by their complexity and their accuracy. We introduced complex-
ity measures and discussed the complexities of different algorithms for solv-
ing the sorting problem. The discussion of accuracy is postponed to the next
sections. Turing machines are a purely theoretical vehicle for the realization
of algorithms. Nevertheless, Turing machines have astonishing similarities to
actual computers. As an example we introduced a binary Turing machine for
addition.

2.3 Floating-Point Computations: How Does a Computer Compute?9

2.3.1 Motivation and History: Floating-Point Computations

The first mechanical binary programmable computer, the Z1 built by Kon-
rad Zuse in 1938, used 22-bit floating-point numbers. The first commercial
computer with floating-point hardware was the Z4 constructed by Zuse in
1942-1945. The IBM 704 followed 10 years later in 1954. In the next decades
floating-point hardware was typically optional, and computers with this op-
tion were scientific computers. It was only in the 1990s that floating-point
units (FPUs) became ubiquitous.10 They are now an integral part of every
modern CPU. However, there are certain applications (embedded devices, for
example) where an FPU is still not standard. Often, the functions of the FPU
are then emulated in software.

In the next few paragraphs we will introduce the basic principles of arith-
metic for floating-point numbers. One might think that these principles
should hardly be interesting since all modern desktop computers have CPUs
that support these basic arithmetic operations in hardware. We hope that af-
ter working through this section, it will be clear that knowing the underlying
principles of floating-point arithmetic is invaluable if one wants to study error
propagation in numerical algorithms.

For brevity and clarity we will focus on so-called single-precision

floating-point arithmetic. The same ideas apply to the nowadays more com-
mon double-precision and multiple-precision floating-point arithmetic as well
(see any of the mentioned literature for details). We will also avoid a discus-
sion of fixed-point arithmetic which assumes that the decimal point is al-
ways at a fixed position. The most common type of fixed-point numbers on
computers are the integers. Here there are no digits to the right of the decimal
point (cp. Section 6.2).

In fact, as computers have become faster, it is usually best to use floating-

9Partly based on Knuth (1998, pp. 214 – 223); Wilkinson (1963, pp. 7 – 13).
10cp. http://en.wikipedia.org/wiki/Floating_point
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point numbers unless the domain is well defined ahead of time and the ex-
pected time savings of avoiding the complexity of floating-point operations
are necessary.

So what are floating-point numbers? The basic idea is to track the loca-
tion of the decimal point dynamically and adjust it as necessary rather than
storing a fixed number of digits to the left and right of the decimal point (or
conversely, fix the location of the decimal point). Using this idea, it is possi-
ble, given a fixed number of bits, to encode a larger range of numbers than
using the fixed-point approach. The representation for decimal numbers is not
unlike scientific notation. The advantages of this system become clear when
we consider the following example. Say we want to estimate the number of
people struck by lightning each year. We know that the probability π of being
struck by lightning in a given year is 1.35 · 10−6 and that the world popula-
tion N is 6.791 · 109. To calculate the number of people struck by lightning,
we need to multiply π by N. If we wanted to do this using a fixed-point rep-
resentation of the numbers, we would need a number type with at least 18
significant digits. On the other hand, a floating-point type with four signifi-
cant digits and a suitably sized exponent would suffice to form the product. So
floating-point numbers allow us to represent a larger range of numbers using
the same number of bits compared to fixed-point types. For this we sacrifice
precision at the far end of the representable range of numbers.

Definition 2.7: Floating-Point Numbers
We generally consider numbers with base b, excess (excess exponent) q,
maximum exponent emax and mantissa length (= number of represented
digits) p. A number x is then represented by a pair (e, f ) such that

x≈ (e, f ) = f ·be−q, (2.1)

where e ∈ {0, . . . ,emax} is the integer-valued exponent and f , the mantissa

or significand, is a number between−1 and +1 with a fixed number of digits,
i.e. | f |< 1.

Note that the term mantissa is also used in connection with decimal loga-
rithms. There, it denotes the digits after the decimal point. In fact, these digits
determine the digit structure of such numbers, whereas the places before the
decimal point determine the exponent. As an example, the decimal logarithm
of 2.5566 ·105 is equal to log10(2.5566)+ log10(105) = 0.4077+5 = 5.4077.
The digits after the decimal point, i.e. 0.4077, represent the logarithm of
2.5566, i.e. of the term before the exponential part of the number. The digits
before the decimal point, i.e. 5, represent the exponent of 105.

In the definition, the decimal point appears far left in the, e.g., decimal
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0 1 2 1 2 4

Figure 2.10: Resolution of floating-point numbers. Each dash marks one of
the 48 numbers greater than or equal to zero that a (b = 2, p = 4, q = 2,
emax = 4)-floating-point number can represent.

representation of f , and since we deal with p-digit numbers, bp f is an integer
so that

−bp < bp f < bp. (2.2)

While any b is possible, in practice we commonly use b = 2 or b = 10. The
corresponding floating-point numbers are called binary floating-point num-

bers for b = 2 and decimal floating-point numbers for b = 10.
One important thing to note about all floating-point numbers is that their

precision decreases with increasing exponent. While the number of digits rep-
resented stays constant, the smallest difference between two numbers that can
be represented in a given floating-point format depends on the exponent of the
numbers. This is illustrated in Figure 2.10, which corresponds to the follow-
ing example.

Example 2.13: Resolution of Floating-Point Numbers
Let b = 2, p = 4, q = 2, and emax = 4. Then, the corresponding floating-point
type can represent the following numbers greater or to equal zero:

.b1b2b3b4 ·2e−2,

where e−2 has the values 2,1,0,−1,−2 and bi the values 0 or 1.
Note that .b1b2b3b4 ·24 takes on every integer between 0 and 15. Division by
22,23, . . . ,26 leads to the following representable numbers:
0, 4

16 ,
8
16 , . . . ,

60
16 ,0,

2
16 , . . . ,

30
16 ,0,

1
16 , . . . ,

15
16 ,0,

1
32 , . . . ,

15
32 ,0,

1
64 , . . . ,

15
64 .

Because of multiple representations, the following 48 numbers are left repre-
sentable:
0, 1

4 ,
2
4 , . . . ,

15
4 ,

1
8 ,

3
8 , . . . ,

15
8 ,

1
16 ,

3
16 , . . . ,

15
16 ,

1
32 ,

3
32 , . . . ,

15
32 ,

1
64 ,

3
64 , . . . ,

15
64 .

Let us continue the example “being struck by lightning” we gave on page
46: If an excess of q = 50 and a 4-digit decimal mantissa are used, we have:

N = (60,+0.6791),

π = (43,+0.1350).
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binary32 floating-point numbers are one type of binary floating-point
numbers. Historically they usually have been referred to as single-precision

floating-point numbers and correspond to the float type of C, C++, and
Java and the single type of Matlab and Pascal.

Single-precision floating-point numbers are made up of 4 bytes, which
are filled as follows:

±eeeeeee efffffff ffffffff ffffffff

The layout consists of the sign (= 1 bit) and the 8-bit exponent of the
number followed by 24 bits for the mantissa, of which only 23 are stored
because the highest bit (if b = 2) is always set, since all stored numbers are
normalized. We will shortly define a normalized floating-point number. To
simplify the representation, the hexadecimal (b = 16) notation is usually used
instead of binary notation (b = 2).11

The excess q is 127 so that exponents in the range of -126 to 127 can be
represented because exponent values of 0 and 255 are treated as special. Note
that because of the excess we can dispense with the sign of the exponent.

The more common binary64 floating-point numbers, often called
double-precision floating-point numbers, again have b = 2 but use 11 bits
to encode the exponent and 52 bits for the significand.

Definition 2.8: Normalized Calculation
A floating-point number (e, f ) is called normalized if the most significant
digit in the representation of f is not zero so that

1
b
≤ | f |< 1; (2.3)

or if f = 0 and e = 0 takes the smallest possible value. In the latter case (e, f )
represents zero.

In our example with 0 ≤ e < 256, the only representation of zero is
(e, f ) = (0,0). Moreover, the special exponent value e = 255 is used to en-
code special values such as ±∞, not a number (NaN) and others.

For two normalized floating-point numbers, we can decide which one is
larger by first comparing their exponents, and second, if both exponents are
equal, additionally comparing the mantissas.

Most floating-point programs utilize normalized numbers. Inputs are as-
sumed to be normalized and outputs are always normalized. This convention

11Note that these two representations are equivalent since any finite binary number can be
exactly represented as a finite hexadecimal number.
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hinders us in representing some very small numbers. For example, the value
(e, f ) = (0,0.01) cannot be normalized without producing a negative expo-
nent. These numbers are called subnormal numbers, but we will not con-
sider them any further because if our algorithms have to deal with them, we
lose speed, uniformity, and the capability to relatively easily determine upper
limits for the relative errors in floating-point calculations (see Section 2.4).

Since floating-point arithmetic only gives approximate results, in order to
distinguish them from the exact operations in the next sections, the following
symbols are used for the finite precision floating-point operations addition,
subtraction, multiplication, and division with appropriate round-off:

+̂,−̂, ∗̂, and ÷̂.

2.3.2 Theory: Floating-Point Operations

2.3.2.1 Floating-Point Addition

The following detailed descriptions of the normalized floating-point opera-
tions are machine independent. The first (and by far most difficult) algorithm
describes the floating-point addition:

(eu, fu) +̂ (ev, fv) = (ew, fw). (2.4)

Algorithm 2.4 Addition of Two Floating-Point Numbers

Require: Base b, excess q, two p-digit normalized floating-point numbers
u = (eu, fu), v = (ev, fv)

1: if eu < ev then

2: swap u and v.
3: end if

4: ew← eu

5: if eu− ev > p then

6: return u
7: end if

8: fv← fv/beu−ev

9: fw← fu + fv

10: return Normalized (ew, fw)

Adding two floating-point numbers amounts to first choosing the expo-
nent ew as the maximum of the two exponents eu and ev. W.l.o.g. let this
maximum be eu. Then move the decimal point of the mantissa fv to match the
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new exponent ew and add fu and the adjusted fv, storing the result in a 2p-
digit temporary mantissa fw that is reduced to p digits by the normalization
step. The double-width accumulator is important to avoid round-off errors.
Algorithm 2.4 is a formal description of the just described method. Still, it is
missing the normalization step.

Normalization is more difficult because many corner cases have to be
dealt with. Let us assume we want to normalize a floating-point number (e, f ).
Initially, if the number is zero, we can immediately return. Then, if the man-
tissa is smaller than 1/b, i.e. the most significant digit is 0, we multiply f by
b and subtract one from the exponent e until the first digit is nonzero. Next,
we check if the mantissa is larger than 1, and if so, repeatedly divide it by b

until it is smaller than 1. Again, we have to adjust the exponent accordingly
by adding 1 for each time we divided by b.

Now we must round the result because the mantissa might have more than
p digits. If the not-representable rest (bp · f ) mod 1 of f is smaller than 0.5,
we round downward, if it is larger than 0.5, we round upward, and should it
be 0.5, we round to the closest p-digit even number. Rounding can lead to
situations where | f | ≥ 1 after rounding. So we have to repeat the check again
until we obtain a valid f . Finally, before we return the normalized number,
we have to check that the exponent e is not out of range. If it is, we return
an error, and otherwise, we have obtained the normalized representation of
(e, f ). For a formal description see Algorithm 2.5.

Example 2.14: Sample Rounding Examples
Let b = 10, p = 1, f = 0.55. Then, (bp · f ) mod 1 = (101 · 0.55) mod 1 =
0.5 = r. Since bp · f + r = 101 ·0.55+0.5 = 6 is even, we obtain f + r/bp =
0.55 + 0.5/101 = 0.6 as the rounded result. The result of this somewhat
strange rounding rule is that numbers 5.5 and 6.5 are both rounded to 6 if b =
10 and p = 1. More generally, the sequence 1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5
is rounded to 2,2,4,4,6,6,8,8.

Example 2.15: Addition of Floating-Point Numbers
Algorithm 2.4 for floating-point addition is demonstrated by the following
examples in 4-digit (b = 10, p = 4, q = 10) floating-point arithmetic. In all
examples we want to calculate the sum

(ew, fw) = w = u+̂v = (eu, fu)+̂(ev, fv).

Let u = (14,0.5153) and v = (4,0.4238), then eu− ev = 14− 4 = 10 >
4 = p, and thus the result is u.

Next, consider u = (14,0.3614) and v = (11,0.4865). We set ew = 14 and
shift fv 3 digits to the right to obtain 0.0004865. The sum of the two mantissa
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is fw = 0.3614+ 0.0004865 = 0.3618865, which after rounding yields the
result w = (14,0.3619).

If we take u = (14,0.6418) and v = (14,0.7158), then ew = 14 and fv

does not need to be shifted. The non-normalized sum of the two mantissa
is fw = 1.3576. To normalize it, we need to shift it right by one yielding
ew = 15 and fw = 0.13576, which must be rounded to obtain the final result
of w = (15,0.1358).

We can also subtract two numbers using the algorithm. To see this, set
u = (6,0.6717) and v = (6,−0.6713). The exponent of w is ew = 6 and the
mantissa is fw = 0.6717+(−0.6713) = 0.0004. Again, the mantissa is not
normalized. We need to shift right by 3 decimal places to obtain the normal-
ized result w = (3,0.4000).

Finally, let u = (6,0.1000) and v = (5,−0.9997). ew = 6 and fw = fu +
fv = 0.00003. Here, the non-normalized mantissa of the result is even smaller
than the smallest number representable in the chosen precision of p= 4 digits.
Normalization then gives w = (2,0.3000).

Notice that in all the previous examples we assumed that the sum of fu and
fw was calculated with exact arithmetic. This requires 2p significant digits in
the worst case. But are all of these digits trustworthy? Reexamine our exam-
ple of u+̂v with u= (6,0.6717), and v= (6,−0.6713). The result we obtained
was w = (3,0.4000). But how many of fw’s digits are trustworthy? Only the
first digit really conveys any meaning. To see this, let us say the value we
wanted to represent with u was 0.67174999 ·106 and the value of v was really
−0.67132122 · 106. Then the true sum is 0.00042877 · 106 = 0.42877 · 103.
So we have made an error of 0.02877 · 103 in our calculation without even
knowing about it. This effect is called cancellation and is caused by subtract-
ing two numbers of similar magnitude. If the floating-point representation of
the two numbers is exact, no large errors can occur and we speak of benign

cancellation, but if they are in fact polluted by rounding errors of previous
calculations all significant digits can be useless (catastrophic cancellation).
Sometimes it can help to transform an expression into an algebraically equiv-
alent form to avoid cancellation. We will see an example of this after we have
covered multiplication.
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Algorithm 2.5 Normalization of a Floating-Point Number

Require: Base b even, excess q, maximum exponent emax, p-digit normal-
ized floating-point number (e, f )

1: if f = 0 then

2: return (0,0)
3: end if

4: while | f |< 1/b do {Shift f left}
5: f ← f ·b;
6: e← e−1;
7: end while

8: repeat

9: while | f | ≥ 1 do {Shift f right}
10: f ← f/b;
11: e← e+1;
12: end while

13: [Round:] r← (bp · f ) mod 1
14: if r < 0.5 then

15: f ← f −b−p · r
16: else if r > 0.5 then

17: f ← f +b−p · (1− r) {| f | now possibly > 1}
18: else {r is exactly 0.5; see Example 2.14}
19: if bp · f + r is even then

20: f ← f + r/bp {| f | now possibly > 1}
21: else

22: f ← f − r/bp

23: end if

24: end if

25: until | f |< 1
26: if e < 1 then

27: return Exponent underflow
28: end if

29: if e > emax then

30: return Exponent overflow
31: end if

32: return (e, f )

2.3.2.2 Floating-Point Multiplication

After having covered the hard part of normalizing and adding or subtracting
floating-point numbers, we are left with the tasks of multiplication and di-
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vision. Both algorithms are much easier than the algorithm for addition (see
Algorithms 2.6 and 2.7).

Algorithm 2.6 Multiplication of Two Floating-Point Numbers

Require: Base b, excess q, two p-digit normalized floating-point numbers
u = (eu, fu), v = (ev, fv)

1: ew← eu +(ev−q)
2: fw← fu · fv

3: return Normalized (ew, fw)

Algorithm 2.7 Division of Two Floating-Point Numbers

Require: Base b, excess q, two p-digit normalized floating-point numbers
u = (eu, fu), v = (ev, fv)

1: if ev = 0 then

2: return Division by zero
3: end if

4: ew← eu− ev +q+1
5: fw← (b−1 · fu)/ fv

6: return Normalized (ew, fw)

In both algorithms the temporary result fw of the multiplication or divi-
sion of the mantissa is stored in a so-called double-precision accumulator,
that is fw has 2p digits that are truncated to p during the normalization step.

For multiplication, we calculate ew = eu + ev and fw = fu · fv. Notice that
correction by the excess q is only needed once so that ev−q has to be added
instead of ev.

We also know that
1
b2 ≤ | fu · fv|< 1

unless fu or fv is zero. This means that we never have cancellation in mul-
tiplication. Combining this with what we know about cancellation from the
previous section, we can now give an example where rearranging an expres-
sion into an algebraically equivalent one will yield a numerically more stable
result.

Consider two floating-point numbers u and v that are exact. We wish to
calculate u2− v2. If we calculate u · u and v · v, we may lose up to p digits
of precision and catastrophic cancellation may occur in the final subtraction.
On the other hand, if we rewrote u2− v2 = (u− v) · (u+ v), we know that
we would only observe benign cancellation in the sum and difference and
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no cancellation in the multiplication. Therefore, we would prefer the second
form ((u− v) · (u+ v)) over the first if we wish to calculate u2− v2 using
floating-point arithmetic.

Example 2.16: Multiplication of Floating-Point Numbers
We wish to calculate

u∗̂v = (eu, fu)∗̂(ev, fv) = (ew, fw) = w

in decimal floating-point (b = 10, p = 4, q = 10).
Let u = (6,0.9132) and v = (16,0.5135), then ew = 6+16−10 = 12 and

fw = 0.46892820, which is rounded to (12,0.4689).
If we set u= (7,0.1713) and v= (6,0.1214), we obtain ew = 7+6−10=

3 and fw = 0.1713 ·0.1214 = 0.02079582. Normalizing yields the answer of
w = (2,0.2080).

For division, we start by calculating ew = eu− ev. The double-precision
accumulator is first filled by fu in the first p digits, and zeros in the last p

digits. Then, the content of the accumulator is shifted one place to the right
and ew is increased by one accordingly. Finally the accumulator is divided
by fv and normalized to form the p-digit result. If | fu| > | fv|, then the ab-
solute value of the accumulator automatically lies between 1/b and 1, and a
normalization is not necessary.

Example 2.17: Division of Floating-Point Numbers
We wish to calculate

u÷̂v = (eu, fu)÷̂(ev, fv) = (ew, fw) = w

in decimal floating-point (b = 10, p = 4, q = 10).
Let u = (4,0.9137) = 0.9137× 10−6 and v = (8,0.1312) = 0.1312×

10−2, then ew = 4 − 8 + 10 + 1 = 7 and fw = 0.0913 7000/0.1312 =
0.6964 17 . . .. The calculated quotient is then w = (7,0.6964) = 0.6964×
10−3.

If we set u= (14,0.1235) = 0.1235×104 and v= (4,0.9872) = 0.9872×
10−6, then ew = 14− 4 + 10 + 1 = 21 and fw = 0.0123 5000/0.9872 =
0.0125 101 . . .. The calculated quotient is then w = (20,0.1251) = 0.1251×
1010.

In all the previous examples, we have never encountered an exponent

over- or underflow. While it is relatively rare that an over- or underflow of
the exponent is encountered during addition, the risk of this happening during
multiplication is much larger. This stems from the fact that in multiplication
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the exponents are summed and not increased by at most 1. In the past, it was
customary to disable underflow protection in numerical codes due to speed
considerations. This should be avoided at all costs because it can lead to sub-
tly incorrect results that are hard to spot. Especially in multiplication, this
generally causes a severe loss of precision (indeed, of all significant digits).
This can lead to unexpected effects. For example, there are situations in which
(u∗̂v)∗̂w is zero but u∗̂(v∗̂w) is not (and may even be quite large), since (u∗̂v)
leads to an exponent underflow, whereas u∗̂(v∗̂w) can be calculated with valid
exponents. Similarly, one can find, e.g., positive numbers a, b, c, d, and y so
that

(a∗̂y+̂b)÷̂(c∗̂y+̂d) = 0

and

(a+̂b÷̂y)÷̂(c+̂d÷̂y)≈ 1
3

(2.5)

if exponent underflow occurs.
In R, this is true, e.g., for a = 1, b = 2, c = 3, d = 4, and y = 10308. R

handles the case of an overflow by setting the value to Inf (for infinity) and
the case of an underflow by setting the value to zero. The maximal and mini-
mal representable numbers on the current machine are given by the values of
double.xmax and double.xmin in the object .Machine. So, for the first ex-
pression given above, a∗̂y+b is still representable but c∗̂y is Inf, hence, we
get zero as the result of the division. If we choose y = 10309 we get a division
of an infinitely large number by another infinitely large number and R returns
NaN, i.e. undefined.

Though it is well-known that floating-point programs do not calculate
exactly, such differences as in Equation 2.5 are not expected by most people,
particularly since a, b, c, d, and y are all positive. Thus, exponent underflow
should be taken seriously and it is negligent to ignore it!

Many of the pitfalls of floating-point numbers are summed up in an excel-
lent article by Goldberg (1991). Although this paper is quite old, its content
is as relevant today as it was 20 years ago.

2.3.3 Summary and Outlook

Summary

In this section we introduced floating-point numbers together with their basic
arithmetical operations addition, subtraction, multiplication, and division as
they are used in today’s computers. In particular, we discussed normalization
of floating-point numbers and also the effect of cancellation, underflow, and
overflow.
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Outlook

Though the discussed floating-point representation is already relatively
old (IEEE 754-1985; see, e.g., http://en.wikipedia.org/wiki/IEEE_
754-1985), it is still standard (IEEE 754-2008; see, e.g. http://en.

wikipedia.org/wiki/IEEE_754).

2.4 Precision of Computations: How Exact Does a Computer

Compute?

2.4.1 Motivation and History: Rounding Errors in Floating-Point

Operations12

Floating-point calculations are inexact by nature. One of the main problems
of numerical methods is the determination of the accuracy of their results.
This causes a certain credibility gap: We do not know how much we can be-
lieve in the results of the computer.
Newcomers often solve this problem by implicitly believing that the com-
puter is unfailing. They tend to believe that all digits of a result are correct.
Some disillusioned computer users, though, have the opposite approach: they
permanently fear that their results may be meaningless.

Many mathematicians have tried to analyze specific sequences of floating-
point operations on the error size. However, this appeared to be so compli-
cated for realistic problems that plausibility arguments were often used in-
stead.

In fact, here we will not try to undertake a complete study of errors in
sequences of floating-point operations. Instead, we will restrict ourselves to
some basic considerations on the analysis of errors in floating-point calcula-
tions.

Basic for today’s view of rounding errors on computers was the work of
Wilkinson in the early 1960s (Wilkinson, 1965). He uses a simple but gen-
erally useful way to express the error behavior of floating-point operations,
namely, the concept of significant digits, i.e. of relative errors: If an exact
number x is represented in a computer by the approximation x∗ = x(1+ δ ),
then the value δ = (x∗− x)/x is called relative error of the approximation.

Definition 2.9: Absolute and Relative Rounding Error
If round(x) = x + ∆x, then ∆x is called absolute (rounding) error. If
round(x) = x(1+δx), then δx is called relative (rounding) error.

12Partly based on Knuth (1998, pp. 229 – 238); Wilkinson (1963, pp. 7 – 13).



PRECISION: HOW EXACT DOES A COMPUTER COMPUTE? 57

The following bounds are valid for absolute and relative errors. Note that
the bound for the relative error is independent of x.

Theorem 2.5: Error Bounds for rounding
Consider the error caused by rounding with a p-digit mantissa. Let be−1 ≤
|x|< be, then

|∆x| ≤ 1
2

be−p, (2.6)

and

|δx|=
|∆x|
|x|

∗
≤ |∆x|

be−1 + |∆x|
∗∗
≤

1
2 be−p

be−1 + 1
2 be−p

∗∗∗
≤ 1

2
b1−p. (2.7)

Proof. Inequality (2.6) is obvious for rounding.
In order to prove inequality (2.7), (*), (**), and (***) have to be proved. (*)
is valid if

|x| ≥ be−1 + |∆x|.
To show this, we distinguish two cases:

1. be−1 ≤ |x|< be−1 + 1
2 be−p,

2. |x| ≥ be−1 + 1
2 be−p.

In case 1, |x| can be represented as

|x|= |round(x)|+ |∆x|= be−1 + |∆x|,

since (1/2)be−p is the maximal absolute error because of inequality (2.6), and
therefore a number be−1 ≤ x < be−1 + 1

2 be−p would be rounded to be−1 with
maximal positive error 1

2 be−p, and a number −be−1− 1
2 be−p < x ≤ −be−1

would be rounded to −be−1 with a negative rounding error between 0 and
− 1

2 be−p.
In case 2,

|x|> be−1 +
1
2

be−p ≥ be−1 + |∆x|

because of inequality (2.6).
The validity of inequality (**) can be shown by equivalence transforma-

tions using Equation 2.6. The validity of (***) can be shown by simple cal-
culations.

In inequality (2.7), in order to find a bound for the relative error from the
bound 1

2 be−p for the absolute error, we divided by be−1, the lower bound for
a number to be represented with the same exponent e, leading to the bound
1
2 b1−p.

We can utilize inequality (2.7) to estimate the relative error in normalized
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floating-point calculations in a simple way. Let us start with assuming that
errors in the inputs u,v of calculations can be ignored, meaning that repre-

sentation errors of the inputs are neglected.
Then, for floating-point addition one can show that

u +̂ v = (u+ v)(1+δu+v).

This can be easily derived from Algorithm 2.4. There, we demonstrated that
addition is realized by building the exact sum, normalizing to a valid man-
tissa, and rounding to p digits. Therefore, if, e.g., f · 2e (or f · 10e) is the
normalized exact sum of two floating-point numbers, then the absolute value
of the absolute representation error is obviously smaller than 1

2 · 2−p · 2e (or
1
2 ·10−p ·10e).

From inequality (2.7) bounds for the relative addition error can be derived.

Corollary 2.1: Bounds for Addition Errors
u+̂v = (u+ v)(1+δ ), (2.8)

|δ | ≤ 2−p (binary), (2.9)

|δ | ≤ 1
2

101−p (decimal). (2.10)

Obviously, the error bound is worse in the decimal system than in the
binary system.

Note that in the cases u = 0 or v = 0, no errors are caused by floating-
point addition, and Equality 2.8 is valid for δ = 0: If v = 0, then u+̂v = u, and
if u = 0, then u+̂v = v.

Thus, ignoring representation errors of inputs, the relative error in the
sum is always small. In all cases in which cancellation appears the relative

error is even δ = 0 (see Example 2.15). This fact should be stressed since
cancellation is usually associated with accuracy loss (see Section 2.4.2).

Our considerations can be summarized as follows: The calculated sum of
u and v is the exact sum of the numbers u(1+ δ ) and v(1+ δ ), where, e.g.,
|δ | ≤ 2−p or |δ | ≤ 1

2 101−p. For subtraction an analogous statement is valid.

Analogously, the calculated multiplication or division results are the ex-
act results rounded to p digits.
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Corollary 2.2: Bounds for Multiplication and Division Errors
For multiplication it is valid that

u∗̂v = uv(1+δ ), (2.11)

|δ | ≤ 2−p (binary), (2.12)

|δ | ≤ 1
2

101−p (decimal). (2.13)

If v 6= 0, for division we always have:

u÷̂v = (u/v)(1+δ ), (2.14)

|δ | ≤ 2−p (binary), (2.15)

|δ | ≤ 1
2

101−p (decimal). (2.16)

Note, that the calculated product is the exact product of u(1+ δ ) and v,
or of u and v(1+δ ), or of u(1+δ )1/2 and v(1+δ )1/2, where, e.g., |δ | ≤ 2−p

or |δ | ≤ 1
2 101−p. Thus, the factor (1+δ ) can be considered to belong to u or

v, or could be distributed to both u and v, depending on what appears to be
most convenient.

The calculated ratio is the exact ratio of u(1+δ ) and v, or of u and v/(1+
δ ), where, e.g., |δ | ≤ 2−p or |δ | ≤ 1

2 101−p.

2.4.2 Theory: Error Propagation13

Now, we are interested in the error propagation caused by algebraic oper-
ations, i.e. to what extent errors already present in the inputs are amplified
(increased) or damped (decreased) by floating-point operations.

We consider functions g : Rn → R, y = g(x1, . . . ,xn) =: g(x), which are
differentiable in the relevant region. Let x∗ be an approximation of x, then

∆xi := x∗i − xi, ∆x := x∗− x

are the absolute approximation errors and

δxi
= ∆xi/xi

the relative approximation errors if xi 6= 0.
The sensitivity of absolute and relative errors to changes in xi can be mea-

sured as follows.

13Partly based on Stoer (1972, pp. 8 – 13).
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Theorem 2.6: Sensitivity of Absolute and Relative Errors
The absolute error can be approximated as follows:

∆y := y∗− y = g(x∗)−g(x)≈
n

∑
i=1

∆xi

∂g(x)

∂xi

.

If y 6= 0 and xi 6= 0 for i = 1, . . . ,n, then the error propagation formula for
relative errors has the form:

δy :=
∆y

y
≈

n

∑
i=1

xi

g(x)

∂g(x)

∂xi

δxi
.

Proof. The first-order Taylor expansion of g in x∗ has the form:

∆y := y∗− y = g(x∗)−g(x)≈
n

∑
i=1

(x∗i − xi)
∂g(x)

∂xi

=
n

∑
i=1

∆xi

∂g(x)

∂xi

.

The approximation of the relative error can be derived as follows:

δy :=
∆y

y
≈

n

∑
i=1

∆xi

g(x)

∂g(x)

∂xi

=
n

∑
i=1

xi

g(x)

∂g(x)

∂xi

∆xi

xi

=
n

∑
i=1

xi

g(x)

∂g(x)

∂xi

δxi
.

Obviously, the proportionality factor ∂g(x)
∂xi

measures the sensitivity with

which y responds to absolute changes ∆xi of xi. Also, the factor xi

g
∂g
∂xi

repre-
sents the strength of the reaction of the relative error in y to the relative error
in xi.

Definition 2.10: Condition Numbers
The expressions xi

g
∂g
∂xi

are called amplification factors or condition numbers

for the relative errors. They have the advantage that they are independent of
the scaling of y and xi. If absolute values of the condition numbers are large,
the problem is called ill-conditioned, otherwise well-conditioned.

For ill-conditioned problems small relative errors in the inputs x cause
large relative errors in the results y = g(x).

The above definition of condition numbers has, however, the disadvantage
that it is only sensible for y 6= 0 and xi 6= 0. Moreover, for many purposes it is
impractical because the condition of an operation is described by more than
one number. Therefore, often other definitions for the condition of a problem
are in use as well, see, e.g., Sections 2.4.4 and 3.1.2.
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Corollary 2.3: Error Propagation for Arithmetical Operations
For the arithmetical operations the following error propagation formulas are
valid. Let x 6= 0 and y 6= 0, then

a) g(x,y) := x · y, δxy ≈ δx +δy,
b) g(x,y) := x/y, δx/y ≈ δx−δy,
c) g(x,y) := x± y, δx±y ≈ x

x±y
δx± y

x±y
δy, if x± y 6= 0.

Proof. According to Theorem 2.6 we know:

1. δxy =
x
xy

∂ (xy)
∂x

δx +
y
xy

∂ (xy)
∂y

δy = δx +δy,

2. δx/y =
x

x/y

∂ (x/y)
∂x

δx +
y

x/y

∂ (x/y)
∂y

δy = δx +
y2

x
−x
y2 δy = δx−δy, and

3. δx±y =
x

x±y

∂ (x±y)
∂x

δx +
y

x±y

∂ (x±y)
∂y

δy =
x

x±y
δx± y

x±y
δy.

Obviously, multiplication and division are not dangerous operations,
since the relative errors of the inputs are not strongly propagated into the
result. The same is true for addition if the operands x and y have the same
sign, since then the condition numbers x

x+y
, y

x+y
lie between 0 and 1 and their

sum is 1. Therefore:
|δx±y| ≤max(|δx|, |δy|).

This is called error damping.
If, however, the addition operands have different signs (which can be

rewritten as subtraction), then at least one of the factors | x
x+y
|, | y

x+y
| is larger

than 1, and at least one of the relative errors δx, δy is amplified. This amplifica-
tion is especially large if x≈−y, i.e. if cancellation occurs while calculating
x +̂ y.

This leads to the paradox situation that cancellation leads to exact results
for exact inputs, but makes inexact inputs even more inexact.

As the most important result we should keep in mind the following
Rule of thumb: Addition and subtraction may be dangerous with respect

to error propagation in contrast to multiplication and division.
For applied statistics it is dangerous to implement the standard deviation

of n observations by means of the textbook formula:

σ =

√
n∑

n
k=1 x2

k− (∑n
k=1 xk)2

n(n−1)
. (2.17)

This often leads to a negative argument value under the square root because
of cancellation. In Section 2.4.4 better algorithms for the calculation of the
standard deviation are introduced.
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2.4.3 Theory: Axiomatic Problems14

One consequence of the inexactness of floating-point operations is that some
laws of arithmetical operations are not valid anymore. Let us discuss the com-
mutative and associative laws here. Let us start with good news.

Theorem 2.7: Commutative Laws
The commutative law of addition and the commutative law of multiplica-

tion are valid, i.e.
u +̂ v = v +̂ u, (2.18)

as well as
u ∗̂ v = v ∗̂ u. (2.19)

Proof. For Equality 2.18: u +̂ v = round(u+v) = round(v+u) = v +̂ u.

Thus, commutativity is valid despite the inexactness of the floating-point
operations. However, for the corresponding associative laws properties are
much more problematic.

The associative law of addition fails, i.e. generally

(u +̂ v) +̂ w 6= u +̂ (v +̂ w) for most u,v,w. (2.20)

The corresponding difference can indeed be extremely large.

Example 2.18: Associative Law of Addition

(11111113.+̂(−11111111.))+̂7.5111111 = 2.0000000+̂7.5111111

= 9.5111111;

11111113.+̂((−11111111.)+̂7.5111111) = 11111113.+̂(−11111103.)

= 10.00000.

Therefore, the absolute value of the relative error in the associative law of
addition is around 5% here.

Thus, programmers should be extremely careful, since mathematical ex-
pressions like a1 + a2 + a3 or ∑

n
k=1 ak implicitly assume the validity of asso-

ciativity. For numerical reasons, it is therefore important to differentiate

between different mathematically equivalent formulations of a calcula-

tion method. We have seen examples of this in the previous section when we
hinted at the problem of cancellation.

14Partly based on Knuth (1998, pp. 229 – 238).
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As an example for a typical error propagation consider the associative

law of multiplication.

Theorem 2.8: Associative Law of Multiplication
(u ∗̂ v) ∗̂ w is generally unequal to u ∗̂ (v ∗̂ w). However, the situation is much
better than that for the associative law of addition, since

(u ∗̂ v) ∗̂ w = ((uv)(1+δ1)) ∗̂ w = uvw(1+δ1)(1+δ2),
u ∗̂ (v ∗̂ w) = u ∗̂ ((vw)(1+δ3)) = uvw(1+δ3)(1+δ4)

for certain δ1, δ2, δ3, δ4 if no exponent underflow or overflow appears, where
|δ j| ≤ 1

2 b1−p for every j. Therefore,

(u ∗̂ v) ∗̂ w

u ∗̂ (v ∗̂ w)
=

(1+δ1)(1+δ2)

(1+δ3)(1+δ4)
≈ 1+δ ,

where

|δ |< 2b1−p

(1− 1
2 b1−p)2

. (2.21)

Proof. The last inequality can be derived from the following expression ne-
glecting all second-order terms in the numerator:

(1+δ1)(1+δ2)

(1+δ3)(1+δ4)
= 1+

(1+δ1)(1+δ2)− (1+δ3)(1+δ4)

(1+δ3)(1+δ4)

≈ 1+
(1+δ1 +δ2)− (1+δ3 +δ4)

(1+δ3)(1+δ4)
= 1+δ .

Finally, for δ , we know that

|δ |=
∣∣∣∣
(1+δ1 +δ2)− (1+δ3 +δ4)

(1+δ3)(1+δ4)

∣∣∣∣<
4maxi∈{1,...,4}(|δi|)

(1−maxi∈{3,4}(|δi|))2

≤ 2b1−p

(1− 1
2 b1−p)2

.

Let us now discuss the relative size of errors in the different situations
discussed so far.

Definition 2.11: Unit in the Last Place (ulp)
The number b1−p is called ulp, meaning unit in the last place of the mantissa.

The unit in the last place is, thus, the minimal spacing between floating-
point numbers in their chosen representation. Imagine we have a floating-
point number with base b = 10 and p = 3 digits in the mantissa, say
0.314 ·102. Because we only have 3 digits, the nearest larger number that we
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can represent is obviously 0.315 · 102. This number differs from 0.314 · 102

by one unit in the last place. Any real number r between 0.314 · 102 and
0.315 · 102 can at best be represented by one of these two numbers. If r is
actually π ·101, then 31.415926 . . . is best represented by 0.314 ·102, and the
absolute rounding error is (π ·101−0.314 ·102) = 0.015926 . . .. In the worst
case, the real number 0.3145 · 102 would have the absolute rounding error
0.05. Thus, the maximum absolute rounding error occurs when r is halfway
between two representable numbers, leading to the rounding error 0.5 units in
the last place. This obviously relates to the general bound 0.5be−p in Formula
2.6 for absolute errors with e = 2. In inequality (2.7), in order to find a bound
for the relative error, we divided by be−1, the lower bound for a number to be
represented with the same exponent e (in our case be−1 = 101), leading to the
bound 0.5b1−p. With Definition 2.11, this leads to the following result:

Corollary 2.4: Errors Expressed in ulp
Floating-point numbers are correct up to 0.5 ulp (see Section 2.4.1). The cal-
culation of u ·v ·w by two floating-point multiplications using Algorithm 2.6 is
correct up to approximately 1 ulp (neglecting all second-order terms). More-
over, the associative law of multiplication is true up to an error of 2 ulp.

We have thus shown that (u ∗̂ v) ∗̂ w is approximately equal to u ∗̂ (v ∗̂ w),
except if exponent overflow or underflow appears. This phenomenon of ap-

proximate equality will be discussed more precisely in what follows.
Programmers using floating-point arithmetic rarely test whether two cal-

culated values are exactly equal, since that is very inaccurate because of ac-
cumulated rounding errors. For example, if textbooks state that xn has a limit
for n→ ∞ for an iteration xn+1 = f (xn), it will not necessarily be success-
ful to wait until xn+1 = xn exactly for some n. The sequence xn might, e.g.,
be periodical with a longer period because of the rounding of intermediate
results.

A more adequate method would be to wait until |xn+k − xn| ≤ ∆ for a
certain k and a certain fixed small number ∆. However, since we generally do
not a priori know the size of xn, it is even better to wait until

|xn+k− xn| ≤ δ |xn|, (2.22)

because it is much simpler to choose a sensible δ . The relation (2.22) can
be thought of as another way to express that xn+k and xn are approximately
equal. So, for floating-point operations a relation “approximately equal” is
much more useful than the traditional equality.

Therefore, we introduce new operations for floating-point comparison,
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aiming at the assessment of the relative difference between the floating-point
numbers.

Definition 2.12: Floating-Point Comparison
Let b be the base and the normalized floating-point numbers u = fu · beu ,
v = fv · bev , 1/b ≤ | fu|, | fv| < 1. Then we define four different floating-point
relations:

u is surely smaller than v:

u≺ v (δ ) iff v−u > δ max(beu ,bev)

u is approximately equal to v:

u∼ v (δ ) iff |v−u| ≤ δ max(beu ,bev)

u is essentially equal to v:

u≈ v (δ ) iff |v−u| ≤ δ min(beu ,bev)

u is surely greater than v:

u≻ v (δ ) iff u− v > δ max(beu ,bev)

These definitions are applicable to both non-normalized and normalized
values. Notice that exactly one of the conditions u ≺ v, u ∼ v, or u ≻ v is
always true for every given pair of values u and v, and that the relation u≈ v

is somewhat stronger than u∼ v. All these relations are specified for a positive
real number δ , measuring the degree of approximation.

The above definitions can be best illustrated by means of so-called neigh-

borhoods N(u) = {x | |x−u| ≤ δbeu} associated with a floating-point number
u. Obviously, N(u) represents a set of values neighboring u based on the ex-
ponent of the floating-point representation of u.

Theorem 2.9: Comparison by Neighborhoods
The four floating-point relations can be expressed by means of the neighbor-
hoods associated with floating-point numbers:
u≺ v iff N(u)< v and u < N(v) (element-wise),
u∼ v iff u ∈ N(v) or v ∈ N(u),
u≻ v iff u > N(v) and N(u)> v (element-wise),
u≈ v iff u ∈ N(v) and v ∈ N(u).

Proof. The first statement is proved as follows:
x ∈ N(u) is equivalent to |x−u| ≤ δbeu and y ∈ N(v) to |y− v| ≤ δbev .
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Element-wise N(u)< v and u < N(v) are thus equivalent to
v−u = |v−u|> δbeu and v−u = |v−u|> δbev .
The other statements can be proved analogously.

Note that the exponents of u and v do not have to be equal. Thus, the
neighborhoods associated with u and v do not have to have the same size.
We assume that the parameter δ , measuring the degree of approximation, is a
constant. A more complete notation would indicate the dependence of N(u)
on δ .

Example 2.19: Inequality in Floating-Point Comparison
Let v = 0.10 ·101 = 1, u = 0.1 ·100 = 0.1, and δ = 0.05, then:
v−u = |v−u|= 0.9 and δ max(beu ,bev) = 0.05 ·max(1,10) = 0.5.
Therefore, u≺ v (δ ) and not u∼ v (δ ). Moreover,
N(u) = {x| |x−u| ≤ δbeu = 0.05}= [0.05,0.15] and
N(v) = {x| |x− v| ≤ δbev = 0.5}= [0.5,1.5].
Obviously, N(u)< v and u < N(v).

Example 2.20: Approximate Equality in Floating-Point Comparison
Let u = 0.10 ·101 = 1, v = 0.6 ·100 = 0.6, and δ = 0.05, then:
δ max(beu ,bev) = 0.05 ·max(10,1) = 0.5 and
δ min(beu ,bev) = 0.05 ·min(10,1) = 0.05,
thus u∼ v(δ ), and not u≈ v(δ ).

Example 2.21: Essential Equality in Floating-Point Comparison
Let u = 0.10 ·101 = 1, v = 0.95 ·100 = 0.95, and δ = 0.05, then:
δ max(beu ,bev) = 0.05 ·max(10,1) = 0.5 and
δ min(beu ,bev) = 0.05 ·min(10,1) = 0.05,
thus u≈ v(δ ).

We will show that floating-point operations are actually not mathemat-
ically exact, but their result is at least essentially equal to the exact result.
Obviously, it suffices to show this result for the rounding operation.

Theorem 2.10: Essential Equality of Rounding
Let δ0 = b1−p, i.e. one ulp. Then:

x≈ round(x)

(
1
2

δ0

)
. (2.23)

Proof. From inequality (2.7) we derive the inequality:
|x − round(x)| = |∆x| ≤ 1

2 δ0 min(|x|, |round(x)|) ≤ 1
2 δ0 min(bex ,beround(x));

since if |round(x)|> |x|, then inequality (2.7) suffices,



PRECISION: HOW EXACT DOES A COMPUTER COMPUTE? 67

and if |round(x)|< |x|, then at least |round(x)| ≥ bex−1, and therefore
|∆x|

|round(x)| ≤
|∆x|

bex−1 ≤
1
2 bex−p

bex−1 = 1
2 b1−p.

This directly leads to the statement.

Similar to Theorem 2.10, one can show that u +̂ v≈ (u+ v)(1
2 δ0) and so

forth for the other floating-point operations.
Moreover, essential equality is also true for the associative law of multi-

plication.

Theorem 2.11: Essential Equality for the Associative Law of Multiplication

(u ∗̂ v) ∗̂ w≈ u ∗̂ (v ∗̂ w)(δ ) (2.24)

if δ ≥ 2δ0

(1− 1
2 δ0)2 .

Proof. With the approximate associative law of multiplication (Theorem 2.8)
we can show that

|(u ∗̂ v) ∗̂ w−u ∗̂ (v ∗̂ w)|< 2δ0

(1− 1
2 δ0)2

|u ∗̂ (v ∗̂ w)|,

and an analogous inequality is valid if (u ∗̂ v) ∗̂ w and u ∗̂ (v ∗̂ w) are inter-
changed.

Example 2.22: Essential Equality for the Associative Law of Multiplication
If b = 10 and p = 8, then δ = 0.00000021 can be used in the previous theo-
rem, since δ0 = b1−p = 10−7.

Therefore, the associative law of multiplication (and also all other not
exactly valid arithmetical laws) is at least essentially valid, though with a
larger uncertainty δ than for the arithmetical operations. Obviously, for the
associative law of addition this uncertainty is very high, as exemplified in the
beginning of this subsection.

The relations ≺, ∼, ≻, and ≈ are especially useful in numerical algo-
rithms where convergence should be checked. Therefore, we will meet these
terms again with iterative optimization methods in Chapter 4.

2.4.4 Example: Calculation of the Empirical Variance15

2.4.4.1 Algorithms

The problem of numerical calculation of the sample variance of n data {xi}n
i=1

unfortunately appears to be trivial only at first sight. Quite the contrary, it is

15Partly based on Chan et al. (1983).
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relatively difficult, in particular if n is large and the variance small. Let us start
with the definition of the two most well-known algorithms for the calculation
of the sample variance.

Definition 2.13: Standard Algorithms for the Sample Variance
The sample variance is given by S/n or S/(n−1), according to its use, where
S is the sum of squares of the deviations from the mean:

S =
n

∑
i=1

(xi− x̄)2, (2.25)

where

x̄ =
1
n

n

∑
i=1

xi. (2.26)

Formulas (2.25) and (2.26) define a direct algorithm for the calculation of S.
In what follows, this algorithm is called standard two-pass algorithm, since
it needs two runs through the data.

In order to avoid two runs through the data to calculate S in Formula 2.25,
it is common to represent S in the following form:

S =
n

∑
i=1

x2
i −

1
n

(
n

∑
i=1

xi

)2

. (2.27)

Since this form is often proposed in statistics textbooks, it will be called text-

book one-pass algorithm in what follows.

A two-pass algorithm may not be desirable in many applications, e.g. if
the sample is too large to be stored as a whole in the main storage, or if
the variance should be calculated dynamically, i.e. step by step during data
collection.

Unfortunately, although the one-pass algorithm (2.27) is mathematically
equivalent to Formulas 2.25 and 2.26, numerically it is disastrous. This is be-
cause the values of ∑x2

i and (∑xi)
2 become very large in practice and are

calculated with rounding errors. If the variance is very small, nearly all digits
will be canceled by the subtraction in algorithm (2.27). Large cancellation,
however, leads, as demonstrated in Section 2.4.2, to amplification of repre-
sentation errors so that the calculated S possibly shows a very large relative
error, potentially even leading to a negative value, which paradoxically can
be seen as a blessing since it clearly uncovers the rounding error problem.

In order to avoid such difficulties, numerous other algorithms were de-
veloped that get along with one run through the data. We will concentrate on
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updating algorithms in Youngs and Cramer (1971) as well as the pairwise

algorithm in Chan et al. (1979).

Definition 2.14: Updating Algorithm of Youngs and Cramer
Let Ti j, Mi j, and Si j be the sum, the mean, and the sum of squares of the data
from xi to x j:

Ti j =
j

∑
k=i

xk, Mi j =
1

( j− i+1)
Ti j, Si j =

j

∑
k=i

(xk−Mi j)
2.

Then, the following formulas define the updating algorithm of Youngs and

Cramer:

T1, j = T1, j−1 + x j, (2.28)

S1, j = S1, j−1 +
1

j( j−1)
( jx j−T1, j)

2 (2.29)

with T1,1 = x1 and S1,1 = 0.

Theorem 2.12: Updating Algorithm of Youngs and Cramer
The updating algorithm of Youngs and Cramer calculates the sample vari-
ance, i.e. S = S1,n.

Proof.

j

∑
k=1

(
xk−

1
j
T1 j

)2

=
j

∑
k=1

(
xk−

1
j
(T1, j−1 + x j)

)2

=
j

∑
k=1

((
xk−

1
j−1

T1, j−1

)
+

(
1

j( j−1)
T1, j−1−

1
j
x j

))2

[
since

1
j
=

1
j−1

− 1
j( j−1)

]

=
j−1

∑
k=1

(
xk−

1
j−1

T1, j−1

)2

+

(
x j−

1
j−1

T1, j−1

)2

+2
j

∑
k=1

(
xk−

1
j−1

T1, j−1

)(
1

j( j−1)
T1, j−1−

1
j
x j

)

+ j

(
1

j( j−1)
T1, j−1−

1
j
x j

)2
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=
j−1

∑
k=1

(
xk−

1
j−1

T1, j−1

)2

+

(
x j−

1
j−1

T1, j−1

)2(
1− 2

j

)

+ j

(
1

j( j−1)
T1, j−1−

1
j
x j

)2

[
since

j−1

∑
k=1

(
xk−

1
j−1

T1, j−1

)
= 0

]

=S1, j−1 +

(
x j−

1
j−1

(T1 j− x j)

)2(
1− 2

j
+

1
j

)

=S1, j−1 +
1

( j−1)2 ( jx j−T1 j)
2 j−1

j
.

This algorithm is more stable than the textbook algorithm. Please note in
particular that S = S1,n is calculated by a sum of non-negative numbers.

The updating formulas 2.28 and 2.29 can be generalized in order to allow
for a combination of two samples of arbitrary size.

Theorem 2.13: Combination of two samples
Suppose that we have two samples {xi}m

i=1 and {xi}m+n
i=m+1 with

T1,m =
m

∑
i=1

xi, Tm+1,m+n =
m+n

∑
i=m+1

xi,

S1,m =
m

∑
i=1

(xi−
1
m

T1,m)
2, Sm+1,m+n =

m+n

∑
i=m+1

(xi−
1
n

Tm+1,m+n)
2.

For the combination of all data to one sample of the size m+n let

T1,m+n = T1,m +Tm+1,m+n, (2.30)

S1,m+n = S1,m +Sm+1,m+n +
m

n(m+n)

( n

m
T1,m−Tm+1,m+n

)2
.(2.31)

Then S = S1,m+n.

Proof. 1. Special case m = j−1, n = 1. From Formula 2.31 it follows that

S1, j = S1, j−1 +
j−1

j

(
1

j−1
T1, j−1− x j

)2

= S1, j−1 +
j−1

j

(
1

j−1
(T1 j− x j)− x j

)2

= S1, j−1 +
1

j( j−1)
(T1 j− x j− ( j−1)x j)

2 .
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Obviously, in this case Formula 2.31 is equivalent to Formula 2.29.

2. In general:

m+n

∑
i=1

(
xi−

1
m+n

T1,m+n

)2

=
m+n

∑
i=1

(
xi−

1
m+n

(T1,m +Tm+1,m+n)

)2

=
m

∑
i=1

((
xi−

1
m

T1,m

)
+

1
m+n

( n

m
T1,m−Tm+1,m+n

))2

+

m+n

∑
i=m+1

((
xi−

1
n

Tm+1,m+n

)
+

1
m+n

(m

n
Tm+1,m+n−T1,m

))2

=
m

∑
i=1

(
xi−

1
m

T1,m

)2

+
m+n

∑
i=m+1

(
xi−

1
n

Tm+1,m+n

)2

+

1
(m+n)2

( n

m
T1,m−Tm+1,m+n

)2
(

m+
m2

n

)

[
since

m

∑
i=1

(
xi−

1
m

T1,m

)
= 0 and

m+n

∑
i=m+1

(
xi−

1
n

Tm+1,m+n

)
= 0

]

=
m

∑
i=1

(
xi−

1
m

T1,m

)2

+
m+n

∑
i=m+1

(
xi−

1
n

Tm+1,m+n

)2

+

m

n(m+n)

( n

m
T1,m−Tm+1,m+n

)2
.

Definition 2.15: Pairwise Algorithm
If m = n, the above formula for the combination of two samples simplifies to

S = S1,2m = S1,m +Sm+1,2m +
1

2m
(T1,m−Tm+1,2m)

2 (2.32)

and defines the pairwise algorithm for the calculation of the sample variance.

There are other possibilities to increase accuracy of the calculated S. For
data with a large mean value x̄ experience shows that, e.g., essential accu-
racy gains can be achieved by approximately shifting by the mean x̄ prior to
the calculation of S. Even very rough approximations of the mean appear to
be useful so that a two-pass algorithm for the preceding calculation of x̄ is
unnecessary (see Section 2.4.4.3).

Moreover, if the shift is actually carried out by the correct mean before
applying the textbook algorithm (2.27), we will get the so-called corrected
two-pass algorithm:
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Definition 2.16: Corrected Two-Pass Algorithm
The corrected two-pass algorithm is defined by

S =
n

∑
i=1

(xi− x̄)2− 1
n

(
n

∑
i=1

(xi− x̄)

)2

. (2.33)

Note that the first term represents the two-pass algorithm (2.25), and
the second term would be exactly zero for exact calculations. However, from
experience the second term is a very good approximation to the error in the
first term in practice. Moreover, note that this algorithm generally does not
lead to cancellation since the correcting term is most of the time very much
smaller than the first term.

2.4.4.2 Condition and Error Bounds

Originally, algorithms for the calculation of the variance were only assessed
on the basis of empirical studies. However, in the end of the 1970s more exact
error bounds were found for many algorithms.

Chan and Lewis (1978) first derived a condition number κ of a sample

{xi} for variance calculation. This condition number κ measures the sen-
sitivity of S for a given data set, i.e. if relative errors δ exist in xi, then the
relative error in S is bounded by κδ .

On computers, a maximum relative error of κu in S will appear for a
machine precision u = 0.5 · ulp measuring the size of representation errors
in the data (see Formulas 2.9 and 2.10 in Section 2.4.1).

Attention: This statement is independent of the used algorithm in contrast
to the algorithm specific condition numbers derived in Section 2.4.2.

The value κu can thus be used as an indicator for the accuracy of differ-

ent algorithms if error bounds that only depend on κ , u and n can be derived
for the individual algorithms.

For the derivation of another algorithm-independent condition number see
Section 3.1.2 on the linear least squares method.

Definition 2.17: Condition Number of Variance Calculation
Based on the L2 norm ‖x‖2

2 = ∑
n
i=1 x2

i of the data, the condition number of
the calculation of S is given by:

κ =
‖x‖2√

S
=

√
1+

x̄2n

S
. (2.34)

The latter equality can be shown as follows:

S+ x̄2n =
n

∑
i=1

(xi− x̄)2 + x̄2n =
n

∑
i=1

x2
i − x̄2n+ x̄2n = ‖x‖2

2. (2.35)
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If S is small and x̄ 6= 0, then we get the useful approximation

κ ≈ x̄

√
n

S
=

x̄√
S/n

, (2.36)

i.e. κ is approximately the mean divided by the standard deviation. Obviously,
κ ≥ 1, and in many situations κ is very large.

Attention: κ depends on the value S it is a condition number for. Thus,
κ cannot be exactly calculated before the calculation of S. Therefore, expres-
sions containing κ are only used for comparison of different algorithms.

Table 2.7 shows the error bounds given in Chan et al. (1983) for all vari-
ance algorithms discussed up to now. These are bounds for the relative error
|(S− S∗)/S| in the calculated value S∗. Small constant prefactors were ne-
glected for the sake of clarity. The shown terms dominate the error bounds
if the relative error is smaller than one. Note that the error analysis of the
corrected two-pass algorithm will be discussed below (see page 78).

Table 2.7: Error Bounds for |(S−S∗)/S| in the Calculated Value S∗

Algorithm Error bound

1. textbook nκ2u

2. textbook with pairwise summation κ2u log2 n

3. two-pass nu+n2κ2u2

4. two-pass with pairwise summation u log2 n+(κu log2 n)2

5. corrected two-pass nu+n3κ2u3

6. corrected two-pass with pairwise summation u log2 n+κ2u3 log3
2 n

7. Youngs and Cramer updating nκu

8. Youngs and Cramer updating pairwise κu log2 n

Notice that the bounds for the textbook algorithm (see 1 and 2) can be
directly compared with the bounds of the Youngs and Cramer algorithm (7
and 8). The former depend on κ2, whereas the latter only on κ , all other
terms the same. Thus, the Youngs and Cramer algorithm is much more stable
than the textbook algorithm.

Simulation Study

In an empirical study for the assessment of the bounds in Table 2.7 data
were generated by means of a random number generator (cp. Chapter 6)
for normally distributed data with expected value 1 and different variances
σ2 with 1 ≥ σ2 ≥ 10−26. For these choices of expected value and variance
κ ≈ 1/σ (see Equation 2.36). In all cases the results are mean relative errors
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averaged over 100 repetitions. Double-precision floating-point arithmetic was
used with a machine precision of u ≈ 10−16. The “correct” result was as-
sumed to be the result calculated by the software R. Figure 2.11 shows the
results. The relative errors are marked by unfilled (for n = 4) and filled (for
n = 1024) circles. In each plot κ = 1/σ is given on the abscissa and the rel-
ative error in S on the ordinate. To allow for comparisons, the bounds from
Table 2.7 can also be found in Figure 2.11. In each plot, assuming a pref-
actor of 10 each, the lower dashed curve corresponds to the error bound for
n = 4 data and the upper solid curve to n = 1024. Obviously, the experimental
results confirm the general form of the error bounds in Table 2.7. Note that
the textbook algorithm gives acceptable results (i.e. a relative error smaller
than 10−2) only until κ = 107, whereas the results of the Youngs and Cramer
updating algorithm are acceptable at least until κ = 1013. This reflects the
squared and linear dependency of the bound on κ , respectively. Further note
that the bounds are somewhat higher for n = 1024 than for n = 4, whereas the
realized relative errors are slightly lower for n = 1024. The pairwise proce-
dure only has a small effect on the realized errors.

2.4.4.3 Shifted Data

Let us now discuss the effect of a suitable shift of the original data on the
condition number κ . We will see that a shift with approximations of the mean
can reduce the condition number drastically.

If we replace the original data {xi} by shifted data

x̃i = xi−d (2.37)

for a fixed shift value d, then the new data have mean x̄− d and S is pre-
served (assuming that the x̃i are exactly calculated). In practice, data with
non-vanishing mean are often shifted by some a priori estimate of the mean
before calculating S. This generally improves the accuracy of the calculated
S.

We will now analyze this improvement by studying the dependence of
the condition number on the shift. Bounds for κ̃ , the condition number of the
shifted data, will be derived for different choices of the shift d. κ̃ could then
be inserted for κ in the bounds in Table 2.7 to receive error bounds for each
of the algorithms for shifted data.

Lemma 2.2: Condition of shifted data
Let κ̃ be the condition number of the shifted data x̃i = xi−d, d ∈ R. Then

κ̃2 = 1+
n

S
(x̄−d)2, (2.38)
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Figure 2.11: Error bounds for variance algorithms: Lower dashed curve corre-
sponds to the error bound for n= 4 data and the upper solid curve to n= 1024.
Errors of the empirical study are marked by unfilled (for n = 4) and filled (for
n = 1024) circles.

κ̃ < κ ⇔ |d− x̄|< |x̄| ⇔
{

0 < d < 2x̄ if x̄ > 0

2x̄ < d < 0 if x̄ < 0,
(2.39)

κ̃ = 1 if d = x̄. (2.40)

Proof. (2.38) is true by definition of the condition number (Definition 2.17),
(2.39) by comparing (2.38) for shifted and non-shifted data, and
(2.40) by insertion of d = x̄ in (2.38).

Obviously, the data are perfectly conditioned for the calculation of the
sample variance if d = x̄. Additionally, d = 0 is the only sensible value in
cases where x̄ = 0.

In practice, we cannot exactly guess x̄ without a special run through the
data, i.e. without the two-pass algorithm, but we can find a rough estimate
without large computational burden. This will be discussed in the following
theorems.
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Theorem 2.14: Shift by One Observation
Let us assume that we shift by any single original observation.
If d = x j for any j ∈ {1, . . . ,n}, then

κ̃2 ≤ 1+n. (2.41)

If d = x j is randomly chosen from {xi}, then

E(κ̃2) = 2 (2.42)

independently of n and S, and

κ̃2 < 1+ k (2.43)

with a probability of at least 1−1/k for 1≤ k ≤ n.

Proof. (2.41): If d = x j for any j ∈ {1, . . . ,n}, then mini(xi)≤ d ≤maxi(xi),
and thus (x̄−d)2 ≤ ∑i (x̄− xi)

2 = S. From (2.38) we get the statement.
(2.42): We know that E[(x̄−d)2] = E[(x̄−x j)

2] = S/n. By (2.38) this leads to
the statement.
(2.43): For fixed k, 1 ≤ k ≤ n, the inequality (x̄ − x j)

2 ≥ kS/n can be
valid for maximally n/k values j. Otherwise, we would have ∑ j(x̄− x j)

2 >
(n/k)(kS/n) = S. If we thus choose x j uniformly random, then (x̄− x j)

2 <
kS/n at least with a probability of (n−n/k)/n = 1−1/k. The statement fol-
lows from (2.38).

The bound in inequality (2.41) might be sufficient for moderately large n.
However, we never get equality in inequality (2.41), and approximate equality
only if

(x̄− x j)
2 ≈∑

i

(x̄− xi)
2,

i.e. only if x j is substantially more distant from x̄ than all the other xi.
Property (2.42) is a probabilistic refinement of inequality (2.41) stating that
the expected value is much lower than 1+ n. Note that inequality (2.42) is
even independent of the distribution of the {xi}. By a prior permutation of the
data and by choosing x j as the first element of the resulting list, we achieve
sampling from the assumed uniform distribution of the {xi}. This is naturally
not possible if the data have a fixed starting value.
From property (2.43), we learn, e.g., that κ̃2 < 11 with probability ≥ 0.90.
This is, again, independent of the sample size n ≥ 10 and S if the shift value
x j is drawn uniformly random from the original sample.

Let us now switch to the consideration of more than one original obser-
vation for the determination of the shift d.
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Theorem 2.15: Shift by the Mean of Observations
Let d = x̄p = ∑ j x j/p be the mean of any p original data values, p≪ n. We
assume that p is sufficiently small so that rounding errors in the calculation
of x̄p do not play any role. In particular, let κ pu < 1, where u denotes the
machine precision. Then, the condition number of this shift is bounded as
follows:

κ̃2 ≤ 1+
n

p
. (2.44)

Let d = f l(x̄) = 1
n ∑

n
i=1 xi(1+ ξi) be the floating-point approximation of the

overall mean. Then
κ̃2 ≤ 1+n2κ2u2. (2.45)

Proof. (2.44): We use the following special case of the Cauchy inequality:

|xTy|2 ≤ ‖x‖2
2‖y‖2

2,

where y = (1/p · · ·1/p)T is a p-vector with ‖y‖2
2 = 1/p.

Therefore,

κ̃2 = 1+
n

S
(x̄− x̄p)

2 = 1+
n

S

(
1
p

p

∑
j=1

(x̄− x j)

)2

≤ 1+
n

Sp

p

∑
j=1

(x̄− x j)
2 ≤ 1+

n

p
. (2.46)

(2.45): If the shift is really carried out by the computed mean, rounding
errors generally cannot be ignored. Instead of x̄, its floating-point approxima-
tion

f l(x̄) =
1
n

n

∑
i=1

xi(1+ξi) (2.47)

is calculated, where for floating-point addition the ξi values are bounded by

|ξi| ≤ nu (2.48)

if only linear terms are taken into account and prefactors are ignored (cp.
(2.8)–(2.10) and (2.14)–(2.16) in Section 2.4.1).

Therefore, κ̃2 is bounded by

κ̃2 = 1+
n

S
(x̄− f l(x̄))2 = 1+

1
nS

(
n

∑
i=1

xiξi

)2

≤ 1+
1

nS
‖x‖2

2‖ξ‖2
2 (by the Cauchy inequality)

= 1+
1
n

κ2‖ξ‖2
2 ≤ 1+κ2‖ξ‖2

∞. (2.49)
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Here, we have used Definition 2.34 and the general inequality

‖ξ‖2
2 ≤ n‖ξ‖2

∞,

where ‖ξ‖∞ = maxi|ξi|. With (2.48) we can write (2.49) as

κ̃2 ≤ 1+n2κ2u2.

For p = 1, inequality (2.44) leads to inequality (2.41). Note that this kind
of shift, as simple as the idea is, can lead to a very large improvement of
accuracy. Moreover, note that because of the dependence on κ , the bound
(2.45) can be worse than the bounds for more primitive estimates of d. This
is really relevant in practice, since we can construct examples where the cal-
culated mean does not even lie between min(xi) and max(xi), and therefore
(x̄− f l(x̄))2 > maxi(x̄− xi)

2. In such cases it is better to shift by one single
data point and not by the calculated mean.

Naturally, a shift by the mean might also be undesired for reasons of ef-
ficiency since we need an additional run through the data. Nevertheless, if
a two-pass algorithm is acceptable and n2κ2u2 is small (e.g. < 1), then this
shift followed by a one-pass algorithm delivers a very reliable method for the
calculation of S.

The corrected two-pass algorithm (2.33) is of this form. It consists of
the textbook algorithm with data shifted by f l(x̄). Its error bound nu(1 +
n2κ2u2) easily results from inequality (2.45) and the bound of the textbook
algorithm in Table 2.7.

Other one-pass algorithms can also be used in combination with a shift
by the calculated mean. However, if a good shift can be found so that κ̃ ≈ 1,
then all one-pass algorithms are essentially equivalent with an error bound
nu (or u log2 n with pairwise summation). Since the textbook algorithm is
the fastest one-pass algorithm, because it only needs n multiplications and
2n additions in contrast to, e.g., 4n multiplications and 3n additions for the
updating algorithm, it is recommended here except in rare cases.

2.4.4.4 An Overall Approach

The results of the preceding sections deliver a basis for an intelligent choice
of an algorithm for the most accurate calculation of the sample variance. As
often in realized approaches, not just one of the possible algorithms is used
for the solution of a problem. Instead, the available algorithms are combined
in a clever way. This is demonstrated here for the calculation of the sample
variance following Chan et al. (1983).

There is at least one situation where the textbook algorithm (2.27) can
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be recommended as it is, namely, if the original data consist of only integer
numbers that are small enough to guarantee that an overflow cannot appear.
Then, Formula 2.27 should be used with integer addition. In this case, round-
ing errors do not appear except in the last step, in which the two sums are
combined by subtraction and a division by n is carried out.

For non-integer numbers we first have to decide whether we want to use
a one-pass or a two-pass algorithm. If all data fit into the (high-speed) main
storage and we are not interested in dynamic updates for every new obser-
vation, then, probably, a two-pass algorithm is acceptable and the corrected

two-pass algorithm (2.33) is recommended. If n is large and high speed is
needed, then pairwise summation should be considered.

If a one-pass algorithm has to be used, then the first step should be to
shift the data as well as possible, e.g. by an x j (see Section 2.4.4.3). Then, an
adequate one-pass algorithm should be chosen. For this, we first have to esti-
mate κ̃ , the condition number of the shifted data, e.g. by means of the formu-
las in Section 2.4.4.3. If nκ̃2u, the error bound for the textbook algorithm, is
smaller than the desired relative accuracy, then the textbook algorithm should
be applied to the shifted data. If this bound is too large, then, to be on the safe
side, a slower algorithm should be used. Again, the dependency on n could
be reduced by pairwise summation. The dependency on κ̃ can be reduced by
means of an updating algorithm. The use of the updating algorithm with
pairwise summation could reduce both dependencies.

If n is a multiple of 2, pairwise summation can be easily implemented. For
general n more (in particular human) work is needed making the algorithm
less attractive.

The just described decision tree is presented in Figure 2.12.

2.4.5 Practice and Simulation

Early Stopping

Unfortunately, instead of checking approximate equality (see Section 2.4.3)
the restriction of the number of iteration steps is recently adopted with in-
creased frequency as the method of choice to control the convergence of a
sequence to its limit (so-called early stopping). This choice does not make
too much sense, as one can see by means of a sequence simulator. 16 Fig-
ure 2.13 shows the correspondence of the sequences (−1)n/n and (−1)n/n2

with their limit 0 after 50 iterations. Obviously, convergence speed is different
for the two sequences, and thus the correspondence to the limit is different.

16For example by using the simulator in http://www.flashandmath.com/mathlets/

calc/sequences/sequences.html.
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Figure 2.12: Choice of an algorithm for the calculation of the sample mean.
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Figure 2.13: Sequences: Convergence after 50 iterations.

Analogous properties are valid for series. We studied the series
∑

n
k=1 (−1)k+1/k and ∑

n
k=1 (−1)k+1/k2 with the limits log(2) = 0.69315 and

π2/12 = 0.82163 after n = 50 iterations (see Figure 2.14).
Iterative methods will also be studied for nonlinear optimization in Chap-

ter 4. There, convergence speed, which is decisive for the goodness of limit
approximation after n iterations, is formally introduced.
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Figure 2.14: Series: Convergence after 50 iterations.
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2.4.6 Summary and Outlook

Summary

In this section we discussed the accuracy of floating-point operations. We de-
rived error bounds for rounding, the basic arithmetical operations, and the
associative law of multiplication. We gave an example for a case where the
associative law of addition is very wrong using floating-point operations. We
introduced condition numbers for error propagation of arithmetical opera-
tions, and we introduced new approximate comparison operations that appear
to be more adequate for floating-point numbers than exact comparisons. Fi-
nally, we discussed the accuracy of various methods for the calculation of the
empirical variance.

Outlook

Recently, the incremental calculation of mean, variance, and other statistical
moments has undergone something of a revival, since it is needed in so-called
data stream mining. In data streams so many data are observed that not
all can be stored at the same time. Therefore, e.g., only sufficient statistics
of these data are stored and analyzed. These sufficient statistics have to be
updated successively (see, e.g., Gaber et al., 2005).

2.5 Implementation in R

2.5.1 Sorting

The core function for sorting numerical vectors in R is sort.int which is
contained in the base package. Depending on the method requested, either a
quick Sort variant (Singleton, 1969) that uses a randomly chosen pivot ele-
ment is used or a shell sort (Sedgewick, 1986) is employed if partial sorting
is requested. It is interesting to note that for classed objects, that is objects
that have a class attribute, sort is implemented using the order command.
This is useful because rank can also be implemented as an order operation.
If no ties are present, it holds that rank(x) == order(order(x)) since the
first application of order returns the ordering of the elements in x and outer
order operation then returns the position of each element in the ordered set
that corresponds to the rank of the observation.

2.5.2 Floating-Point Numbers

R does not have a single-precision data type. In R, all numbers are stored in
double-precision format. The functions as.single and single are identical
to the functions as.double and double except that they set the attribute
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Csingle used in the .Fortran and .C interfaces, and they are only intended
to be used in that context.

2.5.3 (Co-)Variance

Checking the var function in R, reveals that the actual calculation is per-
formed by a .Internal C function named cov. Looking at the source file
src/main/names.c in the R source code, we see that cov is actually imple-
mented in a C function named do_cov located in the file src/main/cov.c.
This function performs quite a bit of error checking and NA handling. Finally,
the calculation is performed by the function cov_complete1 in the same file.
It uses a simple two-pass algorithm for the computation.

2.6 Conclusion

In this chapter we discussed the fundamental questions for statistical comput-
ing, namely:

– What can a computer compute?

– How does a computer compute?

– How exact does a computer compute?

As a contribution to the What-question we introduced the basic term of
this book, namely algorithm, and the Turing machine as a theoretical vehi-
cle to implement algorithms and as a near relative, i.e. one of the forefathers,
of modern computers.

To answer the How-question we introduced floating-point numbers and
operations as being standard in modern computers. We discussed the pros and
cons of this number representation, and as the main result of our discussion
of the How exact-question we saw that not even basic laws of arithmetical
operations are valid for floating-point numbers with important implications
on the validity of computer calculations.

We introduced the two main properties of algorithms: Complexity and
accuracy. We discussed these properties by means of two standard examples:
Complexity of sorting algorithms, as utilized for quantile determination, and
accuracy of the calculation of the empirical variance. We introduced mea-
sures for complexity and accuracy, namely Landau symbols and conditions

numbers, respectively. Both properties, complexity as well as accuracy, will
be further discussed in the next chapters, e.g. complexity with multivariate
optimization methods (see Section 4.4) and accuracy with the verification
procedure in Chapter 3.
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Indeed, all that we discussed in this chapter should be understood as basic
foundations for higher-order characterizations of statistical algorithms in the
next chapters, without which the understanding of these characterizations and
algorithms cannot be complete.

2.7 Exercises

Exercise 2.2.1: Implement the Euclidean algorithm to calculate the GCD of
two whole numbers. Try to be as efficient as possible in your implementation.

Exercise 2.2.2: Devise an algorithm to calculate the least common multiple
(LCM) of two whole numbers. Implement and test your algorithm.

Hint

You can reuse your GCD algorithm implementation.

Exercise 2.2.3: Implement a recursive function to calculate arbitrary elements
of the Fibonacci sequence. Recall that the Fibonacci sequence is defined as

f f ib(n) =

{
n if n < 2

f f ib(n−1)+ f f ib(n−2) else
.

Measure the runtime of your implementation for different n (say n =
2,3,5,8,30). What do you observe?

Exercise 2.2.4: Design a more efficient algorithm to calculate an arbitrary Fi-
bonacci number. Implement it and compare its runtime to the naive recursive
implementation from the previous exercise. What do you observe?

Exercise 2.2.5: Consider the Algorithm 2.8 to calculate the nth power of a
matrix A. Is this algorithm free of errors?

Give the exact number of matrix multiplications (×) that are performed as
a function of b and o where b is the number of digits n has as a binary number
and o is the number of ones in the binary representation of n. Example: If
n = 510 = 1012, then b = 3 and o = 2. For n = 1110 = 10112, b = 4 and o = 3.

Represent the exact runtime using the Landau symbols.

Exercise 2.2.6: Execute Algorithm 2.8 for

A =

{
1 1
1 0

}

and n = 6. What do you observe?

Exercise 2.2.7: Implement the sorting algorithms
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Algorithm 2.8 Matrix Exponentiation

Require: A ∈ R
k×k, n ∈ N

Ensure: B =An =A×A×·· ·×A

B← Ik

while n 6= 0 do

if n is odd then

B←B×A

n← n−1
else

A←A×A

n← n/2
end if

end while

Note: Ik is the k-dimensional identity matrix.

– Bubble sort

– Insertion sort

– Quick sort

– Clever quick sort

and test them on a series of problems including lists of length 1, already sorted
lists, and lists containing ties.

Exercise 2.2.8: Write a simulator for a generic Turing machine over the al-
phabet A with the instruction set I. The simulator should accept a Turing
program P and initial instruction L0 as well as the final states F ⊂ I. Test your
simulator using several small example programs. Take care to test different
alphabets and instruction sets.

Exercise 2.2.9: Write a Turing program that multiplies two numbers and test
it.

Exercise 2.3.1: Find two example floating-point numbers (b = 10, p = 4) u

and v where
u2− v2 6= (u− v) · (u+ v).

What is the maximum error you can observe?

Exercise 2.3.2: Find the normalized floating-point representation for 0.0029,
0.029, 0.29, 2.9, 29, 290 with base b = 10, excess q = 3, mantissa p = 2 and
maximal exponent emax = 6.
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Exercise 2.3.3: Find the normalized floating-point representation for −4.2
with b = 2, p = 24, q = 127, and emax = 255. Specify the mantissa, the ex-
ponent, and the sign explicitly. This corresponds to single-precision floating-
point numbers according to the IEEE754 standard.

Example

6.12510 corresponds to 110.0012 = 1.10001×22. Hence, the following values
can be derived:

mantissa: 10001000000000000000000 (leading 1 is not stored)

exponent: 2+q = 12910 = 100000012

sign: + (represented as 0).

Exercise 2.3.4: Find floating-point numbers u, v, w such that

0 = (u×̂v)×̂w 0 6= u×̂(v×̂w)

with b = 2, p = 24, q = 127 and emax = 255.

Exercise 2.3.5: In R or a similar software, compare the result of 0.1+0.2 with
0.3 as in 0.1 + 0.2 == 0.3. What is the difference between 0.1+ 0.2 and
0.3? Why is there any difference? Specify all three numbers in floating-point
representation and explain any difference you observe.

Exercise 2.3.6: Devise and implement an smart algorithm to sum up n float-
ing point numbers. Try to avoid cancellation and other effects that could re-
duce the precision.

Hint

The order in which the elements are summed is important.

Exercise 2.4.1:

1. Implement the following one-pass algorithms to calculate the sample vari-
ance:

(a) The textbook algorithm.

(b) The textbook algorithm with sensible shift.

(c) The textbook algorithm with pairwise summation.

(d) The Youngs-Cramer algorithm.

(e) The Youngs-Cramer algorithm with sensible shift.

(f) The Youngs-Cramer algorithm with pairwise summation.

2. Simulate and visualize the error propagation for the algorithms in (a) and
compare them with each other. For this, use data from different distribu-
tions (normal, uniform, . . . ). Assume that the “true” variance is the value
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produced by the programming language you use (though this value might
not always be true!).



Chapter 3

Verification

3.1 Motivation and History1

Systematic verification of the results of numerical algorithms is one of the
most important and at the same time one of the most neglected tasks in the de-
velopment of such algorithms. On the one hand, there is the well-established
field of software engineering that studies how to design and verify large soft-
ware systems so that they adhere to formal specifications (see, e.g., Som-
merville (2010)). On the other hand, the verification of the exactness of nu-
merical results is obviously restricted to problems for which the correct solu-
tion is well-known a priori. Moreover, in order to be able to verify the results
in the general case, there is need for such correct solutions for all degrees of
difficulty. For this, one has to fully understand the numerical problem to be
solved, and there has to be a general theory for the generation of test problems
with known solutions. For this purpose, a systematic approach is necessary,
i.e. some sort of an experimental design of testing. Testing sporadic exam-
ples will likely show a completely distorted image. In particular, the well-
established practice of testing new algorithms on standard problems from lit-
erature does not in any way assess the general capabilities of the algorithm
under test.

This chapter demonstrates how a general verification procedure can be
constructed. In order to be able to rigorously understand the problem to be
solved for being able to assess the difficulty of data situations for this prob-
lem, we concentrate on probably the most used model in statistics, the linear

model y = Xβ+ ǫ. For its popularity alone, it should be of particular im-
portance to analyze the numerical problems in the estimation of unknown
coefficients.

For the general verification of least squares solutions β̂ for such models,
it would be useful to cover the entire space of possible inputs, namely of the

1Partly based on Weihs (1977), Weihs (2009).
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(influential) factor matrix X and the response vector y, with as little exam-
ples as possible. Additionally, it would be helpful to construct representative

factor matrices and response vectors for which the accuracy of the least
squares solution can be calculated easily, e.g., for which, in the ideal case,
the least squares solution can be exactly computed. We will demonstrate
how to generate singular test matrices with full column rank where the gen-
eralized inverses can be exactly computed, and how representative response
vectors can be constructed. However, the reader should be aware that in his
or her real applications other types of factor matrices might appear, and that
no test system can generate all possible types of such matrices. Nevertheless,
our system demonstrates the most important principles of the verification of

computer algorithms by means of Linear Least Squares (LLS) solvers.
In order to formalize the representativeness of test cases we use character-

ization measures for the difficulty of a data situation regarding the LLS prob-
lem. As such measures we utilize condition numbers of factor matrices and
the angle between the response vector and its projection (in Section 3.1.2).
This way, we can control the difficulty of the LLS problem. Moreover, we
concentrate on some select LLS solvers (see Section 3.2.1). The construc-

tion of numerically favorable representative test matrices and represen-

tative response vectors is demonstrated in Section 3.2.2. Here, the focus is
on the exact determination of the least squares solution and on the as full as
possible coverage of the relevant problems. For the latter, we construct not
too specific test examples with representative condition numbers. Finally, a
full verification method is proposed (Section 3.3.1) and verification results

(Section 3.3.2) for the introduced LLS solvers are discussed.

3.1.1 Preliminaries

In this subsection, we will give notation, definitions, and results from matrix
theory that we assume to be known. In the following sections we will not
explicitly refer to this subsection when using these facts. All other theory
needed will be cited or proved.

Notation 3.1: Matrix Properties
Let L(m,n) be the set of all real-valued m×n matrices. Then any X ∈ L(m,n)
defines a linear map from R

n to R
m, hence the name L for this set. If X is

such a matrix (X ∈ L(m,n)), then

– XT is the transpose of X ,

– im(X) is the image of X ,

– ker(X) is the kernel of X ,
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– det(X) is the determinant of X ,

– rank(X) is the rank of X .

Definition 3.1: Special Matrices
We need the following special matrices in this chapter.

– The identity matrix ∈ L(n,n) is called I or In.

– Let Pi, j be the matrix generated by the interchange of the ith and the jth
row or column of I . Pi, j is called elementary permutation matrix. Mul-
tiplication from the right by Pi, j interchanges the columns i and j of a
matrix X , multiplication from the left interchanges rows i and j. A prod-
uct P of elementary permutation matrices is called permutation matrix.
Check that

P−1
i, j = Pi, j, P−1 = P T .

– We call X = diag(d1, . . . ,dn) a diagonal matrix with diagonal elements
d1, . . . ,dn, di 6= 0 iff Xi j = 0 for i 6= j.

We call a matrix X

– upper triangular iff Xi j = 0 for i > j,

– lower triangular iff Xi j = 0 for i < j,

– orthogonal iff XTX = diag(d1, . . . ,dn),

– orthonormal iff XTX = I.

Definition 3.2: Moore-Penrose Generalized Inverse
For any X ∈ L(m,n) there is a unique matrix called the Moore-Penrose gen-

eralized inverse X+ ∈ L(n,m) with the following four properties:

1. XX+X =X

2. X+XX+ =X+

3. (XX+)T =XX+

4. (X+X)T =X+X

If X has maximum column rank n, then X+ = (XTX)−1XT . This general-
ized inverse has the minimum-norm least squares property, i.e.
β̂ :=X+y approximately solves the equation system Xβ= y with the prop-
erties:

(1.) ‖y−Xβ̂‖2 ≤ ‖y−Xβ‖2 for all β (least squares property),

(1.) ‖β̂‖2 ≤ ‖β‖2 for all β with equality in (1) (minimum-norm property).

Proposition 3.1: Image and Kernel of Generalized Inverses
Image and kernel of a matrix are, in a way, complementary, since
im(X)⊥ = ker(XT ), where im(X)⊥, the orthogonal complement, stands
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for all vectors orthogonal to im(X). Moreover,
ker(XT ) = ker(X+) and ker(X) = ker((X+)T ) as well as
im(XT ) = im(X+) and im(X) = im((X+)T ).

Definition 3.3: Matrix Norm
Given X ∈ L(m,n), we call a function
‖·‖ : L(m,n)→ R

+ a matrix norm iff:

1. For X ∈ L(m,n), ‖X‖ ≥ 0 and ‖X‖= 0 iff X = O, the null matrix.

2. For any scalar a ∈ R, ‖aX‖= |a|‖X‖.
3. For X1,X2 ∈ L(m,n), ‖X1 +X2‖ ≤ ‖X1‖+‖X2‖.
4. For all X1,X2 for which the matrix product is defined, in addition
‖X1X2‖ ≤ ‖X1‖‖X2‖.

A matrix norm is called consistent with a vector norm iff

‖Xβ‖ ≤ ‖X‖‖β‖.

In particular

‖X‖2 := max
‖β‖2=1

‖Xβ‖2

=max{
√

λi | λi is eigenvalue of XXT}

is called the spectral norm of matrix X and

‖X‖F :=

(
m

∑
i=1

n

∑
j=1

|xi j|2
)0.5

is called Frobenius norm of X ∈ L(m,n).
Let X ∈ L(m,n) and r := rank(X). Since rank(XXT ) = rank(X), the

eigenvalues λ j(XXT ), j = 1, . . . ,m, of XXT can be ordered so that

λ1(XXT )≥ . . .≥ λr(XXT )> λr+1(XXT ) = . . .= λm(XXT ) = 0.

The s j(X) :=
√

λ j(XXT ), j = 1, . . . ,r, are called singular values of X .
The positive eigenvalues of XXT and XTX are equal so that we can
use XTX instead of XXT in the definition of singular values. Obviously,
‖X‖2 = s1(X), and one can show that ‖X+‖2 = sr(X)−1.

One can show that the spectral matrix norm ‖·‖2 and the Euclidean vector
norm ‖·‖2 are consistent. This motivates the index 2 of the spectral matrix
norm once more. For orthonormal matrices ‖Q‖2 = 1, since QTQ= I.
For the Frobenius norm one can show:
‖X‖2

F = ∑
r
j=1 s2

j(X) and ‖X+‖2
F = ∑

r
j=1 (s

2
j(X))−1.
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3.1.2 The Condition of the Linear Least Squares Problem

Let us now start with the introduction of characterization measures for the dif-
ficulty of a data situation regarding the LLS problem. As such measures we
will propose condition numbers of factor matrices and the angle between the
response vector and its projection. For the verification of linear least squares
solutions we are looking for a procedure to adequately cover the entire space
of possible inputs, namely of the factor matrices and the response vectors,
with as few examples as possible. For this, we will characterize the depen-
dency of the accuracy of the least squares solution on the factor matrix X as
well as on the response vector y. Let us start, however, with the exact defini-
tion of the problem.

Definition 3.4: Linear Least Squares Problem, LLS Problem
Let X ∈ L(m,n) and y ∈ R

m. Then, β̂ ∈ R
n with

‖y−Xβ̂‖2 = min
β∈Rn
‖y−Xβ‖2

is called the Linear Least Squares solution (LLS solution) of the linear
model y = Xβ. Note that for the sake of simplicity the statistics notation
y =Xβ+ǫ with error term ǫ is not used in this chapter.

Note that β̂ := X+y is a minimum-norm LLS solution. In what fol-
lows, we want to compute β̂ := X+y either directly, e.g. by means of the
normal equations (see (3.1)), or indirectly via the computation of the general-
ized inverse X+. Note also that the normal equations implicitly compute the
generalized inverse, since X+ = (XTX)−1XT for matrices X with maxi-
mum column rank.

In practice, the factor matrix X ∈ L(m,n) as well as the response vector
y ∈Rm of the LLS problem are not exactly known in general, e.g. because the
measurement or the representation precision is finite. So it is desirable to find
a measure for the sensitivity of an LLS problem to disturbances in the data X ,
y. The value of such a measure should be varied in the verification procedure
in order to simulate different degrees of difficulty of the LLS problem. For
this, condition numbers are useful.

Definition 3.5: Condition Numbers for the LLS Problem
If the elements of X , y contain relative errors of maximum size δ , then let
the relative error in the LLS solution β̂ be constrained by f (κ)δ , where f (κ)
is a function of κ . Such measures κ are called condition numbers for the
LLS problem.
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An LLS problem is called well-conditioned iff the corresponding condition
number is small.

Thus, a function of the condition number κ for the LLS problem serves
as a multiplier of the relative input error in the bound of the relative error of
the LLS solution.

What well-conditioned really means, i.e. how large a condition number
may be, somewhat depends on the accuracy one wants to achieve and on the
LLS solver used. In the literature bounds like f (κ) < 1 are in use. We will
discuss whether this is reasonable.

In what follows, we will explain that the following characteristics of the
matrix X may serve as condition numbers for the LLS problem:

Definition 3.6: Special Condition Numbers
Let X ∈ L(m,n) and r := rank(X). Any K(X) := ‖X‖‖X+‖ is called a
condition number of the matrix X for the LLS problem.

Note that the matrix norm can be varied in this definition. K2(X) :=
‖X‖2‖X+‖2 = s1(X)/sr(X) is called spectral condition number of X .

It holds that K2(XXT ) = K2(X
TX) = K2

2 (X) since if XXTβ = λiβ,
then XXTXXTβ =XXT λiβ = λ 2

i β.
KF(X) := ‖X‖F‖X+‖F is called F-condition number of X ∈ L(m,n).

The following theorem gives a relationship between KF(X) and K2(X)
and explains why KF(X) is also an LLS condition number if K2(X) is.

Theorem 3.1: Relations between Condition Numbers
K2(X)≤ KF(X)≤min(m,n)K2(X).

Proof. Let r := rank(X) ≤ min(m,n). Since ‖X‖2
F = ∑

r
j=1 s2

j(X) and
‖X+‖2

F = ∑
r
j=1 (s

2
j(X))−1, it holds that s1(X) ≤ ‖X‖F , (sr(X))−1 ≤

‖X+‖F , ‖X‖F ≤
√

rs1(X), and ‖X+‖F ≤
√

r(sr(X))−1.
Therefore, the theorem follows from K2(X) = s1(X)/sr(X).

Obviously, KF(X) is of the same magnitude as K2(X) for arbitrary X ∈
L(m,n). This motivates the equivalent usefulness of the two characteristics as
condition numbers.

For ease of notation, the index 2 in K2 is left out in what follows, making
the spectral condition number the standard condition number.

Notice that the LLS problem can generally have more than one solution.
X+y is a minimum-norm solution. A unique LLS solution exists, iff X has
full column rank, since only then XTX can be inverted, and the so-called
normal equations XTXβ̂ =XTy (see below) can be solved uniquely.



MOTIVATION AND HISTORY 93

From now on, all results presented apply solely to LLS problems with
factor matrices with full column rank. Thus, in the following let:

X ∈ L(m,n), m≥ n, rank(X) = n.

Normal Equations

Historically, Gauss’s normal equations are the first proposed LLS solver.
However, the numerical problems in the solution of the LLS problem by the
normal equations became obvious early after the introduction of computers.
It was realized that the normal equations

XTXβ̂ =XTy (3.1)

(cp. Proposition 4.3) are rarely adequate for the solution of not very well-
conditioned LLS problems on a computer, because the condition of the nor-
mal equations is extremely bad for not well-conditioned LLS problems since

K(XTX) = K2(X).

Alternatives

In the beginning of the 1960s so-called orthogonalization methods were
proposed for the solution of LLS problems (Golub, 1965; Bauer, 1965).

This leads to a decomposition X = QR, where QTQ = I and R is a
nonsingular upper triangle matrix. By this, the normal equations XTXβ̂ =
XTy are transformed to RTQTQRβ̂ =RTQTy. Thus,

Rβ̂ =QTy (3.2)

and since QTQ= I it holds that

K(X) = K(QR) = K(R).

This leads to the hope to be able to avoid the square of the condition
number by means of orthogonalization. Unfortunately, not much later this
hope proved to be deceptive, since already Golub and Wilkinson (1966) pub-
lished a general upper bound for the absolute error in the LLS solution of a
“disturbed linear model”, which contains the factor K2(X):

Theorem 3.2: Upper Bound for the Absolute Error in Least Squares Estima-
tion
Let X,dX ∈ L(m,n), m ≥ n, rank(X) = n and y,dy ∈ R

m, as well as
‖X‖2 = 1,‖y‖2 = 1 and ‖dX‖2, ‖dy‖2 ≤ δ , 0 < δ ≪ 1.
Moreover, let β̂ be the LLS solution of y =Xβ, r0 := y−Xβ̂ and β̂d the
LLS solution of the disturbed model y+dy = (X+dX)β. Then:

‖β̂d− β̂‖2 ≤ δ (K2(X)‖r0‖2 +K(X)‖β̂‖2 +K(X))+O(δ 2). (3.3)
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Proof. See Golub and Wilkinson (1966, pp. 143 – 144).

Notice that here the idea is to study the effect of round-off errors caused
by the numerical solution of the LLS problem as if they were induced by
disturbed data. Since, indeed, it could be shown that the methods of Golub
and Bauer caused disturbances dX and dy with

‖dX‖2 ≤ δ‖X‖2, ‖dy‖2 ≤ δ‖y‖2 with (generally) 0 < δ ≪ 1

(see Wilkinson, 1965, pp. 153–160 and Björck, 1967, p. 20), the bound (3.3)
really delivers an upper bound for the absolute error in the computed LLS
solution when an orthogonalization method is used. Thus, for these methods
K2(X) is relevant in the bound (3.3) for not small residuals r0.

This, at the first time, gave an idea about the dependency of the absolute
error in the LLS solution on the input error and the spectral condition number,
explaining that K(X) is a condition number for the LLS problem. However,
Golub and Wilkinson only dealt with the special case ‖X‖2 = 1,‖y‖2 = 1
and did not deliver a lower bound for the absolute error in the LLS solution
of a disturbed linear model. Thus, hope remained that the real error is heavily
overestimated by (3.3).

Upper and Lower Bounds for the Absolute Error

In 1975 van der Sluis delivered lower bounds for the error in the LLS solution
of a disturbed linear model that can occur in the worst case (he argued that
without specific information about the factor matrix, the selected method,
etc., the worst case has to be assumed realistic!). Unfortunately, the results of
van der Sluis did not give reason for rejoicing since they show that the upper
bounds of Golub and Wilkinson are realistic, at least in the case ‖X‖2 = 1:

Theorem 3.3: Bounds for the Absolute Error in Least Squares Estimation
Let X,dX ∈ L(m,n), m≥ n, rank(X) = n, and y,dy ∈ R

m, as well as

‖dX‖2 ≤ δ‖X‖2, ‖dy‖2 ≤ δ‖y‖2 and µ := δ
s1(X)

sn(X)
= δK(X)< 1.

Furthermore, let β̂ be the LLS solution of the system y = Xβ, let r0 :=
y−Xβ̂ be the corresponding residual, and let dβ̂ chosen so that (β̂+dβ̂)
is the LLS solution of the disturbed system y+dy = (X +dX)(β+dβ).
Then:

1. For every pair (X,y) and any kind of disturbance (dX,dy) it is valid that

‖dβ̂‖2 ≤
δ

sn(X)

[
s1(X)‖r0‖2

sn(X)(1−µ2)
+

s1(X)‖β̂‖2

1−µ
+
‖y‖2

1−µ

]
.
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2. For every pair (X,y) there is a disturbance (dX,dy) so that

‖dβ̂‖2 ≥
δ

sn(X)

[
s1(X)‖r0‖2

sn(X)(1−µ2)
+
‖y‖2

1−µ2

]
.

3. For every pair (X,y) there is a “disturbance” (dX,dy) so that

‖dβ̂‖2 ≥
δ

sn(X)

[
s1(X)‖β̂‖2 +‖y‖2

]
.

Proof. See van der Sluis (1975, pp. 246 – 248, Theorem 4.3).

Notice that K2(X) appears in the upper bound (1) as well as in the first
lower bound (2) if ‖X‖2 = 1. Thus, the term K2(X) appears to be realistic
for not small residuals r0, at least in the worst case. But how realistic is the
worst case? Shouldn’t one expect the worst case to be exceptional so that in
the normal case one could hope for a more favorable result? Moreover, what
will happen when ‖X‖2 6= 1? We will study such questions by our verification
procedure.

Bounds for Relative Errors

Notice also that the original definition of a condition number for the LLS
problem is a statement about the relative error in the LLS solution. Thus, we
will restate the van der Sluis bounds for relative errors.

Corollary 3.1: Bounds for Relative Errors
Under the conditions of Theorem 3.3 the relative error in the LLS solution
has the bounds

‖dβ̂‖2

‖β̂‖2
≤ δK(X)

[
K(X)

tanφ(y)

1−µ2 +
1

1−µ

(
1+

1
cosφ(y)

)]
,

‖dβ̂‖2

‖β̂‖2
≥ δ

sn(X)(1−µ2)

[
s1(X)‖r0‖2

sn(X)‖β̂‖2

+
‖y‖2

‖β̂‖2

]
,

‖dβ̂‖2

‖β̂‖2
≥ δ

sn(X)

[
s1(X)+

‖y‖2

‖β̂‖2

]
,

where φ(y) is the angle between y and y0 :=Xβ̂.
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Proof. 1.) Upper bound:

‖dβ̂‖2

‖β̂‖2
≤ δ

sn(X)

[
s1(X)‖r0‖2

sn(X)‖β̂‖2(1−µ2)
+

s1(X)

1−µ
+

‖y‖2

‖β̂‖2(1−µ)

]

= δK(X)

[
‖X+‖ ‖r0‖

‖β̂‖(1−µ2)
+

1
1−µ

]
+δ‖X+‖ ‖y‖

‖β̂‖(1−µ)

≤ δK(X)

[
K(X)

‖r0‖
‖y0‖(1−µ2)

+
1

1−µ
+

‖y‖
‖y0‖(1−µ)

]
,

since ‖y0‖= ‖Xβ̂‖ ≤ ‖X‖‖β̂‖,

= δK(X)

[
K(X)

tanφ(y)

1−µ2 +
1

1−µ

(
1+

1
cosφ(y)

)]
,

where the last equality is to be proven.
r0 is orthogonal to y0 (r0 ⊥ y0), since

rT
0 y0 = (y−Xβ̂)TXβ̂ = yTXX+y−yTX+TXTXX+y

= yTXX+y−yTXX+XX+y = 0.

Then the relevant trigonometrical functions can be written as

cosφ(y) :=
yT

0 y

‖y0‖2‖y‖2
=

yT
0 (y0 +r0)

‖y0‖2‖y‖2

r0⊥y0
=

‖y0‖2
2

‖y0‖2‖y‖2
=
‖y0‖2

‖y‖2
,

cos2 φ(y) =
‖y0‖2

2

‖y‖2
2

=
‖y0‖2

2

‖y0‖2
2 +‖r0‖2

2

,

since ‖y‖2
2 = (y0 +r0)

T (y0 +r0) = ‖y0‖2
2 +‖r0‖2

2, and

sin2 φ(y) = 1− cos2 φ(y) =
‖r0‖2

2

‖y0‖2
2 +‖r0‖2

2

=
‖r0‖2

2

‖y‖2
2

,

tanφ(y) =
sinφ(y)

cosφ(y)
=
‖r0‖2

‖y0‖2
.

This proves the last equality in the above upper bound for the relative error in
the LLS solution.

2.) The lower bounds are obvious.

Notice that the derivation of the upper bound with tangent and cosine
terms cannot be generalized to the lower bounds since the derived upper
bound is even larger than the van der Sluis bound.
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Relevance

According to Theorem 3.3, (1) and (2), an amplification factor

K2(X)
‖r0‖2

1−µ2

of the relative input error δ is not unrealistic if 1 = ‖X‖2 = s1(X). Other-
wise, the amplification factor

s1(X)

s2
n(X)

‖r0‖2

1−µ2 =
K(X)

sn(X)

‖r0‖2

1−µ2

is to be expected.
From the upper bound of the relative output error it can be deduced that

K2(X) tanφ(y)
(1−µ2)

is an amplification factor for δ . On the one hand, tanφ(y)
(1−µ2)

is

especially large when the angle φ(y) is near 90o and the factor (1− µ2) is
near 0, i.e., µ := δK(X) is near 1, i.e. the condition number K(X) nearly
compensates the relative input error δ . On the other hand, tanφ(y)

(1−µ2)
is especially

small when the angle φ(y) is near 0o and the factor (1− µ2) is near 1, i.e.,
µ := δK(X) is near 0, i.e. the condition number K(X) is small and cannot
compensate the relative input error δ . In the latter case, the factor K2(X)

can even be reduced by tanφ(y)
(1−µ2)

. Thus, for small angles and small condition

numbers there might be a chance that the factor K2(X) can be avoided.
If the factor matrix X has maximum column rank, the results of van der

Sluis show that K(X) is a condition number for the LLS problem. Unfor-
tunately, the lower bounds reveal the importance of the terms of the upper
bound. Nevertheless, the results of van der Sluis do not indicate how realistic
the bounds are in practice. The intention of this chapter is thus to analyze
by means of adequate verification problems, how realistic it is to assume a
dependence of the error in the LLS solution on K2(X) for different types of
matrices, response vectors, and LLS solvers.

3.1.3 Summary

In this section we introduced the spectral and the Frobenius condition num-
bers K(X) and KF(X) and explained why they can act as characterizations
of the difficulty of the LLS problem ‖y−Xβ̂‖2 = minβ∈Rn‖y−Xβ‖2. We
stated that for the relative error in the LLS solution β̂ the square of the con-
dition numbers have to be expected as an amplification factor for the relative
error in the data. We explained why this can be avoided for small condition
numbers and small angles between the response vector and its projection on
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im(X). As a consequence, in the following we are looking for test matrices
X with specified condition numbers and for response vectors y with specified
angles to their projections.

3.2 Theory

3.2.1 LLS Solvers

Before we describe the verification procedure, let us first introduce the LLS
solvers used for the verification of the bounds. Notice that not the solvers are
intended to be compared primarily. It rather should be estimated how realistic
the dependency of the relative error in the LLS solutions on the square of the
condition number is in practice. However, in order to realize differences be-
tween different LLS solvers concerning precision of solutions, different types
of solvers will be used: the normal equations will be compared to an orthog-
onalization method and to a method that can easily adapt the LLS solution to
new data.

The most common method to calculate the least squares solution is the
normal equations. It is known, however, that this method is numerically
problematic already for not very badly conditioned LLS problems because
the condition number of XTX is equal to the square of the condition number
of X . This resulted in the development of many alternative methods trying
to avoid this problem. In the following, only two of these methods are intro-
duced: at first the Gram-Schmidt method, an orthogonalization process, and
then the method of Greville that turns out to be particularly useful in the con-
struction of test matrices. There are certainly far more methods to construct
the LLS solution, which are not discussed here, cp., e.g., Lawson and Hanson
(1974).

3.2.1.1 Gram-Schmidt Method

The Gram-Schmidt (GS) orthogonalization process produces a so-called full-

rank decomposition (frd), which substantially simplifies the computation of
the generalized inverse X+ of X .

Definition 3.7: Full-Rank Decomposition
Let X ∈ L(m,n), m≥ n, rank(X) = r > 0. A decomposition of X so that

X =BC with B ∈ L(m,r), C ∈ L(r,n), rank(B) = rank(C) = r (3.4)

is called full-rank decomposition (frd) of X .

Obviously, matrix B has maximum column rank, and matrix C has max-
imum row rank. This motivates the term full-rank decomposition.
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Theorem 3.4: Generalized Inverse for frd
If X =BC is an frd of X , then

X+ =CT (CCT )−1(BTB)−1BT . (3.5)

Proof. Since C has maximum row rank, (CCT )−1 exists. Since B has max-
imum column rank, (BTB)−1 exists. Thus, only the conditions for a gener-
alized inverse have to be checked.

XX+X =BCCT (CCT )−1(BTB)−1BTBC =BC =X,

X+XX+ =CT (CCT )−1(BTB)−1BTBCCT (CCT )−1(BTB)−1BT

=CT (CCT )−1(BTB)−1BT =X+,

XX+ =BCCT (CCT )−1(BTB)−1BT

=B(BTB)−1BT symmetric,

X+X =CT (CCT )−1(BTB)−1BTBC

=CT (CCT )−1C symmetric.

In fact, the Gram-Schmidt orthogonalization process produces a special
frd of a matrix X , namely a so-called triangular decomposition since the
matrix C is upper triangular. This means that at least one of the matrices B,C
is a triangular matrix. Apparently, for the determination of the frd the correct

assignment of the column rank r of the corresponding matrix X becomes
critical; thus, if r is assigned incorrectly, then the detected decomposition of
X cannot be an frd and Theorem 3.4 is not applicable. Therefore, methods
that deal with triangular decompositions generally use so-called pivot strate-

gies for the rank assignment, i.e. adequate column or row re-orderings. This
implies that instead of the frd of the matrix X we need to construct the frd of

X̃ = P1XP2, where (3.6)

P1 ∈ L(m,m) and P2 ∈ L(n,n) are permutation matrices.

Corollary 3.2: Generalized Inverses for frd with Permutations
If X̃ =BC is an frd of X̃ , then BC = X̃ = P1XP2.

Since P T
i = P−1

i , i = 1,2, it follows that X = P T
1 X̃P T

2 , and therefore
because of Theorem 3.4:

X+ = P2X̃
+P1 = P2C

T (CCT )−1(BTB)−1BTP1. (3.7)



100 VERIFICATION

Proof.

XX+X =P T
1 X̃P T

2 P2X̃
+P1P

T
1 X̃P T

2

=P T
1 X̃X̃+X̃P T

2 = P T
1 X̃P T

2 =X, (3.8)

X+XX+ =P2X̃
+P1P

T
1 X̃P T

2 P2X̃
+P1

=P2X̃
+X̃X̃+P1 = P2X̃

+P1 =X+, (3.9)

XX+ =P T
1 X̃P T

2 P2X̃
+P1 = P T

1 X̃X̃+P1 symmetric, (3.10)

X+X =P2X̃
+P1P

T
1 X̃P T

2 = P2X̃
+X̃P T

2 symmetric.

In the Gram-Schmidt orthogonalization process the linear independent

column vectors of X are orthogonalized. For the classical description of
the Gram-Schmidt process (GS process) for the orthogonalization of k linear
independent vectors x(1)

1 , . . . ,x
(1)
k , see Algorithm 3.1.

Algorithm 3.1 Gram-Schmidt Orthogonalization (GS1)

Require: X = [x
(1)
1 . . . x

(1)
k ] a column representation of X

1: q1← x
(1)
1

2: d1← qT
1 q1

3: for s = 2 to k do

4: qs← x
(1)
s

5: for i = 1 to s−1 do

6: ris← (x
(1)
s )Tqi/di

7: qs← qs− risqi

8: end for

9: ds← qT
s qs

10: end for

The following proposition interprets the GS process geometrically.

Proposition 3.2: Geometrical Interpretation of Gram-Schmidt Orthogonaliza-
tion 1
Geometrically, Algorithm 3.1 can be interpreted as follows: In step s, s =
2, . . . ,k, transform the vector s so that it is orthogonal to each of the (s− 1)
vectors already orthogonalized.

Proof. In step s, we have

qT
j qs = qT

j

(
x
(1)
s −

s−1

∑
i=1

qT
i x

(1)
s

qT
i qi

qi

)
= qT

j x
(1)
s −qT

j x
(1)
s = 0
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for j = 1, . . . ,s−1, since qT
j qi = 0 for all j 6= i.

An obvious variant of the GS process transforms all vectors s+1, . . . ,k in
step s so that they are orthogonal to vector s. This variant is called GS2 (see
Algorithm 3.2).

Algorithm 3.2 Gram-Schmidt Orthogonalization (GS2)

Require: X = [x
(1)
1 . . . x

(1)
k ]

1: for s = 1 to k−1 do

2: qs← x
(s)
s

3: ds← qT
s qs

4: for i = s+1 to k do

5: rsi← (x
(1)
i )Tqs/ds

6: x
(s+1)
i ← x

(s)
i − rsiqs

7: end for

8: end for

9: qk← x
(k)
k

10: dk← qT
k qk

Again, the geometrical interpretation helps to understand the steps of the
algorithm.

Proposition 3.3: Geometrical Interpretation of Gram-Schmidt Orthogonaliza-
tion 2
In step s, s = 1, . . . ,k− 1, algorithm GS2 transforms the vectors s+ 1, . . . ,k
so that they are orthogonal to vector s.

Proof. For i = s+1, . . . ,k:

x
(s+1)T

i qs =

(
x
(s)
i −

x
(1)T

i qs

ds

qs

)T

qs

= (x
(s)
i −x

(1)
i )Tqs since ds := qT

s qs (a)

= (−rs−1,iqs−1− . . .− r1,iq1)
Tqs

= 0

since qs is orthogonal to all q j, j = 1, . . . ,s−1.

Obviously, the number of operations is equal in the two algorithms. How-
ever, algorithm GS2 possibly needs more storage since
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1. in algorithm GS1 x
(1)
s is not needed anymore in step (s+ 1), and thus qs

can take the place of x(1)
s if x(1)

s is not needed otherwise, and

2. in algorithm GS2 x
( j)
i , j < i, cannot take the place of x(1)

i since x(1)
i is also

needed in the next steps.

However, algorithm GS2 can be revised so that this disadvantage is re-
moved. Notice that from (a) in the proof of Proposition 3.3 it holds that

(x
(s)
i )Tqs = (x

(1)
i )Tqs.

This leads to the so-called modified Gram-Schmidt process (MGSprocess)
given in Algorithm 3.3.

Algorithm 3.3 Modified Gram-Schmidt Orthogonalization (MGS)

Require: X = [x
(1)
1 . . . x

(1)
k ]

1: for s = 1 to k−1 do

2: qs← x
(s)
s

3: ds← qT
s qs

4: for i = s+1 to k do

5: r′si← (x
(s)
i )Tqs/ds

6: x
(s+1)
i ← x

(s)
i − r′siqs

7: end for

8: end for

9: qk← x
(k)
k

10: dk← qT
k qk

Obviously, in this algorithm x
(s)
i can take the storage of x(1)

i if the values

of x(1)
i are not needed otherwise.
The classical GS process is known to be numerically unstable. This was

already indicated by results of Rice (1966). These results also suggested that
the MGS process is numerically substantially more stable than the GS pro-
cess. However, this process seems to have been used considerably earlier in-
stead of the classical GS process (cp. Björck, 1967, p. 20 and Peters and
Wilkinson, 1970, p. 313).

The reason why the MGS process is numerically more stable than the GS
process, obviously, has to be related to the fact that (x(s)

i )Tqs is used instead

of (x(1)
i )Tqs in the orthogonalization.

Indeed, the usage of (x
(1)
i )Tqs is dangerous since the two terms in the

scalar product lie (s− 1) orthogonalization steps apart and the goodness of
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orthogonality becomes worse for larger s because of round-off errors in qs.
In contrast, in the MGS process, x(s)

i , i = s+1, . . . ,k, and qs = x
(s)
s are both

computed as results of the orthogonalization with regard to qs−1. Thus, the
orthogonalization optimally applies to the results of the previous orthogo-
nalization steps. Because of the numerical problems of algorithms GS1 and
GS2, we only concentrate on algorithm MGS in the verification of numeri-
cal stability of the construction of the generalized inverse X+ used for the
construction of the LLS solution.

As already mentioned in the beginning of this paragraph, the MGS pro-
cess constructs a special frd of the factor matrix X ∈ L(m,n), namely a so-
called triangular decomposition. In order to find the correct rank of X a so-
called pivot strategy (Peters and Wilkinson, 1970, p. 313) is applied ensuring
the column with maximum norm is processed next (see Algorithm 3.4).

Algorithm 3.4 Pivot Strategy (PS)

Require: X = [x
(1)
1 . . . x

(1)
n ]

1: In each step s of Algorithm 3.3 apply a so-called pivot-strategy:
2: for s = 1 to n−1 do

3: i0← argmaxi=s,...,n‖x(s)
i ‖2 (take the 1st such index)

4: if s 6= i0 then interchange columns s and i0 (use the same column num-
bering i = s, . . . ,n after the interchange as before)

5: Orthogonalize as in Algorithm 3.3 storing usi← r′si and ds← qT
s qs.

6: end for

7: Q← [q1 q2 . . . qn] as in Algorithm 3.3 with QTQ= diag(d1,d2, . . . ,dn).

Notice that di > 0, i = 1, . . . ,n, iff rank(X) = n. The resulting triangular
decomposition and the corresponding generalized inverse are given in the next
corollary.

Corollary 3.3: MGS Generalized Inverse
Let X ∈ L(m,n) be a factor matrix with rank(X) = n, Q the matrix defined in
Algorithm 3.4, and U = (usi), where usi, 1≤ s≤ n,s+1≤ i≤ n, are defined
as in Algorithm 3.4, uss := 1, 1≤ s≤ n, and usi = 0, 1≤ i≤ n, 1≤ s≤ i−1.
Then, QTQ= diag(d1,d2, . . . ,dn) =: D and U is an upper triangular matrix
with maximum row rank, thus, being invertible. Moreover, Algorithm 3.4 ap-
plies column permutations to the matrix X implicitly defining a transformed
matrix X̃ . X̃ =QU is an frd of X̃ and

X̃+ =U−1D−1QT , (3.11)
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as well as
X+ = P2U

−1D−1QT . (3.12)

Proof.

X̃+ =UT (UUT )−1(QTQ)−1QT =UT (UUT )−1D−1QT =U−1D−1QT

by Theorem 3.4. Since only column interchanges by a permutation matrix P2

were carried out, it follows from Corollary 3.2 that

X+ = P2U
−1D−1QT .

This completes the computation of X+ by means of the MGS process. With
this, the LLS solution can be written as

β̂ = P2U
−1D−1QTy. (3.13)

Note that this is the solution of the equation system

DUP T
2 β̂ =QTy, (3.14)

which is often solved in practice after orthogonalization according to Equa-
tion (3.2).

3.2.1.2 Greville’s Method

Unfortunately, by using the MGS process one nice property of the GS process
is lost, namely the easy adaptation of the LLS solution to new data. With the
GS process a new variable can easily be added and orthogonalized by the
standard process. With the MGS process, however, a new variable has to be
treated individually, i.e. in special steps. Moreover, all three Gram-Schmidt-
processes are not able to easily adapt the result to new observations, i.e. to
new rows of the matrix X .

For the method of Greville (1960) all such adaptations are no problem.
This method constructs the generalized inverse of the matrix X column by
column or row by row. For example, in step j the generalized inverse of X j

:= (first j columns of X) or X( j) := (first j rows of X) is calculated.

Theorem 3.5: Greville’s Method

Column version: Let X = [x1 . . . xn] be a column representation of X ∈
L(m,n) with maximum column rank and let

X1 := [x1], X j := [X j−1 x j], j = 2, . . . ,n,

d j :=X+
j−1x j, c j := x j−X j−1d j , and bT

j := c+j = (cT
j c j)

−1cT
j .
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Then

X+
1 =(xT

1 x1)
−1xT

1 , X+
j = [X j−1 x j]

+=

[
X+

j−1−d jb
T
j

bT
j

]
, j = 2, . . . ,n.

Row version: Let X =



xT

1
...
xT

m


 be a row representation of X ∈ L(m,n) with

maximum row rank and let

X(1) := [xT
1 ], X( j) :=

[
X( j−1)

xT
j

]
, j = 2, . . . ,m,

dT
j := xT

j X
+
( j−1), cT

j := xT
j −dT

j X( j−1) and b j := cT+
j = (cT

j c j)
−1c j.

Then

X+
(1) = (xT

1 x1)
−1x1,

X+
( j) =

[
X( j−1)

xT
j

]+
=
[
X+

j−1−b jd
T
j b j

]
, j = 2, . . . ,n.

Proof. Verification of the properties of the generalized inverse (see Ben-Israel
and Greville, 2003, pp. 263 – 265, and Kishi, 1964, pp. 344 – 350).

Theorem 3.5 apparently provides two construction rules for the calcula-
tion of X+ recursively by X+

j resp. X+
( j). In both rules, the actual general-

ized inverse is adapted to the new column (or row) and complemented by an
additional row (or column).

Obviously, one important condition is c j 6= 0⇔ x j is not a linear combi-
nation of the columns of X j−1. Otherwise, (cT

j c j)
−1 and thus b j would not

be defined. Analogously, this is true for the row version. As we assume max-
imum column rank and maximum row rank, c j resp. cT

j can never be zero.
Thus, the case c j = 0 can be ignored, and the variants of Greville’s theorem
dealing with the case c j = 0 are not relevant here. Note, however, that small
c j 6= 0 might cause numerical trouble.

Having constructed the generalized inverse, obviously, the LLS solution
can be generated by β̂ =X+y.

3.2.1.3 Summary

In this subsection we have introduced three LLS solvers: the normal equa-
tions, variants of the Gram-Schmidt (GS) process, and variants of Greville’s
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method. The normal equations are known to be numerically unstable. For the
GS process we derived a numerically stable variant, the MGS process. Gre-
ville’s method has the important advantage that it can easily adapt to new data,
variables as well as observations. Moreover, this method will be prominently
used to generate test matrices as described in the next subsection.

3.2.2 Test Data Generation

The accuracy of the LLS solutions computed by the methods introduced in
the previous subsection can, naturally, only be studied precisely if the exact
LLS solutions of the studied problems are well-known. Notice that all meth-
ods presented in this chapter, including the normal equations, can be seen as
first computing the generalized inverse X+ of the factor matrix X , which
is then used to compute the LLS solution X+y. Therefore, in the following,
test matrices will be introduced, the generalized inverse of which is not only
known, but also can be computed without any round-off errors. This way, if
the response vector y can be exactly represented, the exact LLS solution can
be computed.

Let us begin with a short remark. In the following, test matrices are de-
veloped for the statistical model y =Xβ+ǫ, where no structure is imposed
on X . In particular, no constant 1-column is assumed to be included in X .
One may argue that such a column, indicating the constant in the model,
is standard for most statistical models. Such models might be written as
yi = β0 +βTxi + εi, i = 1, . . . ,m. It is standard to assume E(εi) = 0. If we
now switch to mean-centered variables ỹi := yi−E(yi) and x̃i := xi−E(xi),
then the corresponding model would look like ỹi = β̃T x̃i+ ε̃i, i.e. the constant
term is eliminated. Naturally, in such models the columns of the factor matri-
ces and the responses have to be mean-centered. The usage of the following
test matrices in such cases will be discussed in the Exercises 3.3.6 to 3.3.8.

3.2.2.1 Nonsingular Test Matrices

Often, there is the misunderstanding that only in computations with very
large data sets numerical errors have a chance to accumulate. In what fol-
lows, though, we will show that it is enough to focus on very well-chosen
small scale data sets to simulate situations where large numerical errors can
be observed.

In Zielke (1974) three types of nonsingular test matrices were described,
the elements of which can be chosen so that not only the test matrix itself,
but also its inverse is integer and easily constructed. In the following, we will
restrict ourselves to only one of these types of test matrices.
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Proposition 3.4: Nonsingular Zielke Matrices
Let

XZ(Z1, . . . ,Zm−1,n, p) :=




Z1 +Ip Z2 +Ip · · · Zm−1 +Ip Z1
... . .

.
Zm−1 · · ·

... Z2 +Ip . .
. · · ·

Z1 +Ip Z2 · · · Zm−1 Z1

Z1 Z2 · · · Zm−1 Z1−Ip




,

where Zi ∈ L(p, p) is an integer matrix and 1≤ i≤ m−1, mp = n, m≥ 3.
Then, the corresponding inverse has the form

XZ(Z1, . . . ,Zm−1,n, p)−1 :=



−Zm−1 Zm−1−Zm−2 · · · Z3−Z2 Z2−Z1 +Ip Z1

Ip −Ip

(0) . .
. −Ip

Ip . .
.

(0)
Ip −Ip

Zm−1 Zm−2−Zm−1 · · · Z2−Z3 Z1−Z2 −Z1−Ip




.

Unfortunately, the construction of these matrices does not appear to be
obvious at first glance. Therefore, we will describe the construction in some
detail.

Construction of matrix XZ: Choose the first and the last row of subma-
trices. Then, add such rows from below, until overall m such rows are built,
adding Ip to the last row, first in the first and the last column of submatrices,
and then also in column 2, etc. Notice that in all rows, except the last, the last
element is Z1.

Construction of matrix X−1
Z : The inverse X−1

Z is built column-wise,
while the matrix XZ was built row-wise: Choose column 1 of submatrices
and the last column m. Column 1 consists of −Zm−1 as the first, Zm−1 as
the last and Ip as the last but one element. The last column consists of Z1

as the first and −Z1− Ip as the last element. All other elements are equal to
zero. Then choose one by one the columns j = m− 1, . . . ,m− (m− 2) = 2
beginning at the right-hand side. These columns consist of (Zm− j+1−Zm− j)
as the first and−(Zm− j+1−Zm− j) as the last element. All other elements are
equal to zero, except adding Ip to the (m− j)th and subtracting it from the
(m− j+1)th element.
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Example 3.1: Zielke Matrices and Their Inverses

1. Let Zi = 998, i = 1,2, m = 3. Then

XZ(998,998,3,1) =




999 999 998
999 998 998
998 998 997




and

XZ(998,998,3,1)−1 =



−998 1 998

1 −1 0
998 0 −999


 .

2. Let Zi =Z :=

[
998 0

0 0

]
, i = 1,2, m = 3, p = 2. Then

XZ(Z,Z,6,2) =




999 0 999 0 998 0
0 1 0 1 0 0

999 0 998 0 998 0
0 1 0 0 0 0

998 0 998 0 997 0
0 0 0 0 0 −1



,

XZ(Z,Z,6,2)−1 =




−998 0 1 0 998 0
0 0 0 1 0 0
1 0 −1 0 0 0
0 1 0 −1 0 0

998 0 0 0 −999 0
0 0 0 0 0 −1



.

3. Let Z1 = 998, Zi = 0, i = 2,3,4, m = 5. Then

XZ(998,0,0,0,5,1) =




999 1 1 1 998
999 1 1 0 998
999 1 0 0 998
999 0 0 0 998
998 0 0 0 997



,

XZ(998,0,0,0,5,1)−1 =




0 0 0 −997 998
0 0 1 −1 0
0 1 −1 0 0
1 −1 0 0 0
0 0 0 998 −999



.
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Let us recall the aim we started from. We wanted to control the matrix
condition, i.e. we wanted to be able to construct matrices with a prefixed
magnitude of the condition number.

Zielke (1974, p. 34) wrote that “unless they are not only used to expose
gross failures in the algorithm, test matrices should have the worst possible
condition, i.e. a high condition number. Then it is possible to test the quality of
a method with respect to error propagation avoiding enormous computational
costs”.

This raises the question how test matrices with high condition can be
constructed. This is generally neither possible nor sensible using random

numbers for all matrix entries! In contrast, however, we can control the
condition of the above XZ(Z1, . . . ,Zm−1,n,1) by means of only the free pa-
rameters Z1, . . . ,Zm−1 ∈ R. It can be shown (Zielke, 1974, p. 47) that

KF(XZ(Z1, . . . ,Zn−1,n,1))≥ 2nZ2,

if |Zi| ≥ Z ≫ 1, i = 1, . . . ,n− 1, are integers. So the F-condition number
increases with the square of the smallest free parameter Z and linearly with
the rank n. Thus, even for small ranks n one can get test matrices with very
high condition numbers without having to set the free parameters to very high
values. For instance:

KF(XZ(103,103,3,1))≥ 6 ·106,

KF(XZ(103,103,103,103,5,1))≥ 10 ·106 = 107,

KF(XZ(105,105,105,105,5,1))≥ 1011.

3.2.2.2 Singular Test Matrices

Zielke (1986) gave an overview of singular test matrices. He proved (in The-
orem 4) that the generalized inverse of a singular integer matrix X has to be a
non-integer if X does not result from a nonsingular integer matrix by adding
zero rows or columns and X is not the zero matrix. Therefore, if one is inter-
ested in exact least squares solutions, then, obviously, the best one could reach
is generalized inverses only containing non-integers exactly representable on
the computer with a rather short mantissa. This has been realized in Weihs
(1977, 2009) in a very general manner.

The general procedure is as follows. By means of row deletion in ma-

trices with full row rank based on Zielke’s nonsingular matrices, singular
test matrices can be successfully constructed with the desired property, i.e.
elements of the generalized inverse are integers or exactly representable non-
integers. In order to prove this property a converse of Greville’s method is
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used. Test matrices with full column rank can then be created by transposi-
tion. Unfortunately, directly dealing with columns leads to identical rows, i.e.
to undesired identical observations.

Let us first construct generalized inverses of matrices after row deletions
and then apply these results to special Zielke matrices in order to guarantee
exactly representable inverses of test matrices.

Notation 3.2: Matrix with Deleted Columns and Rows
The matrix constructed by deletion of columns j1 6= . . . 6= jp and rows i1 6=
. . . 6= iq from X is denoted by X( j1,..., jp;i1,...,iq).

Theorem 3.6: Converse of Greville’s Theorem: Deletion of One Row
Let X j ∈ L( j,n) be of maximum row rank, X j−1 :=X j(;i), 1≤ i≤ j, xT

i :=
(ith row of X j) and bi := (ith column of X+

j ). Then

X+
j−1 =

(
In−

bib
T
i

bT
i bi

)
X+

j (i)
.

Proof.

1. Let first i = j. We use the row version of Greville’s Theorem 3.5 to con-
struct the generalized inverse of X j ∈ L( j,n) from the generalized inverse
of X j−1 :=X j(; j):

a. Let dT
j := xT

j X
+
j−1, cT

j := xT
j −dT

j X j−1. Thus,

c j = x j− (X+
j−1X j−1)

Tx j = x j−X+
j−1X j−1x j.

As mentioned after Greville’s Theorem 3.5,
c j = 0⇔ xT

j linearly dependent of the rows of X j−1.

b. Greville’s theorem 3.5 implies:

[
X j−1

xT
j

]+
=
[
X+

j−1−b jd
T
j b j

]
=
[
(I−b jx

T
j )X

+
j−1 b j

]
,

where b j := cT+
j .

c. Because X j has maximum row rank, xT
j is linearly independent of the

rows of X j−1
(a)⇒ c j 6= 0⇒ b j = cT+

j 6= 0⇒X j−1b j =X j−1c j/(c
T
j c j).

Moreover, X j−1c j =X j−1(I−X+
j−1X j−1)x j = 0.

Thus, X j−1b j = 0. For i = j, the statement of the theorem then follows
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from the following argument:

X j−1b j = 0 ⇔ b j ∈ ker(X j−1) = ker(XT+
j−1)

⇔ XT+
j−1b j = 0

⇔ bT
j X

+
j−1 = 0

⇒
(
I−

b jb
T
j

bT
j b j

)
X+

j

(b)
=

(
I−

b jb
T
j

bT
j b j

)
[(I−b jx

T
j )X

+
j−1 b j]

=
[
X+

j−1−b jx
T
j X

+
j−1 +b jx

T
j X

+
j−1 0

]

=
[
X+

j−1 0
]
.

2. Now, let i be general. Then let C j := PX j :=

[
X j−1

xT
i

]
, where P is the

following product of elementary permutation matrices: P := P j−1, j · . . . ·
Pi,i+1. Therefore: P−1 = P T . Moreover, let C j−1 := C j(; j) = X j−1. (1)
implies

X+
j−1 =C+

j−1 =

(
In−

bib
T
i

bT
i bi

)
C+

j ( j)
.

Then, the statement of the theorem follows from

C+
j ( j)

= (PX j)
+
( j) = (X+

j P
T )( j) = X+

j (i)
.

For a converse of the column version of Greville’s method see Fletcher
(1969).

Notation 3.3: Weighting Matrices
Matrices W so that X+

j−k =W X+
j (i1,...,ik)

are called weighting matrices.

This theorem obviously constructs the generalized inverse of a matrix
after deletion of row i by deleting column i in the generalized inverse of the
original matrix and by left-multiplying this matrix by a weighting matrix.

Obviously, it is not enough to delete only one row, since this would lead
to too special test matrices. However, a corresponding statement can also be
derived for the deletion of more than one row.

Corollary 3.4: Converse of Greville’s Theorem: Deletion of More Than One
Row
Let X j ∈ L( j,n) be of maximum row rank and X j−k := X j(;i1,...,ik), 1 ≤
i1, . . . , ik ≤ j, 1 ≤ k < j, b(k)i := (ith column of X+

j after k deletions), 1 ≤
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i≤ j− k, 0≤ k < j. Notice that b(0)i is the ith column of X+
j itself. Then

X+
j−k =


In−

b
(k−1)
ik

b
(k−1)T

ik

b
(k−1)T

ik
b
(k−1)
ik

−·· ·−
b
(0)
i1
b
(0)T

i1

b
(0)T

i1
b
(0)
i1


X+

j (i1,...,ik)
.

Proof.

1. Since X j has maximum row rank, all row-deleted versions of X j also have
maximum row rank. It follows by induction from Theorem 3.6 that

X+
j−k =


In−

b
(k−1)
ik

b
(k−1)T

ik

b
(k−1)T

ik
b
(k−1)
ik


 · · ·


In−

b
(0)
i1
b
(0)T

i1

b
(0)T

i1
b
(0)
i1


X+

j (i1,...,ik)
.

2. We will show that b(p−1)T

ip
b
(q−1)
iq

= 0 for p 6= q.
Proof by induction: Let w.l.o.g. p > q.

a. Let p = q+1, then by Theorem 3.6

b
(p−1)T

ip
b
(q−1)
iq

= b
(q)T

ip
b
(q−1)
iq

= b
(q−1)T

ip


I−

b
(q−1)
iq

b
(q−1)T

iq

b
(q−1)T

iq
b
(q−1)
iq


b

(q−1)
iq

= 0.

b. If the statement is valid for p = q+1, . . . ,q+ s−1, then:

b
(q+s−1)T

iq+s
b
(q−1)
iq

= b
(q+s−2)T

iq+s


I−

b
(q+s−2)
iq+s−1

b
(q+s−2)T

iq+s−1

b
(q+s−2)T

iq+s−1
b
(q+s−2)
iq+s−1


b

(q−1)
iq

= b
(q+s−2)T

iq+s
b
(q−1)
iq

, since b
(q+s−2)T

iq+s−1
b
(q−1)
iq

= 0

= . . .

= b
(q)T

iq+s
b
(q−1)
iq

= 0 as in (a).

3. The statement follows from (1) and (2)

Obviously, the construction of the generalized inverse after deletion of
k rows is generalized from the corresponding construction after deletion of
one row. Note, however, that the different weighting matrices are based on
the columns of the generalized inverse after 0,1, . . . ,k−1 deletions, meaning
that the generalized inverse has to be constructed stepwise:
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– Construct the weighting matrix

(
In−

b
(0)
i1

b
(0)T

i1

b
(0)T

i1
b
(0)
i1

)
for the deletion of one row

based on the original generalized inverse, i.e. take b
(0)
i1

from the original
generalized inverse.

– Construct the weighting matrix for the deletion of two rows(
In−

b
(0)
i1

b
(0)T

i1

b
(0)T

i1
b
(0)
i1

− b
(1)
i2

b
(1)T

i2

b
(1)T

i2
b
(1)
i2

)
by application of the weighting matrix for the

deletion of one row from the previous step to b
(0)
i2

, i.e. by taking

b
(1)
i2

=

(
In−

b
(0)
i1

b
(0)T

i1

b
(0)T

i1
b
(0)
i1

)
b
(0)
i2

.

– . . .

– Construct b(k−1)
ik

=

(
In−

b
(0)
i1

b
(0)T

i1

b
(0)T

i1
b
(0)
i1

−·· ·−
b
(k−2)
i(k−1)

b
(k−2)T

i(k−1)

b
(k−2)T

i(k−1)
b
(k−2)
i(k−1)

)
b
(0)
ik

.

– Construct X+
j−k =

(
In−

b
(0)
i1

b
(0)T

i1

b
(0)T

i1
b
(0)
i1

−·· ·− b
(k−1)
ik

b
(k−1)T

ik

b
(k−1)T

ik
b
(k−1)
ik

)
X+

j (i1,...,ik)
.

Notice that the weighting matrix in Corollary 3.4 is numerically much more
stable than the corresponding form in (1) in the proof of the corollary, since
the orthogonalities are theoretically utilized and not just numerically ex-
pected.

In order to guarantee that the generalized inverses of the Zielke matri-
ces XZ(Z1, . . . ,Zm−1,n, p) are exactly representable on a computer after row
deletions we now concentrate on matrices with the property:

Zi+1 =Zi +Ip, 1≤ i≤ m−2 (3.15)

(cp. Weihs, 1977, pp. 93 – 94). These test matrices have only one free param-
eter matrix Z =Z1 and are denoted by XZ1(Z,n, p):

XZ1(Z,n, p) =




Z+Ip Z+2Ip · · · Z+(m−1)Ip Z

Z+Ip Z+2Ip · · · Z+(m−2)Ip Z
...

...
...

...
Z+Ip Z+2Ip · · · Z+(m−2)Ip Z

Z+Ip Z+Ip · · · Z+(m−2)Ip Z

Z Z+Ip · · · Z+(m−2)Ip Z−Ip



,
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XZ1(Z,n, p)−1 =




−Z− (m−2)Ip Ip · · · Ip 2Ip Z

Ip −Ip

(0) . .
. −Ip

Ip . .
.

(0)
Ip −Ip

Z+(m−2)Ip −Ip · · · −Ip −Ip −Z−Ip




with m := n/p≥ 3.

Example 3.2: One Parameter Zielke Matrix and its Inverse
Let Z = 998, n = m = 3. Then

XZ1(998,3,1) =




999 1000 998
999 999 998
998 999 997




and

XZ1(998,3,1)−1 =



−999 2 998

1 −1 0
999 −1 −999


 .

Let us apply Theorem 3.6 to these matrices, Z being an integer.

Corollary 3.5: Deletion of One Row in Zielke Matrices
Let Xn :=XZ1(Z,n,1), Z ∈ Z, and Xn−1 :=Xn(;i) with
1 < i < n−1. Then

X+
n−1 =




(n− i+1)th column
↓

0.75 0 · · · 0 −0.25 0.25 0 · · · 0 0.25
1

(0)
. . . (0)

1
−0.25 0 · · · 0 0.75 0.25 0 · · · 0 0.25
0.25 0 · · · 0 0.25 0.75 0 · · · 0 −0.25

1

(0)
. . . (0)

1
0.25 0 · · · 0 0.25 −0.25 0 · · · 0 0.75




X+
n(i)

Proof. Obviously,

b
(0)
i =

[
(n− i+1)th column

↓
1 0 · · · 0 1 −1 0 · · · 0 −1

]
T
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with b
(0)T
i b

(0)
i = 4 and thus

b
(0)
i

b
(0)T
i b

(0)
i

=
[
0.25 0 · · · 0 0.25 −0.25 0 · · · 0 −0.25

]T
.

The weighting matrix is derived by multiplication with b
(0)T
i and subtraction

from the identity.

Obviously, the weighting matrix and thus the computed generalized in-
verse of the original matrix after the deletion of one row can be represented
exactly on a computer since all elements in the weighting matrix are multi-
ples of powers of 2 if 1 < i < n−1. Unfortunately, this result cannot easily be
generalized to deletions of more than one row. Consider, e.g., the following
case:

Corollary 3.6: Deletion of Two Succeeding Rows in Zielke Matrices
Let Xn :=XZ1(Z,n,1), Z ∈ Z, Xn−1 :=Xn(;i), and Xn−2 := Xn(;i,i+1), 1 < i,
i+1 < n−1. Then

X+
n−2 =




(n− i+1)th column

↓
3/5 0 · · · 0 −1/5 0 1/5 0 · · · 0 2/5

1

(0)
. . . (0)

1

−1/5 0 · · · 0 11/15 1/3 −1/15 0 · · · 0 1/5

0 0 · · · 0 1/3 1/3 1/3 0 · · · 0 0

1/5 0 · · · 0 −1/15 1/3 11/15 0 · · · 0 −1/5

1

(0)
. . . (0)

1

2/5 0 · · · 0 1/5 0 −1/5 0 · · · 0 3/5




X+
n (i,i+1)
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Proof. By Corollary 3.5,

b
(1)
i+1 =




0.75 0 · · · 0 −0.25 0.25 0 · · · 0 0.25
1

(0)
. . . (0)

1
−0.25 0 · · · 0 0.75 0.25 0 · · · 0 0.25
0.25 0 · · · 0 0.25 0.75 0 · · · 0 −0.25

1

(0)
. . . (0)

1
0.25 0 · · · 0 0.25 −0.25 0 · · · 0 0.75







1
0
...
0
1
−1
0
0
...
0
−1




=




3/4
0
...
0
1
−5/4
1/4
0
...
0
−3/4




with

b
(1)T
i+1 b

(1)
i+1 =

60
16

=
15
4

and
b
(1)
i+1

b
(1)T
i+1 b

(1)
i+1

=
[

1
5 0 · · · 0 4

15 − 1
3

1
15 0 · · · 0 − 1

5

]T
.

↑
(n− i+1)th place

Then, by Corollary 3.4, the weighting matrix has the stated form, since

(
In−

b
(0)
i b

(0)T

i

b
(0)T

i b
(0)
i

)
−

b
(1)
i+1b

(1)T

i+1

b
(1)T

i+1 b
(1)
i+1

=




0.75 0 · · · 0 −0.25 0.25 0 · · · 0 0.25
1

(0)
. . . (0)

1
−0.25 0 · · · 0 0.75 0.25 0 · · · 0 0.25
0.25 0 · · · 0 0.25 0.75 0 · · · 0 −0.25

1

(0)
. . . (0)

1
0.25 0 · · · 0 0.25 −0.25 0 · · · 0 0.75




−




1/5
0
...
0

4/15
−1/3
1/15

0
...
0
−1/5







3/4
0
...
0
1
−5/4
1/4

0
...
0
−3/4




T

Obviously, in the case of the deletion of two successive rows in
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XZ1(Z,n,1) the weighting matrix is not exactly representable with standard
floating-point representation since, e.g., 1/3 is not. Also the deletion of more
than two successive rows does not lead to a convenient result (see Exer-
cise 3.2.3). Therefore, the deletion of successive rows in XZ1(Z,n,1) will
not be admitted.

Notice: Therefore, not more than ⌊(n−2)/2⌋ rows are admitted to be
deleted in XZ1(Z,n,1).
In the case of the deletion of non-successive rows in XZ1(Z,n,1) one can
show:

Corollary 3.7: Deletion of More Than One Row in Zielke Matrices
Let Xn :=XZ1(Z,n,1), Z ∈Z, and Xn−k :=Xn(;i1,i2,...,ik), 1 < i1 < .. . < ik <

n−1, |ip− iq|> 1 for p 6= q. Then, with m := 2(k+1), m̃ := k
m

:
X+

n−k =




1− m̃ 0 · · · 0 −1/m 1/m · · · −1/m 1/m 0 · · · 0 m̃

1

(0)
. . . (0)

1
−1/m 0 · · · 0 1− m̃ m̃ · · · 1/m −1/m 0 · · · 0 1/m

1/m 0 · · · 0 m̃ 1− m̃ · · · −1/m 1/m 0 · · · 0 −1/m

· · · · · · · · · · · · · · ·
−1/m 0 · · · 0 1/m −1/m · · · 1− m̃ m̃ 0 · · · 0 1/m

1/m 0 · · · 0 −1/m 1/m · · · m̃ 1− m̃ 0 · · · 0 −1/m

1

(0)
. . . (0)

1
m̃ 0 · · · 0 1/m −1/m · · · 1/m −1/m 0 · · · 0 1− m̃




X+
n (i1,...,ik)

↑
(n− ik +1)th

↑
(n− i1 +1)th column

Notice: There are k pairs of columns with
(
−1/m 1/m

)
in the first row.

Proof. Induction is started by Corollary 3.6.
Then, assume that the ikth column of the original inverse looks as follows

after (k−1) steps:
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b
(k−1)
ik

=




1− k−1
2k

0 . . . 0 − 1
2k

1
2k

. . . − 1
2k

1
2k

0 . . . 0 k−1
2k

1

(0)
. . . (0)

1

− 1
2k

0 . . . 0 1− k−1
2k

k−1
2k

. . . 1
2k

− 1
2k

0 . . . 0 1
2k

1
2k

0 . . . 0 k−1
2k

1− k−1
2k

. . . − 1
2k

1
2k

0 . . . 0 − 1
2k

. . . . . . . . . . . . . . . . . .

− 1
2k

0 . . . 0 1
2k

− 1
2k

. . . 1− k−1
2k

k−1
2k

0 . . . 0 1
2k

1
2k

0 . . . 0 − 1
2k

1
2k

. . . k−1
2k

1− k−1
2k

0 . . . 0 − 1
2k

1

(0)
. . . (0)

1

k−1
2k

0 . . . 0 1
2k

− 1
2k

. . . 1
2k

− 1
2k

0 . . . 0 1− k−1
2k







1

(0)
1
−1
(0)

0

0

...

0

0

(0)

−1




=




1/k

(0)
1
−1
(0)

−1/k

1/k

...

−1/k

1/k

(0)

−1/k




Therefore, b(k−1)T

ik
b
(k−1)
ik

= 2+ 2k
k2 = m

k
= 1

m̃
and thus,

b
(k−1)
ik

b
(k−1)T

ik
b
(k−1)
ik

=

[

(n− ik)th

↓
(n− ik−1)th

↓
(n− i1)th place

↓
1
m

0 · · · 0 m̃ −m̃ 0 · · · 0 − 1
m

1
m

0 · · · 0 − 1
m

1
m

0 · · · 0 − 1
m

]
T .

It follows that

W =


In−

b
(k−2)
ik−1

b
(k−2)T

ik−1

b
(k−2)T

ik−1
b
(k−2)
ik−1

−·· ·−
b
(0)
i1

b
(0)T

i1

b
(0)T

i1
b
(0)
i1


−

b
(k−1)
ik

b
(k−1)T

ik

b
(k−1)T

ik
b
(k−1)
ik

has the stated form (see Table 3.1).

Obviously, it is important here that 1
m
= 1

(2k+2) can be computed exactly.

But this is only true for k = 2i− 1, i ∈ N, since then m = 2i+1. From this,
another restriction follows for row deletion in XZ1(Z,n,1). Indeed, if n = 3,
no row may be deleted as 1 < i < n−1 = 2 would be required. If n = 4, only
the second row is permitted to be deleted. Even for n = 5 only one row can
be deleted, namely row 2 or 3. One should keep in mind that because of the
condition k = 2i− 1, i ∈ N, only k = 1,3,7,15, . . . non-successive rows may
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                                         −

                                          

1
2(

k
+

1)

(0
)

k
2(

k
+

1)
−

k
2(

k
+

1)

(0
)

−
1

2(
k
+

1)

1
2(

k
+

1)

. . . −
1

2(
k
+

1)

1
2(

k
+

1)

(0
)

−
1

2(
k
+

1)

                                          

                                          

1/
k

(0
) 1 −
1

(0
)

−
1/

k

1/
k . . .

−
1/

k

1/
k

(0
)

−
1/

k

                                          T
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be deleted. For this, matrices of the type XZ1(Z,n,1) with n = 4,8,16,32, . . .
rows are needed.

Example 3.3: Zielke Matrices and their (Generalized) Inverses
Let n = m = 4 and Z = 998. Then

XZ1(998,4,1) =




999 1000 1001 998
999 1000 1000 998
999 999 1000 998
998 999 1000 997


 ,

XZ1(998,4,1)−1 =




−1000 1 2 998
0 1 −1 0
1 −1 0 0

1000 −1 −1 −999


 ,

and

XZ1(998,4,1)(;2) =




999 1000 1001 998
999 999 1000 998
998 999 1000 997


 ,

XZ1(998,4,1)+(;2) =




0.75 −0.25 0.25 0.25
−0.25 0.75 0.25 0.25
0.25 0.25 0.75 −0.25
0.25 0.25 −0.25 0.75







−1000 2 998
0 −1 0
1 0 0

1000 −1 −999




=




−499.75 1.5 498.75
500.25 −1.5 −499.25
−499.25 0.5 499.25
499.75 −0.5 −499.75


 .

Check that the latter matrix is really the generalized inverse of
XZ1(998,4,1)(;2) (see Exercise 3.2.4).

Up to now, only the case p = 1 was treated. In the case p > 1 there are
more possibilities for row deletions with exactly representable generalized
inverses (Weihs, 1977, p. 98).

Note that by transposing the above matrices, test matrices with full col-
umn rank with 1, 3, 7, and 15 degrees of freedom and n = 4,8,16, and 32
observations, respectively, are generated. So with the above procedure sensi-
ble degrees of freedom for applications in statistics are automatically attained.
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Even adding linearly dependent rows to the created test matrices with full col-
umn rank could be realized in such a way that the corresponding generalized
inverses are exactly representable (Weihs, 1977, p. 101).

Overall, we have succeeded in constructing general (at least with respect
to condition) integer test matrices with exactly representable generalized in-
verses. With these matrices it appears possible to cover the space L(m,n) of
factor matrices in a way adequate for the LLS problem, namely by choosing
matrices with condition numbers covering a whole range.

3.2.2.3 Response Vectors

In addition to test matrices, the verification algorithm also requires the re-
sponse vectors for which the LLS solvers are to be tested. Response vectors
should be constructed to be as general and as exactly representable as pos-
sible. The generality of the response vectors y is defined by the generality
of the angle φ(y) between y and im(X) as explained by Corollary 3.1 in
Section 3.1.2.

There, we showed that the vectors y,y0, and r0 build an orthogonal de-
composition since y = y0 +r0 with y0 ∈ im(X) and y0 ⊥ r0. y0 is the pro-
jection of y on im(X) and r0 the corresponding residual.

If we vary the length of the vector r0 leaving the projection y0 fixed, we
can construct arbitrary angles between the vector y := y0 + r (with r ⊥ y0)
and im(X). To understand this, we just have to recall the representations of
sine, cosine, and tangent derived in Corollary 3.1 in Section 3.1.2:

cosφ(y) =
‖y0‖2

‖y‖2
=
‖y0‖2

‖y0 +r‖2
,

sinφ(y) =
‖r‖2

‖y‖2
=

‖r‖2

‖y0 +r‖2
, and

tanφ(y) =
‖r‖2

‖y0‖2
.

Obviously, the bigger ‖r‖, the lower cosφ(y) and the bigger tanφ(y).
In order to study the dependency of the precision of the computed LLS

solutions on the angle between response vector and im(X), in the following
a method for the construction of arbitrary small, medium, and large angles
will be proposed.

For this, let us first study the relationship between the sizes of an angle
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and its tangent. Let

tanφ j :=2−21,2−19,2−3,2−1,2,23,219,221, j = 1, . . . ,8. Then,

φ j
∼=5 ·10−7,2 ·10−6,0.12,0.46,1.1,1.45,1.570794,1.570796 (in rad), or

φ j
∧
=(3 ·10−5)o,(10−4)o,1.8o,26.6o,63.4o,82.9o,89.99989o,89.99997o.

For given y0, r0 with “not too different L2 norms” the following algo-
rithm chooses response vectors yk, k = 1, . . . ,4, so that φ(yk) ∈ [φ2k−1,φ2k):

Algorithm 3.5 Generation of Response Vectors (RVs)

Require: y0,r0

1: i←−21
2: for j = 19 to −19 by −2 do

3: if ‖r0‖2 ≥ 2 j‖y0‖2 then {i← j; goto OUT }
4: end for

5: OUT: c← (2−21−i,2−3−i,21−i,219−i)
6: for k = 1 to 4 do

7: yk← y0 + ckr0

8: end for

Obviously, this way the greatest i∈ {19,17, . . . ,1,−1, . . . ,−19} is chosen
so that ‖r0‖2 ≥ 2i‖y0‖2, using i := −21, if no such i exists. Then we set
yk := y0 + ckr0 =: y0 +rk with ck := 2−21−i,2−3−i,21−i,219−i, k = 1, . . . ,4.

This implies that if the norms of y0 and r0 are not too different,

ck2i ≤ ck

‖r0‖2

‖y0‖2
= tanφ(yk)< ck2i+2,

i.e. φ(yk) ∈ [φ2k−1,φ2k) if i > −21. That means we are guaranteed one very
small angle in the interval [(3 · 10−5)o,(10−4)o], one medium-small angle in
[1.8o,26.6o], one medium-large angle in [63.4o,82.9o], and one very large
angle in [89.99989o,89.99997o].

Now, in order to generate 4 ·S response vectors with prefixed angle magni-
tudes for LLS problems with test matrices X generated as in Section 3.2.2.2,
the generalized inverse of which is exactly representable, the following gen-
eration process is run S times.

Generation of Response Vectors

1. Choose an arbitrary exactly representable (e.g. integer) vector y ∈R
m, us-

ing a random number generator (see Chapter 6).
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2. Compute the exact LLS solution β̂ := X+y of the model y = Xβ by
means of the exact generalized inverse X+, the exact projection y0 :=
Xβ̂, and the exact residual r0 := y−y0.

3. If r0 6= 0, choose y1, . . . ,y4 from Algorithm 3.5 as response vectors, oth-
erwise, choose y = y0.

Notice that the LLS solutions corresponding to y1, . . . ,y4 are identical since
yi = y0+ri, i = 1, . . . ,4, with yT

0 r= 0 and im(X)⊥ = ker(XT ) = ker(X+),
i.e. X+yi =X+(y0 +ri) =X+y0 =X+y.

im(X)⊥ = ker(XT ) says that all vectors in the kernel of XT are orthog-
onal to all vectors in the image of X (Ben-Israel and Greville, 2003, p. 12).
ker(XT ) = ker(X+) follows from the fact that X+ = (XTX)−1XT in case
of maximum column rank. Moreover, notice that in order to guarantee exact
y1, . . . ,y4, one should restrict the size of y, e.g. by ‖y‖∞ ≤ 1000.

3.2.2.4 Summary

In this subsection full column rank integer test matrices are constructed with
generalized inverses that are exactly representable on a computer. Moreover,
these test matrices can easily be used to construct test matrices with known
magnitude of condition numbers. Very big conditions can be generated with-
out similarly big matrix entries. Additionally, a method is proposed to con-
struct response vectors with arbitrary angles with im(X) in order to be able
to verify the dependency between the error in the LLS solution and this an-
gle. Overall, this subsection gives methods for the generation of all test data
needed for the verification procedure.

3.3 Practice and Simulation

3.3.1 Verification Procedure

Based on the test matrices and the response vectors in Sections 3.2.2.2 and
3.2.2.3, the following verification procedure is proposed to assess the LLS
problem solvers in Section 3.2.1.

1. Specify invertible test matrices of the type XZ1(Z,n,1) with n =
4,8,16,32,64. Choose the free integer number Z to generate test matri-
ces with specified magnitudes of the condition numbers, assuming the ma-

chine precision is 1.1 · 10−16 for double-precision arithmetic 2. In order
to base verification on all relevant magnitudes of condition number, we set
Z = 20,21, . . . ,220 ≈ 1012.

2see http://en.wikipedia.org/wiki/Machine_epsilon
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2. Delete k = 1,3,7,15,31 rows from these test matrices and use the exactly
representable inverses of XZ1(Z,n,1) to construct exact generalized in-
verses of the generated matrices with full row rank. Transpose these matri-
ces in order to obtain test matrices with full column rank and their exact
generalized inverses.

3. Generate S integer starting response vectors y and corresponding quadru-
ples y1 · · ·y4 of response vectors for each of the chosen test matrices by
means of Algorithm 3.5. Calculate the exact LLS solutions by multiply-
ing the exact generalized inverses by the integer response vector y. Notice
that the LLS solutions are equal to X+y for integer y for all y1 · · ·y4 (see
Section 3.2.2.3).

4. Apply the MGS algorithm for Gram-Schmidt orthogonalization, the col-
umn version of Greville’s method and the normal equations method to
the generated test problems. Record the accuracy of the results and the
condition number of the full column rank test matrix.

5. Compare the results. How does the accuracy depend on the condition
number of the full column rank test matrix? How does the accuracy change
for different angles of the response vectors? Which ranking of the methods
does arise?

The accuracy of the results can be characterized, e.g., by the mean
value and the standard deviation of the relative errors ‖dβ̂1‖2/‖β̂1‖2, . . . ,
‖dβ̂4‖2/‖β̂4‖2 of the LLS solutions over the S repetitions for a specified
angle magnitude. In what follows, the index k corresponds to the angle mag-
nitude, i.e. ‖dβ̂k‖2/‖β̂k‖2 corresponds to the LLS solution β̂k :=X+yk.

Under the conditions of Theorem 3.3 the relative error of the LLS solution
was shown (Corollary 3.1) to have the upper bound

‖dβ̂k‖2

‖β̂k‖2
≤ δ

sn(X)

[
s1(X)‖rk‖2

sn(X)‖β̂k‖2(1−µ2)
+

s1(X)

1−µ
+

‖yk‖2

‖β̂k‖2(1−µ)

]

≤ δK(X)

[
K(X)

tanφ(yk)

1−µ2 +
1

1−µ

(
1+

1
cosφ(yk)

)]
,(3.16)

where n = rank(X), µ := δK(X) < 1, and φ(yk) is the angle between yk

and y0.
From this bound it has to be suspected (as mentioned before) that

δK(X)2 appears as an amplification factor of tanφ(yk) in the relative error in
the LLS solution. However, given the findings of van der Sluis, the remaining
question is whether the worst case lower bounds are rather tight and realistic.
Thus, in the comparison of the results of the different LLS solvers we will
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compare the percentages of the results that have even lower relative errors in
the LLS solutions than expected by the lower bounds of van der Sluis. For
such results one can show:

‖dβ̂k‖2

‖β̂k‖2
≤ δ

sn(X)(1−µ2)

[
s1(X)‖rk‖2

sn(X)‖β̂k‖2

+
‖yk‖2

‖β̂k‖2

]

≤ δ
K(X)

1−µ2

[
K(X) tanφ(yk)+

1
cosφ(yk)

]
,

‖dβ̂k‖2

‖β̂k‖2
≤ δ

sn(X)

[
s1(X)+

‖yk‖2

‖β̂k‖2

]
≤ δK(X)

[
1+

1
cosφ(yk)

]
.

Correspondingly, we define so-called solution classes S1,S2 by all LLS solu-
tions satisfying

S1 :
‖dβ̂k‖2

‖β̂k‖2
≤ δ

KF(X)

1−µ2

[
KF(X) tanφ(yk)+

1
cosφ(yk)

]
, (3.17)

S2 :
‖dβ̂k‖2

‖β̂k‖2
≤ δKF(X)

[
1+

1
cosφ(yk)

]
. (3.18)

In Formulas 3.17 and 3.18 the minimum angle for all repetitions of
y1, . . . ,y4 is chosen, respectively. In Formula 3.16 the maximum angle is cho-
sen.

Notice that the percentage of the LLS solutions in solution class S2

provides information about the probability that the reviewed methods for the
LLS solution depend only linearly on K(X).

3.3.2 Verification Results

Let us start the discussion of the results by an example realization of the
procedure.

Example 3.4: Example for a Simulation Step
In order to be able to present the example in a relatively compact form, we
use m = 8, Z = 212 = 4096. Then, the test matrix and its generalized inverse
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look as follows:

X =




4097 4097 4097 4097 4096
4098 4098 4098 4097 4097
4099 4099 4099 4098 4098
4100 4100 4099 4099 4099
4101 4101 4100 4100 4100
4102 4101 4101 4101 4101
4103 4102 4102 4102 4102
4096 4096 4096 4096 4095




,

X+ =



−1025 3
8 1025 3

8 −1025 3
8 1025 3

8 −1025 3
8 1025 7

8 −1024 7
8 1025 3

8
1
2 − 1

2
1
2 0 1 −1 0 − 1

2
1
2 0 1 −1 0 − 1

2
1
2 − 1

2
1 −1 0 − 1

2
1
2 − 1

2
1
2 0

1023 5
8 −1024 1

8 1024 1
8 −1024 1

8 1024 1
8 −1024 1

8 1024 1
8 −1024 5

8



.

The corresponding condition number is KF = 106263986, i.e. KF ≈ 108. The
originally generated response vector y is

y =
[
299 −30 −446 217 270 13 −794 255

]T
.

The chosen response vectors in one step of our simulation have the form:

Y = [y1 y2 y3 y4]

=




136.25016 176.9375 787.25 170655880
−97.24994 −80.4375 171.75 70516639
−378.75006 −395.5625 −647.75 −70517115
384.24984 342.4375 −284.75 −175373952
102.75016 144.5625 771.75 175374439
−249.74975 −184.0625 801.25 275513094
−531.25025 −596.9375 −1582.25 −275513875
417.74984 377.0625 −233.25 −170655326




.

Remember that the corresponding exact LLS solutions for all y1,y2,y3,y4

are identical, namely,

β̂ =
[
1,154,181.8 71.0 −1044.5 −48.0 −1,153,441.8

]T
.

Using this LLS solution, the projection of y on im(X) can be shown to be

y0 =
[
136 1

4 −97 1
4 −378 3

4 384 1
4 102 3

4 −249 3
4 −531 1

4 417 3
4

]T
.
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Table 3.2: LLS Solutions for the Different Solvers and Response Vectors

normal equation Greville MGS
y1,y2,y3,y4 y1,y2,y3 y4 y1,y2,y3 y4

1211302.70 1224443.35 1225129.05 1154181.7 1154181.43
43.15 49.70 49.38 71.0 71.00

-1072.36 -1103.06 -1103.41 -1044.5 -1044.50
-75.85 -72.52 -72.84 -48.0 -48.00

-1210493.07 -1223616.10 -1224300.97 -1153441.7 -1153441.43

After applying the normal equations, Greville’s method, and MGS to esti-
mate these solutions, we found that all methods resulted in (nearly) the same
solutions for the four different response vectors with the exception that Gre-
ville and MGS produced a somewhat different solution for y4 (see Table 3.2).

Note that MGS (y1,y2,y3) looks nearly the same as the exact solution.
However, there are more deviations in digits after the decimal point not indi-
cated because of rounding. The corresponding relative errors are
0.04947613, 0.06085740, 0.06145133, 3.313175e-10, 2.760719e-07.

Obviously, the errors of the solutions produced by the normal equations
and Greville’s method are much bigger than the errors by MGS. Moreover,
the largest angle between the response vector and its projection is the most
problematic concerning solution accuracy.

Results of the Verification Procedure

Let us now consider the results of the above specified complete verification
procedure. We used the minimum number of replications (S = 1) and δ =
5 ·10−14, explained by δ = 2 ·n3/2 ·machine precision = 2 ·n3/2 ·1.1 ·10−16,
proposed by Björck (1967) for MGS, where n is taken to be somewhat bigger
than the maximum number of columns used for testing (namely 33).

First, we illustrate the dependency of the relative error on the condition
number using log-scale on both axes in order to show the magnitudes (see
Figures 3.1 and 3.2). Moreover, we compare the realized relative errors to the
bounds 3.16, 3.17, and 3.18 for the MGS results.

Obviously, the upper bound of relative errors valid for MGS is not valid
for the other methods in the case of very small angles between the response
vector and its projection (y1, see Figure 3.1, left). When angles get somewhat
larger (y2), the bound becomes valid for the other methods and too big for
MGS (see Figure 3.1, right). Moreover, note that already for medium-large
angles (y3), the upper bound and the first lower bound for the worst case are
bigger than all relative errors (see Figure 3.2, left). The second lower bound,
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Figure 3.1: Relative errors for different test matrices and very and medium
small angles of response vectors (y1 left,y2 right).
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Figure 3.2: Relative errors for different test matrices and medium and very
large angles of response vectors (y3 left,y4 right).

however, is only bigger than (nearly) all relative errors for very large angles
(y4).

Also notice that the plots indicate that the notion of a “small condition
number” might be different for the different LLS solvers. This might be fixed
by means of a prespecified maximum magnitude of relative errors allowed.
For example, if the relative error should not be greater than 10−5, all condition
numbers up to 1012 are acceptable for MGS, except for very large angles for
which K(X) should be < 106. For the other methods K(X)< 106 should be
valid in any case (see Figures 3.1 and 3.2).

Inspired by the plots we try linear models for the dependency of
log10 (relative error) on log10 (condition number). The results are presented
in Table 3.3. Note that, in an ideal world, the results should be identical for
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Table 3.3: Regression Results: log10(Relative Error) ∼ log10(Condition)

Method Angle Type Increment Slope Fit (R2)

Normal equations very small (y1) -16.4 1.69 0.92
Greville very small (y1) -14.1 1.39 0.73
MGS very small (y1) -17.2 0.97 0.94

Normal equations medium-small (y2) -16.4 1.69 0.92
Greville medium-small (y2) -14.1 1.40 0.73
MGS medium-small (y2) -17.2 0.97 0.93

Normal equations medium-large (y3) -16.4 1.69 0.92
Greville medium-large (y3) -14.1 1.39 0.73
MGS medium-large (y3) -16.3 0.92 0.90

Normal equations very large (y4) -16.4 1.69 0.92
Greville very large (y4) -10.4 0.93 0.66
MGS very large (y4) -9.2 0.48 0.38

the different angles since the model coefficients should be identical. However,
in practice, for MGS the fit of the linear model gets very bad for very large
angles. This can also be verified by the right plot in Figure 3.2. Obviously,
for such angles any model is inadequate because of the big variance in the re-
sults. Moreover, for Greville’s method the fit is never very good. This is also
obvious from all plots in Figures 3.1 and 3.2 since there are, in a way, two
branches of resulting relative error sizes. Notice that for Greville’s method
and the normal equations the fit of the linear model is only based on those
data where the relative error is smaller than 0.99. For larger values, the lin-
ear relationship is broken since the relative error is, in a way, automatically
restricted by 1. This is particularly obvious for Greville’s method.

Considering the percentages of relative errors greater than the three
bounds (see Table 3.4), obviously, with MGS all relative errors are lower than
all the bounds. On the other hand, the second lower bound is problematic for
the normal equations and Greville’s method and all angles but the biggest.
The barplots in Figure 3.3 illustrate the dependence of the percentages of rel-
ative errors that are larger than the bounds on the angle between the response
vector and its projection.

In summary, a linear dependency of log10(relative error) on log10(condition)
appears to be not unrealistic. This leads to the following type of relationship
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Table 3.4: Percentages of (Relative Errors > Error Bounds)

Normal equations y1 y2 y3 y4

upper bound 37.143 0.000 0.000 0.000
lower bound 1 41.905 0.000 0.000 0.000
lower bound 2 66.667 66.667 60.000 0.952

Greville
upper bound 49.524 0.000 0.000 0.000
lower bound 1 50.476 0.000 0.000 0.000
lower bound 2 76.190 76.190 68.571 0.952

MGS
upper bound 0.000 0.000 0.000 0.000
lower bound 1 0.000 0.000 0.000 0.000
lower bound 2 0.952 0.952 0.952 0.952
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Figure 3.3: Barplot of percentages of (relative errors > error bounds) for the
normal equations (left) and Greville’s method (right).

between the relative error itself and the condition number:

relative error = const1 · (condition)const2 = 10increment · (condition)slope,

where increment and slope are the corresponding parameters in the depen-
dency of log10(relative error) on log10(condition). Taking the two methods
MGS and normal equations and the angles where the fit of the linear model
is satisfactory, the increment is near −17 and the slope is near 1 for MGS
and near 1.75 for the normal equations. Thus, for MGS there is no indication
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for a quadratic dependency on the condition number in contrast to the normal
equations.

Moreover, the upper bound of van der Sluis generally appears to be much
too pessimistic for MGS (for which δ was fixed), and even the lower bounds
are most of the time not exceeded in the case of MGS.

This completes our discussion of the results of the proposed verification
procedure. Notice that we have not included repetitions in the procedure so
that the computation of means and standard deviations did not make sense.
See Exercise 3.3.5 for a verification procedure with repetitions.

3.3.3 Summary

In this section we described a complete verification procedure for LLS solvers
based on exactly representable solutions. We described how singular test ma-
trices with different magnitudes of condition numbers can be generated as
well as general response vectors with different magnitudes of angle φ(y) be-
tween y and im(X). Also, we discussed the results of one example imple-
mentation of this procedure. We found that modern orthogonalization meth-
ods like MGS only lead to linear dependence of the error rate on the condition
number of the test matrix, thus fulfilling the original idea of these methods in
practice. In contrast, Greville’s method and the normal equations have severe
problems for condition numbers greater than, say, 106.

3.4 Implementation in R

While it is certainly possible to solve linear least squares problems in R using
only basic matrix algebra routines (cf. Exercises 3.2.6 – 3.2.8) this is not
advisable. R provides a multitude of functions that can solve an LLS problem
given the data. These are lm and aov, which fit a classical linear model and
an analysis of variance model, respectively, to a given data set. Both routines
are a high-level interface to the low-level lm.fit function which solves an
LLS problem for a given design matrix X and response vector y using a QR
decomposition. The actual implementation is provided by the dqrls function
from LINPACK, a Fortran library of linear algebra subroutines. For more
details on the history of LINPACK see Section 8.2.

Why would a user want to rely on lm instead of say a custom implemen-
tation of one of the algorithms presented in this chapter? In fact, the LIN-

PACK routines are highly optimized and considered to be stable and bug-
free. The actual QR decomposition via Householder transformations (House-
holder, 1958) is implemented in the LINPACK routine dqrdc which was im-
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plemented in 1978 and has withstood the test of time. The other reason to use
lm is that it provides a lot of convenience. There are lots of utility functions
that build on lm, it is easy to test for significant effects in the model, and last
but not least, there is quite a bit of diagnostic output.

If you are working with a data set that is huge, you may run into difficul-
ties because of memory constraints. In these cases the biglm (Lumley, 2011)
package may provide a solution. The provided biglm function is almost a
drop-in replacement for lm and uses an iterative algorithm that requires fewer
resources (Miller, 1992).

3.5 Conclusion

This chapter derived and exemplified a general procedure for the verification
of LLS solvers.

Unfortunately, the literature about systematic verification of algorithms
for the LLS problem is very thin. Zielke was one of the few authors who
worked on this problem in a more general way.

During the last years it became modern to take the same small number
of real data sets for verification of LLS solvers. From our point of view,
this is a pity since it rarely leads to a realistic overview of the capabilities
of the solvers. The condition of the data sets is not controlled and an over-
specialization to these data is to be expected. Particularly often utilized is the
UCI Machine Learning Repository3 with only 24 different data sets recom-
mended to be solved by LLS regression.

Notice that there are also well-working generalized inverse generators
on the internet, e.g. with http://www.bluebit.gr/matrix-calculator/

default.aspx. You might want to test it with our singular test matrices.

3.6 Exercises

Exercise 3.2.1: Program a generator for nonsingular Zielke test matrices of
the type XZ1(Z,n,1).

Exercise 3.2.2: Program a generator for singular Zielke test matrices of the
type

Xn−k :=Xn(;i1,i2,...,ik),

1 < i1 < .. . < ik < n−1, |ip− iq|> 1 for p 6= q,k = 1,3,7,15, based on non-

3http://archive.ics.uci.edu/ml/, accessed May 9, 2013
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singular Zielke test matrices of the type X =XZ1(Z,n,1) with n= 4,8,16,32
(see Exercise 3.2.1).

Exercise 3.2.3: Demonstrate that for the deletion of three successive rows in
XZ1(Z,n,1) the weighting matrix is not exactly representable on a computer.

Exercise 3.2.4: Check that the generalized inverse of

XZ1(998,4,1)(;2) =




999 1000 1001 998
999 999 1000 998
998 999 1000 997




is

XZ1(998,4,1)+(;2) =




−499.75 1.5 498.75
500.25 −1.5 −499.25
−499.25 0.5 499.25
499.75 −0.5 −499.75


 .

Exercise 3.2.5: Program the proposed quadruples of response vectors.

Exercise 3.2.6: Program the normal equations. Test with singular Zielke test
matrices and the proposed quadruples of response vectors.

Exercise 3.2.7: Program the column version of Greville’s method and the
corresponding construction of the LLS solution. Test with singular Zielke
test matrices and the proposed quadruples of response vectors.

Exercise 3.2.8: Program the MGS algorithm together with the pivot strategy
and the corresponding construction of the LLS solution. Test with singular
Zielke test matrices and the proposed quadruples of response vectors.

Exercise 3.3.1: Program the proposed verification procedure in the replica-
tion case S = 10 (see Exercises 3.2.2 and 3.2.6–3.2.8). Program mean and
standard deviation of the repetitions. Test with singular Zielke test matrices
and the proposed quadruples of response vectors.

Exercise 3.3.2: Program a plot of relative errors vs. condition numbers, both
on log10 scale.

Exercise 3.3.3: Program the Givens orthogonalization algorithm, another
method for the construction of the generalized inverse using a QR decom-
position. The pseudocode of the algorithm is given in Algorithm 3.6. The
algorithm constructs the generalized inverse using successive rotations of the
columns of the original matrix.
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Algorithm 3.6 Givens Orthogonalization

Require: X = [x
(1)
1 . . . x

(1)
n ]

1: Q← Im

2: for j = 1 to n do

3: for i = ( j+1) to m do

4: if X j j = 0 and Xi j = 0 then

5: J ← I2

6: else

7: if |X j j|> |Xi j| then

8: a← 1/
√

1+(Xi j/X j j)2

9: b← t ·a
10: else

11: b← 1/
√

1+(X j j/Xi j)2

12: a← t ·b
13: end if

14: J ←
[

b a

−a b

]

15: end if

16: X{ j,i},·← JX{ j,i},· = J [X j Xi]
17: Q{ j,i},·← JQ{ j,i},·
18: end for

19: end for

20: return Q and X as upper triangular matrix R.

Exercise 3.3.4: Determine the runtime complexity of the Givens algorithm as
best you can.

Exercise 3.3.5: Compare the MGS algorithm and the Givens algorithm
(see Exercise 3.2.8 and 3.3.3) using the verification procedure from Exer-
cise 3.3.1). Use S = 10 repetitions for the response vectors and fixed n,Z for
the test matrices.

Exercise 3.3.6: Consider the model y = Xβ for mean-centered variables
y,x j, j = 1, . . . ,n. Adapt step 2 of the verification procedure to this situation
in the following way:

2a. Delete k = 1,3,7,15,31 rows from these test matrices and use the ex-
actly representable inverses of XZ1(Z,n,1) to construct exact generalized
inverses of the generated matrices with full row rank. Use the exact gen-
eralized inverses as test matrices with full column rank and the original
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Zielke matrices with rows deleted as the corresponding exact generalized
inverses.

Attention: Do not transpose the matrices, since the generalized inverses of
row deleted Zielke matrices automatically have full column rank.

Show that the columns of these test matrices are (at least nearly) mean-
centered, i.e. that the arithmetical means of the columns are (at least nearly)
zero. Hint: Consider the structure of the generalized inverses of the nonsin-
gular Zielke matrices, show that column means are (at least nearly) zero, and
then generalize to the singular case. Prove the generalization to the singular
case for the deletion of k = 1 row.

Exercise 3.3.7: Consider the model y = Xβ for mean-centered variables
y,x j, j = 1, . . . ,n. Adapt step 3 of the verification procedure to this situation
in the following way:

3a. Generate S integer starting response vectors y, mean center them, and
generate corresponding quadruples y1−y4 of response vectors for each
of the chosen test matrices by means of Algorithm 3.5. Calculate the exact

LLS solutions by multiplying the exact generalized inverses by the exact
mean-centered response vectors y− ȳ.

Show that

1. y− ȳ is exactly representable, if y is integer and n = 4,8,16,32,64.

2. y1−y4 has mean zero if y does.

Exercise 3.3.8: Carry out the verification procedure with steps 2a and 3a and
S = 10 (cp. Exercise 3.3.1). Compare the results for the different LLS solvers.





Chapter 4

Iteration

In the previous chapter we studied the properties of the linear least squares
(LLS) problem. For it, we could derive a closed-form analytic solution. When
we used this solution to derive an algorithm to solve the LLS, numerical insta-
bilities surfaced and different algorithms that try to mitigate these problems
were introduced. In this chapter we will study solution strategies for problems
where no closed-form analytic solution is known. In fact, there may even be
no closed-form solution.

We will therefore resort to methods that improve an initial (approximate)
solution in each iteration of the algorithm. Hence, all the methods presented in
this chapter are, at their core, methods that, given an (approximate) solution,
return a new, improved solution. We then iterate these until we reach either
a fixed-point or some other termination criterion is reached. This idea is a
powerful general concept. Instead of trying to solve a problem in one big
step, we can develop a, usually simpler, method that only improves a given
solution. By iteration this method will then reach something akin to a locally
optimal solution. While we will focus on classical optimization problems in
this chapter, this concept can be applied to a much broader set of problems.

We saw a very similar idea in Chapter 2 when we looked at sorting. There
we ended up dividing the input into smaller chunks that are easier to sort and
then recursively applied the procedure to the resulting smaller data sets (see
Algorithm 2.3 (Quick Sort) for details). This is not the type of iteration we
will look at in this chapter. In contrast to the defined upper limit of iteration
steps in Chapter 2—once we run out of data in one of the partitions, no further
recursion is possible—the methods in this chapter have no fixed limit on the
number of iterations required. We will see examples where these methods
never converge. When developing iterative algorithms we have to pay special
attention to the termination criterion.

137
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4.1 Motivation

Recall that the LLS is defined as follows. Given a suitable factor matrix X ∈
L(m,n) and response vector y ∈ R

m, find β ∈ R
n such that

fLLS(β) = ‖y−Xβ‖2 (4.1)

becomes minimal. We saw that this problem is relatively easy to solve. The
main obstacle are numerical issues when the condition number of X becomes
large. But what happens if we replace the square in the Euclidean norm with
the absolute value? That is, we seek a β that minimizes

fLAS(β) = ‖y−Xβ‖1. (4.2)

This is a much harder problem to solve. To see this, let us simplify our prob-
lem for a minute. Assume that X has exactly one column (n = 1), i.e. we have
a regression model with one regressor and no intercept term. This reduces
equation (4.2) to

f1D−LAS(β) =
m

∑
i=1

|yi−βxi|, (4.3)

which has at least m non-differentiable points βi = yi/xi, i = 1 to m.
The previous example is but one of many problems that arise in statistics

for which it is hard or even impossible to derive a closed-form solution. In
these cases methods described in this chapter can usually be applied to obtain
a good, sometimes even optimal, solution to the problem. They all hinge on
the following idea. Given some initial solution β (k), derive a new solution
β (k+1), so that f (β (k+1)) is better than f (β (k)). Now repeat the previous step
using the new solution to derive a series of continually improving solutions
β (k+2),β (k+3), . . .. Terminate once the current solution is “good enough” or
no progress is made.

4.2 Preliminaries

Before we start looking at methods to derive a sequence of improving βs, let
us fix some notation and give some well-known results from the literature. In
this chapter we will only cover optimization problems as they arise in statis-
tics and these problems can in most cases be solved efficiently. So let us first
formalize what type of optimization problem we will consider in this chapter.

Definition 4.1: Unconstrained Optimization Problem
Given a function f : Rn → R, an unconstrained optimization problem is
given by

minimize
β∈Rn

f (β).
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We will call dom f , the domain of f , the parameter space and any element
β of the parameter space will often be called a parameter vector or just a
parameter. Similarly, the image of f , im f , is called the objective space or
sometimes also the decision space.

We call β∗ the global minimum of f if for all β ∈ R
n f (β∗)≤ f (β).

Note that we make only one assumption about f , namely, that the func-
tion is a mapping from R

n to R. We do not assume that the function is convex,
continuous, or has any other special properties. In order to simplify the no-
tation, we assume all problems to be minimization problems. Should we in
fact want to maximize f , we can solve the equivalent problem of minimizing
f̃ (β) :=− f (β). Also note that in the numerical optimization literature, which
includes most of the referenced material, β is often called x. Because we use
x to denote our data in the examples, we have opted to use β throughout this
chapter to denote the parameter with regard to which we wish to optimize.
This is a natural choice, as most statistical optimization problems arise in the
context of estimation of a parameter often called β seeking a best estimate by
either minimizing some loss or maximizing a likelihood.

Notice that our definition excludes all types of combinatorial optimization
problems. They usually require very specialized methods or can, through re-
laxation, be reformulated as a continuous optimization problem. We will see
an example of this “trick” when we cover linear programming type problems.

But before we get to that, let us start by looking at one of the simplest pos-
sible cases covered by Definition 4.1. In the multivariate case, i.e. in the case
β ∈R

n, n > 1, we will first concentrate on the well-known convex functions,
which we will define here and give some properties without proof.

Definition 4.2: Convex Function
A function f from an interval I (or more general from a convex subset S of
a real vector space) into R is called convex, iff for all β1, β2 ∈ I (or S ) and
ν ∈ (0,1)

f (νβ1 +(1−ν)β2)≤ ν f (β1)+(1−ν) f (β2).

If even
f (νβ1 +(1−ν)β2)< ν f (β1)+(1−ν) f (β2),

then f is called strictly convex.
A function f from an interval I (or more general from a convex subset S of
a real vector space) into R is called concave, iff for all β1, β2 ∈ I (or S ) and
ν ∈ (0,1)

f (νβ1 +(1−ν)β2)≥ ν f (β1)+(1−ν) f (β2).
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Graphically, this definition means: the function values between two argu-
ments β1 and β2 lie below or at the line connecting the two function values
of β1 and β2.

The following properties and transformation rules for convex functions
are well-known and only repeated for the sake of completeness. Particularly
the first two properties are the reason for first elaborating on convex functions.

Proposition 4.1: Properties of Convex Functions

1. If f : Rn → R is convex on a nonempty, convex set S ⊂ R
n, then every

local minimum of function f is a global minimum.

2. If f is strictly convex, then the global minimum of f is uniquely deter-
mined.

3. If f ∈C1(Rn) and S ⊂ R
n are convex and nonempty, then

f convex on S ⇔∀β1,β2 ∈S : f (β2)≥ f (β1)+∇ f (β1)
T (β2−β1).

4. If f ∈C2(Rn) and S ⊂ R
n open, convex and nonempty, then

f convex on S ⇔∀β ∈S : ∇2 f (β) is positive semidefinite.

Here Ck(Rn),k ∈ {1,2}, denotes the set of all functions f : Rn→R that are k

times continuously differentiable.

Proposition 4.2: Transformation Rules for Convex Functions

1. If f : Rn→ R is convex, A ∈ L(n,m), and b ∈ R
n, then

g(β) := f (Aβ+b)

is convex for β ∈ R
m.

2. If f1, f2 : Rn→ R are convex functions, then

g(β) := max{ f1(β), f2(β)} and h(β) := f1(β)+ f2(β)

are also convex functions.

3. If f1 : Rn → R is convex and f2 : R→ R is convex and non-decreasing,
then

g(β) := f2( f1(β))

is also convex.

4. If f1 : Rn → R is concave and f2 : R→ R is convex and non-increasing,
then

g(β) := f2( f1(β))

is convex.
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Definition 4.3: Multivariate Differentiation
Let f (β) : Rn→ R be a twice differentiable function. Then,

– ∇ f (β(k)) :=

[
∂ f

∂β

∣∣∣
β(k)

]T

=

[
∂ f

∂β1

∣∣∣
β(k)

. . . ∂ f

∂βn

∣∣∣
β(k)

]T

is called gradient (vec-

tor) of f in β(k), where

[
∂ f

∂β

∣∣∣
β(k)

]
is the row vector of partial derivatives

of f with respect to the elements βi of β after insertion of the elements of
β(k),

– ∇2 f (β(k)) := H(β(k)) := ∂ 2 f

∂β∂βT

∣∣∣
β(k)

=
[

∂ 2 f

∂βi∂β j

]
i j

∣∣∣
β(k)

is called Hessian

(matrix) of f in β(k), where
[

∂ 2 f

∂βi∂β j

]
i j

∣∣∣
β(k)

is the matrix of the second par-

tial derivatives of f with respect to the elements βi, β j of β after insertion
of the elements of β(k).

Let f (β) : Rn → R
m be a once differentiable function. Let f = [ f1 . . . fm]

T ,
where fi, i = 1, . . . ,m, are the component functions of f . Then,

J f (β
(k)) :=




∂ f1
∂β

∣∣∣
β(k)

...
∂ fm

∂β

∣∣∣
β(k)


 ∈ L(m,n)

is called Jacobi matrix or Jacobian of f in β(k).

Let us now review some of the rules for vector/matrix differentiation.

Proposition 4.3: Derivatives in Matrix Form

– If f (β) = aTβ, then ∇ f (β) = a.

– If f (β) = βTXβ and X =XT , then ∇ f (β) = 2Xβ.

– If S(β) = (y−Xβ)T (y−Xβ), then ∇S(β) = −2yTX+ 2XTXβ. By
setting this to zero, we get the Normal equations (see Section 3.1.2):
XTXβ = yTX

– If f (β) =Xβ, then J f (β) =X .

4.3 Univariate Optimization

Instead of diving into the deep end and directly tackling the more exotic prob-
lems covered by our definition of an unconstrained optimization problem, let
us add some restrictions for a moment. First, we will assume, that our func-
tion only has one parameter (n = 1) and that all valid values for β lie in the
closed interval [βlower,βupper]. Our problem therefore reduces to
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minimize
βlower≤β≤βupper

f (β ). (4.4)

An example from introductory statistics is the following problem. Given
m observations x1, . . . ,xm, find

minimize
β

f (β ) =
m

∑
i=1

(xi−β )2.

The solution is of course the sample mean x̄. (Proof: Calculate f ′ and solve
f ′(β ) = 0 for β ).

Just as we did in the introduction, we can replace the L2 norm with the
L1 norm and get

minimize
β

f (β ) =
m

∑
i=1

|xi−β |. (4.5)

The solution to this optimization problem is the median. We know how to
efficiently calculate the median from Chapter 2 using sorting algorithms1, but
what if we did not know this “trick”? We cannot give the derivative of f in a
closed-form because for β = xi1 it is undefined. We could resort to the theory
of subdifferentials, which would at least give us a set of subderivatives for
the points β = xi. But this would not bring us closer to finding a closed-form
solution to the optimization problem at hand.

What we do know, however, is that β ∗ is bounded by min(x1, . . . ,xm) and
max(x1, . . . ,xm) and that f is convex. Therefore, β ∗ exists. All we need to do
is find it. Instead of sorting the xi, we will search the space of all admissible
β . How does this fit into our general scheme of iterating to find a sequence of
improving solutions? Let us start with an initial guess βbest and the upper and
lower bounds

βlower := min(x1, . . . ,xm) and βupper := max(x1, . . . ,xm).

Now we need a way to find a new solution β (1) so that f (β (1)) ≤ f (βbest).
Say we pick a random new βcandidate ∈ (βlower,βupper). Then either of two
things can happen: f (βcandidate) < f (βbest) or f (βcandidate) ≥ f (βbest). If
f (βcandidate) < f (βbest) we have found our β (1) and we can also decrease the
size of our search interval by noting that since we know f to be convex, we
can replace either βlower with βbest or βupper with βbest depending on whether

1It should be noted, that we can do even better than the lower bound of O(m logm) from
Chapter 2 by using a so-called selection algorithm. In fact, there are selection algorithms for
finding the kth smallest observation with a worst case runtime of O(m) (Blum et al., 1973).
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Algorithm 4.1 Generic Univariate Section Search
Require: f : [βlower,βupper]→ R

1: βbest← uniformly distributed random number ∈ (βlower,βupper)
2: while not finished do

3: βcandidate← new candidate solution
4: if f (βcandidate)< f (βbest) then

5: βbest↔ βcandidate

6: end if

7: βlower←
{

βlower , if βbest < βcandidate

βcandidate , else

8: βupper←
{

βcandidate , if βbest < βcandidate

βupper , else
9: end while

10: return 1
2(βlower +βupper)

β (1) > βbest or not. If, on the other hand, our candidate solution βcandidate is
worse than βbest, we reject it. We can, however, still shrink the search interval
using this information using similar logic as above.

If we formalize the above idea into a concrete algorithm, we obtain Al-
gorithm 4.1. Looking at the body of the main loop, it might seem strange that
we exchange βbest and βcandidate if βcandidate is the better solution, but it makes
the rest of the algorithm substantially shorter if we do not explicitly deal with
the case that βcandidate is not better than βbest, and instead exchange them and
pretend that we had generated a better solution. After the exchange, we are
certain that

f (βbest)≤ f (βcandidate)≤max( f (βlower), f (βupper))

(since the function f is convex in [βlower,βupper]), but

f (βcandidate)≤min( f (βlower), f (βupper))

is not true in general. In fact, the candidate solution will often not be better
than both boundary solutions. Upon closer inspection we also see that two
important pieces are missing from the algorithm description. First, we have
neglected to specify how the next candidate solution is chosen, and second,
the algorithm has no explicit stop criterion.

Before we look at an example run of the above algorithm, we will try
to derive a good stop criterion. A first idea would be to stop if the width of
the search interval is smaller than some given ε , that is, |βlower−βupper| < ε .
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While conceptually simple, this criterion has the drawback that the value of
ε must depend on the location of the true optimum β ∗. To see this, con-
sider a convex function f : [0,210]→ R. If f has its minimum close to 0,
then we can choose ε close to the machine precision, but if the minimum is
close to 210, we need to choose ε at least 210 times larger because we cannot
achieve any smaller ε without βlower = βupper because of the loss of precision
of double-precision floating-point numbers as we move away from 0 (see Ex-
ample 2.13). So, although in theory the above criterion would be desirable
because it would bound the absolute error we make, it turns out to be imprac-
tical because of the numerics involved.

Instead we will bound the relative error by stopping only if

|βlower−βupper|
|βbest|

< ε.

Here we are approximating the absolute error by |βlower−βupper| and the mag-
nitude of the true value by our best solution so far. But also this definition has
one final flaw. In the special case that βbest = 0, we never terminate. A small
additive term, often 1, is therefore added to |βbest| to bound the denominator
away from zero. This results in the final stop criterion

|βlower−βupper|
1+ |βbest|

< τ

or
|βlower−βupper|< τ(1+ |βbest|). (4.6)

One more thing to note about the algorithm is the return value. Instead of
returning the last value of βbest, the center of the last search interval is re-
turned. There are arguments for both return values. On the one hand βbest is
the best observed function value, so it is a natural candidate. On the other
hand, we know that β ∗ lies somewhere between βlower and βupper, and there-
fore 1

2(βlower +βupper) is our best guess.

Example 4.1: Approximation of Median
Let us come back to our motivating example of finding the median, or any
quantile for that matter, of m observations. In Figure 4.1 we can see four iter-
ations of Algorithm 4.1 optimizing the problem in Formula 4.5 for a small toy
data set. New candidate solutions βcandidate were picked at random from the
search interval. While we see that the search progresses nicely, there must be
a better way to choose new candidate solutions. This will be the final missing
piece for our first iterative refinement algorithm.
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Figure 4.1: Example of applying Algorithm 4.1 with random selection of a
new search point. Points denote the observed xi. We can see that from top (first
iteration) to bottom (fourth and last iteration) the size of the search interval
which must contain the optimal value steadily decreases.
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4.3.1 Golden Section Search

The last missing piece for a high quality variation of Algorithm 4.1 is a
method to choose a new candidate βcandidate. We could go about this randomly
as done in the previous example, but that would not be efficient in general.
What we really want to do is choose βcandidate such that we maximize the
minimal reduction in search space that we might obtain because ultimately
we need to shrink our search interval in order to terminate with any confi-
dence. By that observation alone it is clear that βcandidate should lie between
βlower and βbest if βbest−βlower is larger than βupper−βbest and between βbest

and βupper otherwise. This makes sure that no matter what the outcome, we
shrink the larger of the two intervals (βlower,βbest), (βbest,βupper).

Of all the thinkable strategies that abide by this restriction there are two
prominent examples of which we will discuss one in detail. Both were first
described by Kiefer (1953). The first one assumes that we have a fixed bud-
get of k function evaluations. It is called Fibonacci search and will not be
discussed further here because for most practical problems we do not know
in advance how many function evaluations we are willing to perform. Instead
we will discuss the other common strategy which is called Golden Section

search. It is applicable in cases where the number of function evaluations is
not known a priori. Golden Section search picks the candidate points βcandidate

in such a way that the newly induced search interval is self-similar to the pre-
vious search interval.

Let us assume for a moment, that βlower < βbest < βcandidate < βupper, then
we want to choose βcandidate such that

|βlower−βcandidate|= |βbest−βupper|.
The length of the new search interval is then the same, regardless of whether
f (βbest)≤ f (βcandidate) or f (βcandidate)< f (βbest). Now define:

a := |βlower−βupper|,
b := |βlower−βcandidate|= |βbest−βupper|,
c := |βlower−βbest|= |βcandidate−βupper|.

Then a is the length of the current search interval. In the next iteration b will
be the length of the search interval, and then c will be the length of the search
interval in the iteration after that. We also have a = b+ c. This allows us
to give a precise definition of our vague notion of self-similarity in terms of
these three lengths. We want the quotient of successive search intervals to
stay constant:

b

a
=

c

b
= φ < 1.
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This implies that the algorithm will converge linearly because the width of the
search interval will decrease by a constant factor in each iteration. Note that
this guarantee holds regardless of the function f , which we are minimizing!

Remembering that a = b+ c and using the identity

φ 2 =
b

a

c

b
=

c

a

we obtain

a = b+ c

⇒ a

a
=

b

a
+

c

a

⇒ 1 = φ +φ 2

⇒ 0 = φ 2 +φ −1

which gives us

φ =

√
5−1
2

as the only positive solution to the quadratic equation above. This ratio ap-
pears in many branches of mathematics and is called the Golden Section

and lends its name to the associated search algorithm. Using the constraints
we derived for the lengths of successive search intervals, we are now able to
calculate our initial βbest given only βlower and βupper

βbest = βupper−φ(βupper−βlower) = βlower +(1−φ)(βupper−βlower).

Using the length constraint (a = b+ c), we can derive that

βcandidate = βlower +(βupper−βbest).

Substituting these results and the stop criterion from Equation 4.6 into Algo-
rithm 4.1, we obtain the final Golden Section Search Algorithm 4.2. Note
that while we have assumed that βbest < βcandidate for the derivation of φ ,
this is the case when we initialize βbest in the algorithm. The relation used
to calculate the new βcandidate holds regardless of whether βbest < βcandidate or
βcandidate < βbest.

4.3.2 Convergence

In the previous section we casually observed that the quotient of the width
of consecutive search intervals is constant and smaller than 1. From this we
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Algorithm 4.2 Golden Section Search

Require: f : [βlower,βupper]→ R, desired precision τ

1: φ ←
√

5−1
2

2: βbest← βupper−φ(βupper−βlower)
3: while |βupper−βlower| ≥ τ(1+ |βbest|) do

4: βcandidate← βlower +(βupper−βbest)
5: if f (βcandidate)< f (βbest) then

6: βbest↔ βcandidate

7: end if

8: βlower =

{
βlower , if βbest < βcandidate

βcandidate , else

9: βupper =

{
βcandidate , if βbest < βcandidate

βupper , else
10: end while

11: return 1
2(βlower +βupper)

concluded that the algorithm converges linearly. In this section we will come
back to this observation and lay the foundation for a rigorous characteriza-
tion of the speed of convergence. For this it is helpful to begin with a coarse
characterization of the speed of convergence.

Definition 4.4: Order of Convergence
A convergent sequence {a(k)} with limit a∗ is said to converge with order p

iff

0≤ limsup
k→∞

|a(k+1)−a∗|
|a(k)−a∗|p < ∞.

Notice that limsupk→∞ x(k) stands for the greatest limit of a convergent
subsequence of {x(k)}. Thus, the series itself might not converge as a whole.
The above definition uses the convention that 0/0 is defined to be finite. Let
us illustrate the previous definition with two simple examples:

1. The sequence a(k) = ck where 0 < c < 1 converges to zero with order 1
because a(k+1)

a(k)
= c.

2. The sequence a(k) = c2k

where again 0 < c < 1 also converges to zero but
with order p = 2:

a(k+1)

a(k)
2 =

c2k+1

(c2k
)2

= 1.

Most algorithms we will encounter have an order of convergence of one,
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so it makes sense to further characterize this special case. This is achieved
using the next definition.

Definition 4.5: Rate of Convergence
A sequence {a(k)} that converges to a∗ is said to converge linearly iff

lim
k→∞

|a(k+1)−a∗|
|a(k)−a∗| = ρ

and ρ ∈ (0,1). If ρ = 1, the sequence is said to converge sublinearly and if
ρ = 0, the sequence converges superlinearly.

Notice that the Golden Section search converges linearly in that the
lengths of its search intervals converge linearly to zero with ρ = φ .

We will now turn our attention to other optimization strategies that
achieve a faster rate of convergence than the Golden Section search.

4.3.3 Faster Methods

In order to speedup our search we will have to add additional assumptions
about the function we want to minimize. If, for example, we assume that f is
smooth in some sense, then it is plausible that a search strategy might use this
information to speedup the search. Most of these techniques are based around
the idea of fitting a smooth curve, usually a low-order polynomial, to the last
few intermediate solutions, and then using information about that curve to
guide the search.

One of the simplest approaches to implement such a strategy is to reuse
the general framework from the previous section. However, instead of using
the rule from the Golden Section search to choose a new candidate solution
βcandidate, we will fit a quadratic function through the three points βlower, βbest

and βupper and use its minimum, which we can determine analytically, as the
new candidate solution. The three points [βlower f (βlower)]

T , [βbest f (βbest)]
T ,

and [βupper f (βupper)]
T uniquely define a quadratic function y = qx2 + px+

r, assuming that they are not collinear. We can find the coefficients of this
quadratic equation by solving the following system of linear equations:

f (βlower) = qβ 2
lower + pβlower + r

f (βbest) = qβ 2
best + pβbest + r

f (βupper) = qβ 2
upper + pβupper + r.
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This can be rewritten in matrix form as



f (βlower)
f (βbest)
f (βupper)


=




β 2
lower βlower 1

β 2
best βbest 1

β 2
upper βupper 1






p

q

r




which gives us



β 2
lower βlower 1

β 2
best βbest 1

β 2
upper βupper 1



−1


f (βlower)
f (βbest)
f (βupper)


=




p

q

r


 .

Solving for the inverse and using simple algebraic manipulations as well as
the fact that the minimum of the quadratic function is at x = q

2p
, it is easy to

show that

1
2

f (βupper)(β
2
lower−β 2

best)+ f (βbest)(β
2
upper−β 2

lower)+ f (βlower)(β
2
best−β 2

upper)

f (βupper)(βlower−βbest)+ f (βbest)(βupper−βlower)+ f (βlower)(βbest−βupper)

is the global minimum of the quadratic function that passes through the points
[βlower f (βlower)]

T , [βbest f (βbest)]
T , and [βupper f (βupper)]

T . Using this for-
mula and Algorithm 4.1 as a template we arrive at Algorithm 4.3.

This quadratic interpolation search is not as robust as the Golden Section
search but converges superlinearly under mild regularity conditions (Brent,
1973). This lack of robustness leads to the three extra termination conditions
in the main loop of the algorithm. These are triggered when

1. The algorithm chose the same candidate point as in the previous iteration
(β ′candidate = βcandidate). No matter how many more iterations are performed,
the algorithm will not make any progress because βlower, βupper and βbest

will remain unchanged.

2. The algorithm chose a new candidate point not inside the search inter-
val [βlower,βupper]. This can happen for several reasons. The most likely
is that the function has no (local) minimum in the search interval and
the quadratic function therefore (correctly) predicts a stationary point out-
side of the search interval. In the extreme case, the quadratic approxi-
mation has degenerated into a linear function and has no finite minimum
(βcandidate =±∞).

There are a number of other corner cases that a production quality ver-
sion of the algorithm should deal with. These have been omitted here. In
practice these drawbacks have led to the development of a combined strat-
egy that switches between Golden Section search and quadratic interpola-
tion. The idea is to use quadratic interpolation for fast convergence if possi-
ble and Golden Section search as a robust fallback if necessary. This is called
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Algorithm 4.3 Parabolic Interpolation Search

Require: f : [βlower,βupper]→ R, desired precision τ

1: βbest← 1
2(βlower +βupper)

2: βcandidate← 1
2

f (βupper)(β
2
lower−β 2

best)+ f (βbest)(β
2
upper−β 2

lower)+ f (βlower)(β
2
best−β 2

upper)

f (βupper)(βlower−βbest)+ f (βbest)(βupper−βlower)+ f (βlower)(βbest−βupper)

3: while |βupper−βlower| ≥ τ(1+ |βbest|) do

4: if f (βcandidate)< f (βbest) then

5: βcandidate↔ βbest

6: end if

7: βlower =

{
βlower , if βbest < βcandidate

βcandidate , else

8: βupper =

{
βcandidate , if βbest < βcandidate

βupper , else
9: β ′candidate← βcandidate

10: βcandidate← 1
2

f (βupper)(β
2
lower−β 2

best)+ f (βbest)(β
2
upper−β 2

lower)+ f (βlower)(β
2
best−β 2

upper)

f (βupper)(βlower−βbest)+ f (βbest)(βupper−βlower)+ f (βlower)(βbest−βupper)

11: if βcandidate = β ′candidate or βcandidate ≤ βlower or βcandidate ≥ βupper then

12: return βbest

13: end if

14: end while

15: return βbest

Brent’s Method and is described in detail in Brent (1973), including the rules
that govern when to use which candidate generation routine. The reason this
method works so well is that as we get closer to the minimum all twice dif-
ferentiable functions tend to look like a quadratic function inside the search
interval.

Simulation: Comparison of Univariate Optimization Methods

To judge just how much faster the more advanced methods are, let us compare
them on our initial problem of estimating the median of m observations. Here
we will fix m = 1001 and vary the width of the interval into which the obser-
vations fall between 1 and 108. For each interval width 100 random data sets
are generated and each algorithm is run on these, recording both the relative
error of the returned solution and the number of function evaluations used.
These results are shown in Table 4.1. We can see that the added complexity
of Golden Section search is well worth it, saving on average about one-third
of the function evaluations compared to Random-Selection. Brent’s method
is even faster, beating the naive Random-Selection by a factor of five and
Golden Section search by a factor of at least three. On the other hand, Brent’s
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Table 4.1: Comparison of Random-Selection, Golden Section, and Brent’s
Searches on the Computation of the Median of Data with Different Ranges;
# FE = Number of Function Evaluations

Interval Random-Selection Golden Section Brent
width rel. Error # FE rel. Error # FE rel. Error # FE

1×100 1.02×10−7 127.5 7.83×10−8 85.4 3.96×10−3 15.9
1×101 2.29×10−8 134.2 3.49×10−8 93.7 1.06×10−4 18.7
1×102 3.45×10−9 145.0 2.54×10−9 99.6 3.64×10−5 21.5
1×103 1.27×10−9 147.1 1.24×10−9 101.0 7.73×10−7 24.9
1×104 1.09×10−9 148.7 1.14×10−9 102.2 1.28×10−7 27.6
1×105 1.45×10−9 148.7 1.00×10−9 101.1 1.48×10−8 30.0
1×106 1.14×10−9 148.5 9.99×10−10 101.7 5.87×10−9 31.0
1×107 1.30×10−9 145.9 1.05×10−9 101.3 4.56×10−9 31.2
1×108 1.28×10−9 144.8 1.09×10−9 101.1 4.28×10−9 31.6

method achieves a considerably higher relative error for the narrow search in-
tervals. This is likely due to the somewhat different termination criterion used
by this algorithm. Nevertheless, in practice one would always favor the more
complex but much faster method by Brent. In the next section we will discuss
a method that is even faster. However, we have to make some strong assump-
tions about the function we are minimizing. Only this additional information
can speedup the optimization process.

4.3.4 Newton’s Method

If our function f that we wish to minimize is twice differentiable and we
know the first and second derivatives, we can use that information to speedup
the convergence rate of our search even further. To do this we will again fit
a parabola to approximate the function locally and then use its apex as the
new candidate solution. But instead of using all three points to determine the
coefficients of the quadratic equation, we use only the best solution found so
far and the associated function value as well as the first and second derivative.
We now need to find a quadratic function whose value and first two derivatives
are equal to those of our function f in the current solution β

(k)
best. By Taylor’s

theorem that quadratic function is given by

q(β ) = f (β
(k)
best)+ f ′(β (k)

best)(β −β
(k)
best)+

1
2

f ′′(β (k)
best)(β −β

(k)
best)

2. (4.7)
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Figure 4.2: Newton method for optimization.

Algorithm 4.4 Univariate Newton Method

Require: Twice differentiable f : R→ R, tolerance on gradient τ , initial so-
lution β (1)

1: k← 1
2: β

(k)
best← β (1)

3: while | f ′(β (k)
best)| ≥ τ do

4: β
(k+1)
best ← β

(k)
best−

f ′(β (k)
best)

f ′′(β (k)
best)

5: k← k+1
6: end while

7: return β
(k)
best

To derive its minimum we need to solve

0 = q′(β ) = f ′(β (k)
best)+ f ′′(β (k)

best)(β −β
(k)
best)

for β to arrive at

β
(k+1)
best = β

(k)
best−

f ′(β (k)
best)

f ′′(β (k)
best)

for the next candidate solution β
(k+1)
best (see Figure 4.2).

Note that instead of a steadily shrinking interval [βlower,βupper] we now

construct a sequence of intermediate solutions {β (k)
best}. This simplifies the

algorithm because we do not need to track the current search bounds, but it
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Table 4.2: First 10 Iterations of Newton’s Method when Minimizing F(β ) =
β 3 Starting from β = 10

k β
(k)
best f (β

(k)
best) f ′(β (k)

best) f ′′(β (k)
best)

0 10.000 1000.000 300.000 60.000
1 5.000 125.000 75.000 30.000
2 2.500 15.625 18.750 15.000
3 1.250 1.953 4.688 7.500
4 0.625 0.244 1.172 3.750
5 0.312 0.031 0.293 1.875
6 0.156 0.004 0.073 0.938
7 0.078 0.000 0.018 0.469
8 0.039 0.000 0.005 0.234
9 0.020 0.000 0.001 0.117

10 0.010 0.000 0.000 0.059

also means that we cannot use the stop criterion based on the relative error
estimate. Instead, we will terminate once the first derivative is close enough
to zero. When we combine all of these parts, we obtain Algorithm 4.4.

There are several key differences between this algorithm and the previous
univariate optimization strategies we have looked at. This algorithm searches
on the whole real line for a minimum instead of in a given interval and only
terminates when the current solution is sufficiently close to a stationary point
(i.e. f ′(β )≈ 0). This also means that the returned solution might be a saddle
point instead of a minimum if the function is not convex.

Example 4.2: Newton Method Applied to f (β ) = β 3

To illustrate the saddle point problematic, we will manually solve

minimize f (β ) = β 3

using Newton’s method. Table 4.2 lists the first few iterations of the algo-
rithm. We see that the algorithm quickly converges to the stationary point
β = 0. Just how fast Newton’s method is will be discussed later.

Another key difference to the other univariate methods is that the choice
of the next intermediate solution does not depend on the current function
value. In fact, we can recast Newton’s method as an algorithm to find the root
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Figure 4.3: Newton method for root finding.

of a function g(β ) := f ′(β ). The update rule then reduces to

β
(k+1)
best = β

(k)
best−

g(β
(k)
best)

g′(β (k)
best)

.

We can again interpret this update rule in the context of function approx-
imation. β

(k+1)
best is now the intercept of the linear function that passes through

the point [β (k)
best g(β

(k)
best)] and has slope g′(β (k)

best) (see Figure 4.3).
With this we now have enough insight to prove, under some conditions,

that Newton’s method has convergence order 2 and is therefore substantially
faster than any of the methods we have seen in previous sections. This in-
crease in speed is bought at the expense of robustness and generality. New-
ton’s method can only be applied to a small subset of the functions that
Golden Section search can solve.

Theorem 4.1: Convergence Order of Newton’s Method
Let g : R→R be a convex function that is twice continuous differentiable and
let β ∗ exist with g(β ∗) = 0 and g′(β ∗) 6= 0. If the starting value β (0) is close
enough to β ∗, then the sequence {β (k)} with

β (k+1) = β (k)− g(β (k))

g′(β (k))

converges with at least order 2 and its limit is β ∗.
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Proof. For any point β close to β ∗ there exist r1 and r2 such that

|g′′(β )|< r1 and |g′(β )|> r2.

Then it follows that

β (k+1)−β ∗ = β (k)−β ∗− g(β (k))

g′(β (k))

=−g(β (k))+g′(β (k))(β ∗−β (k))

g′(β (k))

=−g(β (k))−g(β ∗)+g′(β (k))(β ∗−β (k))

g′(β (k))
.

Here we used the fact that g(β ∗) = 0 in the last step. Using Taylor’s theorem,
we see that the nominator is zero except for a second-order term, so we get

β (k+1)−β ∗ =−1
2

g′′(β ′)

g′(β (k))
(β (k)−β ∗)2

for some β ′ between β ∗ and β (k) and we therefore have in a neighborhood of
β ∗

|β (k+1)−β ∗| ≤ r1

2r2
|β (k)−β ∗|2

from which we conclude that Newton’s method has at least convergence or-
der 2.

While this result highlights the strong point of the Newton method, fast
convergence when we are close to the minimum, it also hints at one of the lim-
itations of the algorithm. If our initial solution is far away from the minimum,
we need not converge quickly. In fact, we need not converge at all!

We will now illustrate the usefulness of Newton’s method using a simple
example.

Example 4.3: Calculation of Quantiles
If we want to find the α quantile of some distribution not knowing the quan-
tile function in analytical form, then we need to resort to numerical methods.
Here, Newton’s method proves to be particularly powerful if the distribution
is continuous and we know its cumulative distribution function F and proba-
bility density function f = F ′. What we seek then is an x such that

α = F(x) =
∫ x

−∞
f (t)dt.
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It is easy to solve the above equation using Newton’s method by viewing this
as a root finding problem. That is, our current solution will be updated in each
generation to

x(k+1) = x(k)− F(x(k))−α

f (x(k))
.

Here we use the root finding interpretation of Newton’s method to formulate
the update rule. It is nevertheless instructive to also explicitly write down the
underlying optimization problem, which we can recover by integrating over
the derivative F from the update rule

minimize
x

∫ x

−∞
(F(t)−α)dt. (4.8)

To see this, let G(t) be the antiderivative of F(t)−α . Then
∫ x

−∞
(F(t)−α)dt = G(x)−G(−∞)

and by definition,

d
dx

∫ x

−∞
(F(t)−α)dt =

d
dx

(G(x)−G(−∞)) = F(x)−α.

The reason why it is instructive to also look at the minimization problem that
we are implicitly solving is because we know that Newton’s method only
works reasonably well if the objective function is convex. Luckily we can
infer this from the fact that its first derivative F is monotonic because it is a
cumulative distribution function and monotonicity of the first derivative is a
sufficient condition for convexity in the case of univariate functions. Using
the above method, we can, e.g., derive quantiles for the standard normal dis-
tribution. Here we used a tolerance of τ = 10−8 for the stop criterion and a
starting value of x0 = 0. The results are shown in Table 4.3. We see that the
algorithm converges rather quickly even for extreme quantiles, and that the
absolute error of the returned solution is quite low for all values of α . This
is surprising, given that the objective functions, which are depicted in Fig-
ure 4.4, are asymmetric for all α 6= 0.5 and get successively flatter around the
optimum for smaller values of α . Later in this chapter we will see that an op-
timization algorithm that purely relies on first derivatives would have a hard
time with such an objective function. Here Newton’s method profits from the
additional curvature information from the second derivative.

So far we have focused exclusively on unimodal problems, that is, prob-
lems where any minimum we find will be the global minimum. If we have a
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Table 4.3: Results of the Quantile Calculations Using Newton’s Method

Quantile α Final Value x Error |x− x∗| # of Iterations

0.00001 -4.2648908 1.678657×10−13 14
0.00010 -3.7190165 4.440892×10−16 12
0.00100 -3.0902323 4.440892×10−16 10
0.01000 -2.3263479 4.440892×10−16 8
0.05000 -1.6448536 2.220446×10−16 6
0.10000 -1.2815516 1.854072×10−13 5
0.25000 -0.6744898 1.065814×10−14 4
0.50000 0.0000000 0.000000×10+00 0
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Figure 4.4: Objective function for the quantile problem from Formula 4.8.
The location of the minimum is indicated by the points.

multimodal function, we can still try to apply the methods we have learned
about, but we need to be aware of some caveats. All interval-based search
methods will converge to a local minimum if one exists within the initial in-
terval. The Newton method will also generally converge to a stationary point
of the function. This does not have to be an extremum, and even if it is an ex-
tremum it may be a maximum and not a minimum. Therefore, one has to be
careful when basing further calculations on the result of such an optimization
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without first confirming that a minimum was indeed found. If the function is
highly multimodal, it is often advisable to perform several runs with different
starting points or starting intervals, depending on the method used.

4.3.5 Summary

In this section we introduced basic methods for univariate optimization. We
started with the discussion of a generic method, and then introduced more
and more special methods requiring more and more assumptions. We dis-
cussed the ideas and properties of interval-based methods like the Golden
Section search, the quadratic interpolation search, and Brent’s method. More-
over, with Newton’s method we introduced a first method only constructing
a sequence of intermediate solutions. In particular, we discussed the conver-
gence speed of these methods.

4.4 Multivariate Optimization 2

4.4.1 Convex Problems

In the previous section we restricted ourselves to univariate optimization
problems. But what if our problem at hand is multivariate, that is, our β is not
a real value but comes from R

n? Methods to deal with these types of problems
will be the topic of this section. Instead of starting with the most general type
of optimization problem and then slowly adding restrictions to derive better
algorithms, we will defer solving general multivariate optimization problems
to the next section and initially only focus on convex problems. So we will
be solving problems of the form

minimize
β∈Rn

f (β),

where f : Rn→ R is a convex function. Why do we want f to be convex and
not just unimodal as in the univariate case? Convexity makes the job of finding
the global minimum easy enough because any local minimum we find will be
the global minimum (see Section 4.2). At first it may seem like this restriction
to convex functions might in practice be a hindrance but it turns out that many
“interesting” statistical optimization problems are indeed convex or may be
transformed in a way that they are convex. The properties of convex functions
and which transformations preserve convexity were covered in Section 4.2.

2Partly based on Judge et al. (1981, pp. 951 – 969).
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4.4.1.1 General Structure of Iterative Algorithms

In the univariate case most of the algorithms we discussed were based on the
idea of iteratively reducing the size of a search interval. In the multivariate
case, most times a starting value β(1) is updated in each iteration step into
a better solution, as in the Newton method. This is illustrated both in Al-
gorithm 4.5 and as a flowchart in Figure 4.5. Notice how we transform the
problem of solving a multivariate optimization problem into a problem of
solving successive univariate optimization problems by restricting the search
for a “better” solution in the kth iteration to a direction d(k). d(k) is called
search direction and ν step length.

Algorithm 4.5 General Iterative Algorithm

Require: Function f : Rn→ R, initial value β(1)

1: k← 1
2: while not done do

3: Find a better solution β(k+1) based on the current solution β(k) along
the line β(k)+νd(k).

4: k← k+1
5: end while

6: return β(k)

The algorithms we will discuss only differ in their stop criteria and in how
they find a better solution β(k+1) based on the currently best solution β(k) by
local search.

This local improvement step, given the temporary solution β(k) and the
search direction d(k), is often called line search. Methods for performing such
a line search will be introduced when we discuss the different strategies for
determining search directions. Note that in general we do not need to find the
best ν to minimize β(k)+νd(k), often times all that is needed is a sufficient
improvement over β(k).

First, we will introduce five different stop criteria and four different meth-
ods to determine the search direction d(k).

Stop Criteria

Ideally, an iterative algorithm should stop when no further improvement of
the objective function f can be achieved. More importantly, we want the point
where the algorithm terminates to be identical with the global optimum. Let
us qualify these requests in two ways. First, we already discussed in Sec-
tion 2.4 that exact equality is not to be expected on computers. Therefore, we
introduced the notions of approximate and essential equality, which means
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Figure 4.5: Flow chart for iterative optimization methods.

that the best we can hope for is essential equality of the found and the true
optimum. Moreover, in practice we relax this criterion even more and termi-
nate if one of the following stop criteria is fulfilled for a certain predefined
small ε > 0 and a positive integer number p:

1. ‖β(k+p)−β(k)‖2 < ε ,

2. f (β(k))− f (β(k+p))< ε ,

3. ‖∇ f (β(k))‖2 < ε .

4. A prefixed upper bound for the number of iterations is reached.

5. A prefixed upper bound for the computation time is reached.

Why do we need five stop criteria in practice?

– Condition 1 does not guarantee termination, e.g. if the minimum is not
unique.

– Conditions 2 and 3 might never be valid, e.g. if no minimum exists or the
algorithm cannot find a minimum for some reason.

– Condition 3 is only applicable if f has a gradient and ∇ f is known.

– Conditions 4 and 5 limit the number of function evaluations we perform
and the amount of computing time we spend on the optimization.

Note that conditions 4. and 5. are solely safeguards to ensure that the
algorithm always terminates. The returned solution will usually be far away
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from the global minimum in the parameter space. It is therefore best to always
report the values of the first three criteria to detect nonconvergence.

If our function f is not convex, we can still apply many of the algorithms
that follow. Of course in such a case the returned solution does not have to
correspond to the global minimum and in fact will often not be the global min-
imum. Many of the algorithms might not even terminate, so the stop criteria
4 and 5 from the above list become crucial. It is often advisable to rerun the
optimization with different initial solutions β(1) and to compare the returned
solutions.

4.4.1.2 Coordinate Descent

A very old method to minimize a convex function f is the coordinate de-

scent method. Here, the objective function f is minimized in one of the n

coordinate directions in each iteration step. Therefore, in iteration step k the
following univariate and unimodal optimization problem in ν is solved:

minimize
ν∈R

f̃ (k)(ν) := f (β(k)+νe(k)), (4.9)

where e(k) denotes the kth unit vector in coordinate direction. As the new ap-
proximation for the global minimum β(k+1) = β(k)+ν∗e(k) is used, ν∗ being
the above minimum. The reason this method is called coordinate descent

is that in each iteration we search in one of the coordinate directions. The
method terminates if no improvement can be found in any coordinate direc-
tion. The solution found this way is taken as the final approximation of the
global minimum β∗.

What is left is to specify how to solve the inner (univariate) minimization
problem and how the e(k) should be chosen.

In order to find the global minimum ν∗ of the function f̃ (k)(ν) := f (β(k)+
νe(k)), we first determine νlower and νupper so that ν∗ ∈ [νlower,νupper]. Since f

is convex, f̃ (k) is also convex and therefore either νlower = 0 or νupper = 0. If
f̃ (k)(ε)< f̃ (k)(0) for a small ε > 0, choose νupper = 0 and reduce νlower until
f̃ (k)(νlower) > f̃ (k)(νlower + ε) for a small ε > 0. Then, νlower ≤ ν∗ ≤ νupper.
By reversing the inequalities we arrive at analogous rules in case f̃ (k)(ε) >
f̃ (k)(0).

The found search interval [νlower,νupper] can then be shrunken by one of
the univariate methods from the previous section, e.g., Golden Section Search
or quadratic interpolation search, in order to determine ν∗.

Often, the inner minimization along one of the coordinate directions is
terminated before reaching the minimum but after reducing f̃ (k) sufficiently.
Although this often leads to more iteration steps, in each iteration less func-
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Figure 4.6: Examples: well-conditioned problem (left) and ill-conditioned
problem (right) for coordinate descent.

tion evaluations are performed so that the overall number of function evalua-
tions is usually lower than in the case where in each line search the minimum
of the auxiliary function f̃ (k) is approximated as exactly as possible. Note that
this is the first example for a line search method and it should be clear why
these are called line searches because the search is restricted to a line in the
parameter space of f .

The final missing piece is the choice of e(k) in the kth iteration. A robust
and often used method to choose the e(k) is

e(k) := e((k mod n)+1).

Here, ei denotes the ith unity vector, i.e. the vector, whose only nonnull ele-
ment is the ith entry, which is 1. With this method, it is sufficient to stop if
there is no improvement after n steps.

Alternatively, in each step one could choose a random coordinate or one
could choose a permutation of the coordinate vectors after every n steps and
then search the coordinate directions according to this permutation. In prac-
tice, it is not very important which variant is chosen. For a theoretical analysis
the first mentioned deterministic choice of e(k) is more convenient than the
two randomized variants.

Not all problems are equally well suited for the coordinate descent
method (see Figure 4.6). The coordinate descent method works well on sepa-
rable functions but becomes less attractive if the function is not separable.
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Definition 4.6: Separable Function
A function f : Rn→ R is called separable, iff for each coordinate direction
ei

∀β1,β2 ∈ R
n : β1 +ν∗1 ei = β2 +ν∗2 ei,

where ν∗1 and ν∗2 are the minima of (4.9) for β1 and β2.

Obviously, separability means that a function can be minimized sepa-
rately in each of its arguments in order to achieve its joint minimum. The
setting of the ith element of β∗ is then independent of the value of the other
elements of β∗. Thus, the problem can be divided into n univariate problems
that can be solved individually.

4.4.1.3 Gradient Descent

If our function f to be minimized is at least once differentiable, then one
can choose a better descent direction than a coordinate vector. Since f is
differentiable, we can use the gradient ∇ f of f as a search direction because
we know that the gradient always points into the direction of steepest ascent.
Thus, in each iteration the following problem is solved:

minimize
ν∈R+

f̃ (ν) := f (β(k)−ν∇ f (β(k))).

Again, ν∗ can be found, e.g., via Golden Section search, quadratic inter-
polation, or using a more advanced line search method. In the kth iteration we
search for a β(k+1) on the line

S := {β(k)−ν∇ f (β(k)) | ν ∈ R
+}

minimizing f on S. Therefore, again we have a line search in each iteration
step.

The pseudocode of the steepest descent method is given in Algorithm 4.6.

Algorithm 4.6 Steepest Descent Method

Require: f : Rn→ R, gradient ∇ f : Rn→ R
n, initial solution β

1: while not done do

2: ∆β← ∇ f (β)
3: g(ν) := f (β−ν∆β)
4: ν ← linesearch(g)
5: β← β−ν∆β

6: end while
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Convergence of the Gradient Descent

We now show that the gradient descent method linearly converges for a spe-
cial kind of functions, namely the quadratic functions.

Theorem 4.2: Convergence of Steepest Descent
Let

f (β) =
1
2
βTQβ+qTβ,

where Q ∈ R
n×n is a symmetrical positive definite matrix with eigenvalues

λ1 ≥ λ2 ≥ ·· · ≥ λn, q ∈ R
n. Then, the steepest descent method linearly con-

verges for f with a convergence rate

ρ ≤
(

λ1/λn−1
λ1/λn +1

)2

.

Proof. The gradient of f is obviously given by ∇ f (β) = Qβ+q, and thus
for the minimum β∗ it is true that

β∗ =−Q−1q and

f (β∗) = f (−Q−1q) =−1
2
qTQ−1q.

Moreover, d(β)=−Qβ−q is the steepest descent direction in each iteration.
Thus, in each iteration the function

f (β+νd(β))

=
1
2
(β+νd(β))TQ(β+νd(β))+qT (β+νd(β))

= f (β)+
1
2
(νd(β)T Qβ+βT Qνd(β))+qT νd(β)+

1
2

ν2d(β)TQd(β)

= f (β)+νd(β)T Qβ+νd(β)T q+
1
2

ν2d(β)TQd(β)

= f (β)−νd(β)Td(β)+
1
2

ν2d(β)TQd(β)

is minimized in ν for given β. Therefore,

ν∗ =
d(β)Td(β)

d(β)TQd(β)
. (4.10)

In each iteration of the gradient descent method we obtain for given β(k) the
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following new values:

β(k+1) = β(k)+ν∗d(β(k)) = β(k)+
d(β(k))Td(β(k))

d(β(k))TQd(β(k))
d(β(k)),

f (β(k+1)) = f (β(k))− 1
2
(d(β(k))Td(β(k)))2

d(β(k))TQd(β(k))
. (4.11)

Therefore,

f (β(k+1))− f (β∗)

f (β(k))− f (β∗)
=

f (β(k))− 1
2
(d(β(k))Td(β(k)))2

d(β(k))TQd(β(k))
− f (β∗)

f (β(k))− f (β∗)

= 1−
1
2
(d(β(k))Td(β(k)))2

d(β(k))TQd(β(k))

f (β(k))− f (β∗)

= 1−
1
2
(d(β(k))Td(β(k)))2

d(β(k))TQd(β(k))

1
2(Qβ(k)+q)TQ−1(Qβ(k)+q)

= 1−
1
2
(d(β(k))Td(β(k)))2

d(β(k))TQd(β(k))

1
2d(β

(k))TQ−1d(β(k))

= 1− (d(β(k))Td(β(k)))2

d(β(k))TQd(β(k))d(β(k))TQ−1d(β(k))

= 1− 1
γ k

,

where

γk :=
d(β(k))TQd(β(k))d(β(k))TQ−1d(β(k))

(d(β(k))Td(β(k)))2
.

For the method to converge quickly, γk should be small. What this means
can be illustrated by the following inequality (Kantorovich inequality; see,
e.g., Newman (1959)):

γk ≤
(λ1 +λn)

2

4λ1λn

.

Therefore, for the convergence rate ρ we have

ρ ≤ 1− 4λ1λn

(λ1 +λn)2 =

(
λ1/λn−1
λ1/λn +1

)2

,

This proves the theorem.

This theorem can even be generalized as follows:
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Theorem 4.3: Convergence Rate of Steepest Descent
If f is twice differentiable, then the gradient descent method linearly con-
verges for f with a convergence rate

ρ ≤
(

λ1/λn−1
λ1/λn +1

)2

.

Here, λ1 designates the largest and λn the smallest eigenvalue of the Hessian
∇2 f (β).

Proof. see Luenberger (1973, pp. 148 – 155).

Approximation by Linear Least Squares Problem

There is also a connection between the minimization of f using the gradient
descent method and the least squares problem from Chapter 3. Linearizing
the function f in the optimum β∗ helps to further illustrate the convergence
of the method. For the linear model we know that the following holds:

f (β) = ‖y−Xβ‖2
2

= βTXTXβ−2βTXTy+yTy.

Then f (β) is a quadratic function in β and large λ1/λn indicates elongated
contours of the objective function near the optimum, since the contours of a
quadratic function f are n-dimensional ellipsoids with axes in the directions
of the n orthogonal eigenvectors of the positive definite hessian ∇2 f (β∗).
Also, the length of the axis corresponding to the ith eigenvector is given by
the ith eigenvalue λi. Moreover, the square of the spectral condition number
κ∗ of X is the ratio of the largest and the smallest eigenvalue of ∇2 f (β∗) =
2XTX , since

κ∗
2
= ‖X‖2‖X+‖2

=
(s1(X))2

(sn(X))2 (si = ith singular value of X(β ∗))

=
λ1(2XTX)

λn(2XTX)
.

Therefore, the spectral condition number κ∗ is proportional to λ1/λn and
the larger the quotient is, the narrower the ellipsoid, i.e. the narrower the val-
ley that leads to the optimum. This fits well with the characterization of con-
vergence speed by means of the convergence rate ρ in the previous Theorems.
Indeed, the larger λ1/λn is, the larger ρ is, and the slower the algorithm con-
verges. Examples of well and badly conditioned quadratic objective functions
f are given in Figure 4.7.
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Figure 4.7: Examples: well-conditioned problem (left), badly conditioned
problem (right) for gradient descent.

4.4.1.4 Newton Algorithm

If f is twice continuously differentiable, then we can use an even more pow-
erful method in analogy to the Newton method for univariate functions. In
each iteration, we approximate f by a quadratic function determined by the
Taylor expansion of f in β(k):

f (β(k)+∆β)≈ f (β(k))+∇ f (β(k))T ∆β+
1
2

∆βT ∇2 f (β(k))∆β. (4.12)

The gradient corresponding to ∆β in Equation 4.12 is

∇ f (β(k)+∆β) = ∇ f (β(k))+∇2 f (β(k))∆β. (4.13)

Thus, in the (global) minimum ∆β should fulfill

∇ f (β(k))+∇2 f (β(k))∆β = 0.

Therefore, the new approximation is chosen as

β(k+1) = β(k)−∇2 f (β(k))−1∇ f (β(k)). (4.14)

If Equation 4.14 is used and no line search is performed, we call the step
taken a full Newton step. For this step size one can show, analogously to
the univariate case, that there is an ε ball around the global minimum β∗, in
which the method converges quadratically.

Unfortunately, it is also true that for this method termination is not even
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guaranteed outside of this ball. Thus, the method is in every respect a gener-
alization of the Newton method for the minimization of univariate functions,
both in its fast convergence as well as its drawbacks of being not as robust as
we might like it to be. To alleviate some of the drawbacks, equation (4.14) is
often supplemented by a parameter ν such that

β(k+1) = β(k)−ν∇2 f (β(k))−1∇ f (β(k)).

Now the Newton method is a special case of our general iterative minimiza-
tion procedure that we used for coordinate and gradient descent. In each step
we then solve the following minimization problem:

minimize
ν∈R+

f̃ (k)(ν) := f (β(k)−ν∇2 f (β(k))−1∇ f (β(k))).

Often, the restriction ν ≤ 1 is used. This ensures that the largest step we take is
a full Newton step. Note that the larger the step size is, the more trust we must
place in our quadratic approximation of the function because the distance we
extrapolate is larger.

The pseudocode of the Newton method is given in Algorithm 4.7.

Algorithm 4.7 Multivariate Newton Method

Require: f : Rn→ R

gradient ∇ f : Rn→ R
n

Hessian ∇2 f : Rn→ R
n×n

Initial solution β

1: while not done do

2: ∆β← ∇2 f (β)−1∇ f (β)
3: g(ν) := f (β−ν∆β)
4: ν ← linesearch(g)
5: β← β−ν∆β

6: end while

4.4.1.5 Quasi-Newton Methods

A disadvantage of the Newton method is that we need the Hessian in an-
alytical form. This can be a hindrance in two respects. On the one hand it
could be quite expensive to compute, especially if we have many parameters
to optimize, and for some problems computing the analytical form can be
impractical. Even if it is possible to numerically approximate the Hessian, in
practice this is seldom done because of the large number of function evalua-
tions required. Instead we replace ∇2 f by an approximation based solely on
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the known gradient ∇ f . Instead of Equation 4.12 we then have

f (β(k)+∆β)≈ f (β(k))+∇ f (β(k))T ∆β+
1
2

∆βTQ(k)∆β.

Here, Q(k) ∈ L(n,n) is required to be positive definite so that we can be sure
that f is convex. If the matrix were not positive definite, we could not be sure
that

−(Q(k))−1∇ f (β(k))

is a descent direction (see below).
There are obviously many possible ways to choose Q(k). The simplest

choice is the identity matrix, which leads to the gradient descent method. At
the other end of the spectrum, we could plug in a numerical approximation of
∇2 and would arrive at an approximate Newton method. However, what we
are really interested in are methods that lead to better descent directions than
the naive gradient descent method but do not suffer the high computational
cost of the approximate Newton method.

To derive such descent directions, let β(k) be a point in the coefficient
space. We are looking for a direction ∆β, in which the objective function f

decreases. When we proceed in such a direction we have to ensure that we do
not go too far so that we do not overshoot and miss the minimum—possibly
arriving at a solution worse than our current solution. On the other hand, if we
take a step that is too small, our algorithm will need more iterations to cover
the same distance and eventually converge. In other words, we need to find a
balance such that the chosen step size ν and direction ∆β lead to

f (β(k)+ν∆β)< f (β(k)). (4.15)

If ∆β points downhill, a small step in this direction should definitely lead to
a reduction of the objective function. Thus, we look for a ∆β so that f (β(k)+
ν∆β) is a decreasing function of ν for ν sufficiently small. This leads to

d f (β(k)+ν∆β)

dν

∣∣∣
ν=0

=

(
∂ f

∂β

∣∣∣
β(k)

)(
d(β(k)+ν∆β)

dν

∣∣∣
ν=0

)
(4.16)

= (∇ f (β(k)))T ∆β < 0.

Then, we choose
∆β =−P∇ f (β(k)), (4.17)

where P is any positive definite matrix, i.e. (∇ f )TP∇ f > 0 for all vectors
∇ f 6= 0. This implies that (∇ f (β(k)))T ∆β=−(∇ f (β(k)))TP (∇ f (β(k)))< 0,
if ∇ f (β(k)) 6= 0, which is what we want from a descent direction.
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In order to simplify notation let P (k) := (Q(k))−1. Then, −P (k)∇ f (β(k))
is a descent direction if

−∇ f (β(k))TP (k)∇ f (β(k))< 0.

Obviously, this is the case for a deliberate gradient iff Q(k) is positive definite
and therefore also P (k).

If the search space Θ is not one-dimensional, then Q or P is not uniquely
determined. In the literature there are different suggestions for the choice of
Q or P , respectively. All of these methods have in common that in each
iteration a new matrix P (k+1) or Q(k+1) is generated from the current matrix
P (k) or Q(k) and the current gradient ∇ f (β(k)).

As noted above, the gradient descent (Q(k) = In) as well as the Newton
method (Q(k) = ∇2 f (β(k))) are special cases of the quasi-Newton method.

The iterative approach becomes clear by inserting Q(k+1) for the Hessian
in Equation 4.13 and rewriting it as

P (k+1)(∇ f (β(k+1))−∇ f (β(k))) = β(k+1)−β(k).

If P (k+1) is decomposed into the sum of P (k) and an update U (k), then we
get:

U (k)(∇ f (β(k+1))−∇ f (β(k)))=β(k+1)−β(k)−P (k)(∇ f (β(k+1))−∇ f (β(k))).

With the notation

∆β(k) := β(k+1)−β(k) =−ν∗P (k)∇ f (β(k)),

g(k) := ∇ f (β(k+1))−∇ f (β(k)),

s(k) := P (k)g(k),

e(k) := ∆β(k)−s(k)

this equation simplifies to

U (k)g(k) = ∆β(k)−s(k) = e(k). (4.18)

U (k) has to be symmetrical and positive definite so that P (k+1) is a pos-
itive definite matrix given that P (k) is positive definite. Note that U is not
updating the approximation of the Hessian Q, but directly its inverse P . By
updating the inverse directly we do not have to store the Hessian and perform
the costly and potentially numerically unstable inversion to find P .

In what follows, we will introduce some possible update formulas. They
are structured by the rank of the update. There is only one possible update U

that has rank 1. This update is called SR1 for symmetrical rank 1. The update
matrix of Davidon, Fletcher, and Powell (DFP) has rank 2, and the update
proposed by Broyden, Fletcher, Goldfarb, and Shanno (BFGS) rank 3.
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Quasi-Newton Methods: SR1 (Broyden, 1967)

The symmetrical rank 1 correction matrix U (k) has the form

U
(k)
SR1 :=

e(k)(e(k))T

(e(k))Tg(k)
.

This update matrix obviously fulfills Equation (4.18). The update formula
thus has the form

P (k+1) = P (k)+
e(k)(e(k))T

(e(k))Tg(k)
.

The disadvantage of this update rule is that P (k+1) is not always positive
definite. Additionally, in practice it might occur that the denominator of the
quotient is close to zero leading to numerical problems.

Quasi-Newton Methods: DFP (Fletcher and Powell, 1963)

The update matrix proposed by Davidon, Fletcher, and Powell has the form

U
(k)
DFP :=

∆β(k)(∆β(k))T

(g(k))T ∆β(k)
− P (k)g(k)(g(k))TP (k)

(g(k))TP (k)g(k)
.

U
(k)
DFP is a rank 2 matrix and we can easily show that it fulfills Equation 4.18:

U
(k)
DFPg

(k) =
∆β(k)(∆β(k))T

(g(k))T ∆β(k)
g(k)− P (k)g(k)(g(k))TP (k)

(g(k))TP (k)g(k)
g(k)

= ∆β(k)−P (k)g(k).

For this update matrix, Fletcher and Powell (1963) have shown that the re-
sulting direction matrix P (k+1) is always positive definite if P (k) is positive
definite and ∆β(k) is chosen optimally. Therefore, this choice of the direction
matrix P (k) in iteration k theoretically leads to an acceptable step. Here, the
identity matrix In is a reasonable value for P (1), but any prior knowledge
about the structure of the Hessian and the starting point could be used to con-
struct a different initial approximation of the Hessian as long as it is positive
definite.

In practice, however, we can expect numerical errors to accumulate over
time. This will eventually lead to a P (k+1) that is not a positive definite ma-
trix (Bard, 1968). For this reason, the DFP update is seldom used in modern
implementations of a quasi-Newton type algorithm. Instead, a dual update is
used called the BFGS update according to its discoverers.
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Quasi-Newton Methods: BFGS (Fletcher, 1970)

Broyden, Fletcher, Goldfarb, and Shanno did not propose a rank 2 update
for the direction matrix P (k) but a dual update for the approximation of the
Hessian Q(k):

g(k)(g(k))T

(g(k))T ∆β(k)
−Q(k)∆β(k)(∆β(k))TQ(k)

(∆β(k))TQ(k)∆β(k)
.

Using the following transformation due to Sherman and Morrison (1950)

(A+uvT )−1 =A−1−A−1uvTA−1

1+vTA−1u

the above rank 2 update of Q(k) can be transformed into a rank 3 update for
P (k):

U
(k)
BFGS :=

(e(k))Tg(k)∆β(k)(∆β(k))T

((∆β(k))Tg(k))2
− e(k)(∆β(k))T +∆β(k)(e(k))T

(∆β(k))Tg(k)
.

U
(k)
BFGS fulfills Equation 4.18 and the corresponding direction matrix P (k+1)

is positive definite if P (k) is and the gradient is reduced (see Exercise 4.4.3):

∇ f (β(k+1))TP (k)∇ f (β(k))−∇ f (β(k))TP (k)∇ f (β(k))< 0

⇔ (∆β(k))Tg(k) > 0.

The BFGS update is the most popular quasi-Newton update rule. We can,
however, still arrive at a nonpositive definite P (k+1) due to rounding errors
that accumulate over time. Any implementation should therefore add safe-
guards for such a situation. A simplistic solution is to fix such a nonpositive
definite P (k+1) by adding a small ε > 0 to all elements on the diagonal (see
the Levenberg-Marquardt method in Section 4.4.2.1).

The pseudocode for the BFGS method is given in Algorithm 4.8.

Quasi-Newton Methods: Broyden’s Method (Fletcher, 1970)

Since there really is no clear-cut criterion for choosing either the BFGS or the
DFP update, we can construct a combination of the two. This leads us to a
whole family of update formulas:

U
(k)
γ := γU

(k)
DFP +(1− γ)U

(k)
BFGS,

where 0 < γ < 1 is a fixed constant. Again, this update rule leads to a positive
definite P (k+1) if P (k) is positive definite and if (∆β(k))Tg(k) > 0. While this
class of update formulas is not in widespread use, it is interesting from a
theoretical standpoint because it allows a smooth transition from the BFGS
to the DFP strategy.
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Algorithm 4.8 BFGS Quasi-Newton Method

Require: f : Rn→ R

gradient ∇ f : Rn→ R
n

Initial solution β

1: P ← In

2: while not done do

3: ∆β←−P∇ f (β)
4: f n(ν) := f (β+ν∆β)
5: ν ← linesearch( f n)
6: ∆β← ν∆β

7: g← ∇ f (β+∆β)−∇ f (β)
8: e← ∆β−Pg

9: P ← P + eTg∆β(∆β)T

(gT ∆β)2 − (e∆βT+∆βeT )
gT ∆β

10: β← β+∆β

11: end while

Quasi-Newton Methods: Inexact Line Search

In the previous discussion we have not focused on the line search component
of the procedure and only stated that we could use one of the methods from
the univariate optimization section. In almost all cases the search direction
−P (k)∇ f (β(k)) in iteration k will not point in the direction of the global min-
imum. It is therefore often not wise to find the exact minimum in the line
search direction. That is, we do not need to minimize

ϕ(ν) := f (β(k)−νP (k)∇ f (β(k))).

Instead, it is adequate to only sufficiently reduce ϕ . Thus, we may choose ν

such that
ϕ(ν)≤ f (β(k))− c1ν∇ f (β(k))TP (k)∇ f (β(k)) (4.19)

with 0 < c1 < 1. This condition, the so-called Armijo condition, is always
satisfied for ν close to 0 since f (β(k)+νd) can be approximated by f (β(k))+
ν∇ f (β(k))Td with arbitrary accuracy in an ε-ball around β(k). ∇ f (β(k))Td

is also called the directional derivative of f in β(k) in the direction d. Here,
d=−P (k)∇ f (β(k)).

Equation 4.19 suggests the following approach:

1. Fix c1 (e.g. c1 = 10−4).

2. Start with a sufficiently large ν (e.g. ν = 1).

3. If ν fulfills condition (4.19), take ν as the step size.
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4. Else let ν = ν · γ for a fixed γ ∈ (0,1).

5. Go to step 3.

The resulting step size is used for the calculation of the quasi-Newton step:

∆β(k) =−νP (k)∇ f (β(k)).

Alternatively, we could also start with a sufficiently small ν and then increase
it until the Armijo condition is not satisfied anymore, taking the last valid
value of ν as the step size.

The above so-called inexact line search is an essential part of all efficient
quasi-Newton optimization algorithms. In practice, exact minimization of ϕ

is generally not worth while and wastes precious resources in the optimiza-
tion. In fact, it can lead to a situation where the algorithm zigzags through the
parameter space (cf. Figure 4.7).

The ν chosen this way may, however, not lead to a positive definite di-
rection matrix P (k+1). Therefore, we add a second condition that leads to a
positive definite P (k+1) for DFP and BFGS. This condition is called the cur-

vature condition and is given by

∇ f (β(k+1))TP (k)∇ f (β(k))< ∇ f (β(k))TP (k)∇ f (β(k)). (4.20)

If a ν fulfills both the Armijo and the curvature condition, then we advance
by a sufficient amount in each iteration. Therefore, we do not need to find the
global minimum in the line search step of each iteration thereby saving time
and function evaluations.

Since there is more than one ν that satisfies the previous conditions, we
introduce one more set of conditions, the so-called Wolfe conditions:

f (β(k+1))≤ f (β(k))− c1ν∇ f (β(k))TP (k)∇ f (β(k)),

∇ f (β(k+1))TP (k)∇ f (β(k))≤ c2∇ f (β(k))TP (k)∇ f (β(k)),

where 0 < c1 < c2 < 1. In the literature values of c1 = 10−4 and c2 = 0.9 have
proven to be effective (see, e.g., Nocedal and Wright, 1999).

4.4.1.6 Convex Functions: Summary

We have introduced four different iterative methods for the global optimiza-
tion of convex functions of multiple variables. These methods are consecu-
tive improvements of each other and culminate in the class of quasi-Newton
methods, which are even by today’s standards excellent general purpose un-
restricted convex optimization algorithms.
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In order to really understand the strengths and weaknesses of these meth-
ods, it is sensible to implement them once. For real optimization problems,
however, one should rely on well-established program libraries. These im-
plementations, which have been honed for years, often contain additional
implementation-specific heuristics and stop criteria that are indispensable for
a robust algorithm. We have omitted many of these gritty details in the dis-
cussion to aid in understanding the key aspects of these algorithms.

As just one example of the types of optimizations used by modern imple-
mentations of quasi-Newton methods, let us mention that they do not store the
approximation of the Hessian nor the inverse of the Hessian but a Cholesky
decomposition of Q=GGT . This provides superior numerical accuracy and
it is much easier to calculate the inverse (P ) given the decomposition than
just using the Hessian. The decomposition has the additional benefit that the
matrix G is an invertible lower triangle matrix. This implies that the Cholesky
decomposition cannot be singular even in the presence of rounding errors3and
that it always leads to a positive definite matrix Q.

4.4.1.7 Example: Logistic Regression

To illustrate the strengths and weaknesses of these methods, we will now
consider a simple example from classical statistics. We want to consider a
two-class classification problem. Given m observations (xi,yi), i = 1, . . . ,m,
where xi ∈ R

n and yi ∈ {0,1}, we use the following notation:

X :=



xT

1
...
xT

m


 ∈ L(m,n) and y :=




y1
...

ym


 ∈ {0,1}m.

In addition, one of the columns of X is assumed to be 1. This simplifies the
following notation because we can drop the intercept term from all formulas.

The so-called decision border of a classification problem is built of the
values x, for which

P(Y = 1 | X = x) = P(Y = 0 | X = x).

For logistic regression, which we will consider here, we assume that

log

(
P(Y = 1 | X = x)

P(Y = 0 | X = x)

)
= xTβ. (4.21)

3Do note that numerical instabilities may still lead to a numerically singular matrix.
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Since the right-hand side can take arbitrary values from R, but the ratio of the
two probabilities has to be positive, a logarithmic transformation is applied.

The ratio on the left-hand side of Equation 4.21 is called the odds ratio

and the decision boundary is then given by

log

(
P(Y = 1 | X = x)

P(Y = 0 | X = x)

)
= µ = xTβ.

So for logistic regression we arrive at a decision boundary that is linear in β.
A standard value for µ is zero, which is based on the assumption, that we are
interested in representing P(Y = 1 | X = x) = P(Y = 0 | X = x).

Since we only consider two-class problems, Equation 4.21 simplifies to

log

(
P(Y = 1 | X = x)

1−P(Y = 1 | X = x)

)
= xTβ

and via transformation to

P(Y = 1 | X = x) =
exp(xTβ)

1+ exp(xTβ)
=: p(x,β)

as well as

P(Y = 0 | X = x) = 1−P(Y = 1 | X = x) = 1− p(x,β) =
1

1+ exp(xTβ)
.

Since yi ∈ {0,1} is Bernoulli distributed, this leads to the likelihood

L(β) =
m

∏
i=1

(
p(xi,β)

yi(1− p(xi,β))
(1−yi)

)

=
m

∏
i=1

((
exp(xT

i β)

1+ exp(xT
i β)

)yi
(

1

1+ exp(xT
i β)

)(1−yi)
)

and to the log-likelihood

logL(β) =
m

∑
i=1

(yi log(p(xi,β))+(1− yi) log((1− p(xi,β))))

=
m

∑
i=1

(
yix

T
i β− log(1+ exp(xT

i β))
)
.

For this we can also calculate the gradient and Hessian, which are given by

∇ logL(β) =
m

∑
i=1

xi(yi− p(xi,β)),

∇2 logL(β) =−
m

∑
i=1

xix
T
i p(xi,β)(1− p(xi,β))
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or in matrix notation:

∇ logL(β) =XT (y−p(X,β)),

∇2 logL(β) =−XT diag(p(X,β)(1−p(X,β)))X

=:−XTDX,

where p(X,β) := [p(x1,β) . . . p(xm,β)]
T .

Moreover, from ∇2 logL(β) = −XTDX it follows that the Hessian of
− logL is positive semidefinite, so we may conclude that − logL is convex,
but not strictly convex! Indeed, there are data sets (X , y), for which − logL

is not bounded below. It is especially unfortunate that this is true iff (at
least part of) the data are linear separable, meaning that at least one of the
p(xi,β) = 0 or 1, i.e. in a rather trivial case. So logistic regression does not
find a classification rule in one of the simplest cases. In practice, it is there-
fore indispensable to check the convergence of the optimization process in
the case of logistic regression which is often neglected!

If the data are indeed linearly separable, then other classification algo-
rithms should be used. One simple alternative is the Linear Discriminant

Analysis (LDA) (see Section 7.3.1). Alternatively, one can apply restricted

logistic regression with the added constraint that ‖β‖ < c but this leads to a
constrained optimization problem that can be tedious to solve.

Logistic Regression: Optimization Problem

The optimization problem induced by logistic regression is given by

minimize
β∈Rn

f (β) :=− logL(β) =−
m

∑
i=1

(
yix

T
i β− log(1+ exp(xT

i β))
)
.

The objective function is twice continuously differentiable, convex, and if the
data are not linearly separable, even strictly convex. Therefore, all introduced
optimization methods can be used to minimize the negative log-likelihood
function.

Simulation: Comparison of Gradient Methods for Logistic Regression

To compare the gradient descent method (G-D), the Newton method, and the
BFGS quasi-Newton method, we will use the following simulation design:

1. Given an observation number m and a dimension n, generate m n-
dimensional vectors whose first entry is 1 and whose other (n− 1) ele-
ments are standard normally distributed random numbers. From these vec-
tors form the matrix X̃ .

2. Generate a uniform random m-dimensional vector y ∈ {0,1}m.
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Figure 4.8: Point clouds for κ = 0 (left) and κ = 0.5 (right).
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Figure 4.9: Point clouds for κ = 2 (left) and κ = 4 (right).

3. Calculate X := X̃+κy1T , where κ ≥ 0.

4. (X,y) then represents a logistic regression problem.

The difficulty of the problem is controlled by the parameter κ . The larger
κ is, the further apart the two distributions are, and the more probable it is
that the two classes are linearly separable (see Figures 4.8 and 4.9). More-
over, the contour plots in Figures 4.10 and 4.11 show that the contours con-
tract for increasing κ . Instead of nearly spherical contours for κ = 0, we get
strongly elliptical contours for κ = 2. This implies that the optimization prob-
lem is paradoxically less well-conditioned when the corresponding classifi-
cation problem gets simpler. Notice that linearly separable classes are to be
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Figure 4.10: Contours for κ = 0 (left) and κ = 0.5 (right).
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Figure 4.11: Contours for κ = 2 (left) and κ = 4 (right).

expected if there are many factors in the data with many different levels each.
Also, for real-world problems we usually cannot visualize the contours of the
log-likelihood because we want to estimate more than two parameters.

For the simulation study we generate X̃ and y for every possible com-
bination of m = {100,200,500,1000} and n = {5,10,15,20}. From this we
generate (X,y) for κ = {0,0.25,0.5,1}. This leads to a total of 4×4×4= 64
different classification problems. For each problem we have to choose a start-
ing point β(1) for the algorithms. In practice, one often uses β(1) = 0. In our
experiment we instead vary the starting values systematically. For each of the
64 problems we first numerically determine the minimum β∗ using multiple
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BFGS runs with extremely tight stop criteria, and subsequently choose a ran-
dom direction βu ∈ R

n (‖βu‖2 = 1). Then, for ε = {1,2,3,4} we determine
a ν such that

(1+ ε)(− logL(β∗)) =− logL(β∗+νβu).

As a starting value we then choose β(1) = β∗+ νβu. This procedure is re-
peated for different βu. Therefore, we start our optimization at different dis-
tances from the optimum so that we can see if the convergence speed is related
in any way to the distance to the optimum. This is what we expect from the
theoretical analysis.

We, thus, vary the following influential factors:

– Method (G-D, Newton, BFGS),

– Number of observations (m = {100,200,500,1000}),
– Number of parameters (n = {5,10,15,20}),
– “Condition” (κ = {0,0.25,0.5,1}),
– Goodness of starting point (ε = {1,2,3,4}),
– Direction of starting point (βu1 till βu4).

Overall, we then have 3072 different optimization runs. To evaluate the qual-
ity of the result we measure the

– Number of function evaluations,

– Distance to the minimum (‖β̂∗−β∗‖2),

– Suboptimality of the returned solution ( f (β̂∗)− f (β∗)).

Simulation Results

When we analyze the results, we first need to make sure we understand some
of the oddities in the data set. Since we do not know the exact global min-
imum, we might observe better solutions than our found minimum. In this
study, we got lucky and such a situation did not occur. However, we do have
72 runs, all using the gradient descent strategy, which do not converge at all.
Lastly, some runs hit the global minimum up to the numerical precision.

In our analysis we will focus on the second and third quality criteria from
above. The analysis of the number of function evaluations required for con-
vergence is left as an exercise for the reader (see Exercise 4.4.5). When ana-
lyzing the distance to the optimum and the suboptimality of the final solution,
the dependence on parameter ε is not relevant to be analyzed. Any algorithm
that converges from an ε = 4 starting point obviously passed through the re-
gion of ε = 2 starting points, and therefore is only at a disadvantage when
analyzing the number of function evaluations until convergence is reached.
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Figure 4.12: Logistic regression: Boxplot of the distribution of the distance to
the minimum (top) and suboptimality (bottom).
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The distribution of the distance to the minimum and the suboptimality
is shown in Figure 4.12. Both plots show the distribution by κ (along the
top), algorithm (along the side) and the number of observations m (along
the x-axis). The two figures look quite similar. The most surprising result is
probably that BFGS is not influenced by any of the parameters. Neither the
training set size nor the “condition” of the problem (κ) appears to have any
influence on the quality of the result. We also see that BFGS has the lowest
average solution quality, but this may well be due to the chosen convergence
criteria. For the gradient descent strategy we observe the exact opposite be-
havior. We see that the solution quality increases with the size of the training
set and decreases, as we might expect, with increasing κ . Newton’s method
lies somewhere in between the two other algorithms; only κ has a small influ-
ence on the solution quality, and again, with increasing κ , the quality of the
solution decreases.

4.4.2 Nonconvex Problems

In the previous section we exclusively studied convex problems. While these
are not as seldom as one might think in practice, it is still often the case that we
encounter nonconvex problems. So how do we deal with these? One solution
is to try and find a suitable transformation so that the transformed problem
is convex. This is often possible for quasi-convex problems, for example. For
all other problems that are at least once continuously differentiable, we can
only find local optima efficiently. For this optimization, we can again employ
the methods we already know but have to take care that they now might not
terminate because of the ill-posed (nonconvex) problem. Sometimes a third
case arises; that is, we have to tackle a nonconvex problem that has a known
structure which we can exploit. One special class of problems that fall under
this category will be studied in the next section.

4.4.2.1 Nonlinear Least Squares (NLS) Problems

Nonlinear Least Squares (NLS) problems often arise in real-world regression
problems. While they are not convex in general, they are usually well behaved
and do not have many local optima. Because of their importance to statistics,
there are several specialized algorithms for these types of problems. Before
we get to them, let us fix some notation.

We assume that the statistical model for which we want to estimate the
coefficients has the following form:

y = h(X,β)+e= h(β)+e,
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where y = [y1 . . .ym]
T , h(β) = [h(x1,β) . . .h(xm,β)]

T , β = [β1 . . .βn]
T and

e= [e1 . . .em]
T , and that the objective function is the sum of squared model

errors. We will use the shorthand hi(β) for h(xi,β).

S(β) = (y−h(β))T (y−h(β)) = e(β)Te(β).

Then, the corresponding normal equations have the form

∇S(β) =−2Z(β)T (y−h(β)) = 0,

where Z(β) := Jh(β) is the m× n Jacobian matrix of the first derivatives
of h(β).

For the n×n Hessian matrix of the second derivatives of S(β) we have

H(β) = 2Z(β)TZ(β)−2
m

∑
t,t ′=1

(yt −ht(β))∇
2ht ′(β).

Please note that in the special case of a linear model we obtain

h(β∗) =Xβ∗,

∇S(β∗) =−2XT (y−Xβ∗) = 0 ⇔ XTXβ∗ =XTy,

H(β∗) = 2XTX.

If the Jacobian matrix Z(β) and the Hessian matrix H(β) can be calcu-
lated analytically, then any of the (quasi-)Newton type methods can be used
to find a local minimum of S(β). Since this problem is nonconvex in gen-
eral, it is important to start the algorithms from multiple points and to check
the gradient and possibly Hessian after termination to ensure that indeed a
minimum and not a saddle point or even a maximum was found.

Nonlinear Least Squares: Gauss-Newton Method

Instead of using the full Hessian, we can use its special structure to find ap-
proximations to it that are easier to calculate. One such approximation leads
directly to the so-called Gauss-Newton method or Gauss method. If the ex-
pected value of et = yt −ht(β

∗) is assumed to be zero, then the second term
of the Hessian can, on average, be ignored and the first term can be used as
an approximation of the Hessian of S(β). This leads to

P (k) = (2Z(β(k))TZ(β(k)))−1

and, since
∇S(β(k)) =−2Z(β(k))T (y−h(β(k))),
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we get with step length 1:

β(k+1) = β(k)+(Z(β(k))TZ(β(k)))−1Z(β(k))T (y−h(β(k)))

= (Z(β(k))TZ(β(k)))−1Z(β(k))T (y−h(β(k))+Z(β(k))β(k)).
(4.22)

This is the least squares estimator for the model

ȳ(β(k)) =Z(β(k))β+e, (4.23)

where
ȳ(β(k)) = y−h(β(k))+Z(β(k))β(k). (4.24)

The Gauss method can therefore be interpreted as a sequence of linear re-
gressions. In every step we calculate the least squares estimator for a linear
approximation of the nonlinear model.

The simplicity of this method and its good local convergence properties
(Dennis, 1973) make this method attractive, though P (k) is often singular and
not positive definite if β(k) is far away from β∗ minimizing S(β). Moreover, if
the linear approximation of the nonlinear model is bad or the model residuals
are large, then convergence might also be slow for this method.

Like Broyden’s method, we can combine the Gauss method with a quasi-
Newton type algorithm. Since the performance of the Gauss method depends
on the size of the model residuals, more exactly on

m

∑
t,t ′=1

(yt −ht(β))∇
2ht ′(β), (4.25)

Brown and Dennis (1971) suggested the following combination of the Gauss
method and a quasi-Newton method.

Instead of approximating the inverse of the Hessian of the objective func-
tion, now the Hessian of the function ht(β) is iteratively approximated; i.e.
we choose:

M
(k+1)
t =M

(k)
t +K

(k)
t ,

where M
(k)
t is an approximation of ∇2ht(β

(k)). Since

∇ht(β
(k))∼= ∇ht(β

(k+1))+∇2ht(β
(k+1))(β(k)−β(k+1)),

by inserting M
(k+1)
t =M

(k)
t +K

(k)
t for ∇2ht(β

(k+1)) we get

K
(k)
t (β(k+1)−β(k)) = µ

(k)
t (4.26)
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with
µ
(k)
t = ∇ht(β

(k+1))−∇ht(β
(k))−M

(k)
t (β(k+1)−β(k)).

Therefore, we use

K
(k)
t =

µ
(k)
t (β(k+1)−β(k))T

(β(k+1)−β(k))T (β(k+1)−β(k))

as a rank 1 correction matrix because then (4.26) is obviously valid.
The direction matrix for this method is

P (k) =

(
Z(β(k))TZ(β(k))−

m

∑
t,t ′=1

(yt −ht(β
(k)))M

(k)
t ′

)−1

.

A possible choice for M (1)
t is the identity matrix for all t.

Nonlinear Least Squares: Levenberg-Marquardt Method

The Marquardt method (Marquardt, 1963), sometimes also called Levenberg-

Marquardt method, can be used to modify methods not guaranteeing posi-
tive definite direction matrices P (k). This method utilizes the fact that

P (k)+λ (k)P̄ (k) (4.27)

is always positive definite if P̄ (k) is positive definite and the scalar λ (k) is
sufficiently large.

A possible choice for P̄ (k) is the identity matrix. Typically, this method is
used in combination with the Gauss method and Z(β(k))TZ(β(k)) is modified
and not its inverse. The new direction matrix is then given by:

P (k) = (Z(β(k))TZ(β(k))+λ (k)P̄ (k))−1, (4.28)

where In is used as P̄ (k).
For λ (k) near zero this method is very similar to the Gauss method, but

as we increase λ (k), the method transitions into a steepest descent type algo-
rithm. Since the good performance of the Gauss method is particularly high
near the minimum, we start with a small λ (1) and decrease λ (k) > 0 in every
iteration, unless this leads to an unacceptable step. Notice that the step length
and the step direction are jointly determined. Typically, the step length is set
to 1 for the Marquardt method.

Analogously, we could modify the Hessian of the objective function and
use

P (k) = (H(k)+λ (k)In)
−1 (4.29)
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as direction matrix. This method is generally called quadratic hill climbing

method, since it was introduced in a maximization context (Goldfeld et al.,
1966).

The performance of these methods is not invariant to transformations of
the coefficient space. Therefore, the choice of P̄ (k) has an influence on the
convergence and different choices might be appropriate for different problems
(Marquardt (1963), Goldfeld and Quandt (1972, chapter 1)).

The Levenberg-Marquardt method has very good convergence properties
in practice, even if the starting vector β(1) is far away from the minimum
of the objective function. To illustrate this, let us look at a simple nonlinear
model.

4.4.2.2 Example: Comparing the Algorithms

We will study the following artificial nonlinear statistical model:

yt = β ∗1 +β ∗2 xt,2 +β ∗22 xt,3 + et , t = 1, . . . ,20, or

y = h(β∗)+e,

where y = [y1 y2 . . .y20]
T , β∗ = [β ∗1 β ∗2 ]

T is the true coefficient vector, e =
[e1 e2 . . .e20]

T , and

h(β) =




β1 +β2x1,2 +β 2
2 x1,3

β1 +β2x2,2 +β 2
2 x2,3

...
β1 +β2x20,2 +β 2

2 x20,3


 .

The values of xt,2 and xt,3 are taken to be pseudo-random numbers from a
uniform distribution on [0,1) (cp. Chapter 6). The yt are calculated by sum-
mation of β ∗1 +β ∗2 xt,2 +β ∗22 xt,3 and a standard normally distributed random
number, where the true coefficients are set to β ∗1 = β ∗2 = 1. That means we
added the random error to

1+ xt,2 + xt,3.

In order to determine the least squares estimator of β∗, we have to minimize

S(β) = (y−h(β))T (y−h(β)). (4.30)

Figure 4.13 shows a contour plot of S(β). In the figure we see that S(β) has
two local minima. Which optimum is found largely depends on the starting
vector β(1) (see Figure 4.14). This influence will be studied systematically in
what follows.
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Figure 4.13: Contour plot of S(β) in the example. The two circles indicate
the minima of the function, where the filled one is the global minimum.
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Figure 4.14: Example: Levenberg-Marquardt paths; nearby starting points (+
and o) may lead to different solutions.
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Table 4.4: Runtimes of the Different Algorithms on Problem (4.30)

Quantiles of FE Distribution
Algorithm Function Min. 0.25 Med. 0.75 Max.

Gradient-Descent S 28 278 557 2457 7024
∇S 4 27 51 228 637

Newton S 5 15 73 104 105
∇S 5 15 73 104 105
∇2S 5 15 73 104 105

BFGS S 11 24 30 38 60
∇S 6 11 11 14 25

Gauss-Newton S 26 32 38 38 65
Jh 16 20 23 24 37

Levenberg-Marquardt S 4 6 7 7 12
Jh 3 5 6 6 8

Nelder-Mead S 45 57 65 75 143

Note: Depicted are the minimum, lower quantile, median, upper quantile and
maximum number of function, gradient, Hessian and Jacobian evaluations
(FE) used by the algorithms.

All the following figures (see, e.g., Figure 4.15) used to show the con-
vergence of the methods use the same display. At the location of each initial
parameter value an arrow is shown whose size is proportional to the num-
ber of function evaluations and which points toward the local minimum that
was found by the algorithm. The scaling of the arrow size is not comparable
between figures because some algorithms require many more function evalu-
ations than others. In principle, it is hard to compare, e.g., the Newton method
with the method of steepest descent because the Newton method additionally
calculates the (expensive) Hessian in each iteration. Therefore, it has much
more information about the local shape of the function landscape than most of
the other methods. The number of function, gradient, Hessian, and Jacobian
evaluations used by the algorithms are summarized in Table 4.4. The Nelder-
Mead method mentioned in the table will be described in Section 4.4.3.

Gradient Descent

In most cases the method of steepest descent converges to the minimum that
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Figure 4.15: Example: Steepest descent attraction (left), Newton attraction
(right).

is nearest to the starting vector, but frequently only after a tremendous number
of function evaluations, in particular in the case of the global minimum. The
reason for this is the long-stretched valley in which the global minimum is
located (see Figure 4.15). Here, the line search requires many iterations to
find a good new intermediate solution. This can be inferred from the ratio of
function evaluations to gradient evaluations. In each iteration the algorithm
will only perform one gradient evaluation but many function evaluations.

Newton Method

The Newton-Raphson method converges against both local minima very
quickly (see Figure 4.15). Note that there is an area in the top right of the
parameter space from which the method does not converge toward the closer
(upper) minimum, but instead ends up in the minimum farther away (lower
right). Also note that the Newton method converges extremely fast if the ini-
tial parameter vector lies in the flat lower left region of the parameter space.

BFGS

For the BFGS method, the assignment of a starting vector to a local minimum
is not so clear. Nevertheless, the method converges to the nearest minimum
relatively fast in an acceptable surrounding (see Figure 4.16). In Table 4.4 we
can see that although the BFGS method does not use second-order informa-
tion, it is on average faster than the Newton method and is noticeably faster
in the worst case. This is all the more true if we factor in the fact that eval-
uating the Hessian ∇2S is much more expensive than a function or gradient
evaluation.
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Figure 4.16: Example: BFGS attraction (left), Gauss-Newton attraction
(right).

Gauss-Newton

The convergence landscape of the Gauss-Newton method shows a very inter-
esting structure (see Figure 4.16). Apparently, only the location of the starting
value of β2 decides to which minimum the algorithm converges. The median
number of necessary function evaluations is similar to the BFGS method, the
worst case behavior is also similar, but in the best case the method performs
poorly when compared to BFGS. This is surprising, given that it is one of
two methods in the comparison specifically tailored to nonlinear least squares
problems.

Levenberg-Marquardt

The Levenberg-Marquardt method works similar to the Gauss-Newton
method (see Figure 4.17). It can clearly be seen that the initial value of β2

is decisive for the found local minimum. In terms of number of function or
Jacobian evaluations the algorithm is by far the best candidate in the com-
parison. Clearly, the specialization is worth the extra implementation effort.
In practice, Levenberg-Marquardt type algorithms are the de facto standard
when it comes to solving large scale nonlinear least squares problems. We
will see an example of this in Section 4.5.

Let us try to explain the somewhat strange behavior of the Gauss-Newton
method and the Levenberg-Marquardt method that the initial value of β2 in a
way determines the found local minimum. In order to better understand this,
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Figure 4.17: Example: Levenberg-Marquardt attraction (left), Nelder-Mead
attraction (right).

let us analyze the structure of Gauss-Newton steps:

− (Z(β(k))TZ(β(k)))−1Z(β(k))T (y−h(β(k)))

=− (Z(β(k))TZ(β(k)))−1Z(β(k))Te(β(k))).

Here, 2Z(β(k))TZ(β(k)) replaces the Hessian

H(β(k)) = 2Z(β(k))TZ(β(k))−2
m

∑
t,t ′=1

(yt −ht(β
(k)))∇2ht ′(β

(k)).

So, let us have a look at Z:

Z(β(k)) = Jh(β
(k)) =




1 x1,2 +2β
(k)
2 x1,3

1 x2,2 +2β
(k)
2 x2,3

...
...

1 x20,2 +2β
(k)
2 x20,3



.

The approximation 2Z(β(k))TZ(β(k)) does not depend on β
(k)
1 in contrast to

the Hessian H(β(k)) via the terms (yt −ht(β
(k))). This might be one reason

for the behavior of the Gauss-Newton method.
There is one method in Table 4.4 that we have not discussed, the Nelder-

Mead method. It only performs function evaluations, avoiding all costly gra-
dient or Hessian computations and performs quite well considering this.
In fact, except for the Levenberg-Marquardt algorithm and maybe BFGS,
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Nelder-Mead dominates all other algorithms. How optimization can be per-
formed without using first- or second-order information will be the topic of
the next section.

4.4.3 Derivative-Free Methods 4

A major drawback of all of the methods we have seen so far is that they
need an analytical form of the first partial derivatives in order to determine
a descent direction. If these are not available, some of these methods use a
numerical approximation scheme as a substitute:

∂S

∂βi

∣∣∣
β

∼=
(

S(β1, . . . ,βi−1,βi +∆βi,βi+1, . . . ,βn)

2∆βi

−S(β1, . . . ,βi−1,βi−∆βi,βi+1, . . . ,βn)

2∆βi

)∣∣∣
β

for sufficiently small ∆βi. Similar one-sided approximations are also some-
times used. It should be clear that using such a crutch not only increases the
number of function evaluations but also degrades the quality of solution we
can expect. If desired, higher-order derivatives can be approximated using the
same idea. Details for such methods can be found in Bard (1974, Section 5-
18), and Quandt (1983).

Another possibility to avoid partial derivatives is the application of so-
called direct search methods. These procedures are especially useful if the
first derivatives of the objective function are nonexistent or complicated to
calculate.

Simplex Method

One such direct search method is the so-called simplex method proposed by
Spendley et al. (1962) in connection with statistical design of experiments.
Notice that this method has nothing to do with the simplex method in linear
programming (see Section 4.6.3).

A simplex is set up by n+1 vectors β1,β2, . . . ,βn+1 in a n-dimensional
space. These vectors are the corners of the simplex. In 2D, simplexes of max-
imal dimension are triangles in the plane. In 3D, they form tetrahedrons (cp.
Figure 4.18) and generally in R

n, simplexes are regular polyhedrons.
From analytical geometry we know that the coordinates of the corners

of a regular simplex can be represented by the following matrix D, where
each column stands for one corner, numbered i = 1, . . . ,(n+1), and the rows

4Partly based on Himmelblau (1972, pp. 148 – 157).
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Figure 4.18: Regular simplexes for two and three independent variables. The
highest function value f (x) is in (1). The arrow points into the direction of
largest improvement.

represent the coordinates j = 1, . . . ,n:

D =




0 d1 d2 . . . d2

0 d2 d1 . . . d2

0 d2 d2 . . . d2
...

...
... . . .

...
0 d2 d2 . . . d1




is a n× (n+1) matrix with

d1 =
t

n
√

2
(
√

n+1+n−1),

d2 =
t

n
√

2
(
√

n+1−1), t = distance between two corners.

So the triangle in 2D with n = 2 and t = 1 in Figure 4.18 has the following
coordinates:

Corner βi,1 βi,2

1 0 0
2 0.965 0.259
3 0.259 0.965

The objective function is evaluated in each corner. Then, the point A with the
highest function value is reflected at the centroid of the remaining points (see
Figure 4.18). Point A is then eliminated and a new simplex (the reflection) is
generated by the remaining points of the old simplex and the new reflected
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Figure 4.19: Sequence of regular simplexes for the minimization of f (β).
Dashed lines represent reflection directions.

point B in the direction of the reflection so that the new simplex has the same
volume as before.

The search is then continued in the same way by always replacing the
point with the largest function value by its reflection. Additionally, rules for
simplex reduction and to prevent loops near the optimum are applied. This
leads to a derivative-free search with, in principle, fixed step length in each
iteration, but with changing search direction. Figure 4.19 illustrates the se-
quence of simplexes in 2D for a well-conditioned objective function.

Nelder-Mead Method

Nelder and Mead (1965) proposed a search method which generalizes the
simplex method and is more effective but nevertheless easy to implement.
Some practical difficulties of the simplex method, in particular that it is not
possible to speedup the search for problems with curvy valleys, lead to dif-
ferent improvements of the method, especially to the method of Nelder and
Mead, in which the simplex is allowed to change its shape, becoming a “flex-
ible polyhedron”.

The method of Nelder and Mead minimizes the function f (β) of n in-
dependent variables based on the (n+ 1) corners of a flexible polyhedron in
R

n. Each corner is defined by a vector β. The corner with the largest func-
tion value f (β) is projected through the centroid of the remaining corners.
Better (meaning smaller) values of the objective function are found by itera-
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tively replacing the point with largest value of f (β) by a better point until the
minimum of f (β) is found.

Let β(k)
i =

(
β
(k)
i1 , . . . ,β

(k)
i j , . . . ,β

(k)
in

)T

, i = 1, . . . ,n+1, be the ith corner of

the polyhedron in R
n in iteration step k, k = 0,1, . . . , and let the value of the

objective function in β
(k)
i equal to f (β

(k)
i ). Moreover, let

f (β
(k)
h ) = max( f (β

(k)
1 ), . . . , f (β

(k)
n+1)) and (4.31)

f (β
(k)
l ) = min( f (β

(k)
1 ), . . . , f (β

(k)
n+1))

be the vectors with maximum and minimum function values in the polyhe-
dron, where h stands for high and l for low.

For the polyhedron in R
n defined by the (n+ 1) corners β1, . . . ,βn+1,

let βn+2 be the centroid of all corners except for βh. The coordinates of this
centroid are given by

β
(k)
n+2, j =

1
n

((
n+1

∑
i=1

β
(k)
i j

)
−β

(k)
h j

)
, j = 1, . . . ,n, (4.32)

where the index j represents a coordinate direction.
The starting polyhedron is usually a regular simplex with β1 or the cen-

troid in the origin. The procedure of finding a new corner in R
n with a better

value of f (β) is made up of four operations.

Reflection: Reflect β(k)
h through the centroid by

β
(k)
n+3 = β

(k)
n+2 +α(β

(k)
n+2−β

(k)
h ), (4.33)

where α > 0 is the so-called reflection coefficient, β(k)
n+2 the centroid from

Equation (4.32), and β
(k)
h the corner in which f (β) has the largest value of

all (n+1) values of f (β) in iteration step n (see (4.31)).

Expansion: If f (β
(k)
n+3)≤ f (β

(k)
l ), then expand the vector (β(k)

n+3−β
(k)
n+2) by

β
(k)
n+4 = β

(k)
n+2 + γ(β

(k)
n+3−β

(k)
n+2), (4.34)

where γ > 1 is the expansion coefficient. If f (β
(k)
n+4) < f (β

(k)
l ), then re-

place β(k)
h by β

(k)
n+4 and go to the reflection step with k := k+1. Otherwise,

replace β
(k)
h by β

(k)
n+3 and go to the reflection step with k := k+1.

Contraction: If f (β
(k)
n+3) > f (β

(k)
i ) for all i 6= h, then contract the vector

(β
(k)
h −β

(k)
n+2) by

β
(k)
n+5 = β

(k)
n+2 +β (β

(k)
h −β

(k)
n+2), (4.35)
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where 0 < β < 1 is the contraction coefficient (Attention: change of di-

rection!). If f (β
(k)
n+5) ≤ f (β

(k)
h ), then replace β

(k)
h by β

(k)
n+5 and go to the

reflection step with k := k+1.

Reduction: If f (β
(k)
n+5) > f (β

(k)
h ), then reduce all vectors in the direction

(β
(k)
i −β

(k)
l ), i = 1, . . . ,n+1, by half so that

β
(k)
i = β

(k)
l +0.5(β(k)

i −β
(k)
l ), i = 1, . . . ,n+1, (4.36)

and go back to the reflection step setting k := k+1.

Stopping: As a stop criterion the following limit for the size of the polyhe-
dron is used:

{
1

n+1

n+1

∑
i=1

[
f (β

(k+1)
i )− f (β

(k)
n+2)

]2
}0.5

≤ ε, (4.37)

where ε is an arbitrarily small positive number and f (β
(k)
n+2) the value of

the objective function in the centroid β
(k)
n+2.

The reflection coefficient α is used to reflect the corner with the largest
objective function value f (β) through the centroid of the remaining points
of the flexible polyhedron. The expansion coefficient γ is used for the expan-
sion of the search vector if the reflection has generated a corner with a value
f (β), which is smaller than the smallest value reached so far. The contrac-
tion coefficient β is used to contract the search vector if the reflection did not
generate a corner with an objective function value smaller than the second
largest value before reflection. By this procedure we alter the shape of the
flexible polyhedron to adapt to the local topography of the actual problem by
either expansion or contraction. Algorithm 4.9 is a concise description of the
Nelder-Mead algorithm as we have described it here.

Figure 4.17 (p. 192) illustrates the starting point dependency of the
method for the NLS problem from the previous section. Not surprisingly the
Nelder-Mead method does not necessarily converge to the nearest local min-
imum. Moreover, the distribution of the number of function evaluations is
skewed; e.g. the median is 65 and the maximum 143 (see Table 4.4).

Example 4.4: Rosenbrock Function
The contour plots in Figure 4.20 illustrate the progress of the search for the
minimum of the so-called Rosenbrock function (Rosenbrock, 1960)

f (β ) = 100(β2−β 2
1 )

2 +(1−β1)
2
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Algorithm 4.9 Nelder-Mead Method

Require: f : Rn→ R

Coefficients α > 0, 0 < β < 1, γ > 1, ε > 0.
Initial simplex defined by β1, . . . ,βn,βn+1.

1: while Size of polyhedron > ε do

2: l← argmini∈{1,...,n+1} f (βi)
3: h← argmaxi∈{1,...,n+1} f (βi)
4: βcentroid← centroid of {β1, . . . ,βn+1 without βh}
5: βcandidate← βcentroid +α(βcentroid−βh) {Reflection}
6: if f (βcandidate)≤ f (βl) then

7: β′candidate← βcentroid + γ(βcandidate−βcentroid) {Expansion}
8: if f (β′candidate)< f (βl) then

9: βh← β′candidate
10: else

11: βh← βcandidate

12: end if

13: else if ∀i 6= h : f (βcandidate)> f (βi) then

14: βcandidate← βcentroid +β (βh−βcentroid)
15: if f (βcandidate)≤ f (βh) then

16: βh← βcandidate {Contraction}
17: else

18: for i = 1 to n+1 do

19: βi← βl +0.5(βi−βl) {Reduction}
20: end for

21: end if

22: else

23: βh← βcandidate

24: end if

25: end while

for the starting vector β(1) = [−0.5 0.5]T is the first corner of the following
simplex:

Corner βi,1 βi,2

1 -0.500 0.500
2 -0.017 0.629
3 -0.371 0.983

It is clear that the flexible polyhedron, in contrast to a rigid simplex, can
adapt to the topography of the objective function. It will expand along long
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Figure 4.20: Construction of Nelder-Mead procedure in several steps.
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inclined planes, change direction in curvy valleys, and can contract when it is
close to a minimum (see contour plots in Figure 4.20).

What we have neglected so far is the choice of parameters α , β and γ .
Once the size of the flexible polyhedron has adapted to the local landscape
it should not change until the topography of the problem has changed. This
is only possible if we set α = 1. Moreover, Nelder and Mead demonstrated
that α = 1 requires fewer function evaluations than α < 1 in their example
cases. On the other hand, α should not be much greater than 1, since smaller
values of α lead to a faster adaptation of the flexible polyhedron to the local
problem topology. This is especially true if it is necessary to change direction
in a curvy valley. Finally, for large values of α , we would need many steps to
reduce the size of the polyhedron in situations close to a minimum. Overall,
α = 1 appears to be the right compromise.

In order to study the influence of β and γ on the progress of the search,
Nelder and Mead solved test problems with a large number of different com-
binations of values for β and γ . Nelder and Mead then recommended the
values α = 1, β = 0.5, and γ = 2 for a general unrestricted problem.

Nelder and Mead also found that the size and orientation of the starting
polyhedron influence the number of function evaluations. However, the ade-
quate choice of α , β , and γ appeared to be more important.

4.4.4 Summary

In this section we introduced a general framework for nonlinear multivari-
ate convex and nonconvex optimization. We discussed methods for differen-
tiable and non-differentiable objective functions. The most prominent rep-
resentatives are quasi-Newton methods in the convex differentiable case,
the Levenberg-Marquardt method in the (nonconvex) nonlinear least-squares
case, and the Nelder-Mead method in the non-differentiable case. We com-
pared the behavior of the methods on a nonlinear least-squares example show-
ing that specialization may, on the one hand, help in that the Levenberg-
Marquardt method is fastest. It may, however, on the other hand, also lead to
unexpected behavior, again illustrated by the Levenberg-Marquardt method,
which shows nearly no dependence on one of the coefficient values.

4.5 Example: Neural Nets

Let us continue with a famous but somewhat involved example of a nonlinear
model where nonlinear least squares estimation is typically used in a special
way, namely, the Artificial Neural Net (ANN).
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4.5.1 Concept5

Definition 4.7: Artificial Neural Net (ANN)
An Artificial Neural Net (ANN) consists of a set of processing units, the
so-called nodes simulating neurons, which are linked by a set of weights

analogous to the synaptic connections in the nervous system. The nodes rep-
resent very simple calculation components based on the observation that a
neuron behaves like a switch: if sufficient neurotransmitters have been accu-
mulated in the cell body, an action potential is generated. This potential is
mathematically modeled as a weighted sum of all signals reaching the node,
and is compared to a given limit. Only if this limit is exceeded, is the node
“firing”.

That a neural net can model complex interrelations is, similar to a com-
puter, not enabled by the complexity of a single processing unit, but by the
density and complexity of the connections. Concerning computability, neu-
ral nets are an equally powerful model as the Turing machine (see http:

//www.math.rutgers.edu/~sontag/FTP_DIR/aml-turing.ps.gz).
In contrast to conventional computers, the storage of a neural net is

distributed over the whole structure and is modified by experience, i.e. by
so-called learning from new observations. In comparison, conventional com-
puters work with fixed programs on very complex central processing units.
Structurally, an ANN is more comparable to a natural (biological) neural

net as, e.g., the human brain.

Definition 4.8: Multilayer Networks
The most well-known neural net is the so-called Multilayer Neural Network

or Multilayer Perceptron. Such a network can be hierarchically organized
into layers of neurons, namely the input layer, the interior layers, and the
output layer. A feed-forward net only allows for signals in one direction,
namely, from the input nodes toward the output nodes. As in any neural net-
work, in a multilayer network a weight is assigned to every connection be-
tween two nodes. These weights represent the influence of the input node on
the output node.

In what follows, we will only consider special multilayer neural networks,
namely, networks with only one interior (or hidden) layer (see Figure 4.21).
Please note that sometimes the weighted connections rather than the neurons
are called layers. Then, the network in the figure would be called a two layer
feed-forward network instead of a three layer feed-forward network.

5Partly based on Cross et al. (1995) and Hwang and Ding (1997).
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Figure 4.21: Model of a multi-layer neural network. There are L input neurons
and d hidden neurons in one hidden layer.

In an artificial neural network (ANN), linear combinations of the input
signals X1, . . . ,XL with individual weights βl are used as input for each node
of the hidden layer. Each node then transforms this input signal using an ac-

tivation function g to derive the output signal. These output signals are then
again linearly combined with weights αi to determine the value y of the only
node in the output layer to arrive at the output signal Y . In addition to the
input signals X1, . . . ,XL, a constant term α0, the so-called bias, is added to
the output, analogous to the intercept term of the linear model. As usual, we
assume that the model has an additive stochastic term ε that complements the
deterministic part of the model. We assume that this error term has zero mean
and finite variance.

Definition 4.9: Activation Function
The activation function is generally not chosen as a jump function “firing”
only beyond a fixed activation potential, as originally proposed, but as a sym-
metrical sigmoid function with the following properties:

lim
x→−∞

g(x) = 0, (4.38)

lim
x→∞

g(x) = 1, (4.39)

g(x)+g(−x) = 1. (4.40)

A popular choice for the activation function is the logistic function (see Fig-
ure 4.22):

g(x) =
1

1+ e−x
. (4.41)
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Figure 4.22: Logistic activation function.

Another obvious choice for the activation function is the cumulative distribu-
tion function of any symmetrical distribution.

Definition 4.10: Statistical Model for Neural Nets
The model corresponding to the multilayer network with one hidden layer has
the form:

Y = α0 +
d

∑
i=1

αig(β
T
i X+βi0)+ ε =: f (X;Θ)+ ε, (4.42)

where X = [X1 . . . XL]
T is the vector of input signals, βi = [βi1 . . . βiL]

T is
the vector of the weights of the input signals for the ith node of the hidden
layer, βi0 is the input weight of the constant, α = [α1 . . . αd ]

T is the vector
of the weights of the output signals of the nodes of the hidden layer, α0 is the
bias, and ε is a random variable with expected value 0.

The unknown model coefficients of this model are:

Θ= [α0 . . . αd β10 . . . βd0 β
T
1 . . . βT

d ]
T .

They have to be estimated (as statisticians would say) or learned (in the lan-
guage of neural networks and machine learning). The process of learning the
coefficients of a neural network is also referred to as the training of the net-
work, whereas predictions are then used to test the network.
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4.5.2 Coefficient Estimation with Neural Nets 6

The model coefficients are estimated by means of the nonlinear least squares

method (cp. Section 4.4.2.1).
We have to minimize the following criterion function corresponding to

Θ:
m

∑
j=1

( f (x j;Θ)− y j)
2. (4.43)

The established method used to estimate the parameters is called backprop-

agation. At least two variants are in widespread use. The so-called batch

backpropagation is nothing more than the well-known steepest descent
method (cp. Section 4.4.1.3) using all observations for the calculation of the
criterion and its gradient in the inner minimization step. In contrast, in online

backpropagation the observations are individually presented to the neural
network and the weights of the nodes are continuously updated as new obser-
vations pass through the network. The gradient is therefore only calculated
using the jth error term ( f (x j;Θ)− y j)

2. Then, the change in the coefficients
after the presentation of the complete set of observations only approximately
corresponds to one iteration step of the batch backpropagation, since during
the step Θ is changed after every observation. It is clear that the observations
have to be presented several times to fully reflect the steepest descent method.
We may want to permute the observations periodically so that they are pre-
sented to the network in a different order in each iteration. In other variants,
each iteration is based on a different random subset of the observations. This
variant is called the mini-batches method, representing a compromise be-
tween the online and the batch optimization.

The derivation of the online backpropagation rule is left as an exercise to
the reader. It is based on a clever application of the chain rule of differential
calculus. Instead, we will concentrate on the properties of neural networks.

The online backpropagation rule has the form:

Θ
( j;k)
pq = Θ

( j−1;k)
pq + t( j;k)o

( j;k)
p δ

( j;k)
q , (4.44)

where:

– The lower indices of the coefficients Θ
( j;k)
pq indicate that the link between

the nodes p and q is represented for any numbering of the nodes, where
node q is in a layer that directly follows the layer of node p. The upper
indexes indicate that the jth observation is presented the kth time to the net
(i.e. we are in the kth iteration).

6Partly based on Zell (1995, pp. 105–114).
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– t( j;k) is a step size, called learning rate, which should be chosen as ade-
quately as possible.

– o
( j;k)
p is the output of the pth node for the jth observation in the kth itera-

tion.

– δ
( j;k)
q is the negative error derivative, indicating how strong the model error

in the kth iteration reacts to changes of the output of node q when present-
ing observation j. One can show that

δ
( j;k)
q =

{
o
( j;k)
q (1−o

( j;k)
q )(y jq−o

( j;k)
q ), if q is an output node,

o
( j;k)
q (1−o

( j;k)
q )∑N δ

( j;k)
N Θ

( j;k)
qN , if q is a hidden node

}
,

where:

– y jq is the true value of the output of the output node q for observation j.

– The index N runs through all nodes succeeding the hidden node q.

Please note that this formulation of the backpropagation rule allows more
than one hidden layer and more than one output node. For our net with only
one hidden layer and one output node the index N in the previous formula
only represents the one output node, and the true value y jq of the output of
the one output node for observation j is just referred to as y j.

So far, nothing was said about the order in which the weights are updated.
This is, however, specific for the algorithm, and even giving the method its
name.

Indeed, in the first step in iteration k, observation j is “shifted forward”
through the net with the actual weights Θ

( j−1;k)
pq . This leads to the outputs

o
( j;k)
q of all nodes. With these, we can calculate the error derivatives of the

output nodes. Then, we step backwards and calculate the error derivatives of
the hidden nodes, especially from the error derivatives of the output nodes.
This leads to the term backward propagation or backpropagation, since
the error derivatives propagate backwards through the net, and the updating
of the weights also runs backwards, starting with the edges leading to output
nodes.

Shape of the Criterion Function

The error function is highly nonlinear and nonconvex in Θ because of the
activation function. This implies that every descent method will probably only
find a local minimum of the criterion function.

In practice, there are some tricks to handle the problem of local minima.
E.g., we could start the estimation method repeatedly with different starting
vectors. However, nothing can guarantee the efficient (or even the successful)
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Figure 4.23: Noisy sine function (solid line). Overfitting: Interpolating func-
tion with zero errors (thin dashed line). Underfitting: Badly approximating
function (broken line). We look for something “adequate inbetween”.

finding of the global optimum. Most of the time one even has no information
about the realized distance of the found local optimum to the global optimum.

Interpolation or Approximation?

Neural nets are a very flexible nonparametric regression method. Indeed, neu-
ral nets are universal approximators (see below) and approximate any un-
known relationship between x and y. The question is: What should be opti-
mized? In general, we are not really looking for a function which reduces the
criterion 1

m ∑
m
j=1( f (x j;Θ)− y j)

2 (nearly) to 0! The solving of the nonlinear
least squares problem is only a surrogate for the minimization of the expected
value EX ,Y [( f (X ,Θ)−Y )2] for new (!) data, where X and Y are random vari-
ables with realizations xi and yi.

Universal Approximation

For neural nets we can show that they can approximate any smooth function
arbitrarily well if the number of nodes in the hidden layer is not limited. This
is called universal approximation property of neural nets.

Positively said, we can represent every interesting function by an ANN.
Negatively said, if too many neurons are chosen, there is the chance to nearly
interpolate, i.e. to also explain, the noise and not only the underlying function
(cp. Figure 4.23).

Hold-Out Assessment

Neural nets tend to overfit because of their already mentioned complexity.
One way out is the error assessment on a so-called hold-out set, not used
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during training (see Section 7.4). If this error is increasing after a while, then
training is stopped.

Increase of Speed of Convergence?

From the standpoint of a numerical mathematician, backpropagation should
be replaced by a faster converging method like, e.g., the Levenberg-
Marquardt algorithm in Section 4.4.2.1. Moreover, online backpropagation
has the same convergence problems as the standard batch steepest descent
(cp. Section 4.4.1.3). Therefore, more advanced optimization methods are of-
ten used in practice in order to reduce training time.

Efficiency on Large Data Sets

However, especially for large data sets, (online) backpropagation can be much
more efficient than an advanced (second-order) optimization algorithm, be-
cause the calculation of a complete update step scales only linearly with
the number of parameters. For second-order methods scaling is quadratic or
even cubic, because of the inversion of the Jacobian matrix term, e.g. for the
Levenberg-Marquardt method.

4.5.3 Identifiability of Neural Nets

Unfortunately, the model function of the neural nets yields an important prob-
lem, since model (4.42) is not identifiable in the sense that there exist several
coefficient vectors Θ with the same value of the model function f (X;Θ).
Identifiability is a general problem of nonlinear models. Therefore, we will
discuss it here in more detail using neural nets to illustrate the concept.

Unfortunately, neural nets with the logistic activation function (4.41)

are never identifiable, and therefore interpretation of the estimated coeffi-
cients of a model (4.42) should be avoided in any case.

In the following, two concepts of identifiability will be discussed that
were particularly introduced for neural nets: namely redundancy and re-
ducibility.

Definition 4.11: Redundancy and Reducibility
A neural net is called redundant if another neural net exists with less nodes
and identical values of the model function f (X ;Θ). A coefficient vector Θ=
[α0 . . . αd β10 . . . βd0 β

T
1 . . . βT

d ]
T is called reducible, if one of the following

three conditions is valid for i 6= 0 and j 6= 0:

1. αi = 0 for any i = 1, . . . ,d.

2. βi = 0 for any i = 1, . . . ,d, 0 = null vector of length L.

3. (βi0,β
T
i ) =±(β j0,β

T
j ) for any i 6= j.
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These two notions are related if we are using the logistic activation func-
tion.

Theorem 4.4: Reducibility with Logistic Activation Function
If Θ is reducible and g is the logistic activation function (4.41), then the
corresponding neural network is redundant.

Proof. We handle the three conditions of reducibility:

1. The ith neuron of the hidden layer can be eliminated without changing the
value of f .

2. If the ith neuron of the hidden layer is eliminated and α0 is replaced by
α0 +αig(βi0), then the value of f is not changed.

3. If (βi0,β
T
i ) = (β j0,β

T
j ), then α j is replaced by α j + αi. If (βi0,β

T
i ) =

−(β j0,β
T
j ), then α j is replaced by α j − αi and α0 by α0 + αi. In both

cases the value of f is not changed. Indeed, in the second case the use of
the logistic activation function g implies

αig(β
T
i x+βi0) =

αi

1+ e−(β
T
i x+βi0)

=
αie

(βT
i x+βi0)

e(β
T
i x+βi0)+1

=
αi(1+ e(β

T
i x+βi0))−αi

1+ e(β
T
i x+βi0)

= αi−αig(−βT
i x−βi0) = αi−αig(β

T
j x+β j0).

On the other hand, a not reducible Θ does not necessarily lead to a non-
redundant neural network. A sufficient condition for this will be given later.

Unfortunately, redundancy is not synonymous with nonidentifiability,
since several neural nets with the same number of neurons can lead to the
same values of the model function f (X ;Θ):

Theorem 4.5: Nonidentifiability of Neural Nets
Neural networks with a logistic activation function (4.41) are never identifi-
able, since there are two kinds of transformations of the model coefficients Θ
that leave the model function invariant:

(i) permutations of the neurons, respectively of the coefficients µi =
[αi βi0 β

T
i ]

T of the neurons and

(ii) the transformations

(α0,µ1, . . . ,µi, . . . ,µd)→ (α0 +αi,µ1, . . . ,−µi, . . . ,µd).
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Proof.

1. Is clear.

2. Follows from αig(β
T
i x+βi0) = αi−αig(−βT

i x−βi0) as in 3. of the pre-
vious proof.

Serial connection of these transformations results in 2dd! transformations
τ with f (X ;Θ) = f (X ;τ(Θ)).

However, for certain activation functions one can show that 1. and 2. are
the only transformations leaving the model function invariant. Decisive for
this is that the contribution of any neuron to the model function cannot be
represented by the contributions of the other neurons and of the model con-
stant α0. That means any neuron delivers an innovative contribution to the
model function. Condition 1 formulates the corresponding requirements con-
cerning the activation function g.

Condition 1: The class of functions {g(bx + b0), b > 0} ∪ {g ≡ 1} is
linearly independent. In more detail, for every d ∈N and scalars a0,ai,bi0 ∈R
and bi > 0, i = 1, . . . ,d, with (bi,bi0) 6= (b j,b j0) for every i 6= j:

a0 +
d

∑
i=1

aig(bix+bi0) = 0 ∀ x ∈ R ⇒ a0 = a1 = · · ·= ad = 0.

Notice that the condition b> 0 does not cause any restriction since αig(β
T
i x+

βi0) = αi−αig(−βT
i x−βi0).

A further reaching condition on the activation function additionally guar-
antees the invertibility of the covariance matrix of the model coefficients and
thus, at least asymptotically, of an adequate estimator of this covariance ma-
trix. An estimator for the covariance matrix is, e.g., required for the determi-
nation of prediction intervals (cp. Section 7.4).

Condition 2: Let g be differentiable and g′ its first derivative. The class
of functions

{g(bx+b0), g′(bx+b0), xg′(bx+b0), b > 0}∪{g≡ 1}

is linearly independent, i.e. for every d ∈ N and scalars a0,ai,ei, fi,bi0 ∈ R

and bi > 0, i = 1, . . . ,d, with (bi,bi0) 6= (b j,b j0) for every i 6= j:

a0 +
d

∑
i=1

[aig(bix+bi0)+ eig
′(bix+bi0)+ fixg′(bix+bi0)] = 0 ∀x ∈ R

⇒ a0 = a1 = · · ·ad = e1 = · · ·= ed = f1 = · · ·= fd = 0.
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If the coefficients vector Θ is not reducible, then Condition 1 guaran-
tees identifiability except for the above transformations, and Condition 2 even
guarantees invertibility of the covariance matrix of the coefficients.

Theorem 4.6: Identifiability of the Model and Invertibility of the Covariance
Matrix of the Coefficients
For model (4.42) of neural nets with symmetrical sigmoid activation function
g as in (4.38–4.40) let condition 1 be valid. Let the vector of model coeffi-
cients Θ be not reducible. Moreover, let X be a vector of random variables
with range R

L. Then:

1. Θ is identifiable, except for the above inevitable transformations τ , i.e. if
there is a Θ∗ with f (X ;Θ) = f (X ;Θ∗), then there is an inevitable trans-
formation τ so that Θ∗ = τ(Θ).

2. If g is additionally differentiable and condition 2 is valid, then matrix BE :=

E
[

∂ f

∂Θ(X ;Θ)T ∂ f

∂Θ(X ;Θ)
]

is invertible, where ∂ f

∂Θ(X ;Θ)T is the gradient

vector dependent on the random vector X .

Proof. See Hwang and Ding (1997).

The first part of this result implies the following corollary, giving a suffi-
cient condition for non-redundancy of the model.

Corollary 4.1: Non-Redundancy of the Model
Under condition 1 the non-reducibility of the model coefficients guarantees
the non-redundancy of the model.

Therefore, reducibility and redundancy are equivalent if the logistic acti-
vation function satisfies condition 1. Indeed, it is even satisfying condition 2,
as well as some important distribution functions of symmetrical distributions,
e.g. the standard normal distribution.

Theorem 4.7: Activation Functions Satisfying Condition 2
The distribution function of the standard normal distribution N (0,1) and the
logistic function (4.41) satisfy condition 2.

Proof. See Hwang and Ding (1997, pp. 754 – 756).

Here, this concludes our discussion of neural nets. In Section 7.4, we will
come back to neural nets considering the following topics:

– We will show that neural nets are totally unproblematic for prediction, if
their activation function satisfies condition 2, though the coefficients of the
neural nets are not interpretable.
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– We will give a procedure for identifying the number of nodes in the hidden
layer of a neural net.

4.5.4 Summary

In this section we discussed (artificial) neural networks as a prominent ex-
ample for a nonlinear least-squares problem. We discussed specialized esti-
mation methods for this model and the nonidentifiability of the model coeffi-
cients. Notice that nonidentifiability is a general problem, at least in nonlinear
models.

4.6 Constrained Optimization

In this section we will show how the idea of iteration can be applied to the
problem of solving constrained optimization problems. For this, we assume
the reader to have a rudimentary understanding of Lagrangian duality, which
is crucial when dealing with a constrained optimization problem. Recall that
for a solution β∗ to a constrained optimization problem

minimize
β∈Rn

f (β)

subject to g(β)≤ 0,

h(β) = 0

to be optimal, the Karush-Kuhn-Tucker (KKT) conditions and some suitable
regularity7 conditions must hold. These can be formulated as follows.

Suppose that the objective function f : : Rn→R and the constraint func-
tions gi : Rn → R, i = 1, . . . ,m, and h j : Rn → R, j = 1, . . . , l, are continu-
ously differentiable at a point β∗. Let g := [g1 . . . gm]

T , h := [h1 . . . hl]
T

and Jg ∈ L(m,n), Jh ∈ L(l,n) the corresponding Jacobians . If β∗ is a lo-
cal minimum that satisfies some regularity conditions, then there exist con-
stants µ := [µ1 . . . µm]

T and λ := [λ1 . . . λl]
T , called Karush-Kuhn-Tucker

(KKT) multipliers, such that:

Stationarity:

∇ f (β)+ Jg(β)
Tµ+ Jh(β)

Tλ= 0,

Primal feasibility:

g(β)≤ 0 and h(β) = 0,

7For convex problems one set of regularity conditions is the Slater conditions. They re-
quire that there is a strictly feasible point β.
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Dual feasibility:

µ≥ 0,

Complementary slackness:

µTg(β) = 0.

If we only have equality constraints, these reduce to the well-known optimal-
ity conditions obtained using Lagrange multipliers.

4.6.1 Equality-Constrained Optimization

Let us begin by restricting ourselves to equality-constrained problems.

Definition 4.12: Equality-Constrained Optimization Problem
A convex equality-constrained optimization problem with linear constraints
is given by

minimize
β∈Rn

f (β) (4.45)

subject to Aβ = b,

where f : Rn→ R is convex, A ∈ R
l×n and b ∈ R

l .

In the following, we will additionally assume f to be differentiable. We
then know that for a solution β∗ to (4.45) the following must hold for some
vector λ∗:

∇ f (β∗)+ATλ∗ = 0 and Aβ∗ = b. (4.46)

This requires solving a system of n+ l equations of which n are nonlinear
in general. For the special case that f is quadratic and convex, that is, of the
form

f (β) =
1
2
βTPβ+qTβ+ r

with P ∈ R
n×n positive definite (p.d.), q ∈ R

n, and r ∈ R, the optimality
conditions from (4.46) are given by

Pβ∗+q+ATλ∗ = 0, and Aβ∗ = b.

We can obtain (β λ)T by solving

[
P AT

A 0

][
β

λ

]
=

[
−q
b

]
(4.47)
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in β and λ. The matrix

K =

[
P AT

A 0

]

is often referred to as the KKT matrix in reference to the Karush-Kuhn-
Tucker conditions that an optimal solution must satisfy. Solving this system
can be done both analytically as well as by numerical methods, depending on
the size and structure of K.

To arrive at an iterative method for the general case where f is convex but
not quadratic, we use the same trick we used for the multivariate optimization
problem (see Equation 4.12). We again arrive at

∇ f (β(k+1))∼= ∇ f (β(k))+∇2 f (β(k))(β(k+1)−β(k)). (4.48)

By combining (4.48) and (4.47) we obtain as our Newton step for a feasible
β(k)

[
∆β

λ

]
=

[
∇2 f (β(k)) AT

A 0

]−1[−∇ f (β(k))
0

]
, (4.49)

which we can plug into Algorithm 4.7 to solve any convex equality-
constrained minimization problem with linear constraints and twice differen-
tiable objective function f if we are given an initial feasible point β(1) from
which to start the iteration.

The second set of equations in (4.49) may not be immediately intuitive,
but if we rewrite it as

A∆β = 0

it is clear that its purpose is to ensure that our new intermediate solution
β(k)+∆β is still feasible.

The convergence properties of this algorithm are the same as those for
the Newton method for unconstrained minimization. In particular, its conver-
gence for β(k) close to β∗ will be quadratic.

Finding an initial solution can be thought of as an LLS type problem and
can be solved using any of the methods discussed in the previous chapter.
Another possibility is to use the so-called infeasible start Newton method.
There, the Newton step is calculated as follows:

[
∆β

λ

]
=

[
∇2 f (β(k)) AT

A 0

]−1[−∇ f (β(k))

−Aβ(k)+b

]
. (4.50)

Here, we want to minimize both the quadratic approximation of f and the gap
between Aβ and b. Once we hit a feasible solution β(k) for some k, all fur-
ther iterations reduce to the regular Newton method for equality-constrained
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problems. Since we can only approximately find a feasible solution, this will
seldom happen in practice. This leads to more complex termination criteria
for this method, and care should therefore be taken when implementing it.

For those familiar with duality theory, it will be obvious that the infeasible
Newton method is a primal-dual method because it simultaneously improves
the primal (β) and the dual (λ) solution. For a much more in-depth discus-
sion of the methods presented here as well as the duality theory that motivates
them and gives further insight into their convergence guarantees, see the ex-
cellent book by Boyd and Vandenberghe (2004, chap. 5, 10, and 11), on which
parts of this and the following subsection are based.

4.6.2 Inequality-Constrained Optimization

By broadening Definition 4.12 to include convex inequality constraints we
arrive at inequality constraint optimization. Such problems are defined as fol-
lows.

Definition 4.13: Inequality-constrained Optimization Problem
A convex inequality-constrained optimization problem with additional linear
equality constraints is given by

minimize
β∈Rn

f (β) (4.51)

subject to Aβ = b,

g(β)≤ 0,

where f : Rn→ R and g : Rn→ R
m are convex, A ∈ R

l×n, b ∈ R
l .

There is a wealth of literature, both theoretical and practical, which covers
the characterization and solution of problems that fall under Definition 4.13.
Solving (4.51) is what is referred to as convex optimization. Depending on
the structure of f and g there may be specialized algorithms that are more
efficient than what follows. It is therefore wise to check if such an algorithm
exists before attempting to solve a general convex optimization problem with
the following method. On the other hand, many of the specialized methods
are not very different from what follows, so the loss in performance does not
have to be as dramatic as, say, not using the (known) derivatives of f and g to
guide the optimization process.

The class of iterative solvers we will briefly explore in the following are
called interior-point methods. This name comes from the fact that they move
along a path inside the feasible region defined by the constraints towards the
optimal solution β∗. The theory behind these methods is quite involved and
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requires a good grasp of duality theory, which we will not cover here. For
a gentle introduction to duality theory and the theory behind interior point
methods we refer the reader to Boyd and Vandenberghe (2004, chap. 11).
Skipping over a few technical details, the main idea of interior point meth-
ods is to augment the objective function f with a barrier defined by the
constraints to hinder the optimization algorithm from moving outside of the
feasible region. We then solve this relaxed problem, ignoring the constraints
using a Newton or quasi-Newton method for equality-constrained optimiza-
tion.

An obvious choice for the barrier function would be

ϕI(β) :=
m

∑
i=1

{
0 gi(β)≤ 0

1 else
,

i.e. the indicator function for the constraint is 1 iff the constraint is violated.
Here we denote with gi(β) the ith entry in the vector g(β). We would then
solve

minimize
β∈Rn

f (β)+ϕI(β)

subject to Aβ = b

which is similar to Problem 4.51 except that the inequality constraints have
been replaced by the barrier function ϕI .

The problem with this barrier function is that it leads to an objective func-
tion that is neither continuous nor differentiable. It is therefore customary to
approximate the indicator function in the feasible region with the so-called
logarithmic barrier:

ϕ(β, t) :=−1
t

m

∑
i=1

log(−gi(β)).

Here t is a tuning constant. The larger t, the better is the approximation of
ϕI . An example with different values of t is shown in Figure 4.24. Another
interpretation of t is the relative weight of the barrier function compared to
the objective function.

minimize
β∈Rn

f (β)+ϕ(β, t) (4.52)

subject to Aβ = b

This optimization problem is not only equality-constrained, but also still
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Figure 4.24: Plot showing the approximation quality of the log barrier func-
tion to the step barrier for different values of t. Here we have only one con-
straint.

twice differentiable if f and g are twice differentiable. We can therefore solve
it efficiently using either of the Newton methods we discussed in the previ-
ous section. If we have no equality constraints, we can even use one of the
quasi-Newton methods for unconstrained minimization.

If we denote with β∗(t) the optimal solution to (4.52) and view it as a
function of t, we arrive at the notion of a central path. As mentioned, t

controls the relative weight of the objective function and the barrier during
the optimization. If we start our unconstrained minimization from a feasible
point β, we expect the barrier function to trap the optimizer in the feasible
region. One can even prove that as t → ∞, β∗(t) converges toward the so-
lution of (4.51) since the weight of the barrier decreases compared to the
objective function, while at the same time still bounding the algorithm to the
feasible region. This motivates the sequential unconstrained minimization Al-
gorithm 4.10.

4.6.2.1 Applications

So, why is constrained optimization of interest to statisticians? We will try
to illustrate this using two problems. First, we will revisit the problem of
quantile estimation, and then look at one of the most popular classification
methods of the last 10 years—the support vector machine (SVM).
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Algorithm 4.10 Sequential Unconstrained Minimization

Require: f : Rn → R and g : Rn → R
m convex, A ∈ R

l×n, b ∈ R
l , initial

weight t > 0, and strictly feasible β ∈ R
n

1: k← 0
2: β(k)← β

3: repeat

4: k← k+1
5: β(k) ← β∗(t) {solve using (quasi-)Newton method starting from

β(k−1)}
6: t← 50t

7: until k/t < ε {Stop criterion}
8: return β(k)

4.6.3 Linear Programming

In the introductory quantile estimation problem we saw that when we re-
placed the regular L2 loss function used for linear regression with the L1 loss
function, we arrived at a problem that we could not solve. In this section, we
will derive methods to solve problems like the one given in Equation 4.3 effi-
ciently. Recall, given m observations (xi,yi) ∈ R

n×R we seek a solution to
the problem

minimize
β∈Rn

m

∑
i=1

|xT
i β− yi|. (4.53)

This problem is a convex optimization problem, but it is not differentiable.
While the lack of a derivative means we cannot apply any of the powerful
gradient based search methods we know, it does not prevent us from using a
Nelder-Mead type algorithm to find an optimal β. Due to the convex nature
of the problem, we can even be fairly certain that any solution returned by
such an algorithm will be close to the true optimal solution.

In the next few sections we will see that we can rewrite the above problem
into one that superficially looks more complicated but will turn out to be
easily solvable. To simplify notation let

X := [x1 . . . xm]
T and y := [y1 . . . ym]

T .

Then we can rewrite (4.53) as

minimize
(β,r)∈Rn+m

‖r‖1 (4.54)

subject to Xβ−y = r.
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This problem does not look simpler. In fact, we now have m equality con-
straints we must satisfy. Before we can see why this transformation is use-
ful, we have to perform another substitution. We will eliminate our residual
vector r and replace it by the sum of two vectors that fulfill the constraints
r++r− = r, r+ ≥ 0 and r− ≤ 0. This leads to the even more complicated
problem

minimize
(β,r+,r−)∈Rn+2m

‖r++r−‖1 (4.55)

subject to Xβ−y = r++r−,

r+ ≥ 0,

r− ≤ 0.

Not only did we increase the number of parameters by another m, but we also
added inequality constraints to our problem. Why go through all this trouble?
Not only do we now have one equality and two inequality constraints, but we
have also increased the number of variables over which we have to optimize
by 2m. The only bright side to all of this is that we can eliminate the norm in
our objective function, which gives us

minimize
(β,r+,r−)∈Rn+2m

1Tr+−1Tr− (4.56)

subject to Xβ−r+−r− = y,

r+ ≥ 0,

r− ≤ 0.

This problem is equivalent to (4.55) since |r+i + r−i | ≤ r+i − r−i and one of the
two entries r+i or r−i can always be set to zero.

Why is this desirable? The objective function has suddenly become a sim-
ple linear function. In fact, if we did not have the restrictions, this problem
would be unbounded below and we would be done. What we can infer from
this is that the solution to this problem must lie somewhere on the boundary
of the feasible region. We also observe that all of the constraints in prob-
lem (4.56) are linear in our parameter vector [β r+ r−]T . These types of
problems where both the objective function as well as the constraints are lin-
ear are called linear programming problems (LP problems). They arise fre-
quently in many fields, including, as we just saw, statistics. There is a wealth
of literature on how to solve them more or less efficiently. It is interesting to
know that no polynomial time algorithm was known for the solution of LPs
until 1979. In the LP literature many different representations and standard-
izations of LPs can be found. The most widely used form is the so-called
standard form.
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Definition 4.14: Standard Form Linear Program
A linear program in standard form is given by

minimize
x∈Rn

cTx (4.57)

subject to Ax≤ b,

x≥ 0,

where A ∈ R
m×n, b ∈ R

m and c ∈ R
n.

All linear programs can be transformed into standard form linear pro-
grams using a few simple transformations: negation of inequalities to change
their direction, substitution of equality constraints by two inequalities and
the trick used above to split a real-valued parameter into two parameters that
only take positive values. Notice that the latter two transformations increase
the size of the problem by adding more constraints or variables.

In practice, almost all modern software packages either do not require an
LP in standard form or can do these transformations for you, but for the rest
of this chapter we will assume that our LP is in standard form. We therefore
only need to deal with inequality constraints.

We, nevertheless, will not completely transform problem (4.56) into the
standard form. However, we will replace the equality with inequality con-
straints to arrive at

minimize
(β,r+,r−)∈Rn+2m

1Tr+−1Tr− (4.58)

subject to Xβ−r+−r− ≤ y,

Xβ−r+−r− ≥ y,

r+ ≥ 0,

r− ≤ 0.

Each of our inequality constraints partitions the search space R
n+2m into two

half-spaces, the feasible region where the constraint is not violated and the
infeasible region where we violate the constraint condition. If we denote the
half-space that is feasible w.r.t. the ith constraint with Fi, then our solution
must lie in the intersection of all of these half-spaces for the 2m constraints:

F :=
2m⋂

i=1

Fi.

Note that we ignore the additional 2m constraints on r+ and r− here because
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it is customary to view them as direct constraints on the search space and not
as generic linear constraints.

F is a, possibly unbounded, convex polytope. Since we know that our
objective function is linear and we know that we are optimizing over a convex
polytope, we can conclude that if there is a global minimum, i.e. the polytope
is bounded in the direction of the negative gradient of our objective function,
then it must be one of the vertexes of the polytope.

This insight gave rise to one of the popular methods for solving these
types of problems. The key idea is that we can start at any vertex of the poly-
tope and jump to one of the neighboring vertexes if it improves our objective
function. If no neighboring vertex has a lower function value, we have found
a global minimum for our problem under the condition that the polytope is
bounded. This idea and the resulting class of algorithms go back to Dantzig
(1951) and are confusingly also called simplex algorithms, but have nothing
in common with the algorithms of Section 4.4.3.

In practice, there are many subtle issues that must be resolved before we
arrive at a robust implementation of this algorithm. The first problem we
would encounter is that we need a feasible vertex of the convex polytope
defined by our constraints. Finding such a vertex amounts to solving another
LP! You might ask yourself how we can solve this auxiliary LP—the trick is
that by construction this LP has a trivial feasible solution from which to start.
There are quite a few high quality simplex type LP solvers available but all
suffer from a key weakness. There are pathological LP instances for which
the runtime of all known simplex type algorithms is exponential.

However, there is another class of algorithms that do not suffer from this
drawback and we already know about it. These are the interior-point meth-

ods like in Algorithm 4.10, and instead of walking along the outside edges of
the polytope, they move along the inside of the polytope along a path that ends
in the global minimum. For real-world problems there are more advanced and
specialized interior point methods for LPs available. Even using the simple
algorithm given here and a high quality Newton type algorithm implementa-
tion, we can reliably and quickly solve LPs in a few hundred variables with a
few hundred constraints.

After quite some work we have finally arrived at a solution for our mo-
tivating example. Instead of an algebraic solution that we can find for the
linear least squares regression problem, we have an algorithmic solution to
the linear L1 regression problem. Along the way, we saw that using clever
transformations we turned our problem of minimizing an unconstrained non-
differentiable function into a linear programming problem which we can
solve reliably and efficiently. This is not a coincidence. Frequently, seemingly
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hard problems can be transformed into linear or at least convex optimization
problems for which there are established solvers. The hard part is therefore
not solving the problem, but finding a mapping to an easily solvable problem.
In fact, the L1 regression problem is often solved using another trick we did
not discuss. Instead of solving the problem as stated above, its Lagrange dual,
a maximization problem in m variables, is solved. Additionally, the sparse
structure of the constraint matrix is often exploited by the algorithm.

4.6.3.1 Simulation

Let us now illustrate why we would want to reformulate an L1 regression
problem as an LP instead of trying to solve it directly with one of the meth-
ods from Section 4.4.3. Specifically, we will use a state-of-the-art LP solver
to determine the true minimum of the objective function from Equation 4.53
and then compare this solution to the solution obtained by solving the opti-
mization problem directly using a Nelder-Mead type algorithm.

Note that numerical stability is generally not as much of an issue for LP
solvers as it is for LLS solvers because they know that the solution must be
one of the vertices of the polytope defined by the constraints. We therefore
focus not on verifying the LP solver as was done in Chapter 3, but instead
study when the solution obtained via a direct minimization of Equation 4.53
is inferior to the solution obtained via the LP formulation. We will study the
influence of the following factors:

m: The number of observations / rows of X .

n: The number of parameters in the model / columns of X .

v: The variance of the noise term in our model.

For m= 20,50,100,200,500, n= 2,3,4,5,7,9,13,17,20, and v= 0,0.1,0.5,1
we will generate an m×n matrix X whose entries are uniform random num-
bers in the range [−2,2] and a random parameter setting β that is drawn
from an n-dimensional multivariate standard Gaussian distribution. We then
generate a noise vector ǫ with εi ∼ Laplace(0,

√
v/2), i = 1, . . . ,m (see Exer-

cise 4.6.1). Finally, we calculate the response to be

y =Xβ+ǫ.

We can now solve for β̂∗, the optimal solution to Equation 4.53, using an LP
solver8 and also compute β̂NM, the solution obtained using the Nelder-Mead
algorithm. From this we can derive the lack of fit of the Nelder-Mead solution

8Here the solver from the GNU Linear Programming Kit was used, but any other LP
solver would have worked as well.
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Figure 4.25: Error (δ ) of the Nelder-Mead algorithm for different numbers
of parameters. Each plot shows one combination of number of observations
(m) and variance (v). The different numbers of observations are shown in the
columns and the different variance levels in the rows of the plot.

as

δ = ‖y−Xβ̂NM‖1−‖y−Xβ̂∗‖1

Because the solution obtained by the Nelder-Mead algorithm can depend on
the initial solution used to construct the simplex, the error δ is computed
for 10 different initial solutions. To summarize, we generate 5×9×4 = 180
L1 regression problems and solve each of these problems 10 times using the
Nelder-Mead algorithm. For each run we record the difference between the
loss of the Nelder-Mead solution and the loss of the optimal solution.

The results of this simulation are shown in Figure 4.25. We can clearly
see that, at least for a moderate to high number of parameters, we would al-
ways prefer the LP solution to the estimate obtained with the Nelder-Mead
algorithm. Furthermore, it is interesting to see that as the variance rises, the
error of the Nelder-Mead algorithm decreases ever so slightly. This is sur-
prising since in the case of zero variance it is trivial to construct the optimal
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solution. All one has to do is pick n points at random and calculate the line
going through these points.

4.6.4 Quadratic Programming

Another prominent class of problems is those where the constraints are all
linear, just like they would be in a linear program, but the objective function
is now quadratic. One prominent example of such a problem is the support
vector machine (SVM). The SVM is a two-class classifier just like the logistic
regression. We again assume that we are given some training examples X :=
[x1 . . . xm]

T and their classes y := [y1 . . . ym]
T . But we now want the class

labels to be {−1,1} instead of {0,1} which will simplify notation.
The idea of the SVM is that we seek to find a linear hyperplane that sep-

arates the positive (yi = 1) and negative (yi =−1) examples. That is, we seek
β and β0 such that

∀i ∈ {1, . . . ,m} : yi(β
Txi−β0)−1≥ 0

which can be rewritten as

∀i ∈ {1, . . . ,m} : yi(β
Txi−β0)≥ 1.

Clearly, if such a hyperplane exists, it is not necessarily well defined. So in-
stead of finding just any separating hyperplane, we wish to find the one to
which the points have maximal distance. That is, we seek the solution to

minimize
(β,β0,t)

− t

subject to yi(β
Txi−β0)≥ t,

‖β‖2 ≤ 1.

The second constraint is necessary because if we do not constrain β, the prob-
lem is unbounded. If the optimal t∗ is positive, then the points can be sepa-
rated using a linear hyperplane, but often we will not have the luxury that
our two classes are linearly separable. In such a case it makes sense to re-
lax the constraints on a case-by-case basis and then minimize the amount of
relaxation we perform. This leads to the following optimization problem:

minimize
(β,β0,ξ)

m

∑
i=1

ξi

subject to yi(β
Txi−β0)≥ 1−ξi,

ξi ≥ 0.
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Here, ξ = [ξ1 . . . ξm]
T measures how much each one of the original con-

straints is violated. Note that this is a linear programming problem that we
can solve using any LP solver. We were able to drop the constraint on β here
because there is now a trade-off between β and ξ in the optimization and the
problem is therefore bounded in β.

More generally we may want to find a trade-off between the amount of
constraint violation and the width of the margin of the separating hyperplane.
We can encode this in the following quadratic programming problem:

minimize
(β,β0,ξ)

1
2
‖β‖2 +C

m

∑
i=1

ξi

subject to yi(β
Txi−β0)≥ 1−ξi,

ξi ≥ 0.

Instead of solving the above problem directly, the Lagrangian dual prob-
lem is often optimized. Recall that the dual problem is obtained by forming
the Lagrangian

Λ(β,β0,ξ,λ,η) =
1
2
‖β‖2+C

m

∑
i=1

ξi+
m

∑
i=1

λi(1−ξi−yi(β
Txi−β0))−

m

∑
i=1

ηiξi

and then maximizing
inf

(β,β0,ξ)
Λ(β,β0,ξ,λ,η)

w.r.t. the Lagrange multipliers λ and η. Luckily, there exists an analytic form
for the above infimum. Using it, we can write down the dual problem as

maximize
λ

m

∑
i=1

λi−
1
2

m

∑
i=1

m

∑
j=1

λiλ jyiy jx
T
i x j

subject to yTλ= 0

0≥ λ≥C

Note that the new problem is still convex but only has m parameters over
which we must optimize. Even more surprising, the problem does not depend
on η!

Again, this problem can be solved using any quadratic programming
solver, but in practice, one will want to use specialized solvers for larger data
sets since there is one constraint for each observation. We also need to fine-
tune the parameter C to explore different levels of slack. Methods to do this
will be discussed in Chapter 7.
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Table 4.5: Misclassification Rate of a Linear SVM for Different Values of C

C Misclass. Error

10−2 0.067
10−1 0.068
10+0 0.067
10+1 0.066
10+2 0.071

Once we have the optimal λ∗, we can recover the desired parameters β∗

and β ∗0 using the following identities:

β∗ =
m

∑
i=1

λiαixi

β ∗0 = y j−
m

∑
i=1

λiαix
T
i x j

with j such that 0 < λ j <C. These can be derived from the KKT conditions
for the original (primal) problem.

Classification Example

We will illustrate solving the SVM problem using a music retrieval prob-
lem taken from Section 7.3.2. The aim is to determine if a given piece of
music is played by the piano or a guitar. We are given 5654 observations
of 423 different features that characterize the spectrum of the music being
played. For a detailed description of these please refer to Section 7.3.2.

From the 5654 observations, we draw 600 at random to form our training
set [x1 · · ·x600]

T and corresponding [y1 · · ·y600]
T . The remaining 5054 obser-

vations will be used to assess the quality of our decision rule

sign
(
β∗T

x+β ∗0
)
.

This process is repeated 10 times and the average misclassification rate is
recorded. The results of this comparison are summarized in Table 4.5. We
see that for all chosen values of C the error rate of the decision rule is rather
similar. This is explained by the fact that the data are almost linearly separable
which is not surprising given that we have only 600 observations and 423
features.
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Kernel Support Vector Machine

Notice that the observed data, the xi, in the above optimization problem only
appear as an inner product, i.e. a distance calculation between the ith and jth
observation. We may therefore be tempted to replace the term xT

i x j with a
function k : Rn×R

n→R. Indeed, by imposing some regularity conditions on
k, the above problem will still be a convex quadratic program and therefore
easily solvable. We call the function k a kernel.

The use of kernels is not limited to support vector machines and there
is quite a bit of literature which explains what advantages and disadvantages
the use of kernels in machine learning has. See, for example, Steinwart and
Christmann (2008). A common interpretation of the kernel function is that
it is the distance between the ith and jth observation in some transformed
feature space. That is, there exists a function ψ : Rn→A such that k(x,x′) =
ψ(x)T ψ(x′).

Our discussion of SVMs is of course far from complete. It only aims to
illustrate that constrained optimization problems appear in many branches
of statistics. For a thorough discussion of support vector machines, see, for
example, Steinwart and Christmann (2008). Other examples of constrained
optimization in statistics include lasso regression (L1 constrained regression),
nonparametric estimation and problems from experimental design theory. All
of these topics are explored in Boyd and Vandenberghe (2004).

4.6.5 Summary

In this section we have taken a brief look at the vast field of constrained
optimization. We showed how we can easily solve equality-constrained con-
vex optimization problems by adapting the Newton method from the previ-
ous section. When additional linear inequality constraints were added, we
learned how to reduce the solution of such a problem to a series of equality-
constrained optimization problems. This once more illustrated the power
of iteration as a general problem solving strategy. Finally, we studied two
special cases of constrained optimization problems, the linear programming
problem (LP) and the quadratic programming problem (QP).

4.7 Evolutionary Computing

So far we have discussed methods that work well for finding the global op-
timum of convex or quasi-convex functions. But what if our optimization
problem does not meet the strict requirements of the algorithms described in
the previous sections? What if our function is multi-modal or is not smooth?
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There are a plethora of methods that have been developed for this case. They
all belong to the family of black-box optimization techniques. Black-box in
this context means that the function we want to optimize is viewed as if it was
a black-box. You input a parameter combination on one side, and a function
value is returned on the other side. For now, we will make the additional as-
sumption, that the parameter space of the function is not discrete. Moreover,
since there are so many different approaches to black-box optimization we
cannot present every single strategy in detail in this section. Instead, we will
describe the general concept behind most of them and then focus on several
popular algorithms.

The first idea you might have when tackling a nonconvex problem is to
use one of the aforementioned algorithms for convex optimization and ex-
ecute several runs of the algorithm, starting from different locations in the
parameter space. Such a strategy is called a restart strategy and can be ap-
plied to any optimization algorithm. It is just another outer iteration layer that
wraps the actual optimization procedure. This outer iteration will uncover
several different local optima, of which you then choose the best one. If the
function has only a few stationary points, this is certainly a viable option. If,
on the other hand, the function has hundreds, maybe even thousands, of local
optima, this strategy can fail miserably. What we really want is a procedure
that, once it finds a local optimum, gets “unstuck” and tries to find an even
better local minimum.

What is especially obvious with this procedure is that, unless we know
a priori how many local optima there are, we cannot be sure that we have
found the global optimum unless we test every point in the parameter space.
For most real-world problems this means that we will not be able to solve
them to global optimality and prove this. However, for most of these types of
problems, we will be happy with a good enough solution in practice.

The big challenge for traditional convex optimization algorithms when
used to solve a black-box optimization problem is that they can get stuck in
local optima. We just saw how we can restart the search from a different loca-
tion to unwedge the search, but this seems like a crutch. What we really want
is a search procedure that will explore the whole parameter space and, once
it has found an interesting region, exploit that knowledge to produce a suc-
cession of better solutions. We also want the algorithm to be able to unwedge
itself if it gets stuck in one area of the search space while in exploitation
mode.

Many different classes of algorithms have been developed independently
that try to implement such a strategy. They are all roughly similar and either
explicitly or implicitly follow the general design of Algorithm 4.11. These
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Algorithm 4.11 General Search Distribution Based Optimization Scheme

Require: f : Rn→ R

Initial search distribution D (1)

Initial solution β, population size p, iteration number limit K

1: for i = 1→ K do

2: P← /0
3: for j = 1→ p do

4: βcandidate← sample observation from D (i)

5: if f (βcandidate)< f (β) then

6: β← βcandidate

7: end if

8: P← P∪βcandidate

9: end for

10: S← /0
11: for all β′ ∈ P do

12: if some condition then

13: S← S∪β′
14: end if

15: end for

16: D (i+1)← adapt D (i) based on S

17: end for

18: return β

include simulated annealing, genetic algorithms, evolutionary strategies,
particle swarm optimization, ant colony optimization, bee colony opti-

mization, and estimate of distribution algorithms. All of these algorithms
have a search distribution D over the parameter space, and draw one or sev-
eral parameter combinations from this distribution (data set P) which are then
evaluated. Based on a subset S, usually selected based on the fitness of the in-
dividuals, the search distribution is finally adapted for the next iteration. This
scheme is depicted in Algorithm 4.11 and even though many things are not
specified in the algorithm description, it is still not general enough to truly
overview every variant of every algorithm class mentioned above.

Historically, most of these algorithms can be traced back to two schools of
thought. On the one hand, there is the idea of mimicking evolution by creating
an artificial genome and then applying the same mutation and crossover oper-
ations to them as those observed in biological systems. This train of thought,
which resulted in the development of genetic algorithms (GAs), can be traced
back to Holland, who developed it at the University of Michigan in the late
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1960s and early 1970s (Holland, 1975). The critical part of these algorithms is
a good mapping of problem representation to genetic representation. Because
the genes (in their most basic form) in a GA can only encode discrete values,
they are best suited to combinatorial or other discrete optimization problems
that we have not covered in this chapter.

The competing idea is due to Rechenberg and Schwefel, who, while at
the TU Berlin, started to use what they called evolutionary strategies (ES)
to solve complex engineering problems (Rechenberg, 1973; Schwefel, 1975).
Their idea does not rely on a gene to encode the problem. Instead, they use
a natural representation of the problem domain (for continuous optimization
problems this would be a vector), and apply mutation to this representation.
This idea has historically been the more fruitful approach bringing forth some
of the most powerful general purpose optimization algorithms that we know
of. These include the class of covariance matrix adapting algorithms (CMA-
ES) due to Ostermeier et al. (1994).

A third class of algorithms is those that try to mimic physical processes. A
prominent example of this class of algorithms is simulated annealing, whose
idea comes from the observation of how metals are strengthened by annealing,
that is, heating and then slowly cooling them. Its heritage can be traced back
to the early 1960s when Monte-Carlo sampling techniques were developed
that play a key role in Section 6.4. Because it is probably the simplest of all
the methods mentioned here, we will start with a discussion of this method
and then present some more advanced evolutionary strategies that generalize
some of the ideas of simulated annealing.

4.7.1 Simulated Annealing

Simulated Annealing (SA) is based on the observation that when metals are
heated and then slowly cooled back down, the configuration of the metal
atoms can reach a state that has lower total energy. The key observation here
is that we need to pass a state of higher energy before we can reach the final
state of lower energy. So how can we apply this observation to our problem of
optimizing continuous multi-modal functions? To escape from a local mini-
mum, we also have to pass through a region of higher fitness values to finally
reach the global minimum.

Based on these observations, the simulated annealing procedure can be
described as follows. In each iteration, pick a new vector β′ in the neighbor-
hood of the current solution β, and then calculate the reduction in energy,
i.e. the improvement we make if we choose this solution, ∆ = f (β′)− f (β).
Now, we want to unconditionally accept β′ as the new current solution if it is



230 ITERATION

an improvement (∆ < 0). If it is not an improvement (∆≥ 0), then we want to
accept the solution with some probability that depends on the loss we incur
and the current temperature of the system. Finally, we decrease the tempera-
ture of the system; that is, we decrease the probability of accepting a worse
solution.

The critical parts of the algorithm are the schedule by which the temper-
ature is lowered in the system and how new solutions are sampled from the
neighborhood of the current solution. In continuous optimization it is cus-
tomary to use Gaussian random numbers with mean β and standard deviation
proportional to the current temperature. Choosing the standard deviation pro-
portional to the temperature implies that as the system cools down, our search
becomes more and more local—it starts to exploit the region it has found in-
stead of exploring a large part of the parameter space. What is missing is a
schedule used to lower the temperature and a corresponding probability of
accepting a worse solution. A simple but effective approach is to lower the
temperature logarithmically and to decide whether to accept a solution based
on

exp
(
− t

∆

)
> u,

where t is the current temperature and u is a uniform random number from
the interval [0,1]. The beauty of this scheme is that since t is always positive
and ∆ = f (β′)− f (β) is negative, if β′ is an improvement, exp(− t

∆
) will be

greater than 1 in all such cases. This leads us to Algorithm 4.12, which imple-
ments the ideas of this section. It also includes some technical improvements.
For example, it has a scaling vector σ that allows us to control the standard
deviation for each coordinate direction separately. What the algorithm does
not have is a natural stop criterion. Here, we only rely on an iteration limit; in
practice, we might augment this with a criterion that terminates the optimiza-
tion run if little or no improvement has been made during the past k iterations
for some suitable value of k. We would also like to terminate if the standard
deviation gets too small, this is, when we stop searching at all, but only sam-
ple from a very small region. Numerically, we may even end up sampling
only one point!

The choice of t0 and σ in Algorithm 4.12 can have a large impact on the
performance of the algorithm. It is wise to use different values and compare
the results. If we suspect that the problem is highly multi-modal, we should
also employ a restart strategy because SA will quickly focus its search on a
relatively small area of the parameter space and have a hard time moving out
of this region because the size of the steps the algorithm can take decreases in
each iteration. A good starting point for t0 is 10. For σ, we choose a starting
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Algorithm 4.12 Simulated Annealing

Require: f : Rn→ R

Initial solution β, iteration limit K, scaling vector σ, initial temperature
t0.

1: for i = 1→ K do

2: t← t0
log(i+1)

3: β′← sample observation from N (β, t ·diag(σ))
4: ∆← f (β′)− f (β)
5: u← uniform random number from [0,1]
6: if exp(− t

∆
)> u then

7: β← β′

8: end if

9: end for

10: return β

point such that the initial search distribution covers about 50% of the param-
eter space with a probability of about 95%.

There is a wealth of theory and quite a few extensions to the basic idea
presented here. Many of them focus on changes to the cooling schedule and
the acceptance criterion. Particularly notice the combination of simulated an-
nealing and the Nelder-Mead method as introduced in Press et al. (1995, pp.
451 – 455). What remains remarkable to the authors is that such a simple al-
gorithm, less than 10 lines of code in many modern programming languages,
is already capable of performing much better than pure random search.

4.7.2 Evolutionary Strategies

One of the weaknesses of simulated annealing is that at any given time we
only have one candidate solution. What if we had a whole population of off-

spring from which to select the new best solution or solutions from which
we then update our search distribution? You can tell by the terminology that
the methods we will discuss now are not motivated by physical processes but
by biology. If we take a simulated annealing strategy and instead of generat-
ing one candidate in each iteration, generate p candidates, these p candidate
solutions are, in analogy to biological evolution, often referred to as offspring.

Instead of having to decide if we accept the new solution, we have to
select one or more of the p offspring as our new best solution. Let us focus
on the case of selecting exactly one offspring for a moment. Then it would
be natural to select the best offspring w.r.t. the fitness function. If we accept
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this candidate even if it is not better than the current parent solution, then
we arrive at what is called a comma selection scheme. Such an ES is often
denoted as a (1,λ )-ES, which means that we have one parent solution from
which λ offspring are generated and the best offspring becomes the parent of
the next generation. If we allow the parent to survive, that is, we only select
the best offspring if it is indeed better than the current parent, then we have
what is called a plus strategy: (1+ λ )-ES. Both of these strategies fit well
within the framework described by Algorithm 4.11.

Before we consider the case of multiple parents, we have to revisit the
generation of offspring. In SA we added normally distributed random noise
with a standard deviation proportional to the current temperature. Since we
do not have a temperature here, we have to use some other mechanism to
control the variance of the distribution. In the original ES a 1

5 success rule is
used. That is, the standard deviation is increased or decreased such that on
average 1

5 of all offspring are better than their respective parent. There are
other methods of self-adaption that can be used, but for simplicity we will
only mention this rule.

Now the question arises, what do we do if we select multiple offspring as
the new parents? Imagine how offspring are produced in nature. Accordingly,
we select two parents at random, recombine their vectors to form a new off-
spring, and then mutate this offspring. Recombination can be done in many
different ways. Again, the simplest approach is to choose one of the parents
at random for each element of the parameter vector. Mutation is performed
by adding Gaussian noise whose standard deviation is usually controlled by
self-adaption.

These ideas give rise to what are then denoted as (µ +λ )- and (µ,λ )-ES.
These evolutionary strategies have µ parents and λ offspring in each itera-
tion of the algorithm. The general evolutionary strategy is given in Algorithm
4.13. A much more thorough introduction into the history and current state-
of-the-art evolutionary strategies can be found in Beyer and Schwefel (2002).

In practice evolutionary strategies perform remarkably well when you
consider that they do not fully exploit the best candidate in each iteration
and do not have an explicit mechanism to decrease their search radius as SA
does. The one weakness of standard evolutionary strategies is that they are
not invariant under rotation. It is easy for an ES to solve a problem that is
separable—that is, we can optimize the problem one variable at a time. But
as soon as we rotate the parameter space, it becomes much harder for the
ES to find good new solutions. Part of the problem here is that the mutation
does not adapt to include any notion of correlation of the parameters. The
so-called covariance matrix adapting evolutionary strategy (CMA-ES) tries
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Algorithm 4.13 Evolutionary Strategy

Require: Fitness function f : Rn→ R, population P = {β1, . . . ,βµ}, fixed
number λ > µ of offspring, fixed number of parents ρ , initial mutation
strength σ , iteration limit K.

1: for i = 1→ K do

2: if “+” strategy then

3: C ←P

4: else

5: C ← /0
6: end if

7: for j = 1→ λ do

8: βc← combination of ρ random elements from P

9: βc← βc +N (0,σIn) {mutation}
10: C ← C ∪{βc}
11: end for

12: Update σ based on success probability {e.g. target is 1
5 }

13: P ← µ best individuals in C .
14: end for

15: return best solution in P

to solve this problem by continually updating not just the step size parameter,
but also the complete covariance matrix used in the Gaussian distribution of
the mutation. This idea was introduced by Ostermeier et al. (1994) and con-
tinually refined. Its current incarnations can be considered the state-of-the-art
in continuous black-box optimization.

4.7.2.1 Desirabilities Example

In this section we will study a real life problem in the context of process op-
timization. More specifically, we will optimize a ball mill used in the produc-
tion of chocolate. The data used for this example are taken from (Alamprese
et al., 2007). Let us begin by defining the process parameters we can vary and
the objectives we want to optimize. There are only two process parameters,
the runtime of the ball mill (r ∈ [20,45]) and the speed of the shaft that agi-
tates the balls in the mill (s∈ [5,90]). Instead of optimizing just one objective,
we are interested in optimizing several at the same time. These are the runtime
of the mill (r), the total energy consumption of the mill (E), the particle size
(d90), the iron content of the chocolate after milling (Fe) and two parameters
that characterize the melting properties of the chocolate (ηCa and τCa). In the
cited article, the authors use a straightforward designed experiment to capture
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the relationship between the parameter settings of the mill and the objectives.
They use a linear regression to model this relationship, and we will follow
their lead here. The fully quadratic models we obtain are summarized in the
following set of equations:




r

E

d90
Fe

ηCa
τCa



=




0.00000 1.00000 0.00000 0.00000 0.00000 0.00000
−7.15454 0.10496 0.15219 −0.00049 −0.00097 0.00004
42.63923 −0.81017 −0.03155 0.01089 0.00418 −0.00842
29.28979 −0.26587 −0.01191 0.00334 0.00142 −0.00175
3.14204 −0.02727 −0.01515 0.00015 0.00005 0.00010
−6.37205 0.19362 0.15108 −0.00003 −0.00038 −0.00145







1
r

s

r2

s2

rs




Notice that r, the runtime of the mill, is both a parameter and an objective.
It is a parameter because we can change the runtime of the mill at will, and
at the same time, we want to minimize the runtime so that we can maximize
production. The shorter a batch of chocolate is milled, the more chocolate we
can mill in a single day.

Next, we need some way to combine our objectives into a single objec-
tive that we can minimize. To accomplish this, we use so called desirability

functions that map each objective into the interval from 0 to 1, where 0 de-
notes a completely undesirable result and 1 a totally desirable one. Different
methods have been proposed to construct these mapping functions. One such
method, which we will use here, are the so called Derringer-Suich desirability
functions. For each objective, their definition follows.

First we give the desirability function for the runtime r. Here we say that
a runtime of 30 minutes or less is completely desirable and a runtime of 45
minutes or more is not tolerable. All runtimes between 30 and 45 minutes are
given a desirability between 0 and 1 based on a linear scale.

dr(r) :=





1 if r < 30
r−45

30−45 if 30≤ r < 45

0 else

The energy consumption E should also be minimized. We set an energy
consumption of less than 3 kWh to be perfect and a consumption of more than
4 kWh as completely undesirable. Again, all values in between are assigned
desirabilities based on a linear interpolation.

dE(E) :=





1 if E < 3
E−4
3−4 if 3≤ E < 4

0 else
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The optimal particle size d90 for our chocolate is 21. Values lower than 20
or higher than 23 are completely undesirable. All values in-between are again
linearly interpolated.

dd90(d90) :=





0 if d90 < 20
d90−20
21−20 if 20≤ d90 < 21
d90−23
21−23 if 21≤ d90 < 23

0 else

During the milling process some iron shavings contaminated the choco-
late. As long as there are less than 20 ppm, the chocolate is completely OK.
If, on the other hand there, are more than 30 ppm, the chocolate is not usable.
For values in-between, we assign desirabilities based on linear interpolation.

dFe(Fe) :=





1 if Fe < 20
Fe−30
20−30 if 20≤ Fe < 30

0 else

The next two properties (ηCa and τCa) characterize the melting properties
of the chocolate. For both properties we again have an optimal value (ηCa =
1.5, τCa = 8) as well as lower and upper bounds outside of which the chocolate
is not usable. Values inside the bounds are, as in the previous cases, calculated
using linear interpolation.

dηCa(ηCa) :=





0 if ηCa < 1
ηCa−1
1.5−1 if 1≤ ηCa < 1.5
ηCa−2
1.5−2 if 1.5≤ ηCa < 2

0 else

dτCa(τCa) :=





0 if τCa < 5
τCa−5
8−5 if 5≤ τCa < 8

τCa−10
8−10 if 8≤ τCa < 10

0 else

Since all the desirabilities of our objectives are of the same magnitude, we
can use some form of average as the objective for our optimization problem.
Here it is customary to use the (weighted) geometric average instead of the
usual arithmetic average. This has the advantage that as soon as one of the
desirabilities is zero, the geometric mean is also zero.
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Combining all the above, we arrive at the following optimization problem:

minimize
r,s

−
(

dr(r)
10 ·dE(E(r,s))

1
10 ·dd90(d90(r,s))

5·

dFe(Fe(r,s)) ·dηCa(ηCa(r,s)) ·dτCa(τCa(r,s))
) 10

181
.

Here we minimize the negative geometric mean of all the desirability func-
tions. The additional exponents on the desirability functions act as weights
that encode the relative importance of the objectives. We use the linear mod-
els we derived from the experimental data to feed the desirability functions
with predictions of the objectives.

What makes this a hard optimization problem? First, we can expect the
objective function to be zero for most of the parameter settings. Second, since
the desirability functions are not piecewise linear and not convex, the problem
is neither convex nor differentiable. It is therefore quite a challenge to find any
point with a desirability greater than zero and from there it is even harder to
maximize the geometric mean of all the desirabilities. This is illustrated by
Exercise 4.7.5.

4.7.2.2 Maximum-Likelihood Example

Most introductory textbooks on statistical estimation theory cover maximum
likelihood estimation in one of their chapters. There, it is usually required,
and henceforth assumed, that the negative log-likelihood will be a convex
function. If this is not the case, maximizing the likelihood, which amounts
to minimizing the negative log-likelihood, is a formidable problem. In this
section we will look at one simple example were the negative log-likelihood
is not convex. We will use some of the algorithms covered in this section to
nevertheless find the most probable parameters given some observed data.

Consider the random variable

X ∼ pN (µ1,σ1)+(1− p)N (µ2,σ2)

and m observations x1, . . . ,xm from X . The random variable X is a simple
Gaussian mixture. If p, µ1, σ1, µ2 and σ2 are unknown, we can try to es-
timate them using the maximum likelihood approach from our observations
x1, . . . ,xm.

Let β := [p µ1 σ1 µ2 σ2]
T ; then

p(xi,β) :=
p√

2πσ2
1

exp

(
(xi−µ1)

2

2πσ2
1

)
+

1− p√
2πσ2

2

exp

(
(xi−µ2)

2

2πσ2
2

)
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and our likelihood and corresponding negative log-likelihood functions are
given by

L(β) :=
m

∏
i=1

p(xi,β)

=
m

∏
i=1

pd(xi,µ1,σ1)+(1− p)d(xi,µ2,σ2) (4.59)

− logL(β) :=−
m

∑
i=1

log(pd(xi,µ1,σ1)+(1− p)d(xi,µ2,σ2)) . (4.60)

Here we denote by

d(x,µ,σ) :=
1√

2πσ2
exp

(
(x−µ)2

2πσ2

)

the value of the probability density function of the Normal distribution with
parameters µ and σ in x.

It is easy to show that − logL(β) is not convex (see Exercise 4.7.6). We
can nevertheless try to estimate β by applying one of the optimization proce-
dures introduced in this section. The resulting optimization problem is given
by

minimize
(p,µ1,σ1,µ2,σ2)

−
m

∑
i=1

log(pd(xi,µ1,σ1)+(1− p)d(xi,µ2,σ2))

subject to 0 < p≤ 0.5

σ1 ≥ 0

σ2 ≥ 0

Note the additional constraints required to obtain a valid parameter vector.
The estimated standard deviations should be positive, and the probability
should lie between 0 and 1

2 . To see why p is not constrained to [0,1], con-
sider the log-likelihood of the parameter vector β = [p µ1 σ1 µ2 σ2]

T

and of the vector β̃ = [1− p,µ2,σ2,µ1,σ1]
T . They are identical! So to en-

sure that there is a unique global minimum, we restrict p to the range [0,0.5].
In Exercise 4.7.7 a simple example mixture is analyzed and the correspond-
ing maximum likelihood problem solved. There are other approaches to deal
with such a mixture of distributions. One of these approaches is covered in
Section 5.2.3.
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4.7.3 Summary

We concluded this chapter with a section describing modern methods that
are inspired by natural processes, be they biological evolution or physical
cooling processes. All of these optimization procedures can be used for non-
convex and non-differentiable optimization problems. While they are slower
at finding an optimal solution and usually give no guarantees that the returned
solution is even optimal, sometimes we must resort to these methods because
none of the specialized methods discussed in previous sections are applica-
ble. We illustrated this with two examples, one resulting from a process opti-
mization task and the other being a classical maximum-likelihood estimation
problem.

4.8 Implementation in R

In R itself and many contributed R packages there are various implementa-
tions of the aforementioned and even more sophisticated methods.

In base R, we will find functions for root finding (uniroot, polyroot)
and univariate optimization (optimize). The function optim provides
“general-purpose optimization based on Nelder-Mead, quasi-Newton and
conjugate-gradient algorithms” and also “includes an option for box-
constrained optimization and simulated annealing”. The latter is easy to
use. Consider that you want to minimize the bivariate function f (x) :=
2x2

1 +3(x2−4)2−5. Then the corresponding R code is:

f <- function(x) 2 * x[1]^2 + 3 * (x[2] - 4)^2 - 5

## define starting values for the vector of parameters:

start <- c(0, 0)

optim(par = start, fn = f, method = "Nelder-Mead")

which will use Nelder-Mead optimization to find the minimum at x1 = 0 and
x2 = 4 minus numerical inaccuracies.

An excellent overview of the contributed R packages is given at the
CRAN Task View called “Optimization and Mathematical Programming”
(Theussl, 2013). Among the mentioned packages, optimx (Nash and Varad-
han, 2011) is meant as “a replacement and extension of the optim() func-
tion” that provides infrastructure for accessing methods in other packages;
also, some that specialize in problems with different kind of constrains,
quadratic approximation and large-scale problems.

A highly competitive implementation of simulated annealing is provided
by the GenSA package (Xiang et al., 2012). A pure R implementation of a
simple covariance matrix adapting evolutionary strategy is contained in the
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cmaes package (Trautmann et al., 2011), and finally a large and growing col-
lection of test problems for continuous optimization algorithms can be found
in the soobench package (Mersmann and Bischl, 2012). The ROI package
(Hornik et al., 2011), which is still under development, provides a concise
interface to many mathematical programming problem solvers in R. It is es-
pecially helpful if one wants to try out different LP or QP solvers for a given
problem.

4.9 Conclusion

Superficially, this chapter has been a review of almost all optimization tech-
niques a statistician might encounter. The deeper insight, however, is that all
of these techniques hinge on the powerful idea of iteration. Instead of solv-
ing the often difficult task using a single, complex and expensive operation,
we broke the process down into what might be called baby steps. Instead of a
globally best solution, each iteration merely provided a better solution. This
powerful idea can also be applied in many other areas of computing.

Iteration, as we have seen, is not to be confused with the divide-and-
conquer technique we learned about while studying the Quick sort algorithm
(Algorithm 2.3 on page 28). Divide and conquer has a fixed recursion depth
because, given finite data, at some point there is nothing left to divide and we
start with the conquer phase. In contrast, the iterative methods we studied in
this chapter usually do not have an a-priory known number of iterations they
will perform. Instead, a stop criterion is required that, after each iteration,
judges the quality of the current solution and terminates if it is deemed “good
enough”. This alludes to one of the drawbacks of iterative techniques, they
always return an approximation of the true optimal solution. Often times we
can live with this since we already know from Chapter 3 that all computations
we perform are inexact.

At the heart of many classical and modern statistical inference techniques
lies an optimization problem, be it explicitly written out or implicitly formu-
lated. And almost all non-trivial instances of such problems are solved using
iterative techniques. At the same time, classical statistical procedures such
as sequential design of experiments or quality control can be recast as itera-
tive methods. As you can see, iteration is present in every branch of statistics
and at every scale. It is likely one of the two most powerful problem-solving
strategies in our arsenal, the other strategy being divide and conquer.
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4.10 Exercises

Exercise 4.2.1: Show that f1D−LAS in equation (4.3) is convex w.r.t. β .

Exercise 4.3.1: Implement Algorithm 4.2. Use your implementation to mini-
mize the following functions:

– f (x) := x2, −2≤ x≤ 1

– f (x) := |x|, −2≤ x≤ 1

– f (x) := |x|+ x2, −2≤ x≤ 1

What do you observe?

Exercise 4.3.2: What happens if you use the absolute error instead of the
relative error as the stop criterion for your Golden-Section search from Ex-
ercise 4.3.1?

Exercise 4.3.3: Implement Algorithm 4.3. Use the functions from Exer-
cise 4.3.1 to test your implementation. What do you observe?

Exercise 4.3.4: Why do all convex twice differentiable univariate functions
start to look like a quadratic function in an ε environment around their mini-
mum (hint: look at the Taylor expansion of f )?

Exercise 4.4.1: Write a simple gradient descent optimization procedure. Test
your algorithm using a quadratic function f (β) = 1

2β
TQβ. Vary the condi-

tion number of the defining matrix Q of the quadratic problem. What do you
observe? What happens if Q is not positive definite?

Exercise 4.4.2: Extend your gradient descent implementation from Exer-
cise 4.4.1 to the full Newton method. If no Hessian function is provided, your
implementation should gracefully degrade to the BFGS method.

Exercise 4.4.3: Show that U (k)
BFGS fulfills Equation 4.18 and the correspond-

ing direction matrix P (k+1) is positive definite if P (k) is and the gradient is
reduced:

(∆β(k))Tg(k)> 0⇔∇ f (β(k+1))TP (k)∇ f (β(k))−∇ f (β(k))TP (k)∇ f (β(k))< 0.

Exercise 4.4.4: Write a small program to implement the logistic regression
simulation study. What difficulties do you encounter?

Exercise 4.4.5: Use the results from the previous exercise and analyze the
number of function evaluations until convergence is reached. Use plots sim-
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ilar to those used to visualize the suboptimality and the distance to the opti-
mum. What do you observe? Also consider the number of gradient and Hes-
sian evaluations required by each algorithm.

Exercise 4.5.1: Show that the Equation (4.44) is equivalent to gradient de-
scent for error term ( f (x j;Θ)− y j)

2.

Exercise 4.6.1: Look at the simulation study in Section 4.6.3.1. Explain why
the Laplace distribution was chosen as the error distribution instead of the
standard Normal distribution.

Exercise 4.6.2: Design a simulation study, similar to the logistic regression
study, to compare the strengths and weaknesses of different LP solvers that
are readily available in R when applied to L1 regression problems. Do you
observe any differences in solution quality or runtime of the algorithms? Note
that there are exact solvers for LPs that will calculate the optimal solution to
arbitrary precision.

Exercise 4.6.3: Analyze the results of your L1 regression simulation study.

Exercise 4.6.4: Use the Nelder-Mead algorithm to minimize the error func-
tion of the L1 Regression problem directly. How does the returned solution
compare to the solution returned by an LP solver? Include a comparison of
the runtimes of the algorithms.

Exercise 4.7.1: Implement Algorithm 4.12. Use it to optimize the sphere
function f (β) = βTβ, β ∈ R

3. How well does the algorithm perform with
1000, 10000 and 100000 iterations? Try different starting temperatures t0
and scaling vectors σ. Can you think of a simple trick to improve the algo-
rithm?

Exercise 4.7.2: Compare your simulated annealing algorithm from the previ-
ous exercise with pure random search on many different test functions. What
do you observe? Note that you can find a large selection of test functions in
the R package soobench.

Exercise 4.7.3: Implement both a simple (1+ λ ) and a (1,λ )-ES (see Al-
gorithm 4.13) and compare its performance, measured in number of function
evaluations, on several functions to the performance of simulated annealing.

Exercise 4.7.4: Implement the objective function from the desirability exam-
ple (Section 4.7.2.1) and plot the desirability as a function of the runtime
(r ∈ [20,45]) and the shaft speed (s ∈ [5,90]). What do you observe?
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Exercise 4.7.5: Optimize the objective function you implemented in the pre-
vious exercise using a suitable algorithm. Try different starting values. What
do you observe? Do the returned optimal values for r and s make sense? Cal-
culate the individual desirabilities for each objective. Which objectives are
close to optimal and which, if any, are almost undesirable?

Exercise 4.7.6: Show that the negative log-likelihood function (Equa-
tion 4.60) in the Gaussian mixture example is not convex in β.

Hint

Pick values for x1, . . . ,xm (for suitably small m) and then find parameter vec-
tors β1, β2 and β3 for which the convexity property does not hold.

Exercise 4.7.7: Estimate p, µ1, σ1, µ2, σ2 in the setting described in Sec-
tion 4.7.2.2 using the following 100 observations

2.81 5.10 2.60 5.38 7.60 2.93 3.52 0.09 2.96 4.23

6.75 6.94 5.77 1.30 4.89 7.13 6.63 1.04 -0.40 5.12

6.15 -0.09 5.31 5.86 -0.54 7.62 5.94 2.51 7.76 7.41

6.65 1.67 3.86 6.27 -1.19 5.70 -0.22 -0.18 0.77 5.55

3.62 5.89 0.65 9.42 4.75 4.05 4.67 6.73 5.19 1.75

4.99 6.52 5.08 6.47 -0.67 4.88 5.96 -0.12 2.51 4.93

4.86 3.48 2.93 3.74 6.17 -0.38 3.43 5.33 2.53 0.14

-1.49 -1.47 0.12 5.00 0.00 3.35 -0.61 5.06 3.33 0.18

6.49 -0.49 3.46 5.31 6.98 4.85 -0.12 1.20 -0.47 3.95

4.96 -0.89 -0.44 2.77 6.21 5.55 7.31 1.64 5.17 7.71

Optimize the negative log-likelihood (Equation 4.60) using a suitable
optimization algorithm that is included in R or available as a package. To
choose the initial parameter settings, look at a histogram of the data and try to
guess the parameters. The data were generated using the parameters p= 0.25,
µ1 = 0, σ1 = 1, µ2 = 5 and σ2 = 1. How close is your estimate to these values?
Does your chosen algorithm consistently converge to this solution?



Chapter 5

Deduction of Theoretical Properties

Often, intuition comes first when building an algorithm. “Couldn’t we make
this in that way?” This leads to many so-called heuristics, which do not stand
the test of time, when their theoretical properties are undesirable. Only if
there are favorable theoretical properties for an algorithm, is there a very good
chance that it will be used in practice for a longer period of time. At times
the algorithms first have to stand the practice test, since deduction of theo-
retical properties generally needs time. This typically leads to two different
situations. Some algorithms are not as much used as they should be as long
as, e.g., their optimality properties are unclear - like the Partial Least Squares
(PLS) method below. Other algorithms are used frequently since practice has
uncovered the not yet proven theory - like in the case of the Expectation
Maximization (EM) algorithm below. We include this chapter in the book as
a motivation to take up the challenge to deduce theoretical properties, since
only through them the practical properties of the heuristics become clear. In
the following, we will study two meanwhile established algorithms regarding
their theoretical properties:

– the PLS algorithm regarding its optimality properties and

– the EM algorithm regarding its convergence.

We will start with the PLS algorithm.

5.1 PLS – from Algorithm to Optimality1

5.1.1 Motivation and History

If we can split the observed features into two groups, where the so-called re-

sponses should be predicted by the other group, the influential factors, we

1Partly based on Geladi and Kowalski (1986, pp. 1 – 17) and Weihs and Jessenberger
(1998, pp. 170 – 172).
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are interested in methods for optimal prediction with, e.g., linear multivari-

ate multiple models.

Definition 5.1: Multivariate Multiple Linear Model
Let Y be the data matrix of the M responses and X be the data matrix of the L

influential factors, each with m observations for the same objects or subjects.
Then, a multivariate multiple linear model has the form

Y =XB+E,

where B is a matrix of unknown coefficients and E a matrix of model errors.

If, as in this definition, the structure of the matrix B of the coefficients is
completely left open, then the linear least squares estimator has the prop-
erty that every response can be considered individually. Thus, we can restrict
ourselves to multiple linear models for one response. For other estimation or
prediction methods this might not be true.

5.1.2 NIPALS Algorithm

Modern prediction methods often first construct so-called latent variables, to
which regression is then applied.

Idea of the Algorithm

Instead of directly using the generally highly correlated original influential
factors in the design matrix X as regressors, first adequate linear combina-
tions of these factors are built, so-called latent variables, which have prefer-
able properties as regressors.

Formally, this relates to the following transformation:

Y =XB+E = (XG)A+E =: ZA+E,

where the matrix G determines the linear combinations of the original factors
and B =GA.

The art is to define useful properties of G and methods for its construc-
tion. Let us consider here only two desirable properties of G:

– Orthogonality of the columns of XG, since then the coefficients in A can
be determined independently of each other, and

– utilization of as much information in the data and in the model as possible,
here in particular of the assumed relationship of Y and X .

A modern prediction method that takes into account the relationship be-
tween responses and influential factors is the Partial Least Squares method
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(PLS). In the literature this method was first introduced as an iterative method
without any optimality property. Moreover, at first the proposed iteration was
neither really understood by most users nor often applied. For a long time the
econometrician Hermann Wold and later his son, the chemist Svante Wold, in
Sweden as well as the group of Bruce Kowalski in the U.S. were more or less
the only ones who “raised the flag of PLS”.

In our opinion this only changed fundamentally after Höskuldsson (1988)
proved an optimality property, which we will discuss in Section 5.1.3. We
will start, however, introducing the historical PLS method using the NIPALS
iteration.

The basic idea of the NIPALS (Nonlinear Iterative Partial Least

Squares) algorithm is described in Geladi and Kowalski (1986) as follows:

– The design matrix X as well as the response matrix Y are represented as
a sum of rank-1 matrices.

– These rank-1 matrices are outer products of vectors called scores and load-

ings.

– These scores and loadings are calculated step by step for X and Y .

More formally, the following matrix decompositions are studied:

X = TP T +F = ∑
h

thp
T
h +F and

Y =UQT +H = ∑
h

uhq
T
h +H

with vectors th, ph, uh, and qh, and matrices

X = [x1 . . . xL] ∈ L(m,L),

Y = [y1 . . . yM] ∈ L(m,M),

T = [t1 . . . tl] ∈ L(m, l),

P = [p1 . . . pl] ∈ L(L, l),

U = [u1 . . . ul] ∈ L(m, l),

Q= [q1 . . . ql] ∈ L(M, l),

where l ≤max(L,M) is prefixed, as well as error matrices F and H .
Oversimplified, the decompositions of X,Y are calculated indepen-

dently of each other:
X-chunk:

1. Set t := x j for any j.

2. Calculate the (transposed) loadings pT = tTX/tT t (regression of X on
t).
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3. Normalize: pT
new =

pT
old

‖pold‖ .

4. Calculate the scores for the loadings p: t=Xp.

5. Compare the t in steps (2) and (4). If they are (approximately) equal, then
STOP. Else got to (2).

Y -chunk:

1. Set u := y j for any j.

2. Calculate the (transposed) loadings qT = uTY /uTu (regression of Y on
u).

3. Normalize: qT
new =

qT
old

‖qold‖ .

4. Calculate the scores for the loadings q: u= Y q.

5. Compare the u in steps (2) and (4). If they are (approximately) equal, then
STOP. Else go to (2).

As a motivation for the iteration in the X-chunk, notice that in the limit

pT =
tTX
tT t

‖ tTX
tT t
‖
=

tTX

‖tTX‖ =
pTXTX

‖pTXTX‖ ,

and thus

‖pTXTX‖p=XTXp,

i.e. p is an eigenvector of XTX for the singular value ‖pTXTX‖.
Analogously:

t=Xp=
XXT t
tT t

‖XT t
tT t
‖
=

XXT t

‖XT t‖ =
XXT t

‖XTXp‖ ,

i.e. t is an eigenvector of XXT for the singular value ‖XTXp‖ =
‖pTXTX‖.

Notice that the singular value decomposition of a matrix delivers the best

approximation of the matrix with prefixed rank.
Naturally, it is not sensible to determine the decompositions in the X- and

the Y -chunk independently of each other, since then the model link between
the matrices would be ignored. The, at first sight somewhat abstruse, idea of
the NIPALS algorithm is to construct the link by interchanging the roles of t
and u in the steps (2) of the two chunks. Overall, this leads to the NIPALS
(Nonlinear Iterative Partial Least Squares) Algorithm 5.1.

This algorithm generally converges very fast.
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Algorithm 5.1 NIPALS (Nonlinear Iterative Partial Least Squares) Algorithm

Require: Matrix of responses Y = [y1 . . . yM] and matrix of influential vari-
ables X .

1: Set ustart := y j for any j.

2: Calculate the X-loadings: pT = uTX
uTu

(regression of X on u).

3: Normalize: pT
new =

pT
old

‖pold‖ .
4: Calculate the X-scores: t=Xp.
5: Calculate the Y -loadings: qT = tTY

tT t
(regression of Y on t).

6: Normalize: qT
new =

qT
old

‖qold‖ .
7: Calculate the Y -scores: u= Y q.
8: if t in step (4) ≈ t in the previous iteration step then

9: Calculate the X-loadings: pT = tTX
tT t

(regression of X on t)

10: Normalize: pT
new =

pT
old

‖pold‖ .
11: Calculate the X-scores: t=Xp.
12: STOP
13: end if

14: go to (2)

A motivation for this algorithm can be:

pT =
uTX
uTu

‖uTX
uTu
‖
=

uTX

‖uTX‖ =
qTY TX

‖qTY TX‖

=
tTY Y TX

‖tTY Y TX‖ =
pTXTY Y TX

‖pTXTY Y TX‖ .

Therefore:

‖pTXTY Y TX‖p=XTY Y TXp.

So rather than using the singular values of X or Y , we focus on those of
XTY .

If Y only consists of one column, then steps (5)-(7) can be left out setting
q = 1. Steps (9)-(11) are carried out in order to construct orthogonal X-

scores.
After the first iteration, X and Y are replaced by the corresponding resid-

uals of the rank-1 decomposition. For example, we have to calculate:

XR =X− tpT =X− ttTX

tT t
.
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Then, we continue with another iteration of the algorithm. For a proof of
orthogonality, see Section 5.1.3.

The columns of the matrix G are the X-loadings p from the different
iterations. The scores t build the columns of the matrix XG.

In the 1980s many people were discouraged by the opacity of this algo-
rithm. However, the results of the next section were convincing to use the PLS
method.

5.1.3 Covariance Optimality

Höskuldsson (1988) has shown that the 1st PLS component represents the
weighted sum of the influential factors with the greatest covariance with a
weighted sum of the responses.

For illustration, we first restrict ourselves to one (mean-adjusted) response
y1. Let X be the (mean-adjusted) data matrix of the L possible influential fac-
tors with m observations. Then, the scores z1 =Xg1 of the 1st PLS compo-
nent with loading vector g1 should have maximum empirical covariance with
the vector y1 of the observations of the response for all vectors g of length 1,
i.e. with gTg = ∑

L
i=1 g2

i = 1. More formally,

|ĉov(Xg1,y1)|= max
‖g‖=1

|ĉov(Xg,y1)|.

The restriction to loading vectors of length 1 is necessary, since the co-
variance is increasing with the length of the observation vectors without limit.

Theorem 5.1: Covariance Optimality
For one response y1, the covariance optimal scores z1 and loadings g1 have
the form

z1 =Xg1 =
XXTy1√
yT

1 XXTy1

.

Proof. Following the Lagrange multiplier method we are looking for a vector
g such that

(yT
1 Xg)2−µ(gTg−1) = gTXTy1y

T
1 Xg−µ(gTg−1) = max!

for a certain µ ∈ R. Differentiating with respect to g leads to:

XTy1y
T
1 Xg−µg = 0,

i.e. g is the only non-vanishing eigenvector (of length 1) of the rank-1 matrix
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XTy1y
T
1 X .

g1 =
XTy1√

yT
1 XXTy1

has this property, since

XTy1y
T
1 Xg1 =

XTy1y
T
1 XXTy1√

yT
1 XXTy1

=
√

yT
1 XXTy1X

Ty1

= (yT
1 XXTy1)g1.

Obviously, the found vector g1 corresponds to the X-loadings p1 of the
NIPALS algorithm for one column y1, and z1 corresponds to t1 (see Sec-
tion 5.1.2), since in the NIPALS algorithm

p=
XTu
uTu

‖XTu
uTu
‖
=

XTy1

‖XTy1‖
=

XTy1√
yT

1 XXTy1

= g1.

In the more general case of more than one response the 1st PLS compo-
nent has to satisfy:

|ĉov(Xg1,Y c1)|= max
‖g‖=1,‖c‖=1

|ĉov(Xg,Y c)|.

Unfortunately, in this case no explicit representation of the 1st PLS com-
ponent is possible. Instead, the 1st PLS component results from a decompo-
sition of the matrix XTY (cp. the motivation of the NIPALS algorithm in
Section 5.1.2).

Theorem 5.2: Calculation of the 1st PLS Component
Let S :=XTY and S = V ΦUT be the singular value decomposition of S,
where V TV = I, UTU = I , and Φ is a diagonal matrix with elements ≥ 0.
Then, g1 := v1 is the 1st PLS component, where v1 is the first column of V .

After the determination of the 1st PLS component the fraction z1z
T
1 X

zT
1 z1

corresponding to this component is subtracted from the influential factors X

and the effect z1z
T
1 Y

zT
1 z1

of the component is subtracted from the responses Y .

That means we calculate the residuals XR of the influential factors and YR
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of the responses, respectively, corresponding to the regression of each X and
Y on the 1st PLS component z1:

XR :=X− z1z
T
1 X

zT
1 z1

, YR := Y − z1z
T
1 Y

zT
1 z1

.

Please note the remark on the residualization of X in Section 5.1.2. The resid-
ualization of Y is carried out analogously.

The 2nd PLS component z2 is chosen as the 1st, however using XR and
YR instead of X and Y . The further PLS components are derived analo-
gously.

The PLS components are pairwise uncorrelated, since, e.g.,

zT
1 XR = zT

1 X−
zT

1 z1z
T
1 X

zT
1 z1

= zT
1 X−zT

1 X = 0.

An important problem of the PLS method is the fact that it is not scale-

invariant to both influential factors and responses. Therefore, one of the fol-
lowing scales is typically chosen. Either one is looking for “natural” units of
the involved variables, or all variables are standardized to variance 1. In the
first case, we talk of PLS based on covariances, and in the second case of
PLS based on correlations.

5.1.4 PLS Method: Examples

Example 5.1: Exact Linear Dependency
Let us demonstrate the work of PLS for a simple case, where the one response
is an exact linear combination of the columns of the matrix X . Then, this
linear combination is identified by the loadings of the 1st PLS component.
We will demonstrate this by means of a simple matrix of influential factors
typically used in design of experiments. Let

X =




1 1 1
1 1 −1
1 −1 1
1 −1 −1


 ,

and y = [y1 y2 y3 y4]
T be mean-centered. The mean-centered X has the form

X =




0 1 1
0 1 −1
0 −1 1
0 −1 −1


 .
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Table 5.1: Goodness of Fit for PLS Components

HUEREM HUEREMAL
PLS1 PLS1+2 PLS1 PLS1+2

individual PLS R2 0.47 0.62 0.74 0.81
combined PLS R2 0.45 0.62 0.74 0.80

Then, the loadings have the form

g1 =
[
0 y1 + y2− y3− y4 y1− y2 + y3− y4

]T
/‖.‖,

where /‖.‖ indicates normalization. Therefore, if y is a linear combination of
the columns x2,x3 of X , namely y = α2x2 +α3x3, then

g1 =
[
0 4α2 4α3

]T
/‖.‖.

Thus, the loadings reproduce the weighting vector α of the linear combina-
tion except for the normalization.

Example 5.2: Application to Dyestuff Production
We are interested in the prediction of the hue of a dyestuff under daylight
(HUEREM) and Artificial Light (HUEREMAL). Measuring was realized by
means of REMission spectra. For the construction of prediction models 93 ob-
servations (= lots of dyestuff) of 18 (chemical-)analytical properties together
with the realized hues were available. We calculated the PLS components
on the basis of correlations and considered the following models for the two
response variables:

HUEREM(AL)−HUEREM(AL) = β1PLS1+ ε and

HUEREM(AL)−HUEREM(AL) = β1PLS1+β2PLS2+ ε,

where PLS1 and PLS2 are the first and second PLS component, respectively.
Table 5.1 shows a comparison of the goodness of fit of the two models for the
two response variables, once for models only based on one response (individ-
ual PLS), and once for models based on the two responses together (combined
PLS). Obviously, the two PLS methods appear to produce similar results for
this data situation.

What is also left open for applications is the determination of the num-

ber of PLS components to be used in models to optimize predictive power.
This is typically identified by so-called resampling methods. Please refer to
Section 7.4.
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5.1.5 PLS Method: Summary and Outlook

Summary

In this section we introduced and discussed the PLS method in its historical
development from an often used (NIPALS) algorithm to a theoretically well-
based optimization method.

Outlook

The PLS method is also intensively studied today, even in special workshops
and conferences. For an overview over the state of the art in PLS research,
you might want to take a look into the Handbook of Partial Least Squares by
Vincenzo Esposito Vinzi, Wynne W. Chin, Joerg Henseler, and Huiwen Wang
(Vinzi et al., 2010).

5.2 EM Algorithm2

5.2.1 Motivation and Introduction

We will now switch to the EM algorithm.
The term EM algorithm stands for Expectation Maximization algorithm

and originates from Dempster et al. (1977). However, the algorithm is based
on earlier ideas, e.g. of Sundberg (1974). The oldest paper cited by Dempster
et al. (1977) as a reference for the EM algorithm stems from McKendrick
(1926), where missing data were replaced by estimates from already observed
data.

The EM algorithm solves the maximum likelihood problem for incom-

plete data. For this estimation problem it is assumed that information is miss-
ing for the random variables in the model: Either some random variables are
not observed, or new, unobserved random variables would simplify the prob-
lem considerably.

The idea of the EM algorithm is to replace the missing information by
expected values given certain estimates of the unknown coefficients. Using
these expected values of the missing data, we reestimate the coefficients, and
so on iteratively.

The principle of the EM algorithm is given in Algorithm 5.2, which
shows one iteration step of the iterative estimation of unknown variables and
coefficients.

2Partly based on Ng et al. (2004) and Hastie et al. (2001).
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Algorithm 5.2 Iteration Step of the EM Algorithm (General Case)

1: [E-step] Estimate the unknown variables by their expected values, given
actual estimations of the unknown coefficients.

2: [M-step] Estimate the unknown coefficients by the Maximum-
Likelihood principle, given actual estimations of the unknown (latent)
variables.

Although this procedure immediately appears natural, its properties are
not obvious at all, in particular convergence is unclear.

5.2.2 Definition and Convergence

A very important merit of Dempster et al. (1977) was that they first proved
convergence of the EM algorithm for the case of the exponential family.

Let X = [Y T ZT ]T be a random vector of augmented data combined
of Y , the random vector of observed, and Z, the vector of missing data. On
the one hand, the augmented data X are derived from the observed data
Y by inserting the conditional expectation for the missing data, given the
actual model coefficient estimates β. On the other hand, if ge(x | β) is the
density function of X given the model coefficients β, then the log-likelihood
function le(β) := log(ge(x |β)) should be optimized for the determination of
the optimal β given the augmented data x. Notice, however, that the explicit
knowledge of the augmented data is not even necessary. What we only have
to determine in order to be able to optimize the log-likelihood with respect
to β is the expected value of the log-likelihood function with respect to the
conditional distribution of Z given the observed data and the actual β(k).

This leads to the formulation of the EM algorithm in Algorithm 5.3.

Algorithm 5.3 (k+1)th Iteration Step of the EM Algorithm (General Case)

1: [E-step] Determine the expected value of the log-likelihood function
with respect to the conditional distribution of Z:

ϕ(β | β(k)) := EZ|Y ,β(k)(le(β)).

2: [M-step] Choose β(k+1) such that ϕ(β | β(k)) is maximal with respect to
β.

We can start the algorithm with random values for β(1), and iterate until,
e.g., |l(β(k+1))− l(β(k))| < ε for an adequate (log-)likelihood function l of
the observable data Y (see the theorem below).
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Now consider the exponential family.

Definition 5.2: Exponential Family
Distributions with densities of the form

ge(x | β) = a(x)exp
(
b(β)Tc(x)

)
/d(β),

where a and d are scalar-valued and b and c vector-valued functions, belong
to the exponential family. c = c(x) is the vector of sufficient statistics for
x.

The exponential family contains the most important distribution functions
like, e.g., the multivariate normal distribution, the Poisson distribution, and
the multinomial distribution.

For the exponential family, it is true that

ϕ(β | β(k)) :=EZ|Y ,β(k)(le(β))

=EZ|Y ,β(k)(log(a(x)))+b(β)Tc(k)− log(d(β)),

where
c(k) = EZ|Y ,β(k)(c(x)).

Obviously, the first term of the log-likelihood function does not depend on β.
This leads to the formulation of the EM algorithm for exponential families

in Algorithm 5.4.

Algorithm 5.4 (k + 1)h Iteration Step of the EM Algorithm (Exponential
Family)

1: [E-step] c(k) = EZ|Y ,β(k)(c(x))

2: [M-step] β(k+1) = argmaxβ(b(β)Tc(k)− log(d(β)))

Note that the sufficient statistics of the missing variables Z will typically
be dependent on the observable variables Y and the actual model coefficients
β(k), see the example below.

Theorem 5.3: Monotonicity and Convergence
For the above exponential family, the EM algorithm leads to non-decreasing
values of log(g(y | β(k))) and to convergence if the log-likelihood of the den-
sity function

log(g(y | β(k)))

of the observable variables is bounded.
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Proof. We transform the representation to the observable data:

ϕ(β |β(k)) :=EZ|Y ,β(k)(le(β))=EZ|Y ,β(k)(log(g(y |β))+ log( fe(x |y,β))),
where

fe(x | y,β) =
ge(x | β)
g(y | β)

is the conditional density of X given Y . Then

ϕ(β | β(k)) = log(g(y | β))+EZ|Y ,β(k)(log( fe(x | y,β)))
=: log(g(y | β))+h(β,β(k))

and

log(g(y | β(k+1)))− log(g(y | β(k))) =(ϕ(β(k+1) | β(k))−ϕ(β(k) | β(k)))

− (h(β(k+1),β(k))−h(β(k),β(k))).

With the Jensen inequality for logarithms, − log(E(X)) ≤ E(− log(X))
(since log is concave), one can show that

h(β(k+1),β(k))≤ h(β(k),β(k)) (5.1)

as follows:

h(β(k),β(k))−h(β(k+1),β(k))

=
∫

log( fe(x | y,β(k)))gZ(z | y,β(k))dz−
∫

log( fe(x | y,β(k+1)))gZ(z | y,β(k))dz

=
∫

log(
ge(x | β(k))

g(y | β(k))
)gZ(z | y,β(k))dz−

∫
log(

ge(x | β(k+1))

g(y | β(k+1))
)gZ(z | y,β(k))dz

=
∫

log(
ge(x | β(k))

ge(x | β(k+1))
)gZ(z | y,β(k))dz+

∫
log(

g(y | β(k+1))

g(y | β(k))
)gZ(z | y,β(k))dz

=
∫
− log(

ge(x | β(k+1))

ge(x | β(k))
)gZ(z | y,β(k))dz+ log(

g(y | β(k+1))

g(y | β(k))
)

≥− log(
g(y | β(k+1))

g(y | β(k))
)+ log(

g(y | β(k+1))

g(y | β(k))
))

=0.

Moreover, by construction:

ϕ(β(k+1) | β(k))≥ ϕ(β(k) | β(k)).

Therefore:
log(g(y | β(k+1)))≥ log(g(y | β(k))),

i.e. log(g(y | β(k))) is monotonically non-decreasing and converges to
log(L∗) for bounded likelihood functions.
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Unfortunately, the limit of the EM algorithm might not maximize the log-
likelihood. Indeed, there are examples for convergence to a minimum or a
saddle point (McLachlan and Krishnan, 1997). Moreover, the algorithm may
converge to a local maximum. This shows that the intuitively very appeal-
ing idea of the EM algorithm has its limits, since convergence to the global
maximum of the log-likelihood cannot be guaranteed in practice. Therefore,
a plausibility check of EM results is urgently needed. Note that Wu (1983)
discussed the convergence of the EM algorithm outside the exponential fam-
ily.

Let us conclude with a theorem on convergence speed.

Theorem 5.4: Convergence Speed
The convergence speed of the EM algorithm is linear, and the convergence
rate depends on the share of information in the observed data. That is, if an
important part of data is missing, then convergence can be very slow.

Proof. If β∗ is the limit of β(k), then β(k+1) − β∗ ≈ JM(β∗)(β(k) − β∗),
where
JM(β) is the Jacobi matrix of the function M(β) with β(k+1) =M(β(k)).
Meng and van Dyk (1997) showed that:
JM(β) = I− (−H(y | β))(E(−He(x | y,β)))−1, where
−H(y | β) =−Hessian(log(g(y | β))) = information matrix(y),
−He(x | y,β) =−Hessian(log(ge(x | β))) = information matrix(x).

Therefore, the global convergence rate (cp. Chapter 4)
r = limk→∞‖β(k+1)−β∗‖/‖β(k)−β∗‖= largest eigenvalue of JM(β∗)
is small (and therefore convergence fast!), if the share of information in the
observed data y is large.

5.2.3 Example: Mixture of Gaussians

Consider the following Gaussian mixture model with two normal distribu-
tions:

Y1 ∼N (µ1,σ
2
1 )

Y2 ∼N (µ2,σ
2
2 )

Y = (1−R)Y1 +RY2

R ∈ {0,1} (missing class information)

P(R = 1) = π

Let ϕβi
(x) = N (µi,σi

2), βi = (µi,σi
2), then the density of Y is given by

gY (y) = (1−π)ϕβ1(y)+πϕβ2(y).
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The following coefficients should be estimated by means of maximum
likelihood:

θ = (π,β1,β2) = (π,µ1,σ
2
1 ,µ2,σ

2
2 ).

The log-likelihood function based on the m sample data has the form

l(θ;y) = log(
m

∏
i=1

(1−π)ϕβ1(yi)+πϕβ2(yi))

=
m

∑
i=1

log((1−π)ϕβ1(yi)+πϕβ2(yi)).

Direct optimization is difficult because of the sum of terms inside the
logarithm (also for numerical optimization). It would be much easier if we
would know the class Ri for all training data. The joint density, the marginal
density of Y , and the conditional density of R given Y have the form

ϕ(R,y) = ((1−π)ϕβ1(y))
1−R(πϕβ2(y))

R,

ϕ(y) = (1−π)ϕβ1(y)+πϕβ2(y),

ϕ(R | y) = ((1−π)ϕβ1(y))
1−R(πϕβ2(y))

R

(1−π)ϕβ1(y)+πϕβ2(y)
.

This leads to the conditional expectation

E(R | y,θ) = πϕβ2(y)

(1−π)ϕβ1(y)+πϕβ2(y)
,

since in a Bernoulli experiment the expected value is equal to the probability
of R = 1. Now, we augment each observation yi by the missing data Ri. Then,
the log-likelihood function for the augmented data [R y]T has the form

le(θ;R,y) =
m

∑
i=1

((1−Ri) logϕβ1(yi)+Ri logϕβ2(yi))

+
m

∑
i=1

((1−Ri) log(1−π)+Ri logπ).

The maximum likelihood estimators are now the sample mean and the sam-
ple variance for the subsets corresponding to data with Ri = 0 and Ri = 1.
However, in a real situation the values of Ri are unknown so that we proceed
iteratively as in the variant of the EM algorithm in Algorithm 5.5.

Example 5.3: Application of the EM Algorithm
We generated 50 observations each of Y1 ∼ N (−2,2.25) and Y2 ∼
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Algorithm 5.5 (k+1)th Iteration Step of the EM Algorithm (Mixture of Two
Gaussians Y1 and Y2)

1: [E-step] Substitute each Ri by its expected value, i.e. by the posterior

probability of component Y2 for observation i, corresponding to the ac-
tual parametric model:
γi(θ) = E(Ri | y,θ) = P(Ri = 1 | y,θ).

2: [M-step] Calculate new Maximum-Likelihood estimations of the coeffi-
cients θ̂ .

N (2,2.25). These data we analyzed by means of the EM algorithm ignoring
the knowledge of the two classes, i.e. the two different distributions. Thus, we
would like to fit the above Gaussian mixture model with two normal distribu-
tions. The EM algorithm now has the form as in Algorithm 5.6.

Algorithm 5.6 EM Algorithm for Mixtures of two Gaussians Y1 and Y2

1: [Initialization]: Choose starting values for π̂ , µ̂1, σ̂2
1 , µ̂2, and σ̂2

2 .
2: [E-step]: Calculate the posterior probabilities of component Y2:

γ̂i =
π̂ϕβ̂2

(yi)

(1− π̂)ϕβ̂1
(yi)+ π̂ϕβ̂2

(yi)
, i = 1, . . . ,m.

3: [M-step]: Calculate weighted means and variances:

µ̂1 =
∑

m
i=1(1− γ̂i)yi

∑
m
i=1(1− γ̂i)

, µ̂2 =
∑

m
i=1 γ̂iyi

∑
m
i=1 γ̂i

,

σ̂2
1 =

∑
m
i=1(1− γ̂i)(yi− µ̂1)

2

∑
m
i=1(1− γ̂i)

, σ̂2
2 =

∑
m
i=1 γ̂i(yi− µ̂2)

2

∑
m
i=1 γ̂i

,

π̂ =
∑

m
i=1 γ̂i

m
.

4: [Iteration]: Repeat the E- and M-steps until convergence.

Problem formulation and choice of good starting values

Notice that the global maximum of this log-likelihood function is degener-
ated. For example, the solution µ̂1 = yi for an arbitrary i ∈ {1, . . . ,m} and
σ̂2

1 = 0 leads to an infinite value for the likelihood function. Since this is no
sensible maximum, we restrict the problem by σ̂1, σ̂2 > 0.

Unfortunately, then the maximum is not unique. Therefore, we might have
to start with many random starting values. For µ̂1 and µ̂2 we may randomly
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Figure 5.1: Plot of example data; symbol shapes indicate original classes,
filled symbols indicate incorrect EM estimates.

choose any two different yi. For σ̂1 and σ̂2 we may choose any starting values
with σ̂1, σ̂2 > 0.5. For π̂ we may start randomly in (0,1). Considering the
results for the different starting values, we choose the result with the largest
likelihood value.

Consider Figure 5.1 for the data situation and the outcome of the EM al-
gorithm. The estimated class is the one with highest responsibility. Only 8
observations were “misclassified”. The convergence of the EM algorithm is
very fast in the beginning (3 digits of log-likelihood correct after 2 iterations),
but very slow at the end (4 digits correct after 5 iterations, 5 digits correct
after 55 iterations, and the 6th digit only after 103 iterations). The slow con-
vergence is illustrated in Figure 5.2. Note that there is some overlap of the
two original classes, i.e. the information about the classes is not clear from
the data. This, apparently, influences convergence negatively. See Figure 5.3
for the posterior probability of class 1 at convergence. Obviously, for some
observations the class is not very clear. The final estimates of the unknown
coefficients are:

µ̂1 =−2.13, µ̂2 = 2.05, σ̂2
1 = 2.24, σ̂2

2 = 1.59, π̂ = 0.472.

Obviously, the distribution of the first class is not well estimated, also leading
to a too high estimated probability of the second class.
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Figure 5.2: Convergence of log-likelihood.
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Figure 5.3: Posterior probability of class 1 at convergence.
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5.2.4 Example: k-means Clustering

In this example we will look at an intuitive clustering algorithm that will turn
out to be an application of the EM principle. Say we are given m observations
x1 to xm from R

p and we want to cluster them into k clusters. If one thinks
about this for a while, one might get the idea to characterize the k clusters by
k points from R

p. Let us call these points µ1 to µk. Now if we ask ourselves
to which of the k clusters an observation xi belongs, one intuitive approach is
to assign it so that a distance measure

δ (xi,µ j)

becomes minimal w.r.t. j. For the sake of simplicity, we will not go into any
details of how to choose the distance measure δ , but one usual choice for nor-
malized data is the L2 norm. Other options include the Mahalanobis distance
and if the xi were discrete an appropriate distance measure for the set. With

ci := argmin
j

δ (xi,µ j)

we denote the cluster the ith observation belongs to. That is, we expect the
observation to come from the cluster it is closest to. This idea is formalized
in Algorithm 5.7.

Algorithm 5.7 Expectation Step of k-means (kmeans_e_step)

Require: X = (x1 . . .xm) with xi ∈Rp, cluster centers µ= (µ1 · · ·µk) with
µ j ∈ R

p

1: for i = 1→ m do

2: ci← 1
3: for j = 2→ k do

4: if δ (xi,µ j)< δ (xi,µci
) then

5: ci← j

6: end if

7: end for

8: end for

9: return c= (c1 · · ·cm)

So now that we know how to assign observations to clusters, how do we
determine the locations of the cluster centroids µ j? Let us assume that we
already know to which cluster each observation belongs, i.e. we have a ci for
every xi that tells us to which of the k clusters the ith observation belongs.
Let us, again for the sake of simplicity, assume that we are using the L2 norm
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as our distance measure. In that case, wouldn’t it be natural to choose the µi

as the mean of all the xi belonging to cluster j, or more formally,

µ j =
1

∑
m
i=1 I(ci = j)

m

∑
i=1

I(ci = j)xi,

where I() is the indicator function. This procedure would maximize the fit
of our cluster centroids to the data or, put another way, minimize the mean
distance from the cluster centroid to the observations belonging to the cen-
troid. Again, we can turn this idea into an algorithm, which is given in Algo-
rithm 5.8

Algorithm 5.8 Maximization Step of k-means (kmeans_m_step)

Require: X = (x1 . . .xm) with xi ∈ R
p, cluster assignment c = (c1 . . .cm),

ci ∈ {1, . . . ,k}
1: s= (s1 . . .sk) = 0
2: m= (m1 . . .mk) = 0
3: for i = 1→ m do

4: sci
← sci

+ xi

5: mci
← mci

+1
6: end for

7: for j = 1→ k do

8: µ j =
s j

n j

9: end for

10: return µ= (µ1 · · ·µk)

So what we now have is a way to compute cluster assignments ci given
that we know the cluster centroids µ j and another method to compute the
cluster centroids µ j given cluster assignments ci. But these two parts are ex-
actly the ingredients that are necessary for an EM type algorithm. Combining
the two previous algorithms results in Algorithm 5.9. In this particular imple-
mentation, we have chosen to perform the M step before the E step in each
loop. That is, we start with a (random) cluster assignment and from that cal-
culate the initial cluster centroids. It is also possible to initialize the µ j by
assigning them each a different random observation. It is, however, impor-
tant to note that one should refrain from assigning completely random values
to the initial cluster centroids. If this is done, one can end up in a situation
where no observation is assigned to a cluster and the following M step fails
to compute a new cluster centroid for that particular cluster.

To illustrate the operation of the algorithm, the first five iterations on an
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Algorithm 5.9 k-means Clustering

Require: X = (x1 . . .xm) with xi ∈ R
p, number of clusters k

1: for i = 1→ m do

2: ci← random integer between 1 and k {Initialize cluster assignment}
3: end for

4: c← (c1 . . .cm)
5: for j = 1→ k do

6: µ j← random vector from R
p {Initialize cluster centers}

7: end for

8: µ← (µ1 · · ·µk)
9: repeat

10: µ ′← µ

11: µ← kmeans_m_step(X,c)
12: c← kmeans_e_step(X,µ)
13: until µ ≈ µ ′

artificial data set are visualized in Figure 5.4. Initially all the cluster centroids
appear bunched up in the center. As the algorithm progresses they slowly
move outward toward the five clusters. We can see that after five iterations
the cluster centroids appear to reflect the clusters in the data almost perfectly.

If one looks into the literature there are many variants and extensions of
the basic k-means algorithm presented here. Most of them try to deal with
data that are not normalized and for which we do not wish to burn ourselves
with the explicit specification of a suitable distance measure. Others extend
the approach to different domains, such as time series or add constraints.

Finally, we must note that, like almost all EM type algorithms, the so-
lution returned is not guaranteed to be globally optimal. Therefore, it is ad-
visable to run the algorithm with several different starting configurations and
choose the clustering that best fits the data.

5.2.5 EM Algorithm: Summary and Outlook

5.2.5.1 Summary

In this section we introduced and discussed the EM algorithm in its gen-
eral form as well as in special forms for the exponential family, for mixture
of Gaussians, and for k-means clustering. We showed that the convergence
properties of the EM algorithm should be well-known, since convergence to
the global maximum of the log-likelihood cannot be guaranteed in practice.
Therefore, a plausibility check of EM results is always required.
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Figure 5.4: Example k-means run. In each row the state of Algorithm 5.9 after
one iteration is shown after the M step (first column) and the E step (second
column).
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Outlook

Notice that the EM algorithm is always especially suited to the problem at
hand. Different problems need different EM algorithms. Often, there are spe-
cial variants of the EM algorithm for different problems, also in order to im-
prove convergence speed. In particular, several have tried to optimize the E
step (cp. Meng and van Dyk (1997)).

Notice that because of the unknown latent variables, there is the danger
of nonidentifiability, i.e. that there are different β ∗ with g(y | β ∗) = L∗ (cp.
Wu (1983)). Finally, the maximum property of the result of the EM algorithm
should be plausibility checked.

5.3 Implementation in R

5.3.1 PLS

An R implementation of several PLS methods is available in the contributed
CRAN package pls by Mevik and Wehrens (2007). It provides the tradi-
tional NIPALS algorithm (function oscorespls.fit) as well as many other
PLS algorithms that have not been discussed here. Among these methods
are kernel PLS (function kernelpls.fit) and wide kernel PLS (function
widekernelpls.fit). The package supports multi-response models as well
as partial least squares and principal component regression in function mvr.
For the correct syntax, please see the help pages for the functions. For ex-
ample, oscorespls.fit(X, Y) applies PLS via the NIPALS algorithm on
a matrix of observations X and a vector or matrix of responses Y .

5.3.2 EM Algorithm

Since the EM algorithm is a concept that can be applied rather more widely
than a specific method for solving a particular task, there can’t be a very
general implementation of it. The most complicated part for implementing
the EM algorithm is that the functions to be optimized must be known in
advance, e.g., the likelihood to be optimized must be known. That means we
find many implementations in places where specific tasks are to be solved by
means of the EM algorithm.

There are several R packages that implement various EM type algorithms
available in the CRAN Task View called “Cluster Analysis & Finite Mixture
Models” (Leisch and Grün, 2013). This is not a big surprise given that the
EM works very well for the estimation of parameters of mixtures. Among the
many mentioned packages are the following widely used packages with EM
implementations:
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– mclust (Fraley and Raftery, 2002): “Fits mixtures of Gaussians using the
EM algorithm and provides comprehensive strategies using hierarchical
clustering, EM and the Bayesian Information Criterion (BIC) for cluster-
ing, density estimation, and discriminant analysis.”

– flexmix (Grün and Leisch, 2008): “Implements a user-extensible frame-
work for EM estimation of mixtures of regression models, including mix-
tures of (generalized) linear models.”

– mixPHM (Mair and Hudec, 2008): “Fits mixtures of proportional hazard
models with the EM algorithm.”

Since the likelihood that is to be optimized is known for the specific appli-
cations of these packages, they can implement their own versions of the EM
algorithm.

5.4 Conclusion

In this chapter we showed that the deduction of theoretical properties of a
heuristic algorithm might, on the one hand, motivate the usage of a method,
like in the case of the optimality property of PLS. On the other hand, the
knowledge of theoretical shortcomings might lead to caution applying a
method, like in the case of the convergence properties of the EM algorithm.
Overall, this chapter should motivate the reader to take up the challenge to
prove theoretical properties, since only through them the practical properties
of the heuristics become clear.

5.5 Exercises

Exercise 5.1.1: Implement the two PLS algorithms described in Section 5.1.3
(based on covariances and on correlations), both for one response only (indi-
vidual PLS) and for more than one response (combined PLS).

Exercise 5.1.2: Using the PLS implementation of the PLS algorithms of Sec-
tion 5.1.3 in Exercise 5.1.1 generate PLS1 and PLS2 for the two response
variables HUEREM and HUEREMAL individually and combined, based on
the 93 observations of the 18 physico-chemical properties in the data available
from the exercises section under http://www.statistik.tu-dortmund.
de/fostal.html. Calculate the goodness-of-fit R2 as in Table 5.1, and com-
pare the results.

Exercise 5.1.3:

a. As in Example 5.1, choose y = a2x2 + a3x3 with a2,a3 fixed individually,
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Table 5.2: Multinomial Example

Blood Type Genotype Freq. Blood Type Genotype Freq.

A AA p2 A A0 2pr

B BB q2 B B0 2qr

AB AB 2pq 0 00 r2

and x2,x3 chosen from different distributions. Compare the outcome of
PLS with the theoretical result in Example 5.1.

b. Choose y = a2x2 + a3x3 + ε with a2,a3 fixed individually, x2,x3 chosen
from different distributions with the same variance V , and ε chosen from
N (0,σ ·V ). Vary σ = 0.1,1,10,100. Observe the effect on the structure
of the first PLS component compared with the result in Example 5.1.

Exercise 5.2.1: One might use population data to validate the hypothesis that
human AB0 blood types are determined by 3 alleles, A, B, and 0 at a sin-
gle genetic locus, rather than being 2 independent factors A/not-A, B/not-
B. Suppose that the population frequencies of A, B, and 0 are p, q, and r

(p+ q+ r = 1). We want to estimate [p q r]T . We assume that the types
of the two alleles carried by an individual are independent (Hardy-Weinberg
equilibrium (1908)), and that individuals are independent (unrelated). AB0
blood types are determined as shown in Table 5.2.

Obviously, the easily observable blood type Y and the much harder ob-
servable (unknown) genotype X are multinomially distributed, namely:

Y ∼M4(n,(p2 +2pr,q2 +2qr,2pq,r2)),

X ∼M6(n,(p2,2pr,q2,2qr,2pq,r2)).

Explain that the log-likelihood of Y is hard to maximize in contrast to the log-
likelihood of X . Derive an EM algorithm to estimate [p q r]T . This method
was already known to geneticists in the 1950s as “genecounting”, whereas the
EM algorithm was invented much later.

Exercise 5.2.2: Implement Algorithm 5.9 and reproduce Figure 5.4 for a self-
chosen artificial data set.

Exercise 5.2.3: Modify your implementation from Exercise 5.2.2 of Algo-
rithm 5.9 to initialize the cluster centroids instead of the cluster assignments.
Compare the two algorithms for different artificial data sets. Which one con-
verges faster?
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Exercise 5.2.4: How would you choose k for the k-means procedure if it is
not known a priori?

Exercise 5.2.5: Look at the R implementation of kmeans in the stats pack-
age. How does the algorithm used differ from the basic k-means algorithm
described here?



Chapter 6

Randomization

6.1 Motivation and History

On the one hand, randomness is the basis for statistics. If you do not accept
the concept of randomness, then you cannot practice statistics. On the other
hand, statistical algorithms on the computer are, for the most part, determin-
istic. Even though they might produce so-called random numbers, they are
usually designed to generate reproducible numbers. Indeed, reproducibility is
even one of the intrinsic requirements for any scientific study. This kind of
pseudorandomness will be discussed in the chapter. This means that we will
introduce so-called generators of pseudorandom numbers, i.e. we will discuss
the randomization of numbers.

Note that there were already examples in previous chapters where ran-
dom entries were assumed to be available. For example, the test matrices used
for the verification of the LLS-Solvers in Chapter 3 have free elements that
can be fixed deliberately. Moreover, there were many stochastic optimizers in
Chapter 4 like, e.g., simulated annealing, which utilize random numbers. For
example, in order to be equipped with a multiplicity of test matrices it is favor-
able to fix the free elements with numbers that are “randomly” drawn. Such
“random” numbers should possibly be uniformly distributed. This is also true
for the random numbers needed for stochastic optimizers. However, in what
follows, we will also introduce methods for the generation of realizations of
other important discrete and continuous distributions.

6.1.1 Preliminaries

In this subsection, we will give notation, definitions and results about function
norms that we assume to be known. In the following sections we will not
explicitly refer to this subsection when using these facts. All other theories
needed will be cited or proved.

269
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Definition 6.1: L1 Norm
The L1 norm of a function g: Rd → R is defined by

‖g‖1 :=
∫

Rd
|g(x)|dx (6.1)

Definition 6.2: Variation Norm
To measure the distance between two distributions the variation norm

‖µ−π‖Var := sup
A⊆E

|µ(A)−π(A)|, (6.2)

can be used, where µ and π are density functions over E and A is an arbitrary
Borel-measurable subset. As a special case, pointwise distances for A = {x},
x ∈ E, are covered.
One can show:

‖µ−π‖Var =
1
2 ∑

y∈E

|µ(y)−π(y)|, (6.3)

when E is finite.
Example: Let E = {0,1} and π be the density of the Bernoulli distribution
with π(1) = 0.75 and µ(0) = µ(1) = 0.5. Then:

‖µ−π‖Var := max
A⊆E
|µ(A)−π(A)|= 0.25 =

1
2 ∑

y∈E

|µ(y)−π(y)|

For continuous π(x) one can correspondingly show:

‖µ−π‖Var =
1
2

∫

E
|µ(x)−π(x)|dx. (6.4)

6.2 Theory: Univariate Randomization

6.2.1 Introduction

In what follows we first introduce a method for the generation of sequences
that one might be willing to call (uniformly distributed) random. The “ran-
domness” of the elements of such a sequence very much depends on the
choice of certain parameters.

We will discuss criteria for “randomness” of such sequences, and we will
demonstrate how to choose such parameters adequately. Then, we will in-
troduce methods with which uniformly or otherwise distributed random se-
quences can be generated.
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x
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x
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N

1 2 3 4 5 N

...

Figure 6.1: A discrete uniform distribution.

Definition 6.3: Random Sequence, According to Lehmer (1951) (Knuth,
1969, p. 127)
The term random sequence (RS) conveys the vague notion of a sequence in
which each element appears to be unpredictable for the uninitiated and whose
elements pass certain statistical tests dependent on its designated use.

Obviously, this definition is not exact. What is needed for its clarification
is a preferably short list of mathematical properties, all of which fulfill our
intuitive idea of random sequences and which is that complete that we are
ready to name every sequence with these properties random (Knuth, 1969, p.
128).

Further clarification of this term turns out to be fairly complicated and
will not be discussed here (see instead Knuth, 1969, pp. 127 – 151).

6.2.2 Uniform Distribution

An obviously very important property of an RS is its distribution. In general,
one first tries to find discrete uniformly distributed RSs since transformations
to other distributions are often easy to realize. Therefore, we first define:

Definition 6.4: Uniformly Distributed RS
A uniformly distributed RS (URS) is a sequence that satisfies tests on dis-
crete uniform distributions (see Figure 6.1) and other tests on randomness
described in the following.

The general discrete uniform distribution is defined as follows:



272 RANDOMIZATION

Definition 6.5: Discrete Uniform Distribution
Each function of the type

f (x) = f (x,N) =

{ 1
N

x = x1,x2, . . . ,xN

0 else,

where N ∈ N, is called (discrete) density (or probability function) of a dis-

crete uniform distribution. A random variable with such a density is called
discretely uniformly distributed.

For the generation of RSs so-called random number generators are used:

Definition 6.6: Random Number Generator
A method for the generation of RSs is called a random number generator

(RNG).

Possible RNGs

1. One type of RNGs generates the RS so that no one can predict any element
of the sequence. (Example: Measurement of the emission of a radioactive
source by means of a Geiger counter.)

2. Another type of generator, which is preferred in computers, generates the
( j+1)th element of the sequence from the first j elements, as exemplified
in the following.

Basic RNG

On a computer, a basic random number generator typically generates a dis-
crete uniform distribution on the set {0,1,2, . . . ,231−1} or {0,1,2, . . . ,232−
1}, depending on whether signed or unsigned integers are required. This
choice reflects the fact that most modern machines have a word size of 32
bits.

Such a random number generator is the basis for the generation of random
numbers of many distributions, as exemplified in what follows.

Generation of Uniformly Distributed Random Numbers

In order to generate a discrete uniform distribution on the numbers x1, . . . ,xN ,
e.g., the interval

[
0,231−1

]
is divided into N equal-sized parts that are

matched with one xi each.
Certain types of RNGs for which it is known that they generate sequences

with desirable properties are often used in practice, though they do not cor-
respond to the intuitive notion of a random sequence since they are deter-
ministic. In the literature such sequences are often called pseudo- or quasi-

random numbers. The basic type of such generators is introduced now.
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Definition 6.7: Linear Congruential Method
A Linear Congruential Sequence (LCS) {x j} j∈N is recursively defined by:

x j+1 := mod m(ax j + c), (6.5)

where
x0 ∈ N is the starting value,
a ∈ N is the multiplier,
c ∈ N is the increment,

m ∈ N is the modulus with m > x0,a,c.

The modulo-operation mod m is defined as follows:

Definition 6.8: Modulo-Operation
Let a,b ∈ Z and m ∈ N. Then the equivalence relation

a≡ b :⇔ a−b divisible by m

partitions the integer numbers Z into so-called residue classes modulo m.
We use the notation a = mod m(b) and denote the set of representatives of the
residue classes modulo m as Zm = {0,1,2, . . . ,m−1}.

Example 6.1: Examples of LCSs

1. Let a := 5, c := 7, x0 := 4, m := 13. Then

x1 = mod13(27) = 1, x2 = 12, x3 = 2, x4 = 4 = x0,
x5 = x1 . . .

2. Let a := 5, c := 7, x0 := 4, m := 8. Then

x1 = 3, x2 = 6, x3 = 5, x4 = 0,
x5 = 7, x6 = 2, x7 = 1, x8 = 4 = x0,
x9 = x1 . . .

The fact that in both examples the sequences are cyclical motivates the
following definition:

Definition 6.9: Period of an RS
A sequence {x j} j∈N has period µ iff there are λ ∈ N0 and µ ∈ N such that
x0, . . . ,xλ , . . . ,xλ+µ−1 are different and x j+µ = x j for j ≥ λ .

In the above examples the periods are 4 and 8, respectively. One can show:

Theorem 6.1: Bound for LCS Period
Every LCS has a period ≤ m.
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Proof. x j+1 :=modm(ax j +c)< m for all j ∈N0. Thus, among the first m+1
elements of the sequence, at least two elements are equal, e.g. xλ and xλ+µ

with 1≤ µ ≤ m.
Since (6.5) uniquely defines the successor x j+1 of x j, it is clear that x j+µ =
x j ∀ j ≥ λ . Thus, the period is ≤ µ ≤ m.

Now, we will discuss the choice of m,a,c, and x0.

Choice of Modulus m

In order that the number of different random numbers is not too small, m

should not be too small because of Theorem 6.1.
On computers, m is often taken to be the word length since this speeds

up the modulo-operation considerably. This typically leads to m = 231 or m =
232, depending on the use of signed or unsigned integers.

Machine Realization of a Generator with m = 231

Each division of an integer by a power of 2 can be realized by a right shift in
dual representation. Solving, e.g., 6/4 by shifting two places to the right in
the dual representation (110)2 leads to the result (1.1)2, which is rounded to
(1)2, i.e. 1, ignoring the residue 2. The residue is the part of the original dual
representation lost by shifting, i.e. (10)2. Thus, the modulo-operation for an
LCS can be realized as follows.

Algorithm 6.1 Modulo-Operation for an LCS with m = 231

Require: Integer number representation: (1 sign bit, 31 dual bits)
1: Calculate ax j + c in a “double-exact accumulator” using two words: (1

sign bit, 63 dual bits).
2: Realize the division by m = 231 by eliminating the 1st word, i.e. sign bit

and first 31 dual digits.
3: In the remaining second word, add the lost sign bit. {The sign bit always

represents “+”.}

This obviously makes the modulo-operation very fast for m = 231.

Choice of Multiplier a

Given the modulus m, the choice of a should guarantee a long period. There-
fore, we choose a by the following theorem to guarantee maximum period
(= m):

Theorem 6.2: Maximal LCS Period
An LCS has period m iff

1. c and m are coprime,
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2. a−1 is a multiple of every prime dividing m,

3. a−1 is a multiple of 4 if m is a multiple of 4.

Proof. see (Knuth, 1969, pp. 15 – 18).

If m = 231, Theorem 6.2 gives the following conditions for maximum
period:

1. c odd,

2. a≡ 1 (mod 4), i.e. a≡ 1 (mod 8) or a≡ 5 (mod 8).

Further, a number of theoretic considerations restrict the possible multipliers
a by (Knuth, 1969, pp. 21 – 24, 78, 155):

1. a≡ 5 (mod 8),

2.
√

m < a < m−√m,

3. the dual representation should not follow a simple scheme.

Choice of Increment c

For fixed a,m the generation is the fastest for c = 0. Unfortunately, by The-
orem 6.2 a maximum period cannot be reached for c = 0. The maximum
period for m = 231 is 229 (Knuth, 1969, pp. 18 – 19). Though this might even
be long enough, normally another c is used. (Knuth, 1969, p. 78) recommends
to choose c so that

c

m
≈ 1

2
−
√

3
6

. (6.6)

Choosing an odd c so that this is true guarantees, by Theorem 6.2, a max-
imum period for a corresponding a. Thus, for m = 231 we might want to use

c = 453816693.

Choice of Starting Value x0

Since the recommended m,a,c guarantee maximum period, i.e. the LCS ran-
domly runs through all numbers between 0 and m−1 until the first repetition,
the choice of x0 is unimportant. Nevertheless, x0 should be fixed for repro-
ducibility.

Let us now discuss alternatives to the LCS somewhat more briefly.

Inversive Generators (Niederreiter, 1995; Eichenauer and Lehn, 1986, pp.

315 – 326)

Alternatives to LCSs are the so-called inversive generators. There, in the
modulo-operation, instead of x j the corresponding inverse x−1

j in Zm is used.
Naturally, one first has to clarify how such an inverse is defined.

The transfer of addition and multiplication from Z to Zm in a canonical
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way leads to a commutative ring Zm with a multiplicative identity element.
Therefore, the ring Zm is called residue class ring modulo m. A residue class
ring modulo a prime number m is a field (not valid for general m). In what

follows, we assume that m is prime.

Definition 6.10: Inverse in a Residue Class Field
If it exists, the inverse element x−1 ∈ Zm for x ∈ Zm is defined by:

modm(x · x−1) = 1.

Theorem 6.3: Multiplicative Inverse
An element x ∈ Zm has a multiplicative inverse x−1 iff gcd(x,m) = 1, where
gcd stands for “greatest common divisor”.

Proof. The proof of this theorem is constructive:
The extended Euclidean algorithm (cp. Example 2.1) delivers the proposition
that the gcd can be written as an integer linear combination of x and m:

u · x+ v ·m = gcd(x,m).

If gcd(x,m) = 1, then the coefficient u of x in this linear combination is the
multiplicative inverse of x in the sense of the above definition.

Example 6.2: Extended Euclidean Algorithm: GCD of the Numbers 17 and
5

17 = 3 · 5+2 and
5 = 2 · 2+ 1

Thus,
1 = 5−2 · 2

= 5−2 · (17−3 · 5) = 7 · 5−2 ·17

Thus, mod17(5 ·7) = 1, meaning 7 = 5−1 in Z17.

If m is prime, obviously for all 0 ≤ x < m it is true that gcd(x,m) = 1.
Notice that one can even show that 0−1 = 0 and x−1 = modm(x

m−2) for all
other x ∈ Zm if m is prime (see, e.g., Hellekalek, 1995).

Definition 6.11: Inversive Generator
A random sequence is generated by an inversive generator iff

x j+1 := modm(a · x−1
j + c),

where x−1
j is the inverse of x j in the residue class field Zm and m is prime.
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As the modulus, the prime number m= 231−1 could be used. For sensible
choices of the parameters a,c and for further considerations about inversive
generators, cp., e.g., (Hellekalek, 1995).

6.2.2.1 Multiply-with-Carry Generators

In the previous sections we have looked at several historic RNG concepts.
These are not considered state of the art, and their use is usually frowned
upon. In this section we will learn about a structurally simple extension of the
LCS idea that can create competitive random number generators that are both
fast on modern hardware and easy to implement.

The class of multiply-with-carry (MWC) generators was first proposed
by Marsaglia (1996). It can be thought of as a generalization of the LCS
generator by replacing the fixed increment c with a varying increment. For the
simplest MWC generator, a lag-1 MWC generator, the recursive definition is
given by

x j := mod m(ax j−1 + c j−1) and c j :=

⌊
ax j−1 + c j−1

m

⌋
. (6.7)

Notice how similar the recursion for x is to the one defined in Equation 6.5.
The only difference is that for the MWC the increment or carry changes for
every x. To see why this is called a multiply-with-carry generator, let us look
at an example.

Example 6.3: MWC Sequence
Let a = 6 and m = 10, then the first 12 elements of the MWC sequence for
x0 = 4 and c0 = 4 are given by

j 0 1 2 3 4 5 6 7 8 9 10 11 . . .

c j 4 2 5 0 3 0 1 4 5 5 2 2 . . .
x j 4 8 0 5 0 3 8 9 8 3 3 0 . . .

ax j + c j 28 50 5 30 3 18 49 58 53 23 20 2 . . .

Notice that x j is the last digit of ax j−1 + c j−1, and that c j is the leading digit,
or carry, of ax j−1 + c j−1.

Before we continue, let us ask ourselves why we would want to use this
generator instead of the LCS generator? The construction looks very similar,
but we have to do more work per random number we wish to calculate. But
do we really need to do more work? If we choose m = 232, ignoring for a
minute if this leads to a decent generator, then x j−1 and c j−1 can be stored in
word-sized, i.e. 32-bit, integers and t = ax j−1+c j−1 is a 64-bit integer whose
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lower 32 bits are x j and whose upper 32 bits are c j. Most modern CPUs
have instructions to calculate the product of two 32-bit integers in full 64-bit
precision with little or no extra overhead. The rest is then just a matter of bit
shifting and masking the result to extract the new x and c by implementing
the modulo-operation in analogy to Algorithm 6.1. Therefore, there really
isn’t much more work involved in this generator compared to an LCS type
generator. It does have one major advantage, though: it has a much longer
period.

If you pick, e.g., a = 698,769,069, m = 232 and pick your seed so that
0 ≤ c0 < a and 0 ≤ x0 < m, [c0 x0] 6= [0 0] and [c0 x0] 6= [a− 1 m− 1],
then the resulting MWC sequence will have a period of am− 1, i.e. approx-
imately 250.4 ≈ 1018.2, quite a bit longer than the best possible period length
that can be achieved with an LCS type generator. But we have to pay a price
for this: We need two seeds and have a higher, although in most cases negli-
gibly higher, computational burden per generated random number.

So how do we pick a and m so that we may achieve a long period for the
generator for almost all seeds? Without going into all the details, all sensible
values of a and m are such that p = am− 1 is prime. The reasoning behind
this is that for each seed pair x and c we may obtain a different period length
of the associated MWC. The length of the period is of the order of m in the
group of residues relatively prime to some d, where d is one of the divisors of
p. If p is prime, then there are only two trivial divisors, 1 and d. The former
leads to two trivial seeds that need to be avoided (see above example) and the
latter to a period length of

argmin
i

mod p mi = 1. (6.8)

This motivates the period given in the previous paragraphs. For a full descrip-
tion of the theory behind the calculation of the period, see Marsaglia (1996).

Algorithm 6.2 gives an efficient algorithm for most modern CPUs to cal-
culate consecutive elements of the MWC sequence. In practice, the achievable
period length of these generators is still not satisfactory. It can be extended
almost arbitrarily by using a lag-r MWC generator. The lag r MWC uses the
rth from last generated value rather than the last one. So the defining equation
is given by

x j = mod m(ax j−r + c j−r) and c j =

⌊
ax j−r + c j−r

m

⌋
. (6.9)

Choosing a so that the period length is maximal for these types of generators
is nontrivial, for details see Marsaglia (2003).
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Algorithm 6.2 Calculation of Next Element in a Multiply-with-Carry Se-
quence

Require: x and c are 32 bit unsigned integers
Require: c 6= 0 or x 6= 0
Require: c 6= a−1 or x 6= 232−1
Require: p = 232a−1 is prime and (p−1)/2 is prime. I.e. p is a safeprime.

1: t← ax+ c, where t is a 64 bit integer
2: xo← lower 32 bit of t
3: co← upper 32 bit of t
4: return (xo,co)

Table 6.1: List of Other Common Random Number Generators

RNG Class Comment

lagged Fibonacci Sensitive to seeds
Mersenne Twister Widely deployed and popular because of the long

period length
WELL Improvement on the Mersenne Twister

6.2.2.2 Overview of Other Generators

A plethora of other generators have been proposed in the literature, but many
of them have been proven to be inadequate for modern usage. A summary of
the most common algorithms not mentioned so far found in use today is given
in Table 6.1. The lagged Fibonacci sequence type generators are popular be-
cause they are discussed at length in volume II of Knuth (1998). In 2002 the
generator recommended by him had to be revised because it showed some
weaknesses if the initial seed was chosen unfortunately. Both the Mersenne
Twister (Matsumoto and Nishimura, 1998) as well as the WELL generator
(Panneton et al., 2006) are structured somewhat differently in that they do not
operate on integers directly, but on 1-bit vectors of length 32, that is, they
view a 32-bit integer as a vector of 32 1-bit integers. These generators gener-
ate a true stream of random bits. Their structure does not lend itself to easy
implementation, however, and if possible, one should use the code provided
by the original authors.

Let us now discuss some of the tests proposed to check the randomness of a
number sequence. Other tests can be found in the exercises.
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6.2.2.3 Empirical Tests on Randomness

There are lots of different tests candidate random sequences should pass be-
fore their randomness is accepted. We will only discuss some simple tests
here to show the principle, give some more examples in the exercises, and
refer to so-called test suites for the interested reader.

The following tests check a given section from the period of a number
sequence on “randomness”. The tests will use the following sequences:

{xi}i∈N0 , an RS with elements in N0,

{ui}i∈N0 , the corresponding sequence with elements ui := xi

m
∈ [0,1),

{y(D)
i }i∈N0 , the corresponding sequence with elements y

(D)
i := ⌊Dui⌋ ∈

[0,D), D ∈ N.

Most of the following tests utilize the auxiliary chi-square test.

Chi-Square Test

Let M be the number of independent observations falling in K different cate-
gories, then the following hypothesis is tested:

H0: The probability that an observation falls into category s is equal to ps,
1≤ s≤ K.

M is to be chosen so that

Mps ≥ 5, 1≤ s≤ K. (6.10)

Now let Ms be the number of observations in category s with ∑
K
s=1 Ms =

M. To assess the hypothesis on the basis of the observations, the realization v

of the statistic

V :=
K

∑
s=1

(Ms−Mps)
2

Mps

=
1
M

K

∑
s=1

M2
s

ps

−
K

∑
s=1

(2Ms−Mps) =
1
M

K

∑
s=1

M2
s

ps

−M,

is calculated. Assuming that the null-hypothesis is correct, V is approximately
chi-square distributed with K−1 degrees of freedom if (6.10) is satisfied for
M.

Notice: For a chi-square distribution: variance = 2 · (expected value).
We say that the hypothesis is

rejected iff P(V < v)< 0.01 or P(V ≥ v)< 0.01,
suspicious iff 0.01≤ P(V < v)< 0.05 or 0.01≤ P(V ≥ v)< 0.05,
nearly suspicious iff 0.05≤ P(V < v)< 0.1 or 0.05≤ P(V ≥ v)< 0.1,
fair iff 0.1≤ P(V ≥ v)≤ 0.9.

(6.11)
The parameters of the following tests using the chi-square test are always

chosen so that:
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1. (6.10) is satisfied and

2. M is not too big (because of computer time), e.g. M = 10,000.

Now, we will introduce some tests on different aspects of uniformity and
independence:

– a basic “Uniform distribution test” as a simple test on uniformity and in-
dependence,

– the “Gap test”, representative for tests on whether number sizes do not
have special structure,

– the “Permutation test”, testing the size order in tuples of numbers,

– the “Maximum-of-T test on the distribution of maxima of tuples, and

– the “Correlation test” on the correlation in a sequence.

Moreover, we will indicate that tests on structured subsequences might be
sensible.

Definition 6.12: Uniform Distribution Test
k-tuples of succeeding elements of a sequence {xi}i∈N0 are tested on indepen-

dence and uniform distribution by means of a chi-square test on {y(D)
i }i∈N0 ,

D ∈ N.

For LCSs K := D is used in the chi-square test and probabilities 1
Dk in the

cases:

k = 1 and (y
(D)
j ) , j = 1,2, . . .

k = 2 and
(y

(D)
2 j−1,y

(D)
2 j )

(y
(D)
2 j ,y

(D)
2 j+1)

}
, j = 1,2, . . .

k = 3 and

(y
(D)
3 j−2,y

(D)
3 j−1,y

(D)
3 j )

(y
(D)
3 j−1,y

(D)
3 j ,y

(D)
3 j+1)

(y
(D)
3 j ,y

(D)
3 j+1,y

(D)
3 j+2)





, j = 1,2, . . .

For example, we could check the following cases:





k = 1 with D = 128,

k = 2 with D = 32,

k = 3 with D = 8.

Definition 6.13: Gap Test
For 0≤ α < β ≤ 1 the length of the subsequences {u j,u j+1, . . . ,u j+r} is ana-
lyzed for which u j+r ∈ (α,β ), but the other elements not. Such a subsequence
of r+1 numbers represents a gap of length r. For a given z∈N the number of
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gaps of length 0,1, . . . ,z−1 are counted as well as the gaps of lengths greater
than or equal to z.

These counts are analyzed by means of a chi-square test with K := z+1
categories and probabilities pr := q(1−q)r, r = 0, . . . ,z−1, and pz = (1−q)z,
where q := β −α .

For example, the case α = 1
4 , β = 3

4 , z = 5 could be analyzed.

Definition 6.14: Permutation Test
Divide the sequence {ui}i∈N0 into N disjoint groups

(uT · j,uT · j+1, . . . ,uT · j+T −1),

0≤ j < N, with T elements each. The elements in such a group can be size
ordered in T ! different ways.

The realized number of each of these orderings is determined, and then
a chi-square test is applied with K := T ! categories and probability 1

T ! for
each category.

For example, for T = 3, a sequence {ui} of length 100 would be parti-
tioned into N = ⌊100/3⌋= 33 disjoint groups

(u0,u1,u2), (u3,u4,u5), . . . ,(u96,u97,u98),

and the size ordering inside each of these groups is determined. The 6 = 3!
possible orderings are: ui < ui+1 < ui+2, ui < ui+2 < ui+1, ui+1 < ui < ui+2,
ui+1 < ui+2 < ui, ui+2 < ui < ui+1, and ui+2 < ui+1 < ui. Note that all elements
of {xi}, and thus all elements of {ui}, are different.

Definition 6.15: Maximum-of-T Test
For 0≤ j < N let

z j := max(uT · j,uT · j+1, . . . ,uT · j+T −1),

where N ∋T < M. The distribution of Z is of the form:

P(Z ≤ x) = P(max(U1,U2, . . . ,UT )≤ x)

= P(U1 ≤ x,U2 ≤ x, . . . ,UT ≤ x)

= P(U1 ≤ x)P(U2 ≤ x) . . .P(UT ≤ x)

= x · x · . . . · x
= xT
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if the Ut are all independently uniformly distributed on the interval [0,1).
Therefore:

P(ZT ≤ xT ) = xT .

Thus, ZT is uniformly distributed on the interval [0,1) and ⌊DZT ⌋ is uni-
formly distributed on the integers of the interval [0,D).

Therefore, a uniform distribution test is applied to the section
⌊DzT

0 ⌋, . . . ,⌊DzT
N−1⌋ of the sequence with k = 1.

For example, the cases T = 2,3,4,5 with D = 32 could be analyzed.

Definition 6.16: Correlation Test
This test calculates the empirical (cyclical) autocorrelation coefficient

C :=
N(u0u1 +u1u2 + · · ·+uN−2uN−1 +uN−1u0)− (u0 +u1 + · · ·+uN−1)

2

N(u2
0 +u2

1 + · · ·+u2
N−1)− (u0 +u1 + · · ·+uN−1)2

of a section of length N of the sequence {ui}i∈N0 , which is a measure for the
dependency of consecutive elements.

The coefficient is called cyclical because of the term uN−1u0 in the numer-
ator. One can show that −1≤C ≤ 1, C =±1 indicates complete dependence
and C = 0 independence.

In general, it cannot be expected that the autocorrelation coefficient is
exactly zero for random sequences. For example, the above autocorrelation
coefficient is always equal to −1 for N = 2, even when the realizations of Ui

are independent, unless the numerator is zero:

C =
4u0u1− (u0 +u1)

2

2(u2
0 +u2

1)− (u0 +u1)2
=−(u0−u1)

2

(u0−u1)2 =−1.

The general exact distribution of this autocorrelation coefficient for uni-
form U is unfortunately unknown. However, this distribution is, at least for
normal U , for sufficiently large N fairly well approximated by a normal dis-
tribution with expected value and variance:

µN :=− 1
N−1

and σ2
N :=

N(N−3)
N+1

(N−1)2 , N > 3

(cp. Dixon, 1944, pp. 119 – 144).
For a suitable sequence {ui}i∈N0

µN−2σN ≤C ≤ µN +2σN . (6.12)
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should thus be true in 95% of the cases. Indeed, (6.12) is also essentially true
in 95% of the cases for uniform {ui}i∈N0 (see (Knuth, 1969, pp. 64 – 65)).

The correlation test can be rated as passed (corresponding to “fair” in
(6.11)) iff (6.12) is true, and as not passed otherwise (corresponding to “re-
jected” in (6.11)).

Definition 6.17: Tests for Subsequences
Often, groups of, say, q random numbers are needed in applications. There-
fore, the above tests are also applied to subsequences of the types:

{x0,xq,x2q, . . .},{x1,xq+1,x2q+1, . . .},{xq−1,x2q−1,x3q−1, . . .}.

For example, subsequences of the first type with q = 2,3,4 could be ana-
lyzed.

For LCSs the following formula can be used for simplification (Knuth,
1969, p. 10):

xi+k = (akxi +
(ak−1)c

a−1
) mod (m), k ≥ 0, i≥ 0.

For more examples of empirical tests on independence and randomness
see the exercises.

6.2.3 Test Suites for Random Number Generators

There are two well-established test suites that combine all of the tests de-
scribed above and many more. These are the DieHard and its descendant
DieHarder (Brown et al., 2010) test suites, as well as the newer TestU01 suite
(L’Ecuyer and Simard, 2007), which improves on the DieHard tests in sev-
eral ways. Instead of simply running each of the statistical tests once, they
test multiple random sequences and collect the p-values. These p-values are
then tested for uniformity, a strong indicator that the null hypothesis holds,
using a Kolmogorov-Smirnov test. This is repeated for all tests in the battery,
and the number of times the KS test rejected the null hypothesis is counted,
and this is then reported as the result of the test battery.

6.2.3.1 Unrecommended Generator

It is well-known that the (at least in the 1970s) often used IBM generator
RANDU:

x j+1 := 65539x j mod (231)

cannot be recommended. Marsaglia (1968) has stated that for every LCS “ran-
dom numbers fall mainly in the planes”. For RANDU one can show that the
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Figure 6.2: Rotation of RANDU outcomes.

relation x j = 6x j−1−9x j−2 is valid, i.e. the random numbers fall into planes in
3D. Let (x j,y j,z j) = (x j,x j−1,x j−2)/231−(.5, .5, .5). In Figure 6.2 the (x,y)–
coordinates of 400 such points of the RANDU generator are presented after
rotation around the y-axis with rotation angles 0o,80o,84o,88o. Obviously,
the planes are the clearest for a rotation of 84o, but a small deterioration al-
ready blurs the picture. Moreover, the number of planes the RANDU realiza-
tions lie on is very small, i.e. 15.

6.2.3.2 Recommended Generators

A good starting point when choosing a generator is L’Ecuyer and Simard
(2007). The authors compare about 60 different generators using their
TestU01 suite. Of the generators presented so far, only the lagged MWC, the
WELL, and the Mersenne Twister are deemed fit. Whether a period length of
much larger than 260 is required depends on the use case.
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Figure 6.3: Bernoulli distribution.

6.2.4 Other Distributions

Random numbers from other distributions than the discrete uniform distribu-
tion can often be easily derived from random realizations of this basic distri-
bution. This will be demonstrated in what follows by means of the following
basic discrete distributions: Bernoulli distribution, Binomial distribution, hy-
pergeometrical distribution, Poisson distribution, and negative binomial dis-
tributions, including the Pascal distribution. Along the way, we will also in-
troduce a general method to the generation of random numbers for discrete
distributions.

6.2.4.1 Bernoulli Distribution

Definition 6.18: Bernoulli Distribution
Each discrete density function of the type

f (x) = f (x; p) =

{
px(1− p)1−x for x = 0,1
0 else,

where 0≤ p≤ 1, defines a density of a Bernoulli distribution (with param-

eter p). For an example see Figure 6.3. Notation: q := 1− p

Bernoulli Experiment

A Bernoulli experiment has the two possible outcomes 0 or 1, or “failure” and
“success”, respectively.

Bernoulli distributed random realizations are generated by the parti-
tion of the interval [0,231−1] into two subintervals, I0 := [0,q(231−1)) and
I1 := [q(231− 1),231− 1], and by the allocation of 0 and 1, respectively, to
these subintervals.
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Figure 6.4: Densities of binomial distributions with different parameters.

6.2.4.2 Binomial Distribution

Definition 6.19: Binomial Distribution
Each discrete density function of the type

f (x) = f (x;n, p) =

{ (
n
x

)
pxqn−x for x = 0,1, . . . ,n

0 else,

where n ∈ N, 0 ≤ p ≤ 1 and q := 1− p, defines a density of a binomial

distribution (with parameters n, p). A random variable with such a density
is called binomially distributed and is abbreviated Bin(n, p).

A binomial distribution can take very different forms. For examples, see
Figure 6.4.

Binomial Experiment

Consider the random experiment consisting of n “independent” repetitions of
the same Bernoulli experiment. Then, the sample space has the form:

Ω = {ω = (ω1,ω2, . . . ,ωn) | ωi = success or ωi = failure}.
Since the single experiments are independent of each other, the probabil-

ity of a result of the total experiment is given by multiplication of the proba-
bility of the results of the single experiments.
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Let the random variable
X := number of successes in n independent Bernoulli experiments. Then:

P(X = x) =

(
n

x

)
pxqn−x for x = 0,1, . . . ,n,

since the probability of x successes and (n− x) failures is equal to pxqn−x,
and since

(
n
x

)
different combinations of Bernoulli experiments can have x

successes.
Therefore, a random realization of a binomial distribution with pa-

rameters n, p is generated as the sum of n random realizations of a Bernoulli
distribution with parameter p.

6.2.4.3 Hypergeometrical Distribution

Definition 6.20: Hypergeometrical Distribution
Each discrete density function of the type

fX(x;M,K,n) =





(K
x)(

M−K
n−x )

(M
n)

for x = 0,1, . . . ,n

0 else,

where M ∈ N, M ≥ K ∈ N0 and M ≥ n ∈ N, defines a density of a hyperge-

ometrical distribution (with parameters M, K, n) (for examples see Fig-
ure 6.5).

Example 6.4: Hypergeometrical Distribution
Consider an urn containing K red and (M−K) white balls: How big is the
chance to get exactly k red balls when drawing n balls without replacement?
Let the corresponding event A be defined by A := “k red balls and (n− k)

white balls drawn”, then: P(A) =
(K

k)(
M−K
n−k )

(M
n)

.

Then a random realization of a hypergeometrical distribution with

parameters M, K, n is generated by shuffling the numbers 1 to M. Draw
n times with replacement and count the numbers ≤ K. This count is the re-
quested realization.

6.2.4.4 Poisson Distribution

Definition 6.21: Poisson Distribution
Each discrete density function of the type

fX(x;λ ) =

{
e−λ λ x

x! for x = 0,1,2 . . .
0 else,
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Figure 6.5: Densities of hypergeometrical distributions with different param-
eters.
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Figure 6.6: Densities of Poisson distributions with different parameters.

where λ > 0, defines a density of a Poisson distribution (with parameter

λ ) (for examples see Figure 6.6).

Poisson Distributed Random Realizations

Poisson distributed random realizations are generated similar to uniformly
distributed random numbers by a general method for the generation of ran-

dom realizations of discrete distributions (see Algorithm 6.3). In the case
of the Poisson distribution set, pi := fX(i;λ ).

6.2.4.5 Waiting Time Distributions

Definition 6.22: Waiting Time Distributions
Another type of distribution for counting problems is the so-called waiting

time distributions. Such distributions specify the probability of the waiting
time for one or more successes in, e.g., Bernoulli experiments. In other words,
we look for the probability of the rth success in the yth experiment.
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Algorithm 6.3 General Method for the Generation of Random Realizations x

of Discrete Distributions on x = 0,1,2, . . .

Require: Basic random number generator RNG in [0,231−1]
1: Divide the interval [0,231−1] into subintervals

I0 := [0, p0(231−1)),
I1 := [p0(231−1),(p0 + p1)(231−1)), . . . ,
Ii := [(p0 + . . .+ pi−1)(231−1),(p0 + . . .+ pi)(231−1)), . . . ,
where pi := probability of realization i.

2: Generate a random realization z from 0,1, . . . ,231−1 by RNG.
3: Sum up the p j, j = 0,1,2, . . ., until for the first time ∑

i
j=0 p j(231−1)> z.

4: Set x := i {since z ∈ Ii}

Let X := number of failures before the rth success = waiting time for

the rth success. Then, the latest experiment was a success, having probability
p. Among the first x+ r− 1 experiments there were r− 1 successes and x

failures. The probability of such an event is obviously:

p

(
x+ r−1

r−1

)
pr−1qx =

(
r+ x−1

x

)
prqx

The corresponding distribution is called negative binomial distribution.

Definition 6.23: Negative Binomial Distribution
Each discrete density function of the type

f (x) = f (x;r, p) =

{ (
r+x−1

x

)
prqx for x = 0,1,2 . . .

0 else,

where r ∈ N, 0 < p≤ 1 and q := 1− p, defines a density of a negative bino-

mial distribution (with parameters r, p).

Random realizations of a negative binomial distribution with param-

eters r, p are generated by counting the number of failures in Bernoulli ex-
periments with parameter p before the rth success.

An especially important negative binomial distribution is the geometrical
distribution.

Definition 6.24: Geometrical Distribution
Each discrete density function of the type

f (x) = f (x; p) =

{
pqx for x = 0,1,2 . . .
0 else,
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Figure 6.7: Densities of geometrical distributions with different parameters.

where 0< p≤ 1 and q := 1− p, defines a density of a geometrical (or Pascal)
distribution (for examples see Figure 6.7).

A Pascal distribution is a negative binomial distribution with r = 1. A
geometrical distribution characterizes the waiting for the first success.

Realizations of a geometrical distribution can be generated by counting
the number of Bernoulli experiments before the first success.

6.2.5 Continuous Distributions

Let us now switch to continuous distributions. Again, we will concentrate
on the most important distributions of this type. We will comment on the
generation of random realizations of the continuous uniform distribution, the
triangular distribution, the normal distribution, the exponential distribution,
and the lognormal distribution. Along the way, we will also introduce a gen-
eral method to the generation of random numbers for continuous distribu-
tions with strictly monotonic distribution functions, the so-called inversion

method.

6.2.5.1 Continuous Uniform Distribution

Definition 6.25: Continuous Uniform Distribution
A continuous density function of the type

f (x) = f (x;a,b) =

{
1

b−a
for x ∈ [a,b]

0 else,

where a,b ∈ R and a < b, defines the density of the continuous uniform

distribution on the interval [a,b]. A random variable with such a density is
called (continuously) uniformly distributed.
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Figure 6.8: Density of a rectangular distribution of rounding errors.

Because of the shape of the density function, this distribution is also
sometimes referred to as the rectangular distribution R[a,b].

Example 6.5: Rounding Errors
Let X = “rounding error of measurements to one decimal place” ranging from
−0.05 to +0.05 (see Figure 6.8). Obviously, rounding errors are uniformly
distributed on [−0.05,0.05].

A random number from the interval [0,1) is a realization of a uniformly

distributed random variable in [0,1). Such a random number u can be ap-
proximated by

u :=
x

231 ,

where x was generated by a discrete uniform random number generator on
the numbers 0,1,2, . . . ,231− 1. Similarly, if x were distributed according to
the discrete uniform distribution on the set {0,1,2, . . . ,232−1}, then

u :=
x

232

approximates a continuous uniform random variate.
Since computers generally use finite floating-point approximations to rep-

resent numbers from the real axis, even u follows a discrete distribution in
practice. We should therefore take a special look at the case of converting a
random 32-bit integer x into a random double floating-point value u that ap-
proximates the R[0,1) distribution. The naive way of going about this, and
the one chosen most of the time, is to convert x into a double floating-point
value1 and then multiply it by 2.32830643653869628906× 10−10, which is

1Remember that a double has a mantissa of 52 bits, so any 32-bit integer can be repre-
sented exactly by a double floating-point value.
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Figure 6.9: Density of the triangular distribution.

the closest approximation of 2−32 that can be stored in a double-precision
variable. The problem with this approach is that while we potentially have
52 bits in double-precision, only 32 bits are used to fill them. So we are only
using about, in decimal terms, 9 to 10 digits of the available 15 to 16 digits
of the mantissa. For a detailed description of the problem as well as an el-
egant solution that uses two 32-bit integers to produce one double-precision
random variate, see Doornik (2007). However, we are not aware of any ma-
jor numerical package that uses Doornik’s approaches, and they do come at
the cost of slowing down the continuous uniform random number generator
by approximately half because instead of one, two 32-bit integers need to be
produced. Finally, it should be mentioned that the lagged Fibonacci genera-
tor mentioned earlier can be modified to produce values in the range [0,1)
directly, thereby eliminating the need for any conversion.

6.2.5.2 Triangular Distribution

Definition 6.26: Triangular Distribution
A continuous density function of the type

f (x) = f (x;a,b,H) =





2
b−a
· x−a

H−a
for x ∈ [a,H]

2
b−a
· b−x

b−H
for x ∈ [H,b]

0 else,

where a,b,H are real numbers, defines the density of the triangular distri-

bution with mode H on the interval [a, b]. A random variable with such a
density is called triangularly distributed (see Figure 6.9).
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The distribution function of the triangular distribution has the form:

F(x) =





0 x < a
∫ x

a
2(y−a)

(b−a)(H−a)dy = (x−a)2

(b−a)(H−a) x ∈ [a,H]

H−a
b−a

+ (b−H)2−(b−x)2

(b−a)(b−H) = 1− (b−x)2

(b−a)(b−H) x ∈ [H,b]

1 x > b.

For H = a+b
2 we have an equilateral triangular distribution. If H = a or

H = b, we talk of a one-sided (left- or right-sided) triangular distribution.

Example 6.6: Sketch of the Distribution Function
Let a := 0, b := 1, H := 0.8, then:

F(x) =

{
5
4 x2 x ∈ [0,0.8]
1−5(1− x)2 x ∈ [0.8,1]

See Figure 6.10.

In order to generate random realizations of the triangular distribution

we introduce a general method for the generation of random realizations of
continuous strictly monotonic distribution functions.

Inversion Method: Random Realizations of a Continuous, Strictly Monotonic

Distribution

Lemma 6.1: Distribution of a Distribution Function
Let the distribution function of X be continuous and strictly monotonically
increasing. Then, F(X) is uniformly distributed on the interval [0,1].

Proof. For the uniform distribution on the interval [0,1] it is true that
P(Y ≤ y) = y. For each strictly monotonic distribution function F :

P(F(X)≤ F(x)) = P(X ≤ x) = F(x),



THEORY: UNIVARIATE RANDOMIZATION 295

since F is continuous and strictly monotonic.
Thus, the random variable Y := F(X) is uniformly distributed on the interval
[0,1].

This leads to Algorithm 6.4. This algorithm is easily applied to triangular
distributions as follows:

Algorithm 6.4 Inversion Method: Realizations of a Continuous, Strictly
Monotonic Distribution

Require: Basic random number generator RNG in [0,231−1].
1: Based on RNG generate a realization u ∈ [0,1) of a uniformly distributed

random variable.
2: F−1(u) is a realization of a random variable with distribution function F .

Random Realizations from a Triangular Distribution (With Fixed A,B,H)

Solve one of the following relations for x depending on where u lies:

F(x) = (x−a)2

(b−a)(H−a) = u ∈ [0, H−a
b−a

], F(x) = 1− (b−x)2

(b−a)(b−H) = u ∈ [H−a
b−a

,1].

6.2.5.3 Normal Distribution

Definition 6.27: Normal Distribution
A continuous density function (see Figure 6.11) of the type

f (x) = f (x; µ,σ2) =
1√

2πσ
e−

1
2 (

x−µ
σ )2

,

where σ > 0 and µ ∈ R, defines the density of a normal distribution with
expected value µ and variance σ2. A random variable X with such a den-
sity is called normally distributed. Notation: X ∼N (µ,σ2). The N (0,1)
distribution is called standard normal distribution.

The distribution function of a normal distribution has the form

Φµ,σ2(x) :=
∫ x
−∞ f (z)dz

=
∫ x
−∞

1√
2πσ

e−
1
2 (

z−µ
σ )2

dz

= 1√
2π

∫ x−µ
σ
−∞ e−

1
2 y2

dy

= Φ0,1(
x−µ

σ )

using the substitution rule with z = σy+µ .
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Normally Distributed Random Numbers: Approximation

Unfortunately, the inversion method from above is not applicable for gener-
ating normally distributed random numbers, since the antiderivative of e−x2

does not exist. However, one can approximate the quantile function and then
apply this method (see 6.13 below). Nevertheless, there are other genera-

tors for (approximately) normally distributed random numbers. The sim-
plest example is x := ∑

12
i=1 ui − 6, where the ui are independent uniformly

distributed random numbers in [0,1). The corresponding random variable X

is approximately N (0,1) distributed, since E(X) = 0, var(X) = 1 due to
var(U) = 1/12, and since by the central limit theorem the sum of arbitrar-
ily distributed random variables is approximately normally distributed. One
might want to check the goodness of such an approximation. For this, one
might evaluate the distance between the approximation and the true N (0,1)
distribution function. Here, we show a histogram of 100000 random num-
bers generated by this approximation and the actual density of the N (0,1)
distribution (see Figure 6.12).
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6.2.5.4 Mixture of Distributions

Another class of methods to generate normal realizations is motivated by mix-
tures of distributions.

Definition 6.28: Mixture of Distributions
Let F , Fi, i= 1, . . . ,k, be distribution functions. Then, the distribution function

F(x) = p1F1(x)+ p2F2(x)+ . . .+ pkFk(x), pi > 0, i = 1, . . . ,k,
k

∑
i=1

pi = 1

characterizes a mixture of distributions.

To generate a realization of a random variable X with such a distribution
function F the general method for the generation of random realizations of
discrete distributions in Section 6.2.4 can be combined with the above inverse
method for the generation of realizations of continuous distributions.

Example 6.7: Mixture of Distributions (Kennedy and Gentle, 1980, p. 179 –
180)
Let

f (x) :=

{
2−2x, 0≤ x≤ 1

0, else
f1(x) :=

{
2, 0≤ x≤ 1

2
0, else

f2(x) :=

{
4−8x, 0≤ x≤ 1

2
0, else

f3(x) :=

{
8−8x, 1

2 ≤ x≤ 1
0, else

Then f (x) = 1
2 f1(x)+

1
4 f2(x)+

1
4 f3(x) (cp. Figure 6.13).

f1 is the density of a R[0, 1
2)-distributed random variable, and the densities
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f2, f3 represent triangular distributions with distribution functions

F2(x) = 4x−4x2 on [0,
1
2
], F3(x) =−4x2 +8x−3 on [

1
2
,1].

To construct a realization of a random variable with distribution function F2

or F3, the inverse method is applied, i.e. we solve:

g = 4x−4x2 or g =−4x2 +8x−3, g ∈ (0,1).

If g1, g2 are independent realizations of an R[0,1)-distributed random
variable, then, as a realization of a random variable with density f , choose:

x =





1
2 g2 0≤ g1 <

1
2

1
2 −
√

1
4 −

g2
4

1
2 ≤ g1 <

3
4

1−
√

1− 3+g2
4

3
4 ≤ g1 < 1

i.e. apply the general method for the generation of discrete random realiza-
tions to the case differentiation in g1 representing the weights of the single
densities, and choose those solutions of the equations of the triangular distri-
butions so that x lies in the interval corresponding to the density.

This method is applied to generate normal random realizations.

Definition 6.29: N (0,1) Distributed Random Numbers: Rectangle-Wedge–
Tail Method (Marsaglia et al., 1964, pp. 4 – 10)
To generate normally distributed random numbers partition the area under
the density function of the normal distribution (similar to Figure 6.13) into
rectangles, wedges, and a tail (cp. Figure 6.14).

This partition represents (similar to the above example) a mixture of rel-
atively simple distributions. In the version of this method originally proposed
in the literature in 88% of the cases only a simple transformation of the type
y(D) of an R[0,1) realization is needed to generate a normal random realiza-
tion.

Normally Distributed Random Numbers by Means of the Inversion Method

We can also generate normally distributed random numbers by means of the
inversion method using the quantile function of the normal distribution on a
linear combination of two R[0,1) random numbers u1 and u2. As realization
of a random variate with a general normal density we obtain

x = µ +σ ·Φ−1
0,1

(⌊227u1⌋+u2

227

)
(6.13)
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Figure 6.14: Approximation of the density of a normal distribution.

with the standard normal quantile function Φ−1
0,1(p). This is the default method

used in R, for example. The peculiar use of two uniform deviates is a safety
precaution because most uniform random number generators, as previously
detailed, are not random enough. Assuming u1 and u2 were generated from
32-bit discrete uniform random variables, we can combine them to generate
another approximately uniform random number of higher quality. To obtain
this random number, we sum the two lower-quality deviates after “shifting”
one of them so that their range does not overlap and normalize afterwards.
The major difficulty with this method is that its accuracy highly depends on
the accuracy of the quantile function, particularly in the tails. Wichura (1988)
describes an accurate algorithm (used in R) to calculate the quantile function
of a normal distribution.

6.2.5.5 Exponential Distribution

In the continuous case the waiting time distributions are often called lifetime

distributions. The lifetime of an object is understood as the time between
start of operation (birth) and failure (death) of the object. For the start of
operation generally x = 0 is used.

Let X := lifetime of an object of a certain kind. The following distri-
bution fits, e.g., only for the modeling of the lifetime of objects that do not
age.

Definition 6.30: Exponential Distribution
Each continuous density function of the type

fX(x) = fX(x;λ ) =

{
λe−λx x≥ 0, where λ > 0
0 else

defines a density of an exponential distribution (with parameter λ ). A ran-
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Figure 6.15: Densities and distribution functions of exponential distributions.

dom variable with such a density is called exponentially distributed and is
abbreviated Exp(λ ).

The distribution function of an exponential distribution has the form:

F(x) =
∫ x

0
λe−λydy =

[
−e−λy

]x

0
= 1− e−λx, x≥ 0

See Figure 6.15 for densities and distribution functions of the exponential
distribution.

Random Realizations of an Exponential Distribution

By the inversion method (Lemma 6.1)

x =− log(1−u)

λ

is a realization of the exponential distribution with parameter λ when u is a
realization of the uniform distribution in [0,1).

Obviously, this is true since

u = 1− e−λx = F(x).

6.2.5.6 Lognormal Distribution

A lognormal distribution is an example of a distribution derived from the
normal distribution.

If a continuous right-skewed distribution is expected, i.e. with a skew-
ness coefficient µ3

σ3 > 0, by taking the logarithm often a distribution can be
achieved that is nearly symmetric and even similar to a normal distribution.
If logX is normally distributed, then X is called lognormally distributed.
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Figure 6.16: Density of a lognormal distribution.

Definition 6.31: Lognormal Distribution
Each continuous density function of the type

f (x) = f (x; µ,σ2) =

{
1√

2πσ
1
x
e−

1
2 (

logx−µ
σ )2

x > 0, where σ > 0 and µ ∈ R

0 else

defines a density of a lognormal distribution with parameters µ , σ2. A
random variable with such a density is called lognormally distributed (cp.
Figure 6.16).

The distribution function of the lognormal distribution has the form:

F(x) :=
∫ x

−∞
f (z)dz =

∫ x

0

1√
2πσz

e−
1
2 (

logz−µ
σ )2

dz = Φ

(
logx−µ

σ

)

Random Realizations of a Lognormal Distribution

Let z be a realization of a standard normal distribution N (0,1). Then

x := eµ+zσ

is a realization of a lognormal distribution with parameters µ , σ2.

6.2.6 Summary

We began our survey of univariate random number generators by looking at
different discrete uniform RNGs. These formed the basis on which we built
all further generators for other discrete and continuous distributions. That is
why we emphasized verification of these discrete uniform RNGs. For this we
used a battery of statistical test procedures.
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6.3 Theory: Multivariate Randomization2

6.3.1 Motivation and Overview

The methods for the generation of random numbers introduced until now di-
rectly generate only points of the desired distribution and fail especially in
the multidimensional case. Since the 1980s, however, quite another type of
method is more and more in use that tries try to generate tentative points

of a desired density that are either accepted or rejected by means of sim-

plified approximating densities.3

As an example for a multivariate stochastic application let us consider
integration by means of a stochastic method. For example, let us assume that
we want to calculate ∫

B
g(x)dx (B⊆ R

d). (6.14)

To do this, we write the integral in the form

∫

B
g(x)dx=

∫

B

g(x)

p(x)︸ ︷︷ ︸
f (x)

p(x)dx (6.15)

with the density function p(x) (the zeros of p(x) being a Lebesgue null set).
Then, the ratio f (x) = g(x)/p(x) has a distribution induced by the random
variable X with density p(x).

The integral can now be determined (estimated) by generating random
points from the distribution corresponding to p(x) and by calculating the
mean of the corresponding values f (x).

p(x) should be chosen so that f (x) (and thus the value of the integral) has
the smallest variance possible, i.e. so that the value of the integral is calculated
as exact as possible. Obviously, p(x)≈ g(x) would be a good choice.

Note that in statistical applications such an approximation of g(x) is
hardly ever necessary since the density is prescribed. Examples for such inte-
grations are the calculation of expected values, variances, and normalization
constants in Bayes’ statistics or marginal distributions.

What remains is the generation of random points according to p(x). Two
of the most flexible and promising types of methods are the rejection method

and the Markov Chain Monte Carlo (MCMC) methods which will be dis-
cussed in the following up to implementation details. We will introduce two
MCMC methods, the Gibbs and the Metropolis-Hastings algorithms. Note

2This is partly based on Röhl (1998).
3For a history of MCMC methods see, e.g., Robert and Casella (2011).
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that both the rejection and the MCMC methods do not need normalization
constants, i.e. can work with a normalizable function, meaning that the den-
sity function does not have to be normalized to integral 1.

The pros and cons of these two types of methods can be summarized
in advance as follows. The rejection method delivers independent random
points. However, their generation is generally very inefficient in high dimen-
sions, i.e. the acceptance rate of the generated points is very low.

This problem is avoided by the MCMC methods by generating random
points by so-called Markov chains converging against the desired distribution,
i.e. ultimately generating (almost) only points from the desired distribution.
However, the construction principle of the MCMC method also induces the
two substantial disadvantages of this method:

1. the generated points are not stochastically independent and the conver-
gence has to be assessed,

2. in the so-called “burn-in” phase, until convergence the generated points
have to be rejected altogether.

These disadvantages are, however, compensated by the big flexibility of the
construction of the Markov chain and its simple programming. Moreover, in
high dimensions MCMC methods are often the only possibility to generate
random points from complicated multivariate distributions.

In statistics MCMC methods have been applied since the 1980s. Only
since the beginning of the 1990s, however, their convergence and conver-
gence speed have been studied intensively. The results are theoretically sat-
isfying implementations which guarantee convergence toward the stationary
distribution and which allow for the calculation of upper limits for conver-
gence speed. Unfortunately, these limits are often very conservative, resulting
in unnecessarily long burn-in times. Therefore, statistical “online” methods
were developed (Geyer, 1992; Gelman and Rubin, 1992) that try to clarify
convergence by means of the generated points themselves.

The theoretical convergence rate of MCMC methods will be discussed
by introducing an adequate distance measure between two distributions or
densities, respectively. We will study the convergence rate for both discrete
and continuous Markov chains. Moreover, the relation of the acceptance rate
of the rejection method and the convergence rate of a special MCMC algo-
rithm, the Independence Chain MCMC (ICMCMC), will be studied.

Let us stress once more that in MCMC algorithms, similar to the rejection
method, tentative points of the desired distribution are generated by means of
simplified, approximating densities. The tentative points are either accepted
or rejected. In contrast to the rejection method, however, for MCMC methods
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convergence to the desired distribution can be shown under weak conditions
so that at the end all points can be accepted.

Decisive for the statistical simulation with MCMC methods are the three

C questions:

1. How do we Construct effective chains that quickly cover the whole feasible
region?

2. Does the constructed chain Converge?

3. How high is Convergence speed, i.e. the convergence rate? When can we
stop burn-in? The answer to this question requires the introduction of ade-
quate distance measures.

The construction of effective chains (1) and the analysis of their conver-

gence rate (3) are complementary in difficulty:

1. Local chains (a transition x→ y is only possible if y is near x) are easier
to analyze but often ineffective (because of high autocorrelation).

2. For global chains (large jumps x→ y are permitted) with not so low ac-
ceptance rates it is vice versa.

This makes the task to be solved somewhat complicated.

6.3.2 Rejection Method

Let π(x) be a continuous, non-negative normalizable function on B⊆R
d ,

i.e.
∫

B π(x)dx< ∞. In order to generate points from the density

π(x)∫
B π(x)dx

, (6.16)

one considers a density q(x) (x∈ B) from which generation of random points
is easy. The so-called envelope

kq(x) with k ≥ sup
x∈B

π(x)

q(x)
(6.17)

always dominates π(x). Such a k exists if, e.g., q(x) has stronger tails than
π(x). To guarantee that π(x)/q(x) ≤ const < ∞ ∀x ∈ B, one can, e.g., take
a rectangular distribution as q(x) on the interval where π(x)> q(x). On the
remaining domain the condition is automatically fulfilled for arbitrary k ≥ 1.

Theorem 6.4: Generation of Random Points from the Density (6.16)
N random points from density (6.16) can be generated by the rejection algo-
rithm (6.5).
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Algorithm 6.5 Rejection Method: Generation of N Random Points from Den-
sity π(x)∫

B π(x)dx

Require: N, continuous, non-negative normalizable function π(x), k ≥ 1,
density q(x)

1: Initialize i = 0
2: while i < N do

3: Generate independently x from q.
4: Generate independently u from the uniform distribution R[0,1).
5: if u≤ π(x)

kq(x) then

6: Accept x as a random number from (6.16) and set i = i+1
7: else

8: Reject x
9: end if

10: end while

Proof. Let B′ ⊆ B and B′ be Borel measurable. Then

P(x ∈ B′,x accepted) = P

(
x ∈ B′,0≤ u≤ π(x)

kq(x)

)

=
∫

B′

∫ (π(x)/kq(x))

0
q(x)1dudx

=
1
k

∫

B′
π(x)dx (6.18)

and

P(x accepted) =
∫

B

∫ (π(x)/kq(x))

0
q(x)1dudx=

1
k

∫

B
π(x)dx. (6.19)

Then, the interesting probability is

P(x ∈ B′|x accepted) =
P(x ∈ B′,x accepted)

P(x accepted)
=

∫
B′ π(x)dx∫
B π(x)dx

, (6.20)

i.e. the above algorithm delivers random points from (6.16).

In the special case when Vol(B)< ∞ and q(x) is the uniform distribution
on B the density is enclosed in a (d + 1)-dimensional frame with base B and
constant height (see Figure 6.17).
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Figure 6.17: Random number generation by the rejection method.

Discrete Case

For discrete distributions π(x), the approximating distribution q(x) has to
represent a known discrete distribution, from which generation of random
points is easy, and the integrals have to be replaced by sums.

Example 6.8: Rejection Method
Let π(x) be the uniform distribution on {1,2, . . . ,231−1}, q(x) representing
a basic uniform random number generator (RNG) on {0,1,2, . . . ,231−1}, and
k = 231/(231− 1). Then, a random number ∈ {1,2, . . . ,231− 1} is accepted
if u ≤ π(x)

kq(x) = 1, i.e. in any case. In contrast, the random number 0 is only
accepted with probability 0 because of the condition u≤ 0.

Remarks

– The rejection method delivers points exactly distributed as (6.16), which
are independent by construction.

– The share of accepted points is

P(x accepted) =
1
k

∫

B
π(x)dx. (6.21)

– The larger k is, the more trial points are rejected. Therefore, q(x) should
have a similar form as π(x).
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Figure 6.18: One-dimensional rejection method.

– The above special case using only one rectangular approximating distribu-
tion is thus most of the time very inefficient. Especially in the distribution
tails hardly any trial point would be accepted. The higher the dimension,
the more difficult it is to find an effective envelope.

One-Dimensional Case

In one dimension today’s computer capacities are completely sufficient for
the rejection method (see Figure 6.18). The method is applied as follows:

1. For one dimension there are effective methods for the determination of
minima and maxima. Therefore, the density (6.16) on B can be partitioned
into m monotonicity regions.

2. In each monotonicity region the density can be equidistantly divided into
mi (i = 1, . . . ,m) blocks. Then, there are points x1, . . . ,xmi+1 defining in-
tervals [xi,xi+1] as blocks with minima f (xi) and maxima f (xi+1) for
monotonically increasing regions or maxima f (xi) and minima f (xi+1) for
monotonically decreasing regions.

3. In the individual blocks, the envelope q is constant and proportional to the
corresponding maximum (cp. rectangle-wedge-tail method). The propor-
tionality constant k is determined by normalization of q overall on B, since
q should be a density on the whole B.

4. The points are then stepwise generated by the choice of

– a monotonicity region with probability 1/m,

– a block inside the monotonicity region with probability 1/mi, and

– a point inside the block by the rejection method.
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6.3.3 Gibbs Algorithm

Let π(x) be a discrete or continuous, non-negative normalizable func-

tion on B ⊆ R
d , i.e. ∑B π(x) < ∞ or

∫
B π(x)dx < ∞. In order to gener-

ate points from the corresponding density we will construct a Markov chain
X0,X1, . . . ,Xt , . . .∈ E ⊆ B with E = {x|x∈ B with π(x)> 0}. The restric-
tion on E only serves to exclude exceptions in the following theorems.

Definition 6.32: Markov Chain
A sequence of random variables X0,X1, . . . , Xt , . . . is called a (homoge-
neous) Markov chain if the conditional distribution of Xk with the density
f (Xk| . . .), given the whole history, only depends on Xk−1, i.e. if

f (Xk|Xk−1,Xk−2, . . . ,X0) = f (Xk|Xk−1).

(Since the density f does not depend on k, the chain is called homogeneous).

In the case of distributions with finitely many possible values with prob-
ability > 0, the probability of the transition from one state xk−1

i to another
state xk

j only depends on the value xk−1
i and not on the previous values of the

sequence, i, j = 1, . . . ,n. The transition probabilities pi j for such transitions
can be collected in a matrix, the so-called transition matrix P .
In the infinite case the term transition function q(x,y) is used.

In what follows the two most important Markov chain based methods will
be introduced, which only differ by the choice of the transition probabilities.
First, we will discuss the Gibbs algorithm, and afterwards the Metropolis-
Hastings algorithm.

The notation for the Gibbs algorithm follows Roberts and Smith (1994).
The coordinates of a vector x∈Rd can be arbitrarily partitioned into k blocks.
Often, the Gibbs algorithm is restricted to the special case that every coordi-
nate of x builds a (one-dimensional) block of its own. In this case the random
points are generated coordinate-wise (one-dimensional). The art is to use con-
venient conditional distributions.

Now, let π(x) = π([x1 x2 . . . xk]
T ) with 1 < k ≤ d be the probability

function or density of the considered distribution from which points should
be generated. Let the k blocks be defined as

xi = [xi1 . . . xi,n(i)]
T , i = 1, . . . ,k,

n(1)+n(2)+ . . .+n(k) = d, (6.22)

where xi j are the components of xi.
The conditional densities π(xi|x−i) with the notation x−i = [x j| j 6= i]

serve as a means for the generation of random points.
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Starting from an arbitrary starting value x0 = [x0
1 . . . x0

k ]
T ∈ E in one

iteration x1 = [x1
1 . . . x1

k ]
T is generated successively by Algorithm 6.6.

Algorithm 6.6 Gibbs Algorithm: One Iteration

Require: An arbitrary starting value x0 = [x0
1 . . . x0

k ] ∈ E

1: Generate x1
1 from π(x1|x0

−1)
2: for i = 2 to k-1 do

3: Generate x1
i from π(x1

i |x1
1, . . .x

1
i−1,x

0
i+1, . . . ,x

0
k)

4: end for

5: Generate x1
k from π(xk|x1

−k)

The random variables X0,X1, . . . ,Xt , . . . with the realizations
x0→x1→ . . . build a Markov chain with the transition matrix (discrete case)
or the transition function (continuous case)

PG(x,y) =
k

∏
l=1

π(yl|y j, j < l, x j, j > l) (6.23)

for a transition x→ y. In what follows the finite and the continuous cases
will be discussed separately.

6.3.3.1 Finite Case

Let B ⊆ N
d and π(x) be a probability function. After t steps the transition

matrix has the form:

P
(t)
G (x,y) = ∑

z∈E

P
(t−1)
G (x,z)PG(z,y) (6.24)

with the initialization P
(1)
G (x,y) := PG(x,y).

In order to establish the relationship to the conventional representation of
Markov chains on a finite number of states, all x ∈ E are numbered by the
bijection x↔ i ∈ {1, . . . ,n} (n is the number of points in E) with π(x)↔ πi.

If a Markov chain is converging, the limiting distribution has the follow-
ing property:

Definition 6.33: Stationary Distribution
Let the transition matrix P = [Pi j] := [PG(i, j)] have the property:

π j =
n

∑
i=1

πiPi j. (6.25)

Then, π is called a stationary distribution.
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Obviously, the limiting distribution of P(t) has this property if the Markov
chain is converging.

The two central terms in the theory of Markov chains, needed here, are
introduced in the next definition.

Definition 6.34: Irreducible and Aperiodic Markov Chains: Finite Case
In the finite case a Markov chain is called irreducible if every state i ∈ E

is reachable from any other state j ∈ E, i.e. if P
(t)
ji > 0 for some t ∈ N0. A

state i ∈ E is called periodical with period c > 1 if P
(t)
ii > 0 for at most t ∈

{0,c,2c, . . .}. Otherwise, the state is called aperiodic. The Markov chain is
called aperiodic if every state is aperiodic.

The two terms irreducible and aperiodic together mean that one can get
any time from each state to an arbitrary other state in an unpredictable number
of steps.

Based on the L1 norm quantifying the distance between two probability
vectors of the n elements in E, one can prove convergence for such Markov
chains. Theorem 6.5 delivers a sufficient condition.

Theorem 6.5: Convergence of Gibbs Sampling: Finite Case (Roberts and
Smith, 1994)
Let f0 be the row vector of the probabilities of the starting distribution and π

the row vector of the desired probabilities. If the Markov chain defined by the
Gibbs algorithm is irreducible and aperiodic, then

‖( f 0P(t)−π)T‖1→ 0 for t→ ∞ ∀x0 ∈ E, (6.26)

i.e. for every point x0 ∈ E from the starting distribution the probability func-
tion f (t) := f 0P(t) converges with the t-step transition matrix P(t) toward the
desired probability function π .

The probability function of Xt
i converges toward the corresponding

marginal probability function

πxi
= ∑

x−i

π(x1,x2, . . . ,xk), i = 1, . . . ,k. (6.27)

The expected value of any π absolutely summable function g can be estimated
by the arithmetical mean of the realizations over time:

1
t
{g(X1)+ . . .+g(Xt)}→ ∑

x∈E

g(x)π(x) for t→ ∞ almost surely.

(6.28)
�
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Consider the case of a Markov chain generated by the transition matrix
(6.23). Since π(x) > 0, every element of x has a positive probability given
the other elements. Therefore, PG(x,x)> 0, and hence the chain is aperiodic.
Then it suffices to prove irreducibility if π(x0)> 0.

Example 6.9: Discrete Gibbs sampling
In order to better understand the mechanism of the Gibbs algorithm, we will
give a concrete example. Suppose we have d = 2 dimensions and n = 4 states.
Let the above bijection be

1 = [0 0]T , 2 = [1 0]T , 3 = [0 1]T , 4 = [1 1]T , (6.29)

where [x y]T represents the common column vector notation of a two-
dimensional Cartesian coordinate system.

With the abbreviations

p1 := π([0 0]T ), p2 := π([1 0]T ), p3 := π([0 1]T ), p4 := π([1 1]T )
(6.30)

with p1 + p2 + p3 + p4 = 1 for the probabilities, the conditional probabilities
can be written in matrix form:

πy|x =

[
πy|x(0|0) πy|x(1|0)
πy|x(0|1) πy|x(1|1)

]
=

[
p1

p1+p3

p3
p1+p3

p2
p2+p4

p4
p2+p4

]

πx|y =

[
πx|y(0|0) πx|y(1|0)
πx|y(0|1) πx|y(1|1)

]
=

[
p1

p1+p2

p2
p1+p2

p3
p3+p4

p4
p3+p4

]
(6.31)

The elements of the Markov chain are generated in the following order:

x0,y0,x1,y1, . . . . (6.32)

If only the chain x0,x1, . . ., is considered, the transition matrix has the
form:

π(X1 = x1|X0 = x0) = ∑
y

π(Y 0 = y|X0 = x0)π(X1 = x1|Y 0 = y). (6.33)

In matrix form we have
πx|x = πy|xπx|y (6.34)

with the matrices (6.31). Thus, the transition matrix has the form:

πx|x =




p2
1

(p1+p3)(p1+p2)
+

p2
3

(p1+p3)(p3+p4)
p1 p2

(p1+p2)(p1+p3)
+ p3 p4

(p1+p3)(p3+p4)
p1 p2

(p2+p4)(p1+p2)
+ p3 p4

(p2+p4)(p3+p4)
p2

2
(p2+p4)(p1+p2)

+
p2

4
(p2+p4)(p3+p4)


 .

(6.35)
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One can show (see Exercise 6.3.1) that for large t, independent of the
starting marginal distribution [ f 0

x (0) f 0
x (1)] with f 0

x (0)+ f 0
x (1) = 1,

[ f 0
x (0) f 0

x (1) ]π t
x|x ≈ [ p1 + p3 p2 + p4 ] (6.36)

Thus, in the rows of the limit of π t
x|x the desired marginal distribution corre-

sponding to x is given. Analogously, one can show that πy|y has the desired
form.

The elements of the transition matrix for the transitions i = [x0 y0]T →
j = [x1 y1]T are by (6.23) given by

PG([x
0 y0]T → [x1 y1]T ) = πx1|y0πy1|x1 . (6.37)

Thus, the transition matrix has the form:

PG =




p2
1

(p1+p2)(p1+p3)
p2

2
(p1+p2)(p2+p4)

p1 p3
(p1+p2)(p1+p3)

p2 p4
(p1+p2)(p2+p4)

p2
1

(p1+p2)(p1+p3)
p2

2
(p1+p2)(p2+p4)

p1 p3
(p1+p2)(p1+p3)

p2 p4
(p1+p2)(p2+p4)

p1 p3
(p3+p4)(p1+p3)

p2 p4
(p3+p4)(p2+p4)

p2
3

(p3+p4)(p1+p3)
p2

4
(p3+p4)(p2+p4)

p1 p3
(p3+p4)(p1+p3)

p2 p4
(p3+p4)(p2+p4)

p2
3

(p3+p4)(p1+p3)
p2

4
(p3+p4)(p2+p4)




(6.38)
and in the limit (see Exercise 6.3.2):

lim
t→∞

Pt
G =




p1 p2 p3 p4

p1 p2 p3 p4

p1 p2 p3 p4

p1 p2 p3 p4


 .

Therefore, for large t:

p j ≈
n

∑
i=1

pi Pt
Gi j

∀ j,

i.e. the distribution is stationary as desired.

6.3.3.2 Continuous Case

Now let π(x) be a density function and E ⊆ R
d . Analogous to the finite case

(6.24) after t steps the transition function PG(x,y) induced by the Gibbs al-
gorithm has the form

P
(t)
G (x,y) =

∫

E
P
(t−1)
G (x,z)PG(z,y)dz. (6.39)
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Thus, the corresponding sequence of densities f (t) has the form:

f (t)(x) =
∫

E
PG(y,x) f (t−1)(y)dy. (6.40)

When starting from an arbitrary starting point x0, the density is called
f
(t)

x0 (x).
Using this time the L1 function norm (see Section 6.1.1) one can give

sufficient conditions for the convergence of the densities generated by the
Gibbs algorithm, i.e. for

‖ f
(t)

x0 −π‖1→ 0 for t→ ∞. (6.41)

The two central terms in the theory of Markov chains are now generalized
for the continuous case.

Definition 6.35: Irreducible and Aperiodic Markov Chains: Continuous Case
In the continuous case a Markov chain is called π-irreducible if for all x∈ E

and measurable sets A with π(A) > 0, we have P(Xt ∈ A|X0 = x) > 0 for
some t ∈ N0. The chain is aperiodic if there does not exist a measurable
partition E = B0, . . . ,Bc−1 for some c≥ 2 so that P(Xt ∈ Bmodc(t)|X0 = x0 ∈
B0) = 1 for all t.

Obviously, this generalizes the above definition in the finite case. The
above special case corresponds to taking the single states as the sets A, c as a
possible period, and the Bi again as some single states in E.

The following conditions for (6.41) can be very well checked in practice.

Theorem 6.6: Convergence of Gibbs Sampling: Continuous Case (Roberts
and Smith, 1994)
Let π(x) be lower semicontinuous at 0 (i.e. ∀x with π(x) > 0 ∃ an open
environment Ux of x and an ε > 0 so that ∀y ∈ Ux π(y) ≥ ε). Let PG be
defined as in (6.39) and the corresponding Markov chain aperiodic and π-
irreducible. Then, (6.41) is true and

1
t
{g(X1)+ . . .+g(Xt)}→

∫

E
g(x)π(x)dx, t→ ∞ (almost surely),

(6.42)
for every real π-integrable function g. �

The next theorem gives a first idea about convergence speed.

Theorem 6.7: Convergence Speed of Gibbs Sampling: Continuous Case
(Roberts and Polson, 1994)
If there exists a non-negative function P∗G(y) so that P∗G(y) > 0 on a set of
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positive Lebesgue measures and P
(t∗)
G (x,y) ≥ P∗G(y) for some t∗ ∈ N, then

(6.41) is uniformly valid with convergence rate ρ ≤ (1−∫
Rd P∗G(y)dy)

1/t∗ .�

Thus, if the joint distribution of [x y]T is limited from below by a function
that only depends on the new realization y, and not on the old realization
x, then the densities converge linearly. This property can be achieved via a
condition on the conditional densities of π .

Theorem 6.8: Geometrical Convergence of Gibbs Sampling: Continuous Case
(Roberts and Polson, 1994)
If there exist non-negative and lower semicontinuous functions gi : Ri→R

+,
1≤ i≤ d, such that

π(yi|y j, 1≤ j < i, x j, i < j ≤ d)≥ gi(y1, . . . ,yi) (6.43)

and if
{y|gi(y1, . . . ,yi)> 0, 1≤ i≤ d} 6=⊘ (6.44)

then ∃M < ∞, 0 < ρ < 1 with

‖ f
(t)

x0 −π‖1 ≤Mρ t (linear (geometrical) convergence). (6.45)

�

Thus, the conditional distributions of π should be limited from below by
functions that only depend on components of the new realization and not any
more on components of the previous realization. Roberts and Polson (1994)
prove these conditions, e.g., for a class of hierarchical models with densities
of an exponential family. So, there exist examples for linear convergence.

6.3.3.3 When Does Gibbs Sampling Converge?

In the previous two sections we have gotten to know conditions for the con-
vergence of the Gibbs algorithm, namely, irreducibility and aperiodicity. Now,
we will see that these conditions relate to the so-called connectedness of the
region E (Arnold, 1993, pp. 602 – 605). Let us start with examples where
Gibbs sampling is not functioning.

Example 6.10: Gibbs Sampling Fails: Finite Case
Let X ∼ Bin(2,0.5) and P(Y = X) = 0.5, P(Y =−X) = 0.5, where Bin(n, p)
is the binomial distribution with n repetitions and success probability p. Then,
the conditional probabilities in the Gibbs algorithm are of the form:

P(x|y) = 1 for x = |y|; since P(X = Y ) = P(X =−Y ) = 0.5, x≥ 0,

P(y|x) = 0.5 for y =±x.
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Starting from x0 = 1, y0 = 1, we see that x1 = 1, y1 = ±1, x2 = 1, y2 = ±1,
etc. Actually, we always have xn = 1, yn = ±1. Thus, the distribution of the
[Xn Yn]

T does not converge toward the joint distribution of [X Y ]T . In partic-
ular, Xn never reaches the values 0,2.
Moreover, for an arbitrary starting distribution for [X0 Y0]

T , we always have
Xn = X0 for all n so that the distribution of Xn always degenerates to the start-
ing value. (Notice that X0 can only take the values 0,1,2 and Y0 can only be
equal to ±X0.) Therefore, the distribution of Xn generally does not converge
toward the distribution of X . Notice that in this example the Markov chain is
not irreducible, i.e. does not reach the whole sample space!

Example 6.11: Gibbs Sampling Fails: Continuous Case
Let Q ∼ N (0,1) and R ∼ N (0,1) be independent. Let X = Q and Y =
sign(X)|R|, sign = sign function. Then, P(sign(X) = sign(Y )) = 1, and thus
P(x|y) = 1 for sign(x) = sign(y). Therefore, X always has the same sign as Y .
Using the Gibbs algorithm for the joint distribution of X and Y , when X0, Y0

are positive, also Xn > 0 and Yn > 0 for all n.
Moreover, P(X > 0,Y > 0) = 0.5, so that the distribution of [Xn Yn]

T cannot
converge against the distribution of [X Y ]T .

Both examples have the same problem: the sample space consists of un-
connected sets. If the Gibbs algorithm samples once in one of these sets, then
it stays there forever. This prompts the following definition.

Definition 6.36: Connection of the Sample Space
Let E ⊂R

d be the sample space of the random vector X , i.e. the set of points
on which the density function of X is positive. Consider the same partition
of Rd into k subspaces as for the Gibbs algorithm. Such a sample space is
called connected if for two arbitrary points x0 ∈ E, xr ∈ E a finite sequence
x1, . . . ,xr−1 of points exists so that for i = 1, . . . ,r:

xi = [xi1 . . . xik]
T ,

f1(xi1|xi−1,2, . . . ,xi−1,k)> 0,

f2(xi2|xi1,xi−1,3, . . . ,xi−1,k)> 0,

. . . ,

fk(xik|xi1, . . . ,xi,k−1)> 0,

where fi(xi|x1, . . . ,xi−1,xi+1, . . . ,xk) is the conditional density of Xi given
X1 = x1, . . ., Xi−1 = xi−1, Xi+1 = xi+1, . . ., Xk = xk.

Obviously, we have defined the connection of a sample space by the con-
dition that from any arbitrary state the Gibbs algorithm can reach any other
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state so that it is not possible to be “trapped” in a subregion of the sample
space.
Comparing this property with the interpretation of irreducibility in Sec-
tion 6.3.3.1, the following theorem is prompted:

Theorem 6.9: Connection of Sample Space and Convergence of Gibbs Sam-
pler
Let X be a random vector with a finite connected sample space. Let Xt be the
random vector in the tth iteration step of the Gibbs algorithm. Then Xt →X

in distribution.

Proof. By Theorem 6.5 we only have to prove irreducibility and aperiodicity.
Since the sample space is connected, the Markov chain is irreducible. More-
over, the chain is also aperiodic, since for every state P(Xt

i = Xt−1
i ) > 0,

implying P(Xt =Xt−1)> 0.

If X is a random vector with a finite unconnected sample space, then the
Markov chain is not irreducible and the Gibbs algorithm does not converge to
the distribution of X , as seen in the above examples.

In the continuous case sufficient conditions for π-irreducibility are con-

nectedness of E and local boundedness of each (d−1)-dimensional marginal
distribution π(x−i) =

∫
π(x)dxi (Roberts and Smith, 1994).

6.3.4 Metropolis-Hastings Method

The Gibbs algorithm is hardly adequate for jagged probability distributions,
and is therefore often only used for local distributions. The special MCMC
algorithm described in the following, the Metropolis-Hastings algorithm

(Hastings, 1970; Metropolis et al., 1953), is characterized by big flexibility
and simple programmability. Again, the density to be drawn from only has to
be known except for a normalizing constant.

6.3.4.1 Finite Case

Consider a Markov chain on a finite state space {1,2, . . . ,n} with the tran-
sition matrix P = [pi j]1≤i, j≤n. For the elements of the matrix let pi j > 0.
Therefore, the Markov chain is irreducible.

Additionally, a so-called reversibility condition is postulated:

πi pi j = π j p ji. (6.46)
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This immediately leads to the equation

n

∑
i=1

πi pi j = π j ∀ j, (6.47)

i.e. [πi]1≤i≤n represents the stationary distribution of the Markov chain,
against which it may converge.

The reversibility condition describes a balance between the rate of recip-
rocating motion and is a sufficient, but not necessary, condition for station-
arity. Thus, there might be Markov chains not fulfilling this condition but
nevertheless converging toward the desired distribution [πi]. However, then
the proof of stationarity is much more difficult. Note that the above Gibbs
algorithm is not reversible, but stationary in the limit under certain conditions
shown in the previous chapter, whereas the following Metropolis-Hastings
algorithm is reversible (and therefore automatically stationary), as will be
shown below.

The Metropolis-Hastings algorithm uses the following transition matrix:

pi j = qi jαi j for i 6= j, (6.48)

pii = 1−∑
j 6=i

pi j (6.49)

Here, the arbitrary matrix Q = [qi j] with qi j ≥ 0 induces with the marginal
density q(x, ·), an approximation for the density π given x. This approxi-
mation is chosen such that random realizations can be drawn easily. pii is
the probability for the rejection of the new point. The matrix [αi j]1≤i, j≤n is
defined by

αi j =

{
1 if πiqi j = 0,
min(π jq ji/πiqi j,1) if πiqi j > 0.

(6.50)

In detail, the transition from i→ j is realized as indicated in Algorithm 6.7.

Proposition 6.1: Reversibility Condition of the Metropolis-Hastings Algo-
rithm
The Metropolis-Hastings algorithm fulfills the reversibility condition (6.46),
i.e. [πi]1≤i≤n is the desired stationary distribution independent of the approxi-
mation [qi j].

Proof.

1. If αi j = min
(

π jq ji

πiqi j
,1
)
=

π jq ji

πiqi j
, and therefore α ji = min

(
πiqi j

π jq ji
,1
)
= 1, then

πi pi j = πiqi jαi j =
πiqi jπ jq ji

πiqi j
= π jq ji = π j p ji. i↔ j analogously.
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Algorithm 6.7 Metropolis-Hastings Algorithm: One Iteration

Require: State i
1: Choose state j according to the probability distribution of the ith row of

Q

2: Generate a uniformly distributed number u ∈ [0,1)
3: if u≤ αi j then

4: Accept j {with probability αi j, i.e. reject with probability 1−αi j}
5: else

6: Reject j {If j is rejected, the next point in the chain is again i, and the
choice of a new point j is repeated}

7: end if

2. If πiqi j = 0 and π jq ji 6= 0, then α ji = min
(

πiqi j

π jq ji
,1
)
= 0, and thus πi pi j =

πiqi j = 0 = π jq jiα ji = π j p ji. i↔ j analogously.

3. If πiqi j = 0 = π jq ji, then πi pi j = πiqi j = 0 = π jq ji = π j p ji.

6.3.4.2 Continuous Case

The continuous analogue to the previous section is:

α(x,y) =

{
1 if π(x)q(x,y) = 0,

min
(

π(y)q(y,x)
π(x)q(x,y) ,1

)
if π(x)q(x,y)> 0

(6.51)

with transition probabilities

p(x,y) = q(x,y)α(x,y) if x 6= y, (6.52)

p(x,x) = 1−
∫

E
p(x,y)dy. (6.53)

The transition function thus has the form

PH(x,y) = q(x,y)α(x,y). (6.54)

In the finite, as well as in the continuous, case the following sufficient
conditions for the convergence of the Markov chain are valid:

Theorem 6.10: Sufficient Conditions for Convergence of Metropolis Hastings
Sampler: Continuous Case (Roberts and Smith, 1994)
If q is aperiodic, then also the Markov chain of the Metropolis-Hastings algo-
rithm is aperiodic.
If q is (π-)irreducible and q(x,y) = 0 iff q(y,x) = 0, then the Markov chain
of the Metropolis-Hastings algorithm is also (π-)irreducible. �
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Convergence can thus be forced by an adequate choice of q. The central
convergence theorem again assumes (π-)irreducibility and aperiodicity:

Theorem 6.11: Convergence of Metropolis Hastings Sampler: Continuous
Case (Roberts and Smith, 1994)
Let the Markov chain corresponding to PH(x,y) be (π-)irreducible and ape-
riodic. Then, for all starting points x0 ∈ E:

– ‖P(t)

H,x0 − π‖1 → 0 for t → ∞, where P
(t)

H,x0 is the density function of the
Markov chain with transition function PH after the tth iteration.

– For each real π-integrable function g

1
t
{g(X1)+ . . .+g(Xt)}→

∫

E
g(x)π(x)dx, t→ ∞ almost surely

(6.55)
(in the finite case use sums correspondingly).

This completes the central terms and theorems on the convergence of
Markov chains. Later on we will also discuss the convergence rate.

6.3.4.3 Possible Transition Functions

The choice of the transition matrix Q or the transition function q(x,y) is
decisive for the efficiency of the algorithm. We will concentrate here on the
continuous case q(x,y), where starting from the point x a new point y is
generated.
If this is rejected by α(x,y) too often, on the one hand, the burn-in phase
takes a lot of time, and on the other hand, the Markov chain moves very
slowly from one point to the other. Therefore, it takes a very long time to
cover the whole space E by random points.
In contrast, if y is very often accepted, this can have two reasons: either y
is chosen to be very near to x (which would lead to high autocorrelation) or
q(x,y) is already very well adapted to π(y) such that wider jumps are also
accepted (which would lead to low autocorrelation).

Besides the autocorrelation, often the

acceptance rate =
accepted transitions i→ j or x→ y

total number of trials

is used as a measure for effectiveness of the algorithm. Obviously, too low
acceptance rates and high autocorrelation slow down convergence. In the lit-
erature, under certain circumstances optimal acceptance rates are developed,
meaning acceptance rates that maximize convergence speed. Unfortunately,
optimal acceptance rates vary from problem to problem. Roberts et al. (1997)



320 RANDOMIZATION

showed that if the proposal densities q(x,y) are normal, the optimal accep-
tance rate for the Markov chain can be approximately 0.234 in high dimen-
sions. Bédard and Rosenthal (2008) gave examples where the optimal accep-
tance rate is even lower than 0.234. To achieve optimal acceptance rates, the
variance of the proposal density family is tuned. On the other hand, if the tar-
get density π is uniform or if an independence chain (see below) is used, the
acceptance rate is best 100%, but that is rarely achieved.

The following choices for q(x,y) are most common:

1. Random walk: Let q(x,y) = qR(y−x) with a density qR. Then
y = x+z, where z is qR distributed. Possible distributions for qR are, e.g.,
normal or t-distributions. Also, uniform distributions are used on a box
with edge length r or a ball with this radius around x. The parameter r can
be used to control acceptance rate and autocorrelation in order to optimize
convergence speed. For example, if r would be very small, autocorrelation
would be very high.

2. Vector autoregression: Let q(x,y) = qA(y−µ−A(x−µ)) with a den-
sity qA as qR above, µ ∈ R

d , and a matrix A ∈ R
d×d . Then,

y= µ+A(x−µ)+z, where z is qA distributed. The choice A=−I gen-
erates approximate reflections y−µ = −(x−µ) and may serve to lower
autocorrelation.

3. Independence Chain (ICMCMC): Let q(x,y) = qI(y) with a density
qI as above, where a location parameter is specified. The new point y is
drawn independently of x. The more qI resembles the desired density π ,
the more effective this method is. Notice the similarity of this method with
the rejection method (see Section 6.3.4.6).

More proposals for q can be found in the overview paper of Tierney
(1994).

6.3.4.4 Implementation of the Metropolis-Hastings Algorithm

The following advice relates to the implementation of the Metropolis-
Hastings algorithm if the proof of convergence is not central. The experimen-
tal convergence verification by graphical representations will be discussed, as
well as the difference between uni- and multimodal distributions.

1. Let the distribution be unimodal:
For q(x,y) a local mechanism appears to be adequate (Random Walk), i.e.
y is chosen uniformly distributed on a small box around x. Because of the
unimodality the Markov chain cannot miss any region of high probability.
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2. Let the distribution be multimodal:
In order to guarantee that q(x,y) does not miss any region of high proba-
bility of π , all modes should have been found by analysis of the formula of
π or by an optimization algorithm. Then, q(x,y) should move locally as
in the unimodal case and should move globally between the modes corre-
sponding to the relative weights (heights) of the modes. In order to control
acceptance rate and autocorrelation, box length and frequency of jumps
should be chosen correspondingly.

3. Graphical verification:
Every integral I =

∫
B g(x)π(x)dx can be calculated (estimated) by the

unbiased estimator

ÎN =
1
N

N

∑
xk∼π

g(xk). (6.56)

The convergence can the assessed by the graphical representation N →
ÎN . Unfortunately, there is the risk that convergence is only faked since the
Markov chain gets stuck in a local mode. If after a while the chain dis-
engages from this mode, the graphical representation changes drastically.
Only then does it become clear that convergence was not achieved. This is
not a problem in (1) since there is only one mode, and impossible in (2) be-
cause of the jumps. The problem of fake convergence is a big disadvantage
of the local Gibbs algorithm. For the calculation of integrals the burn-in
phase is not a big problem since its importance is diminishing for large N

in (6.56). High autocorrelation leads to higher sample sizes, because the
variance increases. To avoid this, often only each, say, fifth value of the
Markov chain is used. This is called thinning.

4. Unfortunately, graphical representation is restricted to single integrals. Dif-
ferent integrals need more or less points, dependent on which regions are
important for the integral. The calculation of many integrals may help to
assess the convergence of a chain. Security, however, gives only a distance
measure, as introduced in the next section.

Notice that thinning often diminishes autocorrelation, but also deteriorates
the exactness of the point estimation and its uncertainty (see, e.g., Link and
Eaton (2012)).

6.3.4.5 Convergence Rate

As a formalization of a descriptive distance measure between two distribu-
tions the variation norm is used (see Section 6.1.1). First we consider the
convergence rate in the finite case:



322 RANDOMIZATION

Theorem 6.12: Convergence Rate of Markov Chains: Finite Case (Diaconis
and Strook, 1991)
Let π(x) be a density on a finite set E and P(x,y), the transition matrix of a
reversible, irreducible, and aperiodic Markov chain with eigenvalues

1 = β0 > β1 ≥ . . .≥ βn−1 >−1, n = |E|, (6.57)

where |E|= number of elements in E, then

‖P(t̃)(x, ·)−π(·)‖Var ≤
[

1
2

√
1−π(x0)

π(x0)

]
β t̃ =: prefactor β t̃ (6.58)

with β = max(β1, |βn−1|) and an arbitrary starting point x0 ∈ E. �

This theorem can be interpreted as follows:
If t̃ is large enough, the probability to generate y having started in x0 is,

up to a small error, equal to π(y) (instead of y, one can also take an arbitrary
measurable set A⊆ E because of the definition of ‖ · ‖Var). Starting then in y

with a new step of the Markov chain, the probability to generate a z ∈ E is
equal to π(z) up to an even smaller error, since

4‖P(t̃+1)(x0,z)−π(z)‖2
Var ≤

1−π(x0)

π(x0)
β 2(t̃+1) <

1−π(x0)

π(x0)
β 2t̃ . (6.59)

(Also, this is valid for general measurable sets A⊆E.) This means that all fur-
ther points (from ≈ t̃ on) generated by the Markov chain P are π-distributed!

The prefactor in (6.58) depends on the dimension. For an acceptable
bound it should be as small as possible, i.e. π(x0) as large as possible. There-
fore, the Markov chain should start at the point with maximum πi or a similar
value. The larger the dimension, the larger the region the probability mass has
to be distributed on, i.e. the smaller the maximum. A higher bound in (6.58)
caused by a larger prefactor is, however, eventually compensated by β t̃ .

Example 6.12: Uniform Distribution
Let π be a uniform distribution on n points, i.e. πi = 1/n (1 ≤ i ≤ n). Then,
using qi j = 1/n leads to the eigenvalues 0 and 1, i.e. the Markov chain has
already converged (β = 0) and points from π are generated immediately. The
acceptance rate is 100% in this special case.

Example 6.13: Nearest-Neighbor Metropolis Algorithm
Also for so-called Nearest-Neighbor (NN) algorithms Theorem 6.12 easily
delivers the convergence rates β . Let, e.g., the transition matrix be defined for
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n = |E|= 3 as

Q3 =




1
2

1
2 0

1
2 0 1

2
0 1

2
1
2


⇒ β3 = 0.5; since

Q3
[
1 1 1

]T
=
[
1 1 1

]T
,

Q3
[
1 0 −1

]T
= 0.5

[
1 0 −1

]T
, and

Q3
[
−1 2 −1

]T
= 0.5

[
−1 2 −1

]T
.

The index of Q corresponds to the number of possible points. Defining
Q5,Q11,Q17 analogously, the corresponding β looks like: β5 = 0.81,β11 =
0.96,β17 = 0.98.

Therefore, especially for large n, the Nearest-Neighbor (NN) Metropolis
algorithm is obviously much less efficient than the algorithm with qi j = 1/n.
The convergence speed is, however, much easier to analyze for NN algo-
rithms. Therefore, such algorithms are often analyzed in this context, e.g. in
Polson (1994).

The following central theorem shows the geometrical convergence corre-
sponding to the L1 norm (6.1) in the continuous case (cp. the continuous case
for the Gibbs algorithm).

Theorem 6.13: Geometrical Convergence of Markov Chains: Continuous
Case (Smith and Roberts, 1993)
Suppose there exists P∗H : E → R with PH(x,y) ≥ P∗H(y) ∀(x,y) ∈ E ×E

and
ρ := 1−

∫

E
P∗H(y)dy. (6.60)

Then
‖P(t)

H,x0−π‖1 ≤ 2ρ t ∀t ∈ N and x0 ∈ E. (6.61)

�

Theorem 6.13 applied to the Metropolis-Hastings algorithm in the special
case of the Independence Chain (ICMCMC), i.e. q(x,y) = q(y), delivers,
because of (6.51), the transition function

PH(x,y) = q(y)α(x,y) = q(y)
π(y)q(x)

π(x)q(y)
= π(y)

q(x)

π(x)
∀(x,y) ∈ E×E,

(6.62)
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which leads to a lower bound function

P∗H(y) = min
x∈E

PH(x,y) = π(y)min
x∈E

q(x)

π(x)
. (6.63)

Therefore, an upper bound for (6.60) can be found:

ρ = 1−
∫

E
P∗H(y)dy ≤ 1−min

x∈E

q(x)

π(x)

∫

E
π(y)dy. (6.64)

This leads to the following lemma.

Lemma 6.2: Convergence Rate for ICMCMC
For ICMCMC the convergence rate ρ can be bounded as follows:

ρ ≤ ρS := 1−
∫

E π(y)dy

maxx∈E
π(x)
q(x)

. (6.65)

(6.65) is interesting for the relationship to the rejection method, which is
discussed in the next section.

6.3.4.6 Rejection Method and Independence Chain MCMC

If Paccept is the probability that for the rejection method corresponding to a
density q a generated point x is accepted (q is the density used for trial point

generation and
(

maxx∈E
π
q

)
q the envelope (cp. Section 6.3.2)), then because

of Formulas (6.17) and (6.19),

1−
∫

E π(y)dy

maxx∈E
π(x)
q(x)

= 1−Paccept = Pre ject . (6.66)

This expression is identical with (6.65). This relationship can be motivated
by the algorithms themselves. The Metropolis-Hastings algorithm generates
a trial point y by q(x,y). In general, q also depends on x. This leads to
autocorrelation. In the special case q(x,y) = qI(y), however, the Metropolis-
Hastings algorithm generates, as the rejection method, an independent point.
Therefore, the two methods are similar.

Even more, the rejection method accepts y locally, i.e. in x, with the
probability

PRM =
π(y)

kq(y)
, where k ≥ sup

x∈B

π(x)

q(x)
, (6.67)

and the ICMCMC with probability

PIC =
π(y)q(x)

π(x)q(y)
. (6.68)
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These expressions can be directly compared: PRM ≤ PIC.
ICMCMC is thus at least as effective as the rejection method. Autocorre-

lation only appears with ICMCMC if y is not accepted. The accepted points
build an independent sample. Note, however, that the claim that with ICM-
CMC the accepted points build an independent sample should not be misin-
terpreted that those points build an independent sample from π . Indeed, they
do not, since the reject moves give weights to sample values that are essential
for the stationary distribution to be π (cp. (6.49)).

A further advantage of ICMCMC is that the constant k is only needed for
the bound of the convergence rate in (6.65), the algorithm itself does not need
this constant. For the rejection method, however, k is an essential part of the
algorithm. The worse k is estimated, the less effective is the algorithm. For
both algorithms a good approximation of π by q and a high acceptance rate
are important.

One consequence of this section is that for finding a bound for ρ by (6.65)
the starting point of the IC Markov chain is best generated by the rejection
method, since after the tth application of the rejection method

P(t times ¬ accepted) = ρ t
S. (6.69)

While in (6.61) ρ t
S has to be of size 0.01 (or smaller), in order to produce an

acceptable error ‖ ·‖1 (unless ‖P(0)−π‖1 is already≪ 1), in (6.69) a smaller
t is sufficient for the rejection method to accept at least one point. This point
can then be used as the starting point for the Markov chain. This approach
also has, besides the smaller t, the advantage that the chain is starting exactly
in equilibrium, i.e. with ‖ · ‖Var = 0.

6.3.5 Summary

Starting with a study of the rejection sampling method, we looked at various
other means of generating multivariate random variables. These included two
MCMC methods, the Gibbs sampler and the Metropolis-Hastings algorithm.
Convergence properties and rates were derived for both of these methods.
Finally, we showed how the rejection method compares to the independent
chain MCMC method.

6.3.6 Simple Example

Consider an Exp(1) target distribution, i.e. an exponential distribution with
parameter λ = 1 (see Section 6.2.5.5), with density π(x) = e−xI(x > 0).
Suppose we are interested in evaluating Eπ X (where it is assumed we do
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Figure 6.19: Histogram of the means of 10,000 replications from n = 1000
numbers of an Exp(1) distribution.

not know Eπ X = 1). We estimate this quantity using both Monte Carlo and
Markov chain Monte Carlo techniques. First, Monte Carlo estimation requires
a random sample from π . To this end, we generated 10,000 iid samples of
size n = 1000 from Exp(1). Using a seed of 1, we found a point estimator
λ̂ = 1.0002 and an interval estimator (by calculating 0.025 and 0.975 quan-
tiles) so that P(0.9377 < λ < 1.0631) = 0.95 (see Figure 6.19).

Next, suppose it is not possible to sample directly from π . Instead, con-
sider exploring π using the ICMCMC algorithm with an Exp(λ ) proposal
distribution with a density q(x) = λe−λxI(x > 0). For each starting value
λ ∈ {0.5,1,4} we ran a Markov chain for 1000 iterations with a sample
{x1,x2, . . . ,x1000} of size n = 1000 from an Exp(1) distribution. We varied
the prior distribution of λ being Gamma(1,1) (see Figure 6.20, top) and
Gamma(n,∑1000

i=1 xi) (see Figure 6.20, bottom). Notice that Gamma(α,β ) is
the conjugate prior distribution of λ . The estimated mean is almost identical
to the observed mean ( 1

x̄
= λ̂ = 0.9696) in both cases, while the estimated

variance differs between the cases (see Table 6.2). We use the R package
BRugs (based on OpenBUGS) to implement the ICMCMC algorithm. The
BRugs code is given below:
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Figure 6.20: Three Markov chains for λ with different starting values, assum-
ing λ ∼ Gamma(1,1) (top) and λ ∼ Gamma(N,∑data) (bottom).

Table 6.2: Results of ICMCMC for Exp(1)

Prior Distribution Mean Stand. Dev.

Gamma(1,1) 0.9692 0.0304
Gamma(n,∑1000

i=1 xi) 0.9693 0.0215

library("BRugs")

## the model file:

model <- function(){

for(i in 1:N) {

x[i] ~ dexp(lambda)

}
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lambda ~ dgamma(alpha, beta)

alpha <- N # alternatively: 1

beta <- sum(x[]) # alternatively: 1

}

## attention: we create files in the current working directory

filename <- "model.txt"

writeModel(model, filename)

modelCheck(filename) # check model file

set.seed(1) # set random seed

x <- rexp(1000) # generate some data from Exp(1)

dat <- bugsData(list(x=x, N=length(x)), fileName = "data.txt")

modelData(dat) # read data file

modelCompile(numChains=3) # compile model with 3 chains

## initialize the model with 3 chains, lambda = 0.5, 1, and 4:

int <- bugsInits(list(list(lambda=0.5), list(lambda=1),

list(lambda=4)),

numChains = 3,

fileName = paste("inits", 1:3, ".txt", sep=""))

modelInits(int) # read init data file

samplesSet("lambda") # lambda is monitored

modelUpdate(1000) # 1000 iterations (no burn-in)

samplesStats("*") # the summarized results

## plotting the chains:

samplesHistory("lambda", mfrow = c(1, 1), end = 100, ask=FALSE)

abline(h = 1/mean(x)) # lambda = 1 / mean of the x values

The model is read and checked for syntax errors, the data are read and
the function modelCompile() interprets the declared model and chooses the
corresponding sampling methods, here, the exponential and gamma distribu-
tions. Then, the initial values are read for all considered Markov chains and
the samples to be monitored are defined. Here, we assume that the chains
have converged from the beginning (modelUpdate(1000)). Finally, we pre-
pare a plot (samplesHistory()) with the first 100 iterations for each chain.
See Section 6.4.4 for details.
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6.4 Practice and Simulation: Stochastic Modeling

This section discusses an example for stochastic modeling as an application
of MCMC methods. The data in the example are artificial sounds. We first
discuss a statistical model for polyphonic music data, describe the usage of
MCMC methods and the determination of their convergence, and assess the
results. Finally, we briefly discuss the implementation of this example with
the software package OpenBUGS (Spiegelhalter et al., 2004, 2012) (Bayesian
inference Using Gibbs Sampling).

“The BUGS (Bayesian inference Using Gibbs Sampling) project is con-
cerned with flexible software for the Bayesian analysis of complex sta-
tistical models using Markov chain Monte Carlo (MCMC) methods.
The project began in 1989 in the MRC Biostatistics Unit and led initially
to the ‘Classic’ BUGS program, and then onto the WinBUGS software
developed jointly with the Imperial College School of Medicine at St
Mary’s, London.
Development is now focused on the OpenBUGS project.”
(http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml).

6.4.1 Polyphonic Music Data

Today, music is often recorded in CD quality, i.e. with 44,100 Hz in 16-
bit format, i.e. with 44,100 observations per second and observation values
between −32,767 and 32,768 (= 216 possibilities). The resulting time se-
ries represents the total sound, i.e. all played tones together. However, e.g.
with automatic transcription of musical sounds into scores, individual tones
or notes, respectively, are needed. The following model thus incorporates the
individual tones.

Our example data only represent a single pure fundamental frequency
vibration with 440 Hz. Thus, the corresponding exact model has the form:

yt = sin(2π · 440
11025

· t), t = 1,2, . . . ,128,

i.e. per second 11,025 values are observed (= 11,025 Hz).
Figure 6.21 shows the raw data.

6.4.2 Modeling

In this subsubsection three different components of the complete probability
model for music data analysis are developed:

– The parametric model,
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Figure 6.21: Number of 128 raw data (open circles) of a 440 Hz vibration.

– the dependency structure, and

– the a priori distributions.

Parametric Model

In general, the vibrations of a music instrument are harmonic, i.e. they are
composed of a fundamental frequency and so-called overtone frequencies that
are multiples of the fundamental frequency. The tones related to the funda-
mental frequency and to the overtone frequencies are called partial tones.
In a polyphonic sound the partial tones of all involved tones are superim-
posed. For the identification of the individually played tones Davy and God-
sill (2002) propose a general model for K simultaneously played tones with
varying number Mk of partial tones. This model will be introduced here in the
special case of constant volume over the whole sound length:

yt =
K

∑
k=1

Mk

∑
m=1

{ak,m cos((m+δk,m)ωkt)+bk,m sin((m+δk,m)ωkt)}+ εt

where

K =number of simultaneously played tones,

Mk =number of partial tones of the kth tone, M = [M1 . . . Mk]
T ,

Θ=amplitude vector with elements ak,m and bk,m

=[a1,1 b1,1 a1,2 b1,2 . . . a1,M1 b1,M1

a2,1 b2,1 a2,2 b2,2 . . . a2,M2 b2,M2

. . .

aK,1 bK,1 aK,2 bK,2 . . . aK,MK
bK,MK

]T ,
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δk,m =translation parameter of the mth partial tone of the kth tone,

δ =[δ1 . . . δK ]
T with δk = [δk,1 . . . δk,Mk

]T ,

ωk =fundamental frequency of the kth tone, ω = [ω1 . . . ωk]
T , and

εt =error term.

We change this model insofar that we do not allow a detune in the funda-
mental frequency, i.e. we set δk,1 = 0. Therefore, the fundamental frequency
of the kth tone is only determined by ωk. The other partial tones are, however,
allowed to be detuned. This is especially relevant for singers in the range of
the so-called singer formant in which the singer has to be particularly loud in
order to be heard when accompanied by an orchestra.

For our special data we additionally assume that only one tone is played,
i.e. K = 1. This leads to a distinct simplification of the model:

yt = a1 cos(ωt)+b1 sin(ωt)+
M

∑
m=2

(
am cos((m+δm)ωt)+bm sin((m+δm)ωt)

)
+ εt , (6.70)

where even the remaining summation term is eliminated iff M = 1.
Decisive for correct modeling is thus the correct determination of M. For

our data, M = 1 would be correct. This completes the determination of the
parametric model.

Structural Model

For the above parametric model the following minimal structural assump-
tions are made:

For each time point the expected value µt of yt is a deterministic function
of Θ, δ, ω , and M, where Θ and δ depend on M. M is independently drawn
from a distribution with the hyperparameter Λ (expected number of partial
tones).

Figure 6.22 shows this model in the form of a directed acyclical graph.

Definition 6.37: Directed Acyclical Graph (DAG)
A graph is a set of edges and vertices. A graph is directed if every edge has
only one direction, and is acyclical if it has no cycle. I.e. a DAG is formed by
a collection of vertices and directed edges, each edge connecting one vertex
to another, such that there is no way to start at some vertex κ and follow a
sequence of edges that eventually loops back to κ again. In our DAGs,

– each model variable is represented by a vertex and

– directed edges correspond to direct dependencies.
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δ t

Λ M Θ µt yt

ω σε

Figure 6.22: Structural model for polyphonic music data after Davy and God-
sill (2002).

– Solid lines represent stochastic dependencies and

– broken lines functional (deterministic) relationships.

– Repetitive structures are indicated by stacked sheets.

– Circles represent stochastic variables, and single boxes observed data,

– constants are written in double boxes.

In order to interpret graphs, some simple notions are helpful. Let κ be a
vertex in the graph and K the set of all vertices. We call a vertex a parent of
κ if an edge starts in this vertex that points to κ . We call a vertex a descendant

of κ if this vertex is reached by edges that start in κ . We call a descendant
a child of κ if this vertex is directly reached by an edge that starts in κ . For
the determination of parents and descendants deterministic connections are
combined with stochastic ones.

The genetic analogy motivating the notions should be clear.

In our example, Λ, M, Θ, δ, ω , µt , and σε are stochastic variables, yt is
observed, t is a constant, and, e.g., Θ, δ, ω , and σε are parents of yt . More-
over, all dependencies are deterministic except the dependency of M on Λ

and of yt on µt and σε . The repetitive structure, indicated by stacked sheets,
is caused by the different time points.

Probability Model

Concerning a complete probability model one can show (Lauritzen et al.,
1990) that a DAG model is equivalent to the assumption of a joint distri-
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bution of the involved random variables, which is completely determined by
the conditional distributions of the vertices given its parents:

P(K ) = ∏
κ∈K

P(κ|parents(κ)), (6.71)

where P(·) stands for a probability distribution. This factorization not only
allows us to combine extremely complex models from local components, but
also builds the basis for the application of some MCMC methods, namely the
Gibbs sampler.

In our example we thus only need the specification of the exact form of
the parents-children relationships in the graph in Figure 6.22.

The likelihood terms of the model are assumed to have the following dis-
tributions:

yt ∼N (µt ,σ
2
ε ), (6.72)

µt = a1 cos(ωt)+b1 sin(ωt)+

M

∑
m=2

(am cos((m+δm)ωt)+bm sin((m+δm)ωt)) , (6.73)

am ∼N (a0,σ
2
a ), (6.74)

bm ∼N (b0,σ
2
b ), (6.75)

δm ∼N (0,σ2
δ ), (6.76)

M0 ∼ truncated Poisson(Λ,Mmax), M = M0 +1. (6.77)

where ∼ stands for “distributed as” and N (a,b) is the normal distribution
with expected value a and variance b. Notice that M0, the number of over-
tones, is assumed to be truncated Poisson distributed. Since Mmax = 12 is
chosen to be relatively big, truncation in Mmax is not very relevant, so that the
distribution is approximately Poisson.

A Priori Distributions

In order to complete the specification of the probability model we additionally
need the a priori distributions in the vertices without parents in Figure 6.22:
ω , a0, b0, σ2

a , σ2
b , σ2

δ , σ2
ε , and Λ.

In Bayes’ models these distributions should not very much influence the
results. However, in hierarchical models like ours it became apparent that
so-called improper a priori distributions as, e.g., uniform distributions on an
infinite interval should be avoided, since such distributions might lead to im-
proper a posteriori distributions (DuMouchel and Waternaux, 1992).

Sometimes, though, such parameters are simply set a priori to a fixed
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value. We choose a mixture of both approaches, the specification of distribu-
tions and of constants.

Some parameters are fixed:

a0 = 0.5, b0 = 0.5, σ2
a = 1, σ2

b = 1, σ2
δ = 0.1.

The other parameters vary as follows:

ω ∼ uniform(0,1.7), (6.78)

σ−2
ε ∼ Ga(0.5,10), (6.79)

Λ∼ Ga(M0 +0.5,1), (6.80)

where uniform(l,r) is a uniform distribution on the interval [l,r] and Ga(a,b)
is the gamma distribution with expected value a/b and variance a/b2.

The fundamental frequency ω is decided to a priori vary between 0 and
3000 Hz. Since we use the radial frequency representation, we have to trans-
form this region by means of the relationship: ω = 2π· Hz /11,025. Thus,
440 Hz corresponds to ω = 0.25. The expected value Λ of the Poisson dis-
tribution of M0 is a hyperparameter that is substantially determined by the
observed M0.

As specified, the distribution of σ2
ε has nearly no effect on the analysis

since the inverse of the variance component, the so-called precision, has a
variance of 0.5/1002 = 0.00005.

6.4.3 Model Fit by Means of MCMC Methods

We estimate our model by means of MCMC methods using the freely avail-
able OpenBUGS software (Gilks et al., 1994; Spiegelhalter et al., 2004).

In general, five steps are necessary in order to implement MCMC meth-
ods:

1. Starting values have to be provided for every unobserved vertex (parame-
ters and missing values).

2. Complete conditional distributions have to be constructed for every un-
observed vertex, and sampling methods have to be provided for all these
distributions.

3. The output has to be observed in order to decide upon the length of the
burn-in period and the total length of the Markov chain, or to decide that
a more efficient parametrization or a more efficient MCMC algorithm is
necessary.

4. Summarizing statistics have to computed in order to be able to infer the
true values of the unobserved vertices.
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Table 6.3: Starting Values for the Parameters in the Three Runs of the MCMC
Algorithm

Parameter Run 1 Run 2 Run 3

am 0.5 0.1 1.0
bm 0.5 0.1 1.0
δm 0.0 0.1 −0.1
τε 1.0 0.1 0.5
M0 1.0 2.0 3.0
Λ 2.0 2.0 2.0
ω 0.1 0.4 0.2

5. Inspection of the summary statistics corresponding to goodness of fit and
prediction of the model.

For a satisfying implementation of the MCMC algorithm the fifth step is cru-
cial. In the following each of these steps will briefly be discussed.

Initialization

Ideally, the choice of the starting values is not important since the Gibbs algo-
rithm or another sampling algorithm should run long enough to forget them.
It is, however, sensible, to run some chains with different starting values to
check whether the results really do not depend on them (Gelman, 1995).

On the one hand, for very extreme starting values very long burn-in-times
have to be expected (Raftery, 1995). In severe cases, the algorithm might be
numerically unstable in the tails of the a posteriori distribution and might even
not converge.

On the other hand, starting at the mode is also no guarantee for a good
mixing of the algorithm, i.e. for a fluent passing of the whole support of the a
posteriori distribution.

In our example, three runs will be carried out with the starting values in
Table 6.3. The first run starts in values that appear to be sensible consider-
ing Figure 6.22. The starting values of the second and third runs represent
essential deviations from the first run.

Samples from Complete Conditional Distributions

When drawing samples from complete conditional distributions, the Gibbs
algorithm works iteratively. The complete conditional distribution of a ver-
tex is that distribution that incorporates all currently known information about
the values of the other vertices in the graph. For a DAG model V we can use
the structure of the joint distribution in (6.71). Then, calling the remaining
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vertices V−v for each vertex v, it follows that the complete conditional distri-
bution P(v|V−v) has the form:

P(v|V−v) ∝ P(v,V−v)

∝ terms in P(V ), which contain v,

= P(v|parents(v))× ∏
w∈children(v)

P(w|parents(w)) (6.81)

where ∝ means “proportional to”.
Notice that the proportionality constant that guarantees that the distribu-

tion has integral 1 is generally a function of the remaining vertices V−v. From
(6.81) we see that the complete conditional distribution of v contains both
an a priori component P(v|parents(v)) and likelihood components for every
child of v. Therefore, the complete conditional distribution of a vertex only
depends on the values of its parents, its children, and its “coparents”, i.e. the
other parents of the children of v.

In our model, we need complete conditional distributions for the follow-
ing unobserved parameters: M, am, bm, δm, ω , σ2

ε , and Λ.
Consider, e.g., the cosine amplitude am. The general expression (6.81)

tells us that the complete conditional distribution of am is proportional to the
product of the a priori distribution of am in (6.74) and of the N likelihood
terms given by (6.72), and (6.73), where N is the number of observations
of the time series. This leads to the following expression for the complete
conditional distribution of am:

P(am|·) ∝ exp

{
−(am−a0)

2

2σ2
a

}
×

∏
N
t=1 exp

{
− (yt−a1 cos(ωt)−b1 sin(ωt)−∑

M
m=2(am cos((m+δm)ωt)+bm sin((m+δm)ωt)))2

2σ2
ε

}

where · in P(am|·) means all data and parameter vertices except am, i.e.
V−am

. This results in a normal distribution for P(am|·) for which we will now
derive the expected value and variance in the special case M = 1:

P(a1|·)

∝ exp

{
−(a1−a0)

2

2σ2
a

}
×

N

∏
t=1

exp

{
−(yt −a1 cos(ωt)−b1 sin(ωt))2

2σ2
ε

}

= exp

{
−(a1−a0)

2

2σ2
a

−
N

∑
t=1

(yt −a1 cos(ωt)−b1 sin(ωt))2

2σ2
ε

}
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= exp

(
−
[

a2
1−2a1a0 +a2

0

2σ2
a

+

N

∑
t=1

(yt −b1 sin(ωt))2−2(yt −b1 sin(ωt))a1 cos(ωt)+a2
1 cos(ωt)2

2σ2
ε

])

= exp

(
−
[

a2
1

(
1

2σ2
a

+
N

∑
t=1

cos(ωt)2

2σ2
ε

)
+
−2a1a0 +a2

0

2σ2
a

+

N

∑
t=1

(yt −b1 sin(ωt))2−2(yt −b1 sin(ωt))a1 cos(ωt)

2σ2
ε

])

= exp

(
−1

2

[
a2

1

(
1

σ2
a

+
N

∑
t=1

cos(ωt)2

σ2
ε

)
− 2a1a0

σ2
a

−

N

∑
t=1

2a1 (yt −b1 sin(ωt))cos(ωt)

σ2
ε

+
a2

0

σ2
a

+
N

∑
t=1

(
yt −b1 sin(ωt)

σε

)2
])

= exp

(
−1

2

[
a2

1

(
1

σ2
a

+
N

∑
t=1

cos(ωt)2

σ2
ε

)
−2a1

(
a0

σ2
a

+

N

∑
t=1

(yt −b1 sin(ωt))cos(ωt)

σ2
ε

)
+

a2
0

σ2
a

+
N

∑
t=1

(
yt −b1 sin(ωt)

σε

)2
])

= exp



−1

2

a2
1−

2a1

(
a0
σ2

a
+∑

N
t=1

(yt−b1 sin(ωt))cos(ωt)

σ2
ε

)

1
σ2

a
+∑

N
t=1

cos(ωt)2

σ2
ε

+

a2
0

σ2
a
+∑

N
t=1

(
yt−b1 sin(ωt)

σε

)2

1
σ2

a
+∑

N
t=1

cos(ωt)2

σ2
ε

1
1

σ2
a
+∑

N
t=1

cos(ωt)2

σ2
ε




∝ exp



−1

2

(
a1−

a0
σ2

a
+∑

N
t=1

(yt−b1 sin(ωt))cos(ωt)

σ2
ε

1
σ2

a
+∑

N
t=1

cos(ωt)2

σ2
ε

)2

(
1

σ2
a
+∑

N
t=1

cos(ωt)2

σ2
ε

)−1



.

The last proportionality is valid since the last term in the last but one line is
independent of a1.

Obviously, the conditional distribution is a normal distribution for which
it is true that

expected value =

a0
σ2

a
+ 1

σ2
ε

∑
N
t=1 (yt −b1 sin(ωt))cos(ωt)

1
σ2

a
+ C2

σ2
ε
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and

variance =
1

1
σ2

a
+ C2

σ2
ε

, C2 = ∑
t

(cos(ωt))2

The complete conditional distributions for bm and δm can be derived analo-
gously.

The complete conditional distribution for σ−2
ε can also be derived easily.

Denote τε for the parameter σ−2
ε . The general rule (6.81) tells us that the

complete conditional distribution for τε is proportional to the product of the
a priori distribution of τε in (6.79) and the likelihood terms for τε given in
(6.72) for each t. These are the likelihood terms for τε since the yt are the
only children of τε . This leads to:

P(τε |·) ∝ τ0.5−1
ε e−10τε

N

∏
t=1

τ
1/2
ε exp

{
−1

2
τε(yt −µt)

2
}

= τ0.5−1
ε τ

N/2
ε exp{−10τε}

N

∏
t=1

exp

{
−1

2
τε(yt −µt)

2
}

= τ
0.5−1+N/2
ε exp

{
−10τε +

N

∑
t=1

−1
2

τε(yt −µt)
2

}

= τ
0.5−1+N/2
ε exp

{
−
(

10τε +
1
2

τε

N

∑
t=1

(yt −µt)
2

)}

= τ
0.5−1+N/2
ε exp

{
−τε

(
10+

1
2

N

∑
t=1

(yt −µt)
2

)}

∝ Ga

(
0.5+

N

2
,10+

1
2

N

∑
t=1

(yt −µt)
2

)
.

Therefore, the complete conditional distribution of τε is again a gamma
distribution.

In the above examples the complete conditional distributions are normal
and gamma distributions, from which it is easy to draw samples (see, e.g.
Ripley, 1987). For other parameters the complete conditional distributions are
more complicated. However, then there are also efficient sampling procedures
(see, e.g. Gilks, 1995).

Observation of the Output

The values of the unknown variables generated by the MCMC algorithm
should be summarized graphically as well as statistically in order to as-
sess mixture and convergence. As an example, we illustrate the usage of the
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Gelman-Rubin statistic (Gelman and Rubin, 1992) for three runs of 5000 iter-
ations each with the starting values given in Table 6.3. Details of the method
of Gelman and Rubin are also given in Gelman (1995). We will only give a
summary.

The idea of the Gelman-Rubin statistic is the construction of a scalar that
indicates when parallel realizations of a distribution of a statistic Ψ deviate
too much. For this we first estimate the variance of the parallel realizations
distinguishing between-run variance B and within-run variance W . Assuming
I parallel realizations of length n we define:

B =
n

I−1

I

∑
i=1

(Ψ̄i·− Ψ̄··)
2, where Ψ̄i· =

1
n

n

∑
j=1

Ψi j, Ψ̄·· =
1
I

I

∑
i=1

Ψ̄i· and

W =
1
I

I

∑
i=1

s2
i , where s2

i =
1

n−1

n

∑
j=1

(Ψi j− Ψ̄i·)
2.

From these two variance components we construct a pooled estimator of
the variance:

ˆvar(Ψ) = (1− 1
n
)W +

1
n

B

is an unbiased estimator of the variance in the case of stationarity, i.e. if the
starting values of the simulations are all drawn from the target distribution.
However, the variance is overestimated under the realistic assumption that the
starting values scatter more than in the target distribution.

In contrast W is a variance estimator that will generally underestimate
variance since individual samples most of the time cannot illuminate the
whole distribution.

For n→∞ both estimates converge to the true variance, but from different
sides. Therefore, we can check the convergence of the MCMC algorithm by
observing the Gelman-Rubin statistic of the successive parallel realizations
of the unknown variables:

√
R̂ =

√
ˆvar(Ψ)

W

If the simulation converges, then this statistic should converge to 1, i.e. the
realized samples should more and more overlap.

Figures 6.23 – 6.26 show the sampled values of M0, ω , a1, and b1 for
the three runs: All parameters converge quickly after less than 150 iterations.
Notice that there is remarkable variation even in the last 500 iterations.
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Figure 6.23: Realizations of M0 in three runs of the MCMC algorithm ap-
plied to the model in Section 6.4.2. Starting values from Table 6.3: first 200
iterations, full burn-in phase, all iterations after burn-in, last 500 iterations.
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Figure 6.24: Realizations of ω in three runs of the MCMC algorithm applied
to the model in Section 6.4.2. Starting values from Table 6.3: first 200 itera-
tions, full burn-in phase, all iterations after burn-in, last 500 iterations.
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Figure 6.25: Realizations of a1 in three runs of the MCMC algorithm applied
to the model in Section 6.4.2. Starting values from Table 6.3: first 200 itera-
tions, full burn-in phase, all iterations after burn-in, last 500 iterations.
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Figure 6.26: Realizations of b1 in three runs of the MCMC algorithm applied
to the model in Section 6.4.2. Starting values from Table 6.3: first 200 itera-
tions, full burn-in phase, all iterations after burn-in, last 500 iterations.
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Figure 6.27: Gelman-Rubin statistic for three parameters from three parallel
chains.

Figure 6.27 shows the Gelman-Rubin statistic (modified by Brooks and
Gelman, 1998) for the three parameters ω , a1, and b1 in the three chains.
Since the parameter M0 stops varying early the Gelman-Rubin statistic is
undefined. The normalized width of the central 80% interval of the pooled
runs (corresponding to ˆvar(Ψ)) is drawn in solid dark grey, the normalized
mean width of the 80% interval of the individual runs (corresponding to W )
in dashed black, and the square of the Gelman-Rubin statistic (corresponding
to R̂) in solid light grey. We aim at the convergence of R̂ to 1 and at stable
80% intervals. Obviously, this is true in our example, and in this respect an
acceptable convergence is realized.

Figure 6.28 shows plots of kernel density estimations of M0, ω , a1, and
b1. Notice the closeness to normal densities for ω , a1, and b1, and that the
true values M0 = 0, ω = 0.2507,a1 = (0.0),b1 = 1.0 are all central in the
densities.

Assessment of Goodness of Fit

Finally, we compare the original data with the estimated model based on the
means of the estimated parameters over all chains:

µt = 0.004758cos(0.2559 · t)+0.9091sin(0.2559 · t).

This model and the original data nearly ideally coincide (see Figure 6.29).
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Figure 6.28: Kernel density estimations for the parameters of the model in
Section 6.4.2 based on three chains.
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Figure 6.29: Original data (points) and fitted data (line).

Figure 6.30 shows the histogram of the model residuals. Notice that the
Kolmogorov-Smirnov test (lillie.test in R) for a normal distribution with em-
pirical mean and variance is not rejected at the 5% level (p = 0.42). Thus,
the distribution of the residuals is similar to a normal distribution. Therefore,
overall the result of the estimation is satisfactory.

Unfortunately, autocorrelations are high for a1,b1,ω (see Figure 6.31).
Therefore, we also studied what happens to the model if we only take every
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Figure 6.30: Histogram of the residuals.

30th value of the iterations. First, this eliminates the autocorrelations (see
Figure 6.32). The model is changed to

µt = 0.00425cos(0.2505 · t)+0.9202sin(0.2505 · t).

This model and the original data appear to coincide even better at first sight
(see Figure 6.33). Indeed, the residuals are much smaller (see Figure 6.34).
However, the Lilliefors test rejects normality (p = 0.0008) because of too
heavy tails caused by too low model peaks. Nevertheless, one can be very
satisfied by the stochastic estimation.

Model Criticism

The model (6.70) of Davy and Godsill (2002) was already changed in the term
for the fundamental frequency in order to get a unambiguous expression for
this frequency. On closer inspection more points of criticism arise that appear
to be important for more complex data:

1. The model is not identifiable, i.e. the deviations of the overtones from mul-
tiples of the fundamental frequency are not unambiguously determinable,
meaning that the model is overparameterized. For example:

cos((m+δm,1)ω1t) = cos((m+δm,2)ω2t)

for special choices of δm,1, δm,2, ω1, ω2. Thus, the parameter δm should
possibly be eliminated from the model.

2. Setting some model parameter constant makes the model inflexible, e.g.
one should not choose:
am ∼N (a0,σ

2
a ) and a0 = 0.5, σ2

a = 1, but, e.g.,
am ∼N (am0,σ

2
a ), am0 ∼N (0,10000), σ−2

a ∼ Ga(0.01,0.01).
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Figure 6.31: Autocorrelation functions (ACFs) for three parameters from first
parallel chain after burn-in.
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Figure 6.32: Autocorrelation functions (ACFs) for three parameters from first
parallel chain after burn-in and thinning (only every 30th observation taken).
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Figure 6.33: Original data (points) and fitted data (line), only every 30th ob-
servation.
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Figure 6.34: Histogram of the residuals, only every 30th observation.

6.4.4 BUGS Implementation

OpenBUGS is a program whose syntax allows the specification of graphical
models and the generation of Markov chains. We use BRugs (Thomas et al.,
2006) to control OpenBUGS from R, which allows us to automate the analysis
since OpenBUGS is an interactive environment. In order to get an impression
of the syntax, we will provide the definition of the data, the BRugs program
for the model in Section 6.4.2 (also see Figure 6.22), the initialization of the
parameters, and the control of the MCMC procedure.

## Define data

t <- 1:128

yvalues <- sin(2 * pi * 440 / 11025 * t)

dat <- list(T=128, mu=0, Sigma.delta=10,

mua=0, Sigma.ampl=1, y=yvalues)
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## Define Model

model <- function() {

M0 ~ dpois(lambda)

M <- M0 + 1

for (m in 1:12) {

arg[m] <- (m + (delta[m] * step(m - 2 + 0.01))) *

step(M - m + 0.01)

a[m] <- ampla[m] * step(M - m + 0.01)

b[m] <- amplb[m] * step(M - m + 0.01)

delta[m] ~ dnorm(mu, Sigma.delta)

ampla[m] ~ dnorm(mua, Sigma.ampl)

amplb[m] ~ dnorm(mua, Sigma.ampl)

}

for (t in 1:T) {

y[t] ~ dnorm(mue[t], sigma.epsilon.quadrat)

mue[t] <- sum(cosine[,t]) + sum(sine[,t])

for(m in 1:12){

cosine[m,t] <- a[m] * cos(arg[m] * omega * t)

sine[m,t] <- b[m] * sin(arg[m] * omega * t)

}

}

omega ~ dunif(0, 1.7)

temp <- M0 + 0.5

lambda ~ dgamma(temp, 1)

sigma.epsilon.quadrat ~ dgamma(0.5,100)

}

## Define initial values

init1 <- list(delta=rep(0,12),

ampla=rep(0.5,12), amplb=rep(0.5,12),

sigma.epsilon.quadrat=1, M0=1,

lambda=2, omega=0.1)

init2 <- list(delta=rep(0.1,12),

ampla=rep(0.1,12), amplb=rep(0.1,12),

sigma.epsilon.quadrat=0.1, M0=2,

lambda=2, omega=0.4)

init3 <- list(delta=rep(-0.1,12),

ampla=rep(1,12), amplb=rep(1,12),

sigma.epsilon.quadrat=0.5, M0=3,
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lambda=2, omega=0.2)

## Run BRugs

library("BRugs")

writeModel(model) # write model file

modelCheck("model.txt") # check model file

datafile <- bugsData(dat) # write data file

modelData(datafile) # read data file

modelCompile(numChains=3) # compile model (< 3 minutes!)

## write inits into some textfile:

initfiles <- bugsInits(list(init1, init2, init3), numChains=3)

modelInits(initfiles) # read inits

# parameters monitored:

samplesSet(c("a","b","M0","lambda","omega"))

modelUpdate(1000) # burn in (< 10 minutes!)

modelUpdate(5000) # more iterations ... (< 45 minutes!)

samplesStats("*") # summarized results

## save results

histo <- samplesHistory("*", mfrow=c(4, 2))

## plot the chains:

## plots for a[1] used in the text: parts of iteration

a1 <- histo[["a[1]"]][ , 1:3]

matplot(a1[1:200, ], type="l") # first 200

matplot(a1[1:1000, ], type="l") # burn-in

matplot(a1[1001:5999, ], type="l") # all converged

matplot(a1[5501:5999, ], type="l") # last 500

## plot of bgr statistics

samplesBgr("a[1]", mfrow=c(1,1))

## plot of densities

samplesDensity("a[1]", mfrow=c(1, 1))

## plot of autocorrelations of first chain

samplesAutoC("a[1]", 1, mfrow=c(1, 1), beg=1001, end=5999)

## again, including some thinning

samplesAutoC("a[1]", 1, mfrow=c(1, 1),

beg=1001, end=5999, thin=30)

## densities after thinning

samplesDensity("a[1]", mfrow=c(1, 1),

beg=1001, end=5999, thin=30)
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Essentially, the correspondence of the BRugs syntax and model should
be clear. Notice however, that the operator ∼ relates to “is distributed as”
and <- to “is defined as”. Notice, moreover, that in BRugs the normal dis-
tribution is parameterized by its expected value and the so-called precision
(= 1 / variance). Also note that the variable M must not be used as a loop
limit since it is newly drawn repeatedly. Instead, the function step() is used:

step(a) = 1 if a > 0, = 0 else.

The model is read and checked for syntax errors, the data are read, and
the function modelCompile() interprets the declared model and chooses
the corresponding sampling methods, here, e.g., the normal, gamma, and
Poisson distributions. Details can be found in, e.g., Gilks et al. (1994) and
Spiegelhalter et al. (2004). Then, the initial values are read for all considered
Markov chains and the samples to be monitored are defined. After the burn-
in phase the Markov chains should have converged. This might be checked
by samplesStats() and samplesHistory(). If the chains would not have
converged, then more iterations have to be carried out in the burn-in phase.
After convergence additional iterations are carried out for drawing samples
from the target distributions. These samples are then characterized by means
of time development, density, Brooks-Gelman-Rubin (BGR) statistics, and
autocorrelation plots.

In our example, three runs with 6000 iterations each took approximately
1 hour on an Intel(R)CORE(TM)2 Duo CPU L7500 @ 1.6 GHz under Win-
dows XP using BRugs.

WinBUGS 1.4.3, the successor of Classic BUGS (which is not maintained
anymore), can be downloaded from the Internet from
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml,
and its successor OpenBUGS 3.2.1 (or later) from http://www.openbugs.

info.

6.4.5 Summary

Using a model of polyphonic music we applied the Gibbs sampler from the
previous section to estimate the fundamental frequency and the overtones of
the sounds. Starting with the parametric model, we derived the dependence
structure and defined a priori distributions for our parameters. Before we used
WinBUGS to actually estimate the unknown parameters, we derived the com-
plete conditional distributions of the model and the Gelman-Rubin statistic
used to assess the model fit. We concluded with a presentation of the Win-
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BUGS results, including a visualization of the MCMC runs, and briefly dis-
cussed the model’s source code.

6.5 Implementation in R

R provides several univariate random number generators such as the default
Mersenne Twister generator. The generator can be chosen by the RNGkind()
function. Univariate random numbers for various distributions can be gener-
ated based on the chosen generator by functions whose names are constructed
by the letter r followed by an abbreviation of the corresponding distribution’s
name, e.g. runif() for random numbers from a uniform distribution.

Random numbers from multivariate distributions have to be generated by
functions provided by contributed packages. The package mvtnorm (Genz
and Bretz, 2009; Genz et al., 2012) provides functions for the frequently used
multivariate normal and t distributions.

An overview of contributed R packages related to random number gener-
ation and test suites like DieHarder (Brown et al., 2010) for RNGs is given at
the CRAN Task View called “Probability Distributions” (Dutang, 2013).

Links and interfaces from R to other sampling engines are also available.
Package rjags (Plummer, 2013) provides an interface to JAGS (Just Another
Gibbs Sampler) (Plummer, 2003), R2WinBUGS (Sturtz et al., 2005) to Win-

BUGS (Spiegelhalter et al., 2004), and BRugs (Thomas et al., 2006) a more
automatized interface to OpenBUGS (Lunn et al., 2009). These are tools for
stochastic (Bayesian) modeling based on Gibbs sampling and MCMC meth-
ods.

6.6 Conclusion

We began our study of randomization, i.e. of the generation of random num-
bers on computers, by examining the most basic form of randomness we can
generate on a computer, namely discrete uniform randomness. Several differ-
ent generators for this type of randomness were presented. It became clear
that their properties vary and the quality of some of the generated random
number sequences is poor. This was shown both on theoretical grounds and by
using empirical evidence backed by statistical testing. It cannot be overstated
that the quality of the basic discrete random numbers is of utmost importance.
All further generators depend on a high-quality, long period distributed RNG.

After a discussion of several generators for other common univariate dis-
tributions, we showed how MCMC methods can be used to generate samples
from complex multivariate distributions. In contrast to the previously pre-
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sented generators these methods usually require a burn-in period before they
converge to the desired distribution. Both theoretical arguments and online
monitoring are required in practice to ensure that the generator is well be-
haved.

Finally, we used the MCMC methods to estimate stochastic models, ex-
emplified by a model of polyphonic musical sound using WinBUGS. This
software is both a blessing and a curse. On the one hand, WinBUGS per-
formed all the tedious and error-prone calculations required to derive all the
conditional distributions, but we had to deal with choosing appropriate ini-
tial (starting) values, monitoring convergence, and specifying the model in an
awkward way in a black-box software.

6.7 Exercises

Exercise 6.2.1: Devise and implement an efficient algorithm to generate a
random permutation of a vector x. Make sure that each permutation is equally
probable. What is the asymptotic runtime of your algorithm?

Exercise 6.2.2: A Stirling number of the second kind is the number of
ways to partition a set of k objects into r nonempty subsets. Implement a
function to calculate these numbers S(k,r), 1 ≤ r ≤ k, using the recursion
S(k,r) = S(k− 1,r− 1)+ rS(k− 1,r). By definition S(n,n) = 1, S(n, j) = 0
for j = 0,n > 0 or n < j.

We use the following notation to denote these types of numbers
{

k

r

}
:= S(k,r).

Exercise 6.2.3: Implement the poker test. Consider N groups of k successive
numbers of the sequence {y(D)

i }i∈N0 and count the number of k-tuples with
r different values, 1 ≤ r ≤ k. Apply the chi-square test to these counts with
K = k categories and expected frequencies

D(D−1) · · ·(D− r+1)

{
k

r

}

Dk

where

{
k

r

}
are the Stirling numbers of the second kind (see Exercise 6.2.2).

(The classical poker test analyzes N groups of five successive numbers of
combinations that are interesting for the poker game, e.g. full house: aaabb,
two pairs: aabbc, etc.) The cases k = 4,5,6 with D = 32 could be analyzed.
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Exercise 6.2.4: Implement the coupon collector’s test. Count the number of
segments y

(D)
j+1, . . . ,y

(D)
j+r of length r, D ≤ r < T , that are needed to gather

a complete set of numbers (coupons) 0, . . . ,D− 1, and the number of such
segments of length greater than or equal to T . Apply a chi-square test to
these counts with K = T −D+1 categories and the probabilities

pr := D!

{
r−1
D−1

}
/Dr and pT := 1−D!

{
T −1

D

}
/DT −1,

where

{
r−1
D−1

}
and

{
T −1

D

}
are again Stirling numbers of the second kind

(see Exercise 6.2.2). The case D = 8, T = 20 could be analyzed.

Exercise 6.2.5: Implement the runs test. Determine the lengths of monoton-
ically increasing subsequences (so-called runs up) of the sequence {ui}i∈N0 .
Let cr be the number of such subsequences of length r, l ≤ r ≤ 5, and c6 the
number of such subsequences of length greater than or equal to six. By means
of the vector c a statistic V is calculated that is approximately chi-square dis-
tributed with six degrees of freedom under the assumption that each ordering
of elements in the considered sequence section is equally probable and the
length of the sequence section is sufficiently long, e.g. greater than or equal
to 4000. The assessment follows (6.11). The test can be applied to monotoni-
cally decreasing subsequences (so-called runs down) analogously.

Exercise 6.2.6: Implement two LCS random number generators with param-
eters m = 231, a = 285,738,053, c = 453,816,693 and a = 65,539, c = 0,
respectively. Test these generators with the statistical tests given above (uni-
form distribution test, gap test, permutation test, maximum-of-T test, auto-
correlation test, poker test, coupon collector’s test, runs test). Compare the
results with the inversion generators with m = 231− 1 and the above param-
eter combinations a,c. Order the generators on the basis of the classification
(6.11) of the test results.

Exercise 6.2.7: Why would you avoid using c1 = a− 1 and x1 = m− 1 as
seed for the MWC generator with parameters a = 698,769,069 and m = 232?

Exercise 6.3.1: Show by simulation that for

πx|x =




p2
1

(p1+p3)(p1+p2)
+

p2
3

(p1+p3)(p3+p4)
p1 p2

(p1+p2)(p1+p3)
+ p3 p4

(p1+p3)(p3+p4)
p1 p2

(p2+p4)(p1+p2)
+ p3 p4

(p2+p4)(p3+p4)
p2

2
(p2+p4)(p1+p2)

+
p2

4
(p2+p4)(p3+p4)




independent of the marginal starting distribution [ f 0
x (0) f 0

x (1)] with
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f 0
x (0)+ f 0

x (1) = 1 in the limit,

[ f 0
x (0) f 0

x (1)]π
t
x|x ≈ [p1 + p3 p2 + p4].

Exercise 6.3.2: Show by simulation that for

PG =




p2
1

(p1+p2)(p1+p3)
p2

2
(p1+p2)(p2+p4)

p1 p3
(p1+p2)(p1+p3)

p2 p4
(p1+p2)(p2+p4)

p2
1

(p1+p2)(p1+p3)
p2

2
(p1+p2)(p2+p4)

p1 p3
(p1+p2)(p1+p3)

p2 p4
(p1+p2)(p2+p4)

p1 p3
(p3+p4)(p1+p3)

p2 p4
(p3+p4)(p2+p4)

p2
3

(p3+p4)(p1+p3)
p2

4
(p3+p4)(p2+p4)

p1 p3
(p3+p4)(p1+p3)

p2 p4
(p3+p4)(p2+p4)

p2
3

(p3+p4)(p1+p3)
p2

4
(p3+p4)(p2+p4)




it is true that

lim
t→∞

Pt
G =




p1 p2 p3 p4

p1 p2 p3 p4

p1 p2 p3 p4

p1 p2 p3 p4


 .

Exercise 6.4.1: Write BUGS code that allows you to estimate µ and σ for
a given data vector x assuming X is normally distributed. Test if you get
plausible results from your code by applying it to a simulated x with 100 ob-
servations for different values of µ and σ . You may want to assume different
prior distributions and try out what happens for uniform, normal, and other
distributions with different sets of parameters. Do you see stable results for
these different parameter sets and prior distributions?





Chapter 7

Repetition

7.1 Motivation and Overview

If you wish to obtain an impression of the distribution of, say, an estimator
without relying on too many assumptions, you should repeat the estimation
with different unique samples from the underlying distribution. Unfortunately
in practice, most of the time only one sample is available. So we have to look
for other solutions. New relevant data can only be generated by means of
new experiments, which are often impossible to conduct in due time, or by a
distribution assumption (see Chapter 6 for random number generation). If we
do not have any indication what distribution is adequate, we should beware of
assuming just any, e.g. the normal distribution. So what should we do? As a
solution to this dilemma resampling methods have been developed since the
late 1960s. The idea is to sample repeatedly from the only original sample
we have available. These repetitions are then used to estimate the distribution
of the considered estimator. This way, we can at least be sure that the values
in the sample can be realized by the data generating process. In this chapter
we will study how to optimally select repetitions from the original sample.
After discussing various such methods, the ideas are applied to three kinds of
applications: model selection, feature selection, and hyperparameter tuning.

Model Selection

In many cases several models or model classes are candidates for fitting the
data. Resampling methods and the related accuracy assessment efficiently
support the selection process of the most appropriate and reliable model.

Feature Selection

Often an important decision for the selection of the best model of a given
model type is the decision about the features to be included in the model (e.g.
in a linear model). Resampling methods can be used to assess the quality of
such selections.

355
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Hyperparameter Tuning

Most modeling strategies require the setting of so-called hyperparameters

(e.g. starting values for learning rates in neural nets). Thus, tuning of these
hyperparameters is desirable to determine settings that lead to a model of high
quality. This can be evaluated using the resampling techniques introduced
below.

In the following, model quality is solely reflected by model accuracy,
which in our view is the most relevant aspect, although other aspects of model
quality are also discussed in some settings. For example, a smooth model
might be considered more appropriate than a rough model since it provides
sufficient information to drive the optimization process and simultaneously
diminishes the probability of being stuck in local optima. Also, interpretable
models are often aimed at, which is obviously related to feature selection.
It should also be noted that it is usually advisable to choose a less complex
model achieving good results with the desired small sample sizes since more
complex models usually require larger data sets to be sufficiently accurate.

As applications we will deal here with the two most important statistical
modeling cases, i.e. the classification (see Section 7.3.1) and the regression
case (see Section 7.4):

– In classification problems an integer-valued response y ∈ Z with finitely
many possible values y1, . . . ,yG has to be predicted by a so-called classifi-

cation rule based on n observations of zi =
[
xi yi

]T
, i = 1, . . . ,n, where

the vector x summarizes the influential factors.

– In regression problems a typically real-valued response y ∈ R has to be
predicted by a so-called regression model based on n observations of
zi =

[
xi yi

]T
, i = 1, . . . ,n, where the vector x summarizes the influen-

tial factors.

In both cases, the influential factors are assumed to be real-valued.
Before expanding the theory, let us discuss a simple motivating example.

Example 7.1: Classification of Two Groups of Data
Consider the problem of selecting a classification model for two labeled
classes of data. We consider here the simplest case, where the data are one-
dimensional. In this case we look for an optimal separating point on the data
axis for the two classes. One solution is delivered by the so-called Linear

Discriminant Analysis (LDA) which, under certain conditions, locates this
separation point at the mean of the two class means (see Section 7.3.1). When
applying this method to class predictions for observations not used for sepa-
ration point estimation, in particular for estimating class means, the question
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Figure 7.1: Classification by linear discriminant analysis; line = estimated
class border; white or grey backgrounds refer to estimated classes; symbols
refer to real classes.

is how often do we have to expect a classification error? The problem solved
by resampling methods is the estimation of this error.
In order to demonstrate the ideas, we generate 20 one-dimensional observa-
tions of the two classes from N (−1.5,1) and N (1,4) distributions. These
data are analyzed by LDA and the classification error is estimated by 10-fold
cross-validation (see Section 7.2.3.1). Consider Figure 7.1 for the data situ-
ation and the estimated separation point, which is approximately x = −0.16
for our data. The estimated error rate is 0.125. Notice that also in Figure 7.1, 5
out of 40 observations are misclassified. However, there are separating points
not producing any error in the “grey background/circles” class and only 4
errors in the “white background/triangles” class. On the other hand, though,
10-fold cross-validation indicates that concerning prediction quality 5 errors
out of 40 are more realistic.

7.1.1 Preliminaries

In Section 7.4 we need some convergence properties of random variables to-
gether with their transformation rules. These will be introduced without proof
here.
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Definition 7.1: Convergence in Probability
We say that random vectors Xn indexed by sample size n converge in prob-

ability to a constant vector c iff

lim
n→∞

P(‖Xn−c‖> ε) = 0

for ε arbitrarily small. As an abbreviation for this, the term probability limit

or plim is used: plim(Xn) = c.

This means that if the sample size n is increasing, it becomes more and
more unlikely that Xn differs from the constant vector c. The plim has the
advantage that calculations are easy. This follows from the next theorem.

Theorem 7.1: Slutzki Theorem
plim(g(Xn)) = g(plim(Xn)) for any function g that does not depend on n.

From this, the calculation rules follow which are needed in Section 7.4.

Corollary 7.1: plim Calculation Rules
If Xn,Yn are univariate, then

plim(Xn±Yn) = plim(Xn)±plim(Yn),

plim(Xn ·Yn) = plim(Xn) ·plim(Yn),

plim(Xn/Yn) = plim(Xn)/plim(Yn) if plim(Yn) 6= 0.

If An,Bn are adequate matrices of random variables, then

plim(A−1
n ) = (plim(An))

−1 if the inverses exist,

plim(An±Bn) = plim(An)±plim(Bn),

plim(An ·Bn) = plim(An) ·plim(Bn).

Another convergence term is convergence in distribution.

Definition 7.2: Convergence in Distribution
We say that random vectors Xn with distribution functions Fn converge in

distribution to a random vector X with a continuous distribution F iff

lim
n→∞
|Fn(x)−F(x)|= 0.

for all x in which F is continuous. The abbreviation for this is Xn
d→X .

A sort of extension of the Slutzki theorem is the following:
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Theorem 7.2: Continuous Mapping Theorem

If Xn
d→X , then g(Xn)

d→ g(X) if g is a continuous function.

This leads to the following corollary also needed in Section 7.4:

Corollary 7.2: Transformation of a Normal Distribution

If Xn
d→N (0,V ), then ATXn

d→N (0,ATV A).

7.2 Model Selection1

7.2.1 General Procedure

In this section, a general procedure for model comparison and correspond-
ing model selection will be discussed. We assume that we are interested in
problems related to so-called learning samples L = {z1, . . . ,zn} of n ob-
servations, and that there is a set of competing candidate models available.
Each of these model candidates is fitted to the learning sample L leading to a
function a(·|L). These models are then compared with respect to certain in-
teresting properties. For example, models could be compared with respect to
their ability to predict unknown response values y.

In order to identify the best model, the model candidates have to be com-
pared by means of a problem-specific quality measure. Such a measure should
depend on the model as well as on the learning data. Thus, there has to be a
function p(a,L) that assesses the quality of the function a(·|L). Since L is a
random sample, p(a,L) is a random variable, whose variability is induced by
the variability of the possible learning samples L generated from an underly-
ing data distribution F .

Therefore, in order to identify the best model, it is natural to compare
the distributions of the quality measures. For this, it would be best to draw
random samples from the distribution of the quality measure for a model a by
evaluating p(a,L) for different learning samples L. This will be realized by
resampling.

Then, e.g., the statistical hypothesis of equal quality of model candidates
can be tested by means of an adequate standard test (e.g. the chi-square test,
see Section 6.2.2.3) if independent samples can be drawn from the distribu-
tions of the interesting quality measures. This way, we can also control the
error probability of declaring a model wrongly to be best (statistical guaran-

tee).
Let us define this somewhat more formally in a series of definitions.

1Partly based on Hothorn et al. (2003) and Bischl et al. (2012).
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Definition 7.3: Learning Samples
Let Li = {zi

1, . . . ,z
i
n} ∼ F , i = 1, . . . ,B, be B independent identically dis-

tributed learning samples, containing n observations each, generated from
the underlying data distribution F .

Based on these learning samples the unknown coefficients of candidate
models are learned and corresponding prediction functions are derived.

Definition 7.4: Candidate Models
Let ak, k = 1, . . . ,K > 1, be candidate models for the solution of our problem.
Based on the estimated coefficients, for each of these models ak let ak(·|Li) be
a prediction function of the model representing the model prediction, i.e. the
predicted class for classifications problems and the predicted response value
in the case of regression problems.

Since ak(· | Li) is based on the observations of the learning sample Li, it
is a random variable with a probability distribution Ak dependent on the data
distribution F from which Li was generated.

Definition 7.5: Distribution of Candidate Models
Let Ak be the distribution function of ak, i.e.

ak(· | Li)∼ Ak(F), k = 1, . . . ,K.

For models ak determined deterministically (e.g. linear models) the function
ak(· | Li) is fixed for a fixed learning sample Li. For models that were deter-
mined non-deterministically or for models that are based on starting values or
hyperparameters (e.g. neural nets), the function ak(·|Li) is a random variable
even for fixed Li.

In order to assess the prediction quality of the candidate models we use a
quality measure P.

Definition 7.6: Quality Measure
Let the scalar function P be a quality measure for the candidate models. Let
pki = p(ak,L

i) be the values of P for a model ak and a fixed learning sample
Li. Let the random variable pki have the distribution function Pk depending on
the data distribution F :

pki = p(ak,L
i)∼ Pk(F).

For models that are fit using a non-deterministic algorithm, it might be sensi-
ble to assess the mean quality after integration.



MODEL SELECTION 361

For each of the K models, a random sample {pk1, . . . , pkB} of B inde-
pendent, identically distributed observations is drawn from the distribution
Pk(F). This can be used for testing hypotheses about the quality of the candi-
date models.

Definition 7.7: Quality Measures Hypothesis
A typical null hypothesis for the quality measures is

H0 : P1 = . . .= PK ,

postulating the equality of the considered models with respect to the distribu-
tion of their quality measures.

Obviously, this null hypothesis implies the equality of the corresponding
location and variation measures.

Typically, for the definition of the corresponding alternative hypothesis a
scalar-valued quality criterion Ψ (i.e. some test statistics) is assumed summa-
rizing the distributions Pk. This leads to a definition of relative quality of the
models:

Definition 7.8: Relative Quality of Models
Let the functional Ψ(Pk) be a quality criterion of models ak. Then, a model
ak is better than a model ak′ with respect to the quality measure P if the
functional Ψ(Pk) is smaller for ak, i.e. Ψ(Pk)< Ψ(Pk′).

The most common optimality criteria are based on location parameters
like the expected value, Ψ(Pk) = E(Pk), or the median of the considered dis-
tributions. In such cases, the main interest lies in detecting the mean quality
differences between the considered models. In practice, Ψ(Pk) is estimated on
samples {pk1, . . . , pkB}. The corresponding test problem can be formalized as
follows.

Definition 7.9: Quality Criterion Hypothesis
The null hypothesis for the quality criterion looks as follows:

H0 : E(P1) = . . .= E(PK) vs. H1 : ∃k,k′ : E(Pk) 6= E(Pk′)

This test problem is considered throughout this section.
In the next subsection we will elaborate on the case of supervised learning

with the subcases classification and regression.

7.2.2 Model Selection in Supervised Learning

In supervised learning the observations z have the form z =
[
xT y

]T
, where

y is the response and x the vector of influential factors. Learning is aimed at
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the determination of predictions that deliver information about the unknown
response exclusively on the basis of the influential factors. Therefore, for each
of the K considered models the constructed prediction function has the form
ŷ = ak(x|Li). The deviation of the predicted response value ŷ from the true
response value y is typically represented by a scalar loss function V (y, ŷ).

Definition 7.10: Loss in Classification and Regression
In classification problems, ŷ typically is the predicted class of observations
(or the vector of estimated conditional probabilities of class memberships for
each class), and the loss is typically V (y, ŷ) = 1 if y 6= ŷ, and V (y, ŷ) = 0
otherwise. In regression problems, the loss of the predicted response value
ŷ relative to the true response value y is typically assumed quadratic, i.e.
V (y, ŷ) = (y− ŷ)2.

Let us now define the corresponding quality measure P.

Definition 7.11: Quality in Classification and Regression
The quality measure P for the predictions of classification or regression
models is defined as a functional µ of the loss function, which exclusively
depends on the underlying data distribution F :

pki = p(ak,L
i) = µ(V (y,ak(x|Li)))∼ Pk(F).

In the case of a quadratic loss function V (y, ŷ) = (y− ŷ)2 the functional µ

is generally chosen as the expected value. This is also used in the classifica-
tion case, i.e. for the 0-1 loss, leading to so-called error rates, i.e. (number
of errors)/(number of observation). The quality measure is then called condi-
tional risk.

Definition 7.12: Conditional Risk
The conditional risk of the model ak is defined as

pki = Eak
EzV (y,ak(x|Li)) = Eak

Ez(y−ak(x|Li))2 ∼ Pk(F), (7.1)

where z =
[
xT y

]T
is drawn from the data distribution from which the ob-

servations of L are drawn, and the expected value Eak
is only necessary in the

case of non-deterministic modeling.

Other possible choices for µ are the median together with the absolute
loss, and the supremum or other quantiles.

The distribution of the quality measures Pk(F) of the models ak, k =
1, . . . ,K, depends on the underlying data distribution F . Therefore, the draw-
ing of the random sample from Pk(F) is determined by the knowledge we
have about F. In supervised learning we distinguish two situations:
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1. F is known: This is true for simulation studies, where data are artificially
generated, and in situations in which we can draw an infinite number of
observations.

2. The finite learning sample L represents the only information about F avail-
able. In this case the empirical distribution of L represents the whole
knowledge about F .

This has an impact on the concrete drawing of a random sample of the quality
measure Pk(F) for the model ak. We will distinguish three different problem
types:

Simulation: F is known.

Competition: A learning sample and a test sample are available, though the
test sample is not usable during the development of the model.

Practice: Only a learning sample is available.

7.2.2.1 Resampling in Simulation

By means of a distribution function F artificial data are generated. The learn-
ing sample L consists of n independent observations z j, j = 1, . . . ,n, dis-
tributed according to F . This is denoted by L ∼ Fn. Resampling is sampling
of B independent learning samples from Fn:

L1, . . . ,LB ∼ Fn.

The quality of a model ak is assessed on the basis of the learning samples Li

(b = 1, . . . ,B). Therefore, by calculating

pki = p(ak,L
i) = µ(V (y,ak(x|Li))), b = 1, . . . ,B,

we get a random sample of B observations from the distribution of quality
measures Pk(Fn) for each ak.

Let us now assume that µ is not calculated on the learning samples but on
an extra sample drawn from F , called test sample.

Definition 7.13: Test Sample Quality
Let a test sample T ∼ Fm with m independent observations be drawn from F

with m typically large. Then, the test sample quality is defined by

p̂ki = p̂(ak,L
i) = µT (V (y,ak(x|Li))),

where µT denotes the empirical analogue of µ with respect to the test obser-
vations z =

[
xT y

]T ∈ T . If µT is defined as in (7.1) as the expected value of
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the observations in the test sample (assuming, for the sake of simplicity, that
ak is determined deterministically), then in the above formula the expected
value is replaced by the arithmetical mean of the loss function with respect to
the observations of the test sample T :

p̂ki = p̂(ak,L
i) =

1
m

∑
z∈T

V (y,ak(x|Li)).

Analogously, a supremum would be replaced by a maximum and theoretical
quantiles by their empirical pendants.

Also, when the models ak are to be assessed by means of functionals Ψ

of the quality measure P, expected values generally have to be approximated
by empirical means over the learning samples. In the case of classification

problems this leads to mean error rates

number of errors
number of observations

,

averaged over the learning samples or the corresponding test samples. In the
case of regression problems the mean of the mean quadratic errors over the
learning samples or test samples is used.

7.2.2.2 Resampling for Competition Data

In practice, F is most often not exactly known. Instead, only one learning

sample L ∼ Fn with n observations is available, all from the same distribu-
tion F . The corresponding empirical distribution function F̂n thus contains the
whole knowledge about F . Therefore, F has to be imitated by means of F̂n.
Resampling methods can be used to draw an (hopefully) independent, identi-
cally distributed sample from F̂n. Such methods will be introduced in the next
subsection.

In statistics or machine learning competitions it is customary to have a
test sample T ∼ Fm with m observations in addition to the learning sample L.
However, this test sample is only used for the subsequent assessment of model
quality, and is not available for model building. In such situations, model
quality is finally exclusively assessed with respect to T though it is unknown
to the model builder. Thus, the model builder has to rely exclusively on the
learning sample to decide between the K different candidate models for the
relationship between x and y (see problem type Practice above). Later, the
quality of the chosen model is assessed with respect to the test sample.

Since quality assessment is only based on one test sample T , a model
might be favored that is randomly performing very well on this data set but not
on other possible test samples. This is especially true for small test samples.
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7.2.2.3 Resampling in Practice

The most frequent situation in practice is that only one learning sample L∼Fn

is available and no test sample. Also in this situation F is imitated by the
empirical distribution function on the learning sample F̂n. From this empirical
distribution function B independent learning samples are drawn by means of
a resampling method:

L1, . . . ,LB ∼ F̂n.

In order to distinguish the resampled new learning samples from the original
learning sample, the new learning samples will be called training samples in
the following.

The corresponding quality measure can be calculated as

p̂ki = p̂(ak,L
i) = µ̂(V (y,ak(x|Li))),

where µ̂ is an adequate empirical version of µ .
Let us discuss the choice of µ̂ . First we will define two more “classical”

choices.

Definition 7.14: Train-and-Test Method
For large n the so-called train-and-test method could be used, where the
learning sample is divided into one learning sample L′ of smaller size and
one test sample T: L = {L′,T}. Subsequently, the value µT is calculated as
with problem types 1 and 2.

If n is so small that such an approach in infeasible, at first sight the fol-
lowing method appears to be most natural:

Definition 7.15: Resubstitution Method
The resubstitution method uses for each model the original learning sample
also as the test sample.

Unfortunately, such an approach often leads to so-called overfitting, since
the model was optimally fitted to the learning sample, and thus the error rate
on this same sample will likely be better than on other, unseen, samples. With
the help of the resampling methods described in the next subsection, such
overfitting can be avoided.

7.2.3 Resampling Methods

The term resampling indicates that new samples are drawn from an existing
original sample. We will discuss variants of the two most well-known resam-
pling methods cross-validation and bootstrapping.
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As a generic resampling method we will consider Algorithm 7.1, in which
each of the B learning samples is split into a training sample for model fit-
ting and a test sample for model assessment. Note that the instruction FIT-

MODEL represents the fitting of the model a dependent on the model type.
Also note that the elements of the set P of quality statistics are only the basis
for equality tests or rankings.

Algorithm 7.1 Generic Resampling

Require: A learning sample L of n observations z1 to zn, the number of sub-
sets B to generate and a loss function V .

1: Generate B subsets of L named L1 to LB.
2: P← /0
3: for i← 1 to B do

4: L̄i← L\Li

5: a← FITMODEL(Li)
6: pi← 1

|L̄i| ∑
z=[xT y]T∈L̄i

V (y,a(x))

7: P← P∪{pi}
8: end for

9: return P

7.2.3.1 Cross-Validation

Cross-validation (CV) (Stone, 1974; Lachenbruch and Mickey, 1968) is prob-
ably one of the oldest resampling techniques. Like all other methods pre-
sented in this subsection, it uses the generic resampling strategy as described
in Algorithm 7.1. The B subsets (line 1 of Algorithm 7.1) are generated ac-
cording to Algorithm 7.2. Note that the instruction SHUFFLE(L) stands for
a random permutation of the sample L. The idea is to divide the data set into
B equally sized blocks and then use B−1 blocks to fit the model and validate
it on the remaining block. This is done for all possible combinations of B−1
of the B blocks. The B blocks are usually called folds in the cross-validation
literature. So a cross-validation with B = 10 would be called a 10-fold cross-

validation. Usual choices for B are 5, 10, and n.
The case B = n is also referred to as leave-one-out cross-validation

(LOOCV) because the model is fitted on the subsets of L, which arise if we
leave out exactly one observation. With LOOCV, for a learning sample of
size n a modeling method is applied to each subset of n−1 observations and
tested on the nth observation. This leads to n different models, tested on one
observation each. This way, each observation of the learning sample is used
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Algorithm 7.2 Subsets for B-Fold CV

Require: A data set L of n observations z1 to zn and the number of subsets
B to generate.

1: L← SHUFFLE(L)
2: for i← 1 to B do

3: Li← L

4: end for

5: for j← 1 to n do

6: i← ( j mod B)+1
7: Li← Li \{z j}
8: end for

9: return {L1, . . . ,LB}

exactly once as a test case for a model based on nearly the whole learning
sample, neglecting nearly no information.

In classification, the error rate with respect to one resampled learning
sample Li is 1 or 0 for an incorrect or correct class prediction on the test case,
respectively. As an overall quality criterion Ψ the error rate is calculated as
“number of errors in test cases divided by n”. For regression, the test case
error is calculated as the individual quadratic loss, and the overall criterion as
the mean quadratic loss.

Obviously, for large learning samples LOOCV is computer time inten-
sive. In such cases, though, variants of the already mentioned train-and-test
method, utilizing just one split of the original learning sample into a smaller
new learning sample and a test sample, often produce a satisfying accuracy
of the quality criterion (see also Section 7.3.2).

Also in B-fold cross-validation with B < n, the cases are randomly parti-
tioned in B mutually exclusive groups of (at least nearly) the same size. Each
group is exactly once used as the test sample and the remaining groups as the
new learning sample, i.e. as the training sample. In classification, the mean
of the error rates in the B test samples is called cross-validated error rate.
Table 7.1 gives an overview of two important variants of cross-validation.

7.2.3.2 Bootstrap

The most important alternative resampling method to cross-validation is the
bootstrap. We will discuss three variants here, which are known to have good
properties: the e0, the .632, and the .632+ bootstrap.

The development of the bootstrap resampling strategy (Efron, 1979) is ten
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Table 7.1: Variants of Cross-Validation

Leave-One-Out 10-Fold CV

training cases n−1 90%
test cases 1 10%
repetitions n 10

years younger than the idea of cross-validation. Again, Algorithm 7.1 is the
basis of the method, but the B subsets are generated using Algorithm 7.3. Note
that the instruction RANDOMELEMENT(L) stands for drawing a random
element from the sample L by means of uniformly distributed random number
∈ {1, . . . ,n} (see Section 6.2.2).

Algorithm 7.3 Subsets for the Bootstrap

Require: A data set L of n observations z1 to zn and the number of subsets
B to generate.

1: for i← 1 to B do

2: Li← /0
3: for j← 1 to n do

4: z← RANDOMELEMENT(L)
5: Li← Li∪{z}
6: end for

7: end for

8: return {L1, . . . ,LB}

The subset generation is based on the idea that instead of sampling from
L without replacement, as in the CV case, we sample with replacement. This
basic form of the bootstrap is often called the e0 bootstrap. One of the advan-
tages of this approach is that the size of the training sample, in the bootstrap
literature often also called the in-bag observations, is equal to the actual data
set size. On the other hand, this entails that some observations can and likely
will be present multiple times in the training sample Li. In fact, asymptot-
ically only about 63.2% of the data points in the original learning sample L

will be present in the training sample, since 1−(1−1/n)n≈ 1−e−1≈ 0.632.
The remaining 36.8% of observations are called out-of-bag and form the test
sample as in CV.

Here the number of repetitions B is usually chosen much larger than in
the CV case. Values of B = 100 up to B = 1000 are not uncommon. Do note,
however, that there are nn different bootstrap samples. So for very small n
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Table 7.2: Bootstrap Method

Bootstrap

training cases N ( j different)
test cases N− j

repetitions ≥ 200

there are limits to the number of bootstrap samples you can generate. In gen-
eral, B≥ 200 is considered to be necessary for good bootstrap estimation (cp.
Table 7.2). This number of repetitions may be motivated by the fact that in
many applications not only the bootstrap quality criterion is of interest, but
the whole distribution, especially the 95% confidence interval for the true
value of the criterion. For this, first the empirical distribution of the B qual-
ity measure values on the test samples is determined, and then the empirical
2.5% and 97.5% quantiles. With 200 repetitions, the 5th and the 195th ele-
ment of the ordered list of the quality measures can be taken as limits for the
95% confidence interval, i.e. there are enough repetitions for an easy determi-
nation of even extreme quantiles. Note, however, that the bootstrap is much
more expensive than LOOCV, at least for small learning samples.

The fact that with the bootstrap some observations are present multiple
times in the training sample can be problematic for some modeling tech-
niques. Several approaches have been proposed for how to deal with this.
Most add a small amount of random noise to the observations (Efron, 1979).

Another problem with adding some observations multiple times to the
training sample is that we overemphasize their importance. This is called
oversampling. This leads to an estimation bias for our quality measure.
A first attempt to counter this was the so-called .632 bootstrap proce-
dure by Efron (1983). Here, the estimated error of the model is a weighted
average of the error on the training sample and the test sample, namely
0.368 · eapp +0.632 · e0, where eapp is the so-called apparent or resubstitution
error on the used training sample and e0 is the e0 bootstrap error estimator. As
motivation for the .632 bootstrap it is often argued that the e0 bootstrap gen-
erally overestimates the quality criterion, and that a convex combination with
eapp compensates the underestimation by eapp. Please note that e0 can be ap-
proximated by repeated 2-fold cross-validation, i.e. by repeated 50/50 par-
tition of the learning sample, or by repeated 2:1 train-and-test splitting, be-
cause the e0 generates roughly 63.2% in-bag (train) observations and 36.8%
out-of-bag (test) observations.

The fallacy in this approach is that some modeling techniques might have
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an error of 0 on the training sample. An example of such a method would be
an interpolating spline. To counter this, Efron proposed a further variant of the
bootstrap named the .632+ bootstrap (see Efron and Tibshirani (1997)). This
strategy is a bit more involved and deviates somewhat from the framework
proposed in Algorithm 7.1. The details are given in Algorithm 7.4. The main
difference here is that instead of fixed weights, as in the .632 bootstrap, the
weights are individually calculated for each model to reflect how well the
model can reproduce the training sample.

Algorithm 7.4 .632+ Bootstrap

Require: A data set L of n observations z1 to zn, the number of subsets B to
generate and a loss function V .

1: Generate B subsets of L named L1 to LB

2: P← /0
3: for i← 1 to B do

4: L̄i← L\Li

5: a← FITMODEL(Li)

6: γ̂ ← 1
n2

n

∑
p,q=1

V (yp,a(xq))

7: pin← 1
|Li| ∑

z∈Li

V (y,a(x))

8: pout← 1
|L̄i| ∑

z∈L̄i

V (y,a(x))

9: R̂← pout−pin

γ̂−pin

10: ŵ← 0.632
1−0.368R̂

11: pi← (1− ŵ)pin
i + ŵpout

i

12: P← P∪{pi}
13: end for

The B subsets of L are again generated using Algorithm 7.3. Then, as in
the general framework, the model a is calculated in line 5. Lines 6, 7, 9, and
10 are new. In line 6 the loss is estimated for the hypothetical case that our
model has no predictive power. This is done by calculating the loss for each
possible combination of x and y from L. The resulting quantity γ̂ is called the
no-information error rate, because now there is no direct dependence between
x and y, and the resulting loss is the error rate the model would achieve even
if there was no link between x and y, i.e. our function was pure noise. Using
this and the in-bag error rate from line 7, as well as the usual out-of-bag error
rate from line 8, the relative overfitting rate R̂ is calculated in line 9. R̂ lies
between 0 and 1. If R̂ = 1, then the model is completely overfitted, i.e. it only
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has predictive power on the training sample. If R̂ is almost 0, on the other
hand, then the model has great predictive power on the test sample and we
can use the error on the training sample to increase the accuracy of our error
estimate. The final quality measure is the weighted average of the in-bag and
out-of-bag error rates as calculated in line 11 using the weight derived in line
10 from the relative overfitting rate. Note that this weight is near 0.632 for a
value of R̂ almost 0.

7.2.3.3 Subsampling

Subsampling (SS) is very similar to the classical bootstrap. The only dif-
ference is that observations are drawn from L without replacement (see Al-
gorithm 7.5). Therefore, the training sample has to be smaller than L or no
observations would remain for the test sample. Usual choices for the subsam-
pling rate |Li|/|L| are 4/5 or 9/10. This corresponds to the usual number of
folds in cross-validation (5-fold or 10-fold). Like in bootstrapping, B has to be
selected a priori by the user. Choices for B are also similar to bootstrapping,
e.g. in the range of 200 to 1000.

Algorithm 7.5 Subsets for Subsampling

Require: A data set L of n observations z1 to zn, the number of subsets B to
generate and the subsampling rate r.

1: m← ⌊r|L|⌋
2: for i← 1 to B do

3: L′← L

4: Li← /0
5: for j← 1 to m do

6: d← RANDOMELEMENT(L′)
7: Li← Li∪{d}
8: L′← L′ \{d}
9: end for

10: end for

7.2.3.4 Further Resampling Methods

Many variants, extensions, and combinations of the above algorithms exist,
which we do not want to present here. We only want to mention three such
methods.

Stratified cross-validation (SCV) ensures that all folds of cross-
validation include a share of observations roughly equal to the correspond-
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ing share in the learning sample per region of the input space, e.g. per class
in classification. Several methods to achieve this have been proposed, for an
example see Diamantidis et al. (2000). Stratified sampling is often combined
with other sampling types like the following two.

Repeated cross-validation (RCV) performs a usual B-fold CV multiple
times and aggregates the results (normally by the mean) to reduce the variance
of randomly splitting the data. An R times repeated B-fold cross-validation
leads to the following estimate of the quality criterion:

Ψ̂RCV (R,B) =
1
R

R

∑
i=1

Ψ̂CV
i (B),

where ΨCV
i (B) are the individual cross-validated quality criteria.

The partitions are random but stratified if we set ΨCV
i (B) := ΨSCV

i (B).
Hence, we gain comparability and a guaranteed number of observations
within each class.

Bootstrap cross-validation (BCV) generates B bootstrap samples of L,
performs cross-validation on each bootstrap sample, and then aggregates the
resulting quality criteria by averaging. This has been shown to be advanta-
geous for small sample sizes. Again, stratification is applied.

For B bootstrap samples L1, . . . ,LB of size n and R-fold cross-validation
on these samples, bootstrap cross-validation finally leads to the following
mean of quality criteria:

Ψ̂BCV (B,R) =
1
B

B

∑
i=1

Ψ̂CV
Li (R),

where ΨCV
Li (R) are the individual quality criteria generated by R-fold cross-

validation on Li.

7.2.3.5 Properties and Recommendations

Properties of Leave-One-Out and Cross-Validation

Leave-one-out (LOO) cross-validation has better properties for the squared
loss in regression than for its 0-1 counterpart in classification and is an almost
unbiased estimator for the mean loss (Kohavi, 1995). Its near unbiasedness
makes LOO an attractive candidate among the presented algorithms, espe-
cially when only few samples are available. But one should be aware of the
following facts: LOOCV has a high variance (Kohavi, 1995; Weiss and Ku-
likowski, 1991) as estimator of the mean loss, meaning quite different values
may be produced if the data used for cross-validation slightly change. It also
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tends to select too complex models. In Shao (1993) theoretical reasons for
this effect are presented, and subsampling and balanced leave-k-out CV are
shown to be superior estimators in a simulation study. Kohavi (1995) arrives
at similar results regarding LOO and demonstrates empirically that 10-fold
CV is often superior. He suggests a stratified version.

For these reasons we recommend LOO mainly for efficient model selec-
tion, keeping in mind that this might lead to somewhat suboptimal choices.
Repeated and stratified CV will usually produce more reliable results in prac-
tice.

Properties of the Bootstrap

While the e0 bootstrap is pessimistically biased in the sense that it bases its
performance values on models that use only about 63.2% of the data, the .632
bootstrap can be optimistic in a much worse way, as complex models can
easily achieve pin = 0. Both estimators are known to have a low variance, and
e0 is especially good when the sample size is small and the error or noise in
the data is high (Weiss and Kulikowski, 1991). The .632+ bootstrap combines
the best properties of both estimators and can generally be trusted to achieve
very good results with small sample sizes. Its main drawback is that it might
result in an optimistic bias, when more complex models are considered (Kim,
2009; Molinaro et al., 2005).

Bootstrapping or Subsampling?

When combining model or hyperparameter selection with bootstrapped data
sets in the outer loop of nested resampling (see Section 7.2.5), repeated obser-
vations can lead to a substantial bias toward more complex models. This stems
from the fact that in the inner tuning loop measurements will occur both in
the training set and in the test set with a high probability because some obser-
vations appear multiple times in the bootstrap sample so that more complex
models “memorizing” the training data will seem preferable. In Binder and
Schumacher (2008) subsampling was proposed and evaluated as a remedy.

Independence, Confidence Intervals and Testing

In general, the generated training and test samples, and therefore the obtained
performance statistics, will not be independent when sampling from a finite
data set. This has negative consequences if confidence intervals for the perfor-
mance measure should be calculated. The dependence structure is especially
complicated for the commonly used cross-validation, where the split-up of
the data in one iteration completely depends on all other split-ups. It can be
shown that in this setting no unbiased estimator of the variance exists (Bengio
and Grandvalet, 2004) and pathological examples can be constructed, where
the variance estimator performs arbitrarily bad. Nadeau and Bengio (2003)
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propose a new variance estimator for CV that takes the dependence between
sampled data sets into account and provides a much better foundation for
interval estimators and subsequent statistical tests regarding location param-
eters.

7.2.4 Feature Selection

Let us now discuss other applications of resampling besides general model
selection, namely feature selection and hyperparameter tuning. Let us start
with feature selection. Feature selection (variable selection) is obviously a
special case of model selection, and is assumed to be especially important
because of at least two reasons:

Feature selection improves generalization performance: It is well-known
that in the setting of many noisy, highly correlated, and possibly irrelevant
covariates the predictive power of a model fitted on the whole feature set
will be suboptimal.

Smaller models improve model interpretation: If one is mainly interested
in understanding the data, one might even accept a substantial loss in pre-
dictive performance to achieve a smaller model.

We will concentrate here on the most popular class of feature selection
algorithms, the so-called wrappers, because of their general applicability and
strength to build very predictive models.

Definition 7.16: Wrapper Algorithms for Feature Selection
Wrapper algorithms for feature selection use a model type as a black-box
and search for an optimal set of input features w.r.t. a quality criterion by
repeatedly adjusting the variable set, fitting a model, and evaluating it.

In a basic (naive) algorithm we would go through each subset of features,
solve the problem, and select the best subset. Unfortunately, this is often im-
possible because the set of subsets of a set Q of q features, called the power

set of Q, has 2q elements (including both the set itself and the empty set).
This follows from the fact that the total number of distinct k-element subsets
on a set of q elements is given by the binomial sum ∑

q

k=0

(
q
k

)
= 2q. There-

fore, computation time would be much too high, even for a medium number
of features. The alternative we will discuss here is the so-called greedy for-

ward selection (see Algorithm 7.6).
In each iteration, a feature is selected once it improves the quality criterion

even more than all other features that are not yet in the set S of selected
features. This feature selection algorithm is called greedy since a feature once
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Algorithm 7.6 Greedy Forward Selection

Require: Maximum number of features to select qmax, full set of features Q.
1: S = /0 {S is the current set of selected features, |S| the current number of

selected features}
2: while |S|< qmax do

3: for v ∈ Q do

4: St ← v∪S

5: Train the model with St and keep the test sample performance
6: end for

7: Select vo, the feature with the best test sample performance
8: S← vo∪S

9: Q← Q\ vo

10: Keep the test performance obtained with current S

11: end while

12: Return the best set S

selected, is never removed in a subsequent step, i.e. will stay in the list of
selected features until the end of the procedure.

7.2.5 Hyperparameter Tuning

The definition of hyperparameters is, unfortunately, unclear in the literature.
Only in Bayesian statistics are they clearly defined as the parameters of prior
distributions. This prompts our definition:

Definition 7.17: Hyperparameters
Let hyperparameters be model or model estimator parameters that might
influence model selection but have to be chosen prior to it.

An example for such a hyperparameter is, e.g., the starting value of the
learning rate in the backpropagation algorithm for parameter estimation in
neural nets. This parameter is typically chosen before model estimation and
model selection, and does not restrict the model class of neural nets, i.e. the
model selection task is unchanged. On the other hand, the number of nodes
in the hidden layer of a neural net is not a hyperparameter in our definition
since this restricts model choice and is a part of it.

Since hyperparameters are to be fixed prior to model selection, they have
to be varied in an extra sampling process, and one ends up with a nested sam-

pling process. As an example, consider using subsampling with B= 100 in an
outer loop for model evaluation and 5-fold cross-validation in an inner loop
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Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Outer Cross−Validation

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Inner Cross−Validation

(parameter tuning)

Validation / Test Data

Figure 7.2: Nested resampling with two nested cross-validations.

for hyperparameter selection. For each of the 100 training samples Li from
subsampling, a 5-fold cross-validation on the training sample is employed as
internal fitness evaluation to select the best setting for the hyperparameters of
the model. The best obtained hyperparameters are used to fit the model on the
complete training sample and calculate the quality measure on the test sample
of the outer resampling strategy. Figure 7.2 shows this process schematically
for two nested cross-validations, namely 5-fold CV in both the inner and the
outer resampling.

7.2.6 Summary

In this section we introduced a general procedure for model selection with re-
sampling methods for the realization of repetitions in sampling. We discussed
different variations of such methods, namely cross-validation, bootstrapping,
and subsampling. We showed how these methods can be used for model se-
lection, feature selection, and hyperparameter tuning. In the next sections we
will apply these general ideas to model selection in classification and regres-
sion.
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7.3 Model Selection in Classification

7.3.1 The Classification Problem2

We start the discussion of the application of resampling methods with classifi-
cation problems. The term classification is used in two ways in the literature:

1. For a given data set the aim is to identify classes of homogeneous objects.
This is also called unsupervised learning or cluster analysis.

2. Based on a known classification in a learning sample the aim is to iden-
tify a so-called classification rule that is used to assign a new observation
to one of the possible classes. This is also called supervised learning or
discrimination.

In this section we will exclusively consider supervised learning. For an
example of cluster analysis see, e.g., Section 5.2.4.

Let us specify the problem again more formally:

Definition 7.18: Classification Problem
In classification problems an integer-valued response y ∈ Z with finitely
many possible values y1, . . . ,yG has to be predicted by a so-called classifi-

cation rule based on n observations of zi =
[
xT

i yi

]T
, i = 1, . . . ,n, where the

vector xi summarizes the influential factors.

Let us stress that finding a classification rule is a prediction problem. The
aim is to predict classes of future observations on the basis of known classes
in a learning sample. Therefore, we do not have to assess the quality of fit on
the learning sample, but the ability of the classification rule to generalize to
future observations (predictive power).

This is not the place to discuss the diversity of classification methods,
since we want to concentrate on the discussion of resampling methods in
supervised classification. In order to have a basis for this, we just introduce
two very simple types of classification methods and the linear discriminant

analysis (LDA) in the simplest case, i.e. for two classes.

1. Data-independent rules: Such a rule ignores all information in the new
observation for class assignment. For example, it assigns the most frequent
class of the learning sample or the classes according to their frequency in
the learning sample.
Since the application of such methods is very simple and fast, they are often

2Partly based on Michie et al. (1994, pp. 6 – 16, 107 – 124), Weiss and Kulikowski (1991,
pp. 17 – 49).
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used for comparison, as something like a yardstick, with more elaborate
methods.

2. Nearest-neighbor rules: The learning sample is searched for the observa-
tion with the greatest similarity (in a predefined sense) to the factor vector
of a new observation. The class of this nearest observation is then assigned
to the new observation. Note that a distance measure has to be specified a
priori.
Although this rule is easy to understand, its application can be very time-
consuming, especially if a large learning sample has to be searched for
the nearest-neighbor. Variants of this rule use that class for prediction that
occurs most often in k nearest-neighbors (kNN method).

3. Linear discriminant analysis (LDA) is based on the following assump-
tions:

L1: The distributions of influential factors inside the classes are normal
distributions with different expected values µi but an identical covari-
ance matrix Σ for all classes y1, . . . ,yG. This leads to different densities
fi for the classes.

L2: The misclassification costs are equal for all classes.

L3: The a priori probabilities of the classes may be different.

For 2 classes this leads to the following Bayes decision rule:
Choose class 1 iff f1(x)

f2(x)
> π2

π1
for a priori class probabilities πi, i = 1,2.

Utilizing the densities of the normal distribution, this is equivalent to

exp(−0.5(x−µ1)
TΣ−1(x−µ1))

exp(−0.5(x−µ2)TΣ−1(x−µ2))
>

π2

π1
(7.2a)

−0.5(x−µ1)
TΣ−1(x−µ1)+0.5(x−µ2)

TΣ−1(x−µ2)> log

(
π2

π1

)

(7.2b)

xTΣ−1(µ2−µ1)< log

(
π1

π2

)
+0.5µT

2 Σ
−1µ2−0.5µT

1 Σ
−1µ1. (7.2c)

A further simplification is achieved if the a priori probabilities of the
classes are equal: Choose class 1 iff f1(x) > f2(x). Then the above in-
equality (7.2c) can also be written in the following way:
Let a =Σ−1(µ2−µ1), then

aTx<
aT (µ1 +µ2)

2
.
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Unknown parameters are empirically estimated. This leads to:

âTx<
âT (x̄1 + x̄2)

2
,

meaning that the separation is linear, and a projection of the mean of the
empirical group means is the estimated border between the classes.
LDA separates the data linearly, more exactly by a projection on a vector
orthogonal to a separating hyperplane. On the projections âTx, a separat-
ing point for the two classes is looked for. In the simplest case we discussed

above, LDA locates this separation point at the projection âT (x̄1+x̄2)
2 of the

mean of the two class means. Note that hyperplanes of one-dimensional
data are points, and that the projection line is then the original data axis.

7.3.2 Classification Evaluation

For the evaluation of classification rules, generally so-called misclassifica-

tion rates or just error rates are used. In this subsection we discuss reliable
estimation of such rates. For this, we have to specify the term classification

error more precisely.
Classification rules aim at the successful classification of new observa-

tions that were not used for the construction of the rule. This leads to the
following definition:

Definition 7.19: Error Rates
The true error rate of a classification rule is defined as the limit of the rela-
tive error of the rule for a steadily growing number of new observations. This
limit should be equal to the error rate on the whole population.

The relative classification error for a finite number of observations is
called empirical error rate:

(empirical) error rate :=
number of errors

number of observations
.

The most important question is whether one can infer from empirical error
rates in small samples the true error rates. Unfortunately, this question cannot
be answered universally. Decisive is the choice of the sample. Let us discuss
different kinds of samples used for error estimation.

1. Frequently, the so-called apparent or resubstitution error rate is used
as the quality criterion, i.e. the error in the learning sample. For a steadily
growing learning data set, this would approximate the true error rate. In
practice, however, the apparent error rate is most often a bad estimator for
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the future quality of the rule. In general, the apparent error rate underesti-
mates the true error rate considerably, since the rule was constructed just
to reproduce the learning sample, and might not be comparably good for
other samples. Such a classification rule is called to overfit the learning
sample or to be overspecialized on this.

2. Better suited for the estimation of the true error rate are the so-called train-

and-test methods, which choose one training sample as well as one test

sample randomly from the original learning sample. Since the test sample
is ignored in the construction of the classification rule, the determination
of the empirical error rate is based on real new data. The result is called
test sample error rate.
If training and test samples are independent random samples, the test
sample error rate has relevant properties. In particular, reasonably exact
error estimation can even be based on a not too big number of observations
n. This can be seen by considering the confidence interval for the true
error rate, which does not depend on the distribution of the observations.
For this, one only has to realize that the test sample error rate as an
estimator for the true error rate is in any case binomially distributed,
more precisely Bin(n, p)/n distributed, where p is the true error rate.
In order to get an idea about the size of the true error rate, we consider the
upper limit of the one-sided 95% confidence interval for the true error
rate.
Figure 7.3 shows such limits for different test sample error rates. For exam-
ple, for a test sample error rate of 0% and 30 test cases there is a reasonable
chance that the true error rate is 10%, whereas the true error rate is very
probably < 1% for 1000 test cases. Moreover, for a test sample error rate
of 20% and 30 or 50 test cases there is still a large probability that the
true error rate is about 30%, whereas for 1000 test cases the true error rate
is most probably less than 23%. Obviously, 1000 test cases always lead
to rather exact estimates. 1000 test cases are, thus, typically sufficient. In
practice, however, the available test sample is most often much smaller.
As important as a sufficiently large test sample is for the determination
of the error rate, a sufficient size of the training sample is at least as
important for the determination of a reliable classification rule. Often, a
random partition of the learning sample at a ratio of 2 to 1 is chosen, i.e.
2/3 training sample and 1/3 test sample. Note the relationship to bootstrap
samples where on average 36.8% of the learning observations are left over
for testing.
However, especially in the case of a small learning samples the training
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Figure 7.3: Upper 95% confidence limits for the true error rate and test sample
sizes n.

sample should be chosen not much smaller, in order to support the classi-
fication rule as broadly as possible.
A disadvantage of such train-and-test methods is that relatively many ob-
servations of the learning sample are held off for the estimation of the error
rate, and that only one partition into training and test samples is used. This
leads to loss of valuable information for the determination of the classifi-
cation rule. In practice, the error rates estimated by the 2:1 rule turned out
to be relatively pessimistic estimates of the true error rate.

3. Much better error estimates can be obtained by means of the resampling

methods discussed in the previous section. Let us recall the recommenda-
tions from the last section:

– We recommend LOOCV (Leave-One-Out Cross-Validation) mainly for
efficient model selection, keeping in mind that this might lead to some-
what suboptimal choices. Repeated and stratified CV will usually pro-
duce more reliable results in practice.

– .632+ bootstrap combines the best properties of the discussed bootstrap
estimators and can generally be trusted to achieve very good results with
small sample sizes. Its main drawback is that it might result in an opti-
mistic bias when more complex models are considered.

– In order to avoid repeated observations in training samples, subsampling
may be preferred to bootstrapping.
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Let us conclude this section with some simulations and examples in order
to illustrate the above evaluation methods in practice.

7.3.3 Simulation: Comparison of Error Rate Estimators3

In this subsection we will compare different resampling-based error estima-
tors concerning their ability to correctly estimate the true error rate.

Methods

We restrict ourselves to repeated cross-validation (RCV) with R = B = 10
and bootstrap cross-validation (BCV) with B = 100,R = 5 (both stratified),
as well as the two basic estimators 10-fold cross-validation (CV) and .632+
bootstrap (.632+). Also, we restrict ourselves to two classes, and in order to
study one local and one global classification method, to the 3NN estimator
and LDA.

Experimental Design

The aim of the study is to control the data sets by systematically varying
certain characteristics of the two classes in order to cover a reasonable part
of the space of typical data situations. Compare Luebke and Weihs (2011)
for basic considerations about such experimental design. Here, we restrict
ourselves to the variation of the following characteristics:

1. dimension p of data,

2. minimum distance of the two class means in one data dimension,

3. maximum distance of the two class means in one data dimension,

4. skewness of the distribution in each individual data dimension,

5. number n of observations.

As the simulation design a Latin Hypercube Design (LHD) is used
with 100 different combinations of these characteristics. In each design point
10 different data sets are generated. A Latin hypercube design is structured
so that each characteristic has the same number of levels. For each level of
each characteristic there is exactly one design point. The idea is, to divide the
range of p characteristics in M equally probable intervals. Then, M design
points are placed to satisfy the Latin hypercube requirements. Note that the
number of divisions, M, is assumed equal for each characteristic. Also note
that this design does not require more design points for more characteristics.
This independence is one of the main advantages of this design. Further note
that by serially numbering the levels, the same LHD can be used for arbitrary
characteristics and levels, as long as p and M are equal.

3Partly based on Zentgraf (2008).
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Example 7.2: Latin Hypercube Design
As an example, let us consider an LHD for 3 characteristics with 4 levels each
(see Table 7.3). This design is graphically represented in Figure 7.4.

Table 7.3: Latin Hypercube

Point x1 x2 x3

1 1 1 2
2 2 4 3
3 4 2 4
4 3 3 1

1234

1
2

3
4

1

2

3

4
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x
1x

3

●

●

●

●

Figure 7.4: Latin hypercube design.

Let each of our five data characteristics first be projected to the interval
[0,1], where 0 represents the minimal possible level and 1 the maximal. For
each characteristic this interval is divided into M = 100 equally sized subin-
tervals. The individual design points are drawn from these subintervals. In
order to cover the spectrum of possible constellations as well as possible, the
design points should be as different as possible. To be more precise, the min-
imal distance between two different design points in our LHD is constructed
to be maximum among all LHDs with five characteristics and M = 100 design
points. This property characterizes a so-called maximin design.

Assume now that we have generated values f1, f2, . . . , f5 ∈ [0,1]. These
values are then back-transformed into real levels of the five characteristics by
the following scheme:

– f1→ p := ⌈10 · f1⌉ ·2 (leading to realizations ∈ {2,4,6,8, . . . ,20}),
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– f2→min := f2 (the smallest minimum distance can be 0, the greatest 1),

– f3→max := 1+2 · f3 (the smallest maximum distance can be 1, the great-
est 3),

– f4→ skewness := f4 ·1.6 (skewness lies between 0 and 1.6),

– f5 → n := ⌊150− 120
√

f5⌋ (n takes values in {30,31,32, . . . ,150}; since√
x is greater than x in [0,1), greater sample sizes will probably appear less

often than smaller ones.

Random Data

For each design point, we need a procedure to draw random realizations
from distributions with the specified skewness. Such a procedure is proposed
by Fleishman (1978). Let w.l.o.g. X ∼N (0,1) (the expected value can be
shifted afterwards). In order to generate an X∗ from a distribution with skew-
ness γ1 and kurtosis γ2, we apply a transformation

X∗ = a+b ·X + c ·X2 +d ·X3. (7.3)

In our case we use γ2 = 3, the kurtosis of the standard normal distribution. In
order to determine the unknowns b,c,d dependent on γ1 and γ2, one can show
that we have to solve the following equation system:

c =
γ1

2(b2 +24bd +105d2 +2)
(7.4)

γ2 = 24
(
bd + c2(1+b2 +28bd)+d2(12+48bd +141c2 +225d2)

)
(7.5)

2 = 2b2 +12bd +
γ2

1

(b2 +24bd +105d2 +2)2 +30d2 (7.6)

Since this is a complicated nonlinear problem, numerical methods have to be
used for solving (7.4)–(7.6). Here, we use the Nelder-Mead search method
(see Nelder and Mead (1965)) with 1000 different starting value combina-
tions. The parameter a is finally determined by a = −c so that the expected
value remains zero.

For the p dimensions 2n random data are generated independently, n ob-
servations for each of the two classes. For the first dimension the minimum
distance f2 between the class means is chosen, and for the last dimension the
maximum distance f3. All other p− 2 dimensions are chosen such that the
distances of class means are equidistantly spaced between f2 and f3. These
distances of class means are added to the observations of the second class.

Quality Criteria

For the comparison of error rates generated by the different resampling meth-
ods, the same data sets are used for all methods. This way, the results become
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more comparable, and the addition of one more method would be unproblem-
atic. Comparison is based on the following criteria:

– Mean Relative Deviation:

MRD :=
1

1000

100

∑
P=1

10

∑
i=1

|êP
i − eP|

eP
→min!

– Excess Rate:

ER :=
1

1000

100

∑
P=1

10

∑
i=1

IêP
i >eP , |ER−0.5| →min!

Note that the index P represents the design points, and the index i the repli-
cates. Obviously, the mean relative deviation MRD of estimated error rates êP

i

from the true error rates eP should be minimal. Then, the estimator gives the
most reliable error estimates. Moreover, if the excess rate ER is very different
from 0.5, then the considered error rate estimator is tending to mainly over-
or underestimate the true error rate.

In order to determine the true error rates eP for each P = 1, . . . ,100, a
number of 106 new observations for each of the two classes are generated
according to the feature values for P. Then, on these new observations the
error rate is determined by discretization of the p independent variables. For
the discretized variables histograms are estimated. A joint density is estimated
by multiplication of the one-dimensional densities given by the histograms for
each of the two classes. The true error rate eP is found by individual decisions
for all observations, i.e. we calculate the mean number from all the 2 · 106

new observations for which the corresponding density value of the incorrect
class is larger than the one of the correct class. A direct comparison of the
two discretized complete joint densities is not easily possible, since we had to
calculate values for the number of grid points to the power of the dimension
p.

In our simulation the true error rates range from 0% to 26.7%. We ignore
30 out of 1000 starting value combinations with true error rates of exactly
0% for calculation of the MRD, because the latter is undefined in such a case.
Then, the smallest true error rate is 0.00005%.

Results

For LDA, simulation results are given in Table 7.4, and for 3NN in Table 7.5.
BCV appears to be most reliable with respect to mean relative deviation of
error rates (MRD smallest), CV is most symmetric with respect to over- and
underestimation (ER nearest to 0.5). This makes clear that different quality
criteria might be optimized by different resampling methods. BCV and CV
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Table 7.4: Quality of Classification
for LDA

LDA MRD |ER−0.5|
CV 185.6 0.187

.632+ 178.4 0.333
BCV 152.7 0.315
RCV 190.8 0.220

Table 7.5: Quality of Classification
for 3NN

3NN MRD |ER−0.5|
CV 244.6 0.214

.632+ 232.8 0.346
BCV 213.6 0.282
RCV 256.0 0.228

yield better estimates than .632+ and RCV in this simulation study in that the
latter are never best. In this study, LDA delivers smaller MRDs than 3NN.

7.3.4 Example: Discrimination of Piano and Guitar4

In music information retrieval a typical task is to identify the instruments
involved in a recorded piece of music. Here, our task will be the classification
of audio signals of single tones into the classes “piano” and “guitar”. For
this, we will utilize the audio features described in the next subsubsection.
In Section 7.3.4.2, we will discuss the data material and the classification
procedure based on Linear Discriminant Analysis (LDA), in particular the
feature selection from the long list of possibly influential high-level audio
features, as well as the classification results. In Section 7.3.4.3 we will discuss
hyperparameter tuning for Support Vector Machines (SVM) applied to the
same data.

7.3.4.1 Groups of Features

Each single analyzed tone has a length of 1.2 seconds and is given as a
waveform (wav-) signal with sampling rate (ρ) 44100 Hz and samples xn,
n ∈ {1, . . . ,52920}. The signal is framed by half overlapping windows con-
taining 4096 samples each. This results in 25 different windows, except for
the absolute amplitude envelope that uses a different window width of 400.
Note that piano and guitar tones are assumed to be harmonic in that they con-
sist only of a fundamental frequency and so-called overtones, i.e. multiples
of the fundamental frequency (cp. Section 6.4). Other frequencies included
in the tone are ignored. Moreover, note that in time series analysis typically
two kinds of features are in use: features in time space and features in fre-

4Thanks to Markus Eichhoff for providing the data and the basic feature description, and
to Bernd Bischl for producing the classification results.
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quency space. One possible transformation between these two representations
is the Fourier transformation (see below). Here, we will introduce the Abso-
lute Amplitude Envelope (AAE) as an envelope of the observations in time
space, whereas all the other features are in frequency space. All four types
of features included in the study, and described below for better understand-
ing, are so-called high-level audio features in that they represent musically
relevant properties of sound. The two envelopes represent the main structure
of the tone in time and frequency space, and PiP and MFCC characterize
the timbre of the tone. Note that we have not included the more technical
so-called low-level features, like, e.g., the number of zero-crossings in time
space representation, in the analysis since the number of possible features of
this kind is very big (more than 1000 are in use) and music-related interpreta-
tion is often unclear. The following paragraphs defining the features in more
detail can be skipped by readers not interested in a deeper understanding of
automatic music analysis. However, such readers should also be aware of the
deepness of knowledge of signal analysis needed to define such features. In-
deed, complicated tasks most of the time need advanced features for good
solutions.

Absolute Amplitude Envelope (AAE)

The absolute amplitude envelope (AAE) eAAE ∈ R
132 represents the upper

and lower shapes of the energy (i.e. amplitude) envelope of a tone using the
absolute values |xn| of the digital wav-signal X and is defined as follows using
non-overlapping frames of size 400:

eAAE =

[
max

1≤i≤400
{|xi|} max

401≤i≤800
{|xi|} . . . max

52800−399≤i≤52800
{|xi|}

]T

.

A visualization of the absolute amplitude envelope is given in Figure 7.5
for a piano tone.

Pitchless Periodogram (PiP)

The pitchless periodogram describes the distribution of overtones of a tone.
It is based on the discrete Fourier transformation (DFT)

DFTX(k) =
N−1

∑
j=0

x je
−2πi k

N
j, i :=

√
−1,

where X = {x1, . . . ,xN},N = number of time samples, is a given sequence of
samples and k/N, k = 1, . . . ,N/2, the so-called Fourier frequencies.

The DFT maps the time signal into the so-called frequency space, i.e.
represents it as intensities of involved frequencies. The value DFTX(k) is ob-
viously a complex number. In order to obtain a real number summary, the
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corresponding periodogram PX of X is used, i.e. the square of the absolute
value of DFTX(k) divided by N:

PX(k) =
1
N

∣∣∣∣∣
N−1

∑
j=0

x je
−2πi k

N
j

∣∣∣∣∣

2

.

Based on estimates of the fundamental frequencies f̂
ws

0 per window
ws, s ∈ {1, . . . ,25}, overtones can be calculated as f̂i = (i + 1) · f̂0, i ∈
{0, . . . ,12}. Note that we restrict analysis to 13 overtones only.

In order to concentrate on mean behavior in larger blocks, we decided
to aggregate the windows in blocks of five. Building medians, the estimated

block fundamental frequencies f̂
b⌈ r

5 ⌉
0 and block overtones f̂

b⌈ r
5 ⌉

i are calculated
as

f̂
b⌈ r

5 ⌉
0 = median

(
f̂

wr

0 , f̂
wr+1
0 , . . . , f̂

wr+4
0

)
and f̂

b⌈ r
5 ⌉

i = (i+1) f̂
b⌈ r

5 ⌉
0 ,

where r ∈ {1,6,11,16,21} and i ∈ {0,1, . . . ,12}.
After calculating the block fundamental frequency and the 13 block over-

tones the pitchless periodogram (PiP) p ∈ R
70 is calculated. This peri-

odogram is called pitchless because the value of the pitch of the tone, i.e.
of its fundamental frequency, is ignored in the representation, only the peri-
odogram heights are considered on an equidistant scale i ∈ {0, . . . ,13}. This
way, the overtone structure is represented on the same scale for all fundamen-
tal frequencies. The PiP is defined as follows:

p =
[

p
k0
1 p

k1
1 . . . p

k13
1 p

k0
2 . . . p

k13
2 . . . p

k0
5 . . . p

k13
5

]T

,

pki

⌈ r
5 ⌉

:= median
(

Pxwr
(ki),Pxwr+1

(ki), . . . ,Pxwr+4
(ki)
)
,

with ki defined by
∣∣∣∣ f̂

b⌈ r
5 ⌉

i − ki/4096 ·ρ
∣∣∣∣= min

1≤ j≤2048

∣∣∣∣ f̂
b⌈ r

5 ⌉
i − j/4096 ·ρ

∣∣∣∣ ,

where i∈ {0,1 . . . ,13}, r ∈ {1,6,11,16,21}, and ρ denotes the sampling rate.
Thus, a pitchless periodogram block feature is the median over five con-

secutive windows wr of the periodogram values Pxwr
(ki) of the Fourier fre-

quencies ki nearest to the block frequencies f̂
b⌈ r

5 ⌉
i . In the study, overall 70

pitchless periodogram block features are used, i.e. 1 fundamental frequency
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and 13 overtones for each of the 5 blocks. In Figure 7.6 the pitchless pe-
riodogram of one piano and one guitar tone (1st block) can be seen for 10
overtones. A log-transformation of the original pitchless periodogram feature
vector is carried out to improve visualization.
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Figure 7.6: Pitchless periodogram,
OT = overtone, OT0 = fundamental
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Mel Frequency Cepstral Coefficients (MFCC)

The Mel frequency cepstrum (MFC) is a representation of a sound that has
proved to be very useful in speech recognition. The MFC is based on a linear
cosine transform of a log power spectrum on a nonlinear Mel scale of fre-
quency. Mel frequency cepstral coefficients (MFCCs) are the coefficients
of an MFC. Let us look in more detail at the definition of the MFCC.

The Mel scale of the frequencies is a perceptual scale of pitches judged by
listeners to be equal in distance from one another. The power spectrum is the
square of a windowed DFT where the outer parts of the windows are down-
graded by Hamming weights (cp. Figure 7.7). The power spectrum is taken
after transformation to Mel scale in order to analyze frequencies on a speech-
relevant scale. This spectrum is summarized in (overlapping) windows, using
triangular weights (MFC filter bank, cp. Figure 7.8). These triangular Mel
filters are placed on the frequency axis so that each filter’s center frequency
follows the Mel scale. The filter bank mimics the critical bands representing
the different perceptual effects at different frequency bands. To achieve this,
the edges are placed so that they coincide with the center frequencies in adja-
cent filters. The output of the filter bank is called Mel spectrum. Logarithms
are taken in order to avoid extreme peaks. A linear discrete cosine transform
is a real-valued analogue of a DFT, used here for mapping the Mel spectrum
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to Mel frequency cepstrum coefficients. A cepstrum is, thus, in a way a spec-
trum of a logarithmized Fourier spectrum.

We use the Matlab implementation (Lartillot et al., 2008) of MFCC with
16 MFC coefficients. As in the case of the pitchless periodogram the MFCCs
have been evaluated for each window, and the median of each MFCC over
each five consecutive time frames has been calculated. Thus, in this study,
overall 80 MFCC block features are used, i.e. 16 features for each of the 5
blocks. Figure 7.9 shows an example of the MFCC.
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Figure 7.7: Hamming Filter.

Frequency (Hertz)
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Figure 7.8: MFC triangular filter
bank; fi are the center frequencies on
the Mel scale.

LPC Simplified Spectral Envelope

The Linear Prediction Coding (LPC) simplified spectral envelope is a
smoother of the spectral envelope.

The current value of the signal xs
n in segment s is estimated by p past

samples:

x̂s
n =−as

2xs
n−1−as

3xs
n−2− . . .−as

p+1xs
n−p with p = ⌊2+ρ/1000⌋= 46

where ρ denotes the sampling rate.
The resulting vector as = [as

2 . . . as
p+1]

T is transformed into frequency
space resulting in the following complex 512-point so-called frequency re-
sponse vector Hs, which can be interpreted as a transfer function of the har-
monic wave
zk = eiωk = cos(ωk)+ i · sin(ωk) for 512 different frequencies ωk:

Hs(ωk) =

(
p+1

∑
j=1

as
l e
−iωk j

)−1

, s ∈ {1, . . . ,25}, k ∈ {1, . . . ,512}, as
1 = 1,
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where the ωk are 512 equidistant frequencies covering [0,N/2), and as
l , l > 1,

are the above linear prediction coefficients as. Taking element-wise log-
arithms of the absolute values yields a matrix K ∈ R

512×25 with K·,s =
20log10|Hs|, s ∈ {1, . . . ,25}. Taking medians in the blocks leads to

vr := median(K·,r,K·,r+1,K·,r+2,K·,r+3,K·,r+4)

with r∈{1,6,11,16,21}. This yields the matrix V =
[
v1 v6 v11 v16 v21

]
∈

R
512×5. The LPC simplified spectral envelope s ∈ R

125 is then a reduced
version of V taking the maximum of each subsequent 20 rows for all 5
columns of V :

s =

[
max

1≤ j≤20
{Vj,1} max

21≤ j≤40
{Vj,1} . . . max

481≤ j≤500
{Vj,1}

...

max
1≤ j≤20

{Vj,21} max
21≤ j≤40

{Vj,21} . . . max
481≤ j≤500

{Vj,21}
]T

.

This leads to the overall 125 LPC block features used in the study, i.e. to 25
LPC block features in 5 blocks each. Figure 7.10 shows an example of the
LPC simplified spectral envelope of a piano tone.
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Figure 7.10: LPC simplified spectral
envelope.

7.3.4.2 Feature Selection Results

Overall, the previous subsubsection leads to 407 numeric non-constant fea-
tures not including any missing values. The classification problem is binary
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(piano (1) vs. guitar (0)) with 5654 observations, namely 4309 guitar and
1345 piano tones. The tones were taken from the following three data bases:
the McGill (2010) master samples collection on DVD, the RWC music data
base (Goto and Nishimura, 2003), and the Iowa musical instrument samples
(University of Iowa, 2011).

The goal is to find a simple classifier with as few features as possible for
ease of interpretation. To achieve this, we will restrict the training data set to
600 observations only, as in reality only this few labeled data might be avail-
able. We will use the MisClassification Error rate (MCE) on the remaining
data (test set) as a measure for classification quality.

Experiment for Feature Selection in Piano-Guitar Classification

1. Select Linear Discriminant Analysis (LDA) as a classifier.

2. Subsampling: Randomly select 600 observations from the full data set as a
training set for model selection. Retain the rest as a test set.

3. Apply sequential forward search on these 600 observations with LDA. Per-
formance is measured by 5-fold CV and MCE. Search stops when MCE
cannot be improved by 0.005. Note: The data partitioning of the CV is
held fixed, i.e. is the same for all visited feature sets to reduce variance in
comparisons.

4. Store the selected features.

5. Train classifier with selected features on all 600 instances of the training
set.

6. Predict classes in the test set and store the test error.

7. Repeat steps (2)-(6) 50 times.

This wrapper procedure thus comprises nested resampling for feature selec-
tion with 5-fold CV in inner resampling and 50 iterations subsampling of 600
observations in outer resampling. This way, we get 50 sets of selected features
and 50 unbiased MCE values. Nested resampling was chosen in order to be
able to show variation in estimates and error rates caused by different (small)
training samples.

The results on our data set are summarized in Figures 7.11–7.13. Figure
7.11 indicates, on the one hand, that most often an error around 5.5% is real-
ized. On the other hand, also much larger error rates appear. Figure 7.13 gives
an importance ordering of the involved features. Note that only six features
were selected in more than 10% of the cases, i.e. more than 5 times. Also
note the structure of the feature names starting with the type of feature (AAE,
PiP, MFCC, or LPC), followed by the block number and a counter inside the
block. Note that for AAE blocks are not used. From this, we see that the eight
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most important features are MFCC features on different blocks of the time
series. A plot of the three most often chosen features is given in Figure 7.12
for a rotation angle best illustrating the linear separation of the two classes in
these three features.
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Figure 7.11: Histogram of misclassifi-
cation rates from outer resampling for
feature selection.
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Figure 7.12: 3D plot of best three fea-
tures (just 1000 samples to improve
visualization).
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Figure 7.13: Barplot of importance of variables.

7.3.4.3 Hyperparameter Tuning Results

In order to demonstrate nested resampling for hyperparameter tuning, we
show results for the Support Vector Machine (SVM) with radial basis ker-
nel (see Section 4.6.4). For this SVM we vary the kernel width w and the
error weight C.
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Experiment for Hyperparameter Tuning in Piano-Guitar Classification

1. Select the Support Vector Machine (SVM) with radial basis kernel as a
classifier.

2. Subsampling: Randomly select 600 observations from the full data set as a
training set for model selection. Retain the rest as a test set.

3. Apply grid search on all powers of 2 in [2−20,220]2 on these 600 observa-
tions with SVM. Performance is measured by 5-fold CV and MCE. Note:
the data partitioning of the CV is held fixed, i.e. is the same for all grid
points to reduce variance in comparisons.

4. Store the hyperparameters w and C with optimum MCE.

5. Train classifier with selected hyperparameters on all 600 instances of the
training set.

6. Predict classes in the test set and store the test error.

7. Repeat steps (2)–(6) 50 times.

The results show that the chosen SVM without feature selection is better than
LDA with feature selection. In particular, the realized empirical distribution
of the MCEs covers almost exclusively lower MCE values than for LDA in
the previous subsubsection (see Figure 7.14).

7.3.5 Summary

In this section we applied model selection to classification problems. Par-
ticularly, we discussed the train-and-test method, doing completely without
repetitions for such problems. In a simulation, we compared different error
rate estimators. As criteria we utilized not only the correctness of estimated
error rates, but also the excess rate assessing whether the error rate estima-
tor is tending to mainly over- or underestimate the true error rate. Finally, in
an example on the discrimination of piano and guitar in audio data sets we
demonstrated how deep knowledge of the analyzed topic can be utilized to
generate excellent solutions of the problem at hand.

7.4 Model Selection in Continuous Models

Now, we switch to model selection in continuous models, i.e. in regression
models.

In regression problems a typically real-valued response y ∈ R has to be
predicted by a so-called regression model based on n observations of zi =
[xi yi]

T , i = 1, . . . ,n, where the vector x summarizes the influential factors.
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Figure 7.14: Histogram of misclassification rates from outer resampling for
SVM hyperparameter tuning.

As with classification models we are interested in selecting models with
best predictive power. In order to be fully prepared for the assessment of
predictive power in regression models we will start with an introduction into
the theory of (nonlinear) predictions in regression models (see Section 7.4.1).

Based on that, we will further discuss two kinds of continuous models:
neural nets and PLS models. In Section 4.5.3 we already indicated that an
interpretation of coefficients in neural nets should be avoided. For prediction,
however, neural nets are very well suited if the activation function satisfies
condition 2 (see Section 4.5.3). This will be clarified in Section 7.4.2. In par-
ticular, the choice of the number of so-called “hidden nodes” in the neural net
is discussed.

The PLS method frequently aims to explain the responses by as few as
possible so-called latent variables. The determination of relevant PLS com-
ponents is explained in Section 7.4.3. Both tasks, the identification of the
relevant number of hidden nodes in neural nets and of the relevant number of
PLS components, are feature selection problems.
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7.4.1 Theory: Nonlinear Prediction5

In prediction we distinguish between point prediction and interval prediction
of the response for a new observation x0 := [x01 . . . x0K ]

T of influential fac-
tors. Let us first introduce the corresponding terms.

If one is interested in an optimal prediction of a response by means of
several influential factors, we refer to a prediction with multiple models.

Definition 7.20: Nonlinear Multiple Statistical Model
A nonlinear multiple statistical model is defined by

Y = f (X1, . . . ,XK ;β1, . . . ,βL;ε)

for a response Y dependent on K influential factors X1, . . . ,XK and the un-
known coefficients β1, . . . ,βL as well as an error term ε . The function f is
assumed to be at least twice continuously differentiable in all arguments.

After having estimated the unknown coefficients of the model by
β̂1, . . . , β̂L, the point prediction is obtained by zeroing the error term, assum-
ing that E(ε) = 0.

Definition 7.21: Point Prediction and Prediction Intervals
The point prediction of a response Y for values x01, . . . ,x0K of the influential
factors X1, . . . ,XK is defined as

ŷ := f (x01, . . . ,x0K ; β̂1, . . . , β̂L;0).

Prediction intervals are intervals around point predictions, which cover the
“true” value of the response to be predicted with a certain probability.

The point prediction is thus the value of the deterministic model compo-
nent for certain values of the influential factors and the estimated values of
the unknown coefficients.

For the determination of prediction intervals the distribution of the pre-

diction error

Y (x0)− Ŷ (x0) := Y (x0)− f (x01, . . . ,x0K ; β̂1, . . . , β̂L;0)

is needed for fixed values x0 := [x01 . . . x0K ]
T of the influential factors

X1, . . . ,XK for the assessment of the variation of the response around the point
prediction.

5Partly based on Weihs (1987, pp. 49 – 55).
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In order to analyze the distribution of the prediction error, it proves to be
useful to introduce an auxiliary value

Ỹ (x0) := f (x01, . . . ,x0K ;β1, . . . ,βL;0),

which represents the point prediction for known coefficients. With this, the
prediction error can be split into two components:

Y (x0)− Ŷ (x0) = (Y (x0)− Ỹ (x0))+(Ỹ (x0)− Ŷ (x0))

= ( f (x01, . . . ,x0K ;β1, . . . ,βL;ε0)− ( f (x01, . . . ,x0K ;β1, . . . ,βL;0))

+( f (x01, . . . ,x0K ;β1, . . . ,βL;0)− ( f (x01, . . . ,x0K ; β̂1, . . . , β̂L;0)

=: δ0ε +δ0β .

Obviously, the first component δ0ε represents the prediction error caused by
neglecting the model error (ε-component), whereas the second component,
δ0β , represents the prediction error caused by using the estimated coefficients

β̂ instead of the true coefficients β (β -component).
Assuming independence of the model errors in prediction and the model

errors in estimation leads to independency of the two components of the pre-
diction error, since estimation of coefficients only depends on the model er-
rors εi, i = 1, . . . ,n, and not on the model error ε0 in the prediction situation,
and ε0 is independent of the εi. Therefore, the two components can be inde-
pendently analyzed, and the variance of the prediction error is the sum of the
variances of δ0ε and δ0β .

In what follows, as often in statistics, we additionally use a
normality assumption: εi ∼ i.i.N (0,σ2), i = 0,1, . . . ,n = number of obser-
vations.

Linear models

For linear models y =Xβ+ε, X having maximum column rank, we get:

var(δ0ε) =var(ε) = var(Y ) = σ2 and

var(δ0β ) =var(xT
0β−xT

0β̂) = xT
0 Cov(β̂)x0 = σ2xT

0(X
TX)−1x0

=var(Ŷ ).

By summing up the two variances we get
Y (x0)− Ŷ (x0)∼N (0,σ2[1+xT

0(X
TX)−1x0]),

i.e. we obtain the following well-known representation of the α ·100% pre-
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diction interval for linear models:
[

Ŷ (x0)− tn−K;(1+α)/2σ̂
√

1+xT
0(X

TX)−1x0,

Ŷ (x0)+ tn−K;(1+α)/2σ̂
√

1+xT
0(X

TX)−1x0

]
,

where tn−K;(1+α)/2 is the (1+α)/2 quantile of the t-distribution with n−K

degrees of freedom and

σ̂2 :=
1

n−K

n

∑
i=1

ε̂2
i ,

is the estimator for σ2.
Note that in our notation the constant X1 = 1 would be one of the influenc-
ing factors so that, e.g., the number of degrees of freedom is not, as often
stated, n−K− 1, but n−K. Also note that in our notation α typically takes
values 0.95,0.90 so that the quantiles we are interested in can be calculated
by (1+α)/2, typically leading to corresponding values 0.975,0.95.

In what follows we simplify the nonlinear model by only considering
additive model errors: Y = f (X1, . . . ,XK ;β1, . . . ,βL)+ ε .
For this model we will now derive the variances of the β-component and the
ε-component of the prediction error.

Let us start with the variance of the β-component. In the linear case,
we utilized the unbiasedness and the normality of the least squares estima-
tor β̂ of β for the determination of var(δ0β ) and of the distribution of the
prediction error. However, already when the matrix XTX is not invertible,
the least squares estimator is not unbiased anymore. In case of bias, we typi-
cally switch to asymptotic statements. Also for nonlinear models we can only
assume consistency and asymptotic normality of the estimator.

Definition 7.22: Consistency and Asymptotic Normality
Let θ be a parameter vector of a statistical model. An estimator tn of g(θ) ∈
R

q based on n observations is called consistent iff for all η > 0: P(‖tn−
g(θ)‖ > η)→ 0 for n→ ∞, i.e. plim(tn) = g(θ), where plim stands for the
probability limit (see Definition 7.1).

An estimator tn of g(θ) ∈ R
q based on n observations is called asymp-

totically normal iff there is a sequence of nonsingular matrices An and vec-
tors an so that (Antn−an) converges in distribution to a multivariate normal
distribution N (0,Σ),Σ nonsingular, for n→ ∞ (see Definition 7.2). In the
simplest case an = An ·E(tn), where An is a scalar ∈ R.
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Let β̂ be a consistent and asymptotically normal estimator of β, more
precisely let

√
n(β− β̂) be asymptotically N (0,σ2B−1) distributed, where

σ2 is the variance of the model error ε. Since Ỹ is the same (continu-
ously differentiable) function of β as Ŷ of β̂,

√
n(Ỹ − Ŷ ) is asymptotically

N (0,σ2∇ f T
0 B

−1∇ f0) distributed, where ∇ f0 := ∂ f

∂β (x0;β)T is the gradient
vector of f with respect to β in x0 (see Corollary 7.2). It can be consistently

estimated by ∇̂ f 0 := ∂ f

∂β (x0; β̂)T . Therefore, v̂ar(δ0β ) = σ̂2∇̂ f
T

0 (nB̂)−1∇̂ f 0

is a consistent estimator of var(δ0β ) if B̂ is a consistent estimator of B and
σ̂2 is a consistent estimator of the variance σ2 of the model error (see Corol-
lary 7.1).

What is left for the computation of v̂ar(δ0β ) is the determination of a
consistent and asymptotically normal estimator β̂ of β and the determination
of the asymptotic covariance matrix B and of a consistent estimator B̂ of B.

Fortunately, the nonlinear least squares estimator is asymptotically
normal under weak regularity conditions with asymptotic covariance matrix
σ2B−1,

B := lim
n→∞

1
n

n

∑
i=1

∂ f

∂β
(xi;β)

T ∂ f

∂β
(xi;β),

for the learning sample xi, i = 1, . . . ,n if the limit exists and is invertible.
Then

B̂ :=
1
n

n

∑
i=1

∂ f

∂β
(xi; β̂)

T ∂ f

∂β
(xi; β̂)

is a consistent estimator for B (see, e.g., Jennrich (1969)) and

σ̂2 :=
1

n−L

n

∑
i=1

ε̂2
i .

is a consistent estimator of the variance σ2 of the model errors.
Altogether, this leads to the following estimator for the β-component of

the prediction error:

v̂ar(δ0β) = σ̂2∇̂ f
T

0 (nB̂)−1∇̂ f 0

= σ̂2 ∂ f

∂β
(x0; β̂)[

n

∑
i=1

∂ f

∂β
(xi; β̂)

T ∂ f

∂β
(xi; β̂)]

−1 ∂ f

∂β
(x0; β̂)T .

Let us now consider the determination of the variance of the ε-

component of the prediction error. Since Y = f (X1, . . . ,XK ;β1, . . . ,βL)+ ε ,
we have δ0 = ε0, and analogous to the linear model:
var(δ0) = var(ε) = var(Y ) = σ2.
Therefore, ˆvar(δ0) = σ̂2 is a consistent estimator of var(δ0).
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Linear Model (cont.)

In the case of a linear model we get
Y = f (X1, . . . ,XK ;β1, . . . ,βL)+ ε = [X1 . . . XK ]β+ ε . Therefore:
∂ f

∂β (xi;β) =
∂ f

∂β (xi; β̂) = (xi1 . . . xiK) = xT
i , i = 0,1, . . . ,n.

In this notation, we then get

X =



xT

1
...
xT

n


 .

Therefore, we have:

XTX = [x1 · · · xn]



xT

1
...
xT

n


=

n

∑
i=1

xix
T
i = nB̂ .

Obviously, this leads to the above representation of the variance of the pre-
diction error.

Overall, we have proven the following form of the prediction interval

for the nonlinear model with additive model error:

Theorem 7.3: Prediction Interval for Nonlinear Model
For the nonlinear model with additive model error
Y = f (X1, . . . ,XK ;β1, . . . ,βL) + ε , the α ·100% prediction interval of a
response Y for fixed values x0 := [x01 . . .x0K ]

T of the influential factors
X1, . . . ,XK is given by

[
Ŷ (x0)− tn−L;(1+α)/2σ̂

√
1+ ∇̂ f

T

0 (nB̂)−1∇̂ f 0,

Ŷ (x0)+ tn−L;(1+α)/2σ̂

√
1+ ∇̂ f

T

0 (nB̂)−1∇̂ f 0

]
,

with the estimated gradient vector ∇̂ f 0 := ∂ f

∂β (x0; β̂)T , the nonlinear least

squares estimator β̂ of β, the estimated asymptotical covariance matrix

B̂ :=
1
n

n

∑
i=1

∂ f

∂β
(xi; β̂)

T ∂ f

∂β
(xi; β̂)

assumed invertible, the (1+α)/2 quantile tn−L;(1+α)/2 of the t-distribution
with n−L degrees of freedom, and the estimated error variance

σ̂2 :=
1

n−L

n

∑
i=1

ε̂2
i .
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The α ·100% prediction limits are the upper and lower interval limits of
the α ·100% prediction interval.

7.4.2 Model Selection in Neural Nets: Size of Hidden Layer6

Let us now apply this to nonlinear prediction with neural nets. Please recall
the form of the corresponding nonlinear model:

Y = α0 +
d

∑
i=1

αig(β
T
i X +βi0)+ ε =: f (X ;Θ)+ ε, where

X = [X1 . . . XK ]
T is the vector of input signals,

βi = [βil . . . βiK ]
T is the vector of the weights of the input signals for the

ith node of the hidden layer,

α = [α1 . . . αd ]
T is the vector of the weights of the nodes of the hidden layer

for the output,

α0 is an overall constant, and

ε is a random variable with expected value 0.

Obviously, the vector of L = 1+2d+dK = 1+(2+K)d unknown model

coefficients of this model has the form:

Θ = [α0 . . . αd β10 . . . βd0 βT
1 . . . βT

d ]
T .

In Section 4.5.3 we have derived conditions for which

BE := E

[
∂ f

∂Θ
(X;Θ)T ∂ f

∂Θ
(X;Θ)

]

is invertible.
Since the nonlinear least squares estimator is asymptotically normal with

covariance matrix

B := lim
n→∞

1
n

n

∑
i=1

∂ f

∂Θ
(xi;Θ)T ∂ f

∂Θ
(xi;Θ)

and the mean converges to the expected value (strong law of large numbers),
B is invertible as well as, asymptotically,

B̂ :=
1
n

n

∑
i=1

∂ f

∂Θ
(xi;Θ̂)T ∂ f

∂Θ
(xi;Θ̂).

6Partly based on Cross et al. (1995) and Hwang and Ding (1997).
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Therefore, assuming the conditions of Section 4.5.3 hold, we can use the
above form of the prediction interval for neural networks as well.

For the case that the structure of the neural network is fixed, i.e. in
our case the number d of nodes in the hidden layer, the α · 100% prediction
interval was given in the previous Section 7.4.1. However, how do we choose
the number of nodes in the hidden layer? We will give two criteria that might
be used. Both criteria maximize aspects of prediction quality.

Definition 7.23: Prediction Quality Criteria
The coverage of the prediction interval should be as close to α · 100% as
possible, i.e. the prediction interval should, if possible, cover exactly α ·100%
of the distribution of Y (x0).

The length of the prediction interval should be as small as possible, i.e.
the uncertainty about the location of the true value of Y (x0) should be as low
as possible.

We can use (leave-one-out) cross-validation (cp. Section 7.2.3) for pre-
diction quality evaluation. Thus, each observation of the learning sample is
held out individually as a test sample so that n neural nets with fixed structure
(= number of nodes in the hidden layer) are estimated based on n−1 observa-
tions each, where for all response variables point predictions for the hold-out
observation are built. In this way, for each realized value combination of the
influential factors we have both true and predicted values of responses avail-
able and a corresponding prediction interval. These are used to determine
the prediction quality measures coverage and mean interval length.

The optimal neural net for a response Y can be constructed by means of
cross-validation as described in Algorithm 7.7.

Example 7.3: Neural Net for Electric Load Prediction
In the paper of Hwang and Ding (1997) an example is given for predictions
with a neural net for the electrical load at noon on Tuesdays using the system
loads and the temperatures available at 8:00 a.m. that day. Seven influential
factors were used, namely 3 loads and 4 temperatures. The sample size was
n = 341. Table 7.6 shows covering percentages and mean prediction interval
lengths for 1–4 nodes in the hidden layer using the logistic activation function.
The nets with 2 or 3 nodes are good candidates for practical application. The
choice is dependent on which criterion is preferred.



MODEL SELECTION IN CONTINUOUS MODELS 403

Algorithm 7.7 Construction of Optimal Neural Net

1: q0← 0
2: l0← ∞

3: d← 1
4: loop

5: Evaluate neural net with d hidden units by means of cross-validation.
6: qd ← coverage for model, i.e. the percentage of true response values

in the α ·100%-prediction interval.
7: ld ← mean length of prediction interval
8: if |qd−1−α ·100%| ≤ |qd−α ·100%| and ld−1 ≤ ld then

9: return the neural net with the best criteria.
10: end if

11: d← d +1
12: end loop

Table 7.6: Prediction Quality Criteria for Different Structures

Number of Nodes (d) 1 2 3 4

coverage for α = 0.9 90.6% 89.7% 89.1% 86.5%
coverage for α = 0.95 93.5% 93.5% 92.1% 90.9%
mean length for α = 0.9 269.1 213.1 207.4 368.8
mean length for α = 0.95 320.6 254.0 247.1 439.4

7.4.3 Model selection for PLS: Selection of Latent Variables7

Let us, finally, apply feature selection (see Section 7.2.4) to dimension re-
duction in the space of PLS components, i.e. to the selection of relevant PLS
components. The aim is to explain the response variables with as few as pos-
sible latent variables, i.e. PLS components. As a quality criterion, we propose
another measure of prediction quality, namely the so-called cross-validated
coefficient of determination R2

cv.

Definition 7.24: Predictive Power based on Cross-Validation
For a multivariate linear model with response variables Yj, j = 1, . . . ,M =
number of response variables, the predictive power for response Yj is de-
fined by the cross-validated coefficient of determination R2

j cv (Rj
2 cross-

7Partly based on Weihs and Jessenberger (1998, pp. 170 – 172).
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validated), based on the prediction errors

v̂i j = yi j− ŷi j i = 1, . . . ,m,

m being the number of observations, where

R2
j cv := 1− RSS j cv

∑
m
i=1(yi j− ȳi j)2 , with RSS j cv :=

m

∑
i=1

v̂2
i j,

yi j = ith observation of the jth response variable,

ŷi j = ziâ j(i) = point prediction of the ith observation of the jth response

variable,

zi = ith row of matrix Z of the scores of the PLS-components,

â j(i) = jth column of the matrix of coefficients A for the PLS-

components Z based on all observations except the ith.

Note that we have defined the cross-validated coefficient of determination
individually for each response variable. This way, we allow for individual di-
mension reduction for each response. For each response variable, based on
greedy forward selection, we can include PLS components into the predic-

tion model as long as a suitable functional of all the cross-validated coef-

ficients of determination R2
j cv, j = 1, . . . ,M, increases. For example, such a

functional can be the mean, the median, or the minimum or the maximum of
the individual coefficients.

Note that the criterion for the construction of PLS components is differ-
ent from the cross-validated coefficient of determination. In particular, for the
multivariate case, PLS components are not chosen individually for the differ-
ent responses but jointly for all responses together. Therefore, it might happen
that for prediction the components are not chosen in the ordering given by the
numbering of the components.

Example 7.4: Dyestuff Production
We now continue Example 5.2 where we calculated the PLS-components on
the basis of correlations and considered the following models for the two
response variables:

HUEREM(AL)−HUEREM(AL) = β1PLS1+ ε and

HUEREM(AL)−HUEREM(AL) = β1PLS1+β2PLS2+ ε,

where PLS1 and PLS2 are the first and second PLS components, respectively.



MODEL SELECTION IN CONTINUOUS MODELS 405

Table 7.7: Goodness of Fit and Predictive Power for PLS Components

HUEREM HUEREMAL
PLS1 PLS1+2 PLS1 PLS1+2

R2
cv 0.46 0.59 0.73 0.79

R2 0.47 0.62 0.74 0.81

Table 7.7 extends Table 5.1 and shows a comparison of the goodness of fit
and the predictive power of the two models for the two response variables.
Obviously, the improvement of predictive power from only including the 1st
to also including the 2nd PLS component is higher for HUEREM.

Let us now decide on the number of PLS components to be used for op-
timal prediction of the hues. We applied the variable selection method to op-
timize the predictive power to the PLS components. As a result, for HUERE-
MAL the first three components were chosen in the order PLS1, PLS2, PLS3.
With these three PLS components the predictive power is 0.805 whereas with
one more PLS component the predictive power slightly shrinks to 0.804. For
HUEREM, six components were chosen in the order PLS1, PLS2, PLS3,
PLS4, PLS17, PLS15. Altogether, this leads to a predictive power of 0.6217,
whereas with one more PLS component the predictive power only slightly
shrinks to 0.6215.

7.4.4 Summary

In this section we applied model selection to regression problems. In order
to derive quality criteria for continuous models, we introduced the theory of
nonlinear prediction for such models. To determine the prediction intervals,
the distribution of the prediction error was studied. Coverage and length
of such intervals are used as quality criteria in an application to neural nets
aiming at the determination of the size of hidden layers. As another quality
criterion, predictive power is defined by cross-validation in an application to
the PLS method aiming at the determination of the number of latent variables.
Please note that prediction quality should not be measured by goodness of fit,
since this would be the resubstitution quality, known to be too optimistic.
Only for many observations is goodness of fit a good approximation to pre-
dictive power.
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7.5 Implementation in R

As a general starting point, CRAN offers the task view “Machine Learning
& Statistical Learning” by Hothorn (2013). It lists a multitude of packages
for statistical learning models and associated methods. Among these are tree-
based methods (packages rpart (Therneau et al., 2013), C50 (Kuhn et al.,
2013a), and randomForest (Liaw and Wiener, 2002)), neural networks (pack-
age nnet (Venables and Ripley, 2002)), support vector machines (packages
e1071 (Meyer et al., 2012) and kernlab (Karatzoglou et al., 2004)), boosting
(packages adabag (Alfaro-Cortes et al., 2012) and gbm (Ridgeway, 2013)),
an interface to all algorithms in the popular WEKA Java (Hall et al., 2009)
software for machine learning, and many more.

Many of these packages already include procedures to cross-validate their
implemented models, but most of the time only this specific resampling pro-
cedure is provided and the concrete splits cannot be predefined by the user.
Exceptions to this rule are the packages caret (Kuhn et al., 2013b) and DMwR

(Torgo, 2010), which use a more generic approach and allow more convenient
model comparisons. DMwR, for example, offers the usual hold-out, subsam-
pling, and bootstrapping procedures, in addition to cross-validation, and fur-
thermore allows statistical model comparisons through integrated hypothesis
tests. Basic generic hyperparameter tuning (mainly by grid search) is included
in the package caret and by the function tune() in package e1071.

For feature selection, a larger number of feature filtering algorithms is
provided in the FSelector (Romanski, 2013) package, while Boruta (Kursa
and Rudnicki, 2010) offers a specific wrapper algorithm for the selection
of all relevant features. For many models, feature importance measures are
available (which could also be used for feature filtering), e.g., see the func-
tion importance in the package randomForest for a popular example. The
package caret again tries to generalize this principle to a greater number of
classification and regression algorithms.

7.6 Conclusion

Overall, in this chapter, we demonstrated how repetitions can be utilized to
simulate different samples from one learning data set only. In particular, we
introduced how such repetitions can be utilized in a general framework for
model selection being a crucial task in applied statistics. Also, in this chapter
we introduced resampling-based prediction quality criteria for the two most
important supervised learning tasks, discrimination and regression. Naturally,
we discussed only a small excerpt from the tremendous amount of literature
on this topic. Let us stress again that we do not want to give an overview of all
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important statistical methods, but that we want to give an introduction to basic
ideas of statistical algorithms, in this section of repetition in order to simulate
repeated sampling from a population whose distribution is not known.

7.7 Exercises

Exercise 7.2.1: We consider the Leave-One-Out (LOO) estimator of the error
rate for a data-independent rule. Consider i.i.Bernoulli(0.5) distributed labels
Y ∈ {0,1} as training data (ignore the influential factors). Let Y1, . . . ,Yn be
the training data. Let our data-independent rule be of the following form: If
the number of 1s in the training data is odd, then constantly predict 1 for new
data, else 0.

a. What is the true expected error rate of this rule?

b. Let us estimate this expected error rate by means of LOO. What is the
expected value and the variance of this estimator?

c. How do you interpret these results?

Exercise 7.2.2: Consider the two-sided one-sample t-test has not been in-
vented, we have lots of data, and we go for the test statistic b := |x̄−µ|. Im-
plement a test procedure based on the bootstrap that evaluates the test statistic
200 times, reports the test decision about µ being the correct expected value,
and calculates a bootstrapped 95% confidence interval for µ .

Exercise 7.3.1.1: Consider a classification problem with two classes where
influential data stem from two independent normal distributions with µ1 =
0,µ2 = 1, and σ1 = σ2 = 1, and the a priori probabilities π1 and π2 of the two
classes are equal.

a. Plot the two density functions Φ(x|µ1;σ2
1 ) and Φ(x|µ2;σ2

2 ) in a joint dia-
gram.

b. Compute the a posteriori probabilities of the two classes and plot them in
a joint diagram.

c. Formulate the Bayes rule under equal misclassification costs for the two
classes. Plot the corresponding decision limit into the above diagrams.

d. Calculate the error rate of the Bayes rule.

e. Now assume that π2 = 4/5, i.e. that the a priori probability of class 2 is
higher. Plot the two functions π1Φ(x|µ1;σ2

1 ) and π2Φ(x|µ2;σ2
2 ) as well as

the two a posteriori probabilities in a joint diagram, correspondingly.
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f. How does the optimal classification rule change? Draw the optimal deci-
sion limit into the above diagrams. How does the error rate change?

Exercise 7.3.1.2: Let us analyze the well-known Iris data set (data avail-
able in R, just type iris, or from the exercises section under http://www.
statistik.tu-dortmund.de/fostal.html) with 50 examples each for
three different types of Iris plants (Iris setosa, Iris versicolour and Iris vir-
ginica). Four features are collected describing length and width of sepals and
petals.

a. Plot a scatterplot matrix. Assess the data concerning their linear separa-
bility. Which combination of features appears to be most suited for linear
separation?

b. Determine the error rate of 1NN by means of 5-fold cross-validation. In-
terpret the result.

c. Also determine the error rate for kNN with k = 3,5, . . . ,79 by means of 5-
fold cross-validation. Compare all the results in a table and in a scatterplot
of k vs. error rate. Interpret the result.

Exercise 7.3.1.3: Consider the artificial 2-class classification problem with
the training set “orange.train” and the test set “orange.test” (available from
the exercises section under http://www.statistik.tu-dortmund.de/

fostal.html) containing the class variable (“class”) and 10 influential fea-
tures F1−F10 (see the “Skin of an orange” example in Hastie et al. (2001,
pp. 384 – 385)). In R the data can be generated by

library("ElemStatLearn")

orange.train <- orange10.test[[1]]

orange.test <- orange10.test[[2]]

a. Train an LDA on the training set and calculate the test data error rate.

b. Determine which features are useful for class separation (feature selec-
tion). Use both the wrapper strategy in Section 7.2.4 and graphics as, e.g.,
a scatterplot matrix or histograms of single features distinguishing the two
classes.

c. Is it sensible to apply LDA? What kind of separation do you expect from
the graphics?

Exercise 7.4.1: Based on the PLS implementation in Exercise 5.1.1 apply the
greedy feature selection in Section 7.2.4 to all 18 PLS-components of Exam-
ple 5.2 for the two response variables HUEREM and HUEREMAL together.
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Compare the results to the results of Examples 5.2 and 7.4. For the calcula-
tion of the PLS components use the data available from the exercises section
under http://www.statistik.tu-dortmund.de/fostal.html.





Chapter 8

Scalability and Parallelization

8.1 Introduction

In Chapter 2 we studied what is computable and how much effort it takes
to compute certain things. For this we used the Turing machine, an abstract
model of a computer that sequentially executes a sequence of instructions
stored on a tape. Real-world central processing units (CPUs) in computers are
conceptually similar. They sequentially read instructions and data from mem-
ory, process them, and write them back to memory. Increasing the execution
speed of such a machine amounts to increasing the number of instructions or
data words read and processed per second.

In this chapter we will study the empirical scalability of statistical algo-
rithms and especially how the availability of parallel computing resources has
changed and will continue to change the way we develop and deploy statisti-
cal methods. In the previous chapters of this book, we considered the scala-
bility of algorithms only on a theoretical level by characterizing the number
of basic operations performed by the algorithm as a function of the size of the
input. Some algorithms, such as those in Chapter 2, have similar theoretical
runtime characteristics, but scale quite differently in practice.

It is important to stress that when we study the scalability of an algo-
rithm in this chapter, we will usually need to restrict ourselves to a concrete
implementation of that algorithm because even different implementations of
the same algorithm can have widely different runtime characteristics. This
is partially due to the fact that most algorithms do not specify every detail
needed for the implementation, so that programmers implementing the algo-
rithm are free to choose different strategies to realize these details. Another
factor that can have an influence on the runtime of an algorithm is the lan-
guage it is written in and the compiler or interpreter used to run the program.
When studying the empirical scalability of an algorithm, this should always
be kept in mind. But before we dive into detailed discussion of the program-
ming challenges posed by modern computing systems, we should step back

411
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and ask ourselves why a statistician should have a basic working knowledge
of scalability, parallel programming, and high-performance computing; after
all, there are specialized computer scientists that work in this field.

There are two main reasons why statisticians should know more about
parallel computing and scalability. First, we are now living in the so-called
information age which has brought upon us large and unstructured data sets
from which we derive our information. In an ideal world, a statistician would
be involved in all parts of the data gathering process. This would allow him
or her to apply methods from the field of design of experiments to minimize
the amount of data gathered and to ensure that the data gathered contains all
the required information to answer the question at hand. This is not always
the case, even if the questions asked nowadays are much more complex to
answer than those asked 10 or 20 years ago. Tackling these jobs has only re-
cently become possible with the widespread availability of computers and the
associated development of more complex and powerful statistical algorithms.
So statisticians should know which algorithms they can apply to what types
of data set and how long a statistical analysis will approximately take given a
limited amount of computing resources.

Second, the development of new statistical methods has shifted away from
studying designs that are purely grounded in theory to methods that incor-
porate and possibly even actively build upon the vast computing resources
available today. A good example of this is the new breed of ensemble learn-
ing methods being developed that actively exploit the availability of parallel
computing resources by training many classifiers or regression models in par-
allel on, possibly smaller, data sets and then combining these models into a
more powerful predictor. A nontrivial example of this is the cascading SVM
classifier(see Graf et al., 2004).

Both of these reasons should of course not hinder a statistician from con-
sulting a specialist in the field. Often times a different approach using a dif-
ferent algorithm to solve the same problem can lead to even greater speedups.
Always remember that using the techniques described in this chapter we
cannot change the underlying complexity of the algorithm but only hope to
change the constants of the implementation of the algorithm. It is therefore
always advisable to research into more efficient algorithms.

The remainder of this chapter is structured as follows. We start by giv-
ing a history of the development of high-performance and parallel computing
systems, and then we introduce the concept of high-throughput computing,
which is a simplified model of parallel computing for homogeneous or het-
erogeneous clusters of computers that requires no changes to the underlying
statistical algorithm. When modifying the algorithm to run efficiently on a
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parallel machine is an option, high-performance computing comes into play.
We discuss several different paradigms of parallel computing and show how
these can be applied to some of the algorithms we have studied so far. We
conclude the chapter with a short outlook on what the future might hold for
statistical programmers. This includes the use of General Purpose Graphics
Processing Units (GPGPU) or other special purpose processors for certain
analytical tasks.

8.2 Motivation and History

Much of the technology underlying parallel computing today has existed
for many years as part of the infrastructure of high-performance computing
(HPC), but only the last couple of years, with the widespread availability of
multicore CPUs, has brought these technologies into the mainstream. This in
turn has made them available to statisticians, who are not necessarily experts
in computer science or HPC.

The benefits of this trickling down of parallel computing technology are
twofold. First, it has allowed statisticians to work on larger data sets or more
complex analysis than previously possible, and second, statisticians can now
explore ideas and algorithms that had previously been considered infeasible
due to their, at that time, overwhelming computational costs. One area where
this applies in particular is in Bayes statistics. Here one often needs to sample
from or integrate over complex distributions, which was not possible in the
past due to the limited availability of computing resources.

8.2.1 Motivation

The scalability of a purely sequentially operating computer is limited by,
among other things, the speed of light. Why is this so? Because we cannot
transmit information faster than the speed of light, and neither can we shrink
computers down in size infinitely. One nice way to look at this is the ap-
proximate distance light travels during 1 nanosecond, which is equivalent to
1 GHz.1 This is approximately 1 foot. So no matter what we do, a proces-
sor running at 1 GHz cannot move information around by more than 1 foot
during one instruction cycle. This is one of the reasons why processor clock
speeds have not continued to increase like they did in the 1980s and 1990s.
In fact, clock speeds have not increased much since 2000, and from 2005 to

1A cycle time of 1 nanosecond is equivalent to a clock frequency of 1 GHz.
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Figure 8.1: Year of introduction and clock frequency of a selected subset of
Intel CPUs.

2007 even decreased on average (see Figure 8.1). But processors, with a few
exceptions,2 have not been getting slower.

Why is this? For one thing, most manufacturers of processors started to in-
troduce extensions to their instruction sets. In the case of the x86 architecture
those were the MMX instruction set introduced by Intel in 1996, the SSE1
to SSE4 instruction sets introduced in 1999, 2001, 2004, and 2007, and the
now obsolete 3Dnow! instruction set introduced by AMD in 1998. So how do
these instructions differ from regular instructions, and why do they improve
performance? All these instruction sets have one thing in common: their in-
structions do more work by applying the same operation to multiple pieces
of data in parallel. They are called single instruction multiple data (SIMD)
type instructions. As the name implies, instead of performing one operation
on a single datum, they perform the same operation on several data points
in parallel. This is something fundamentally new compared to the model of
computation we have studied so far. Previously we had assumed that the ma-
chine on which we run our algorithms behaves just like the Turing machine
we studied in Chapter 2.

2One notable exception is Intel’s Atom processor, which is not optimized for speed but
for power consumption.
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For modern processors this is certainly not the case, but something else
happened in the last years. Computer manufacturers started placing multiple
processing cores onto a single processor die. These so-called multicore sys-
tems have become ubiquitous. They can run multiple instruction streams in
parallel. Therefore, both data parallelism and task parallelism have become
available to almost all branches of computing. Both of these forms of paral-
lelism have been studied in the field of HPC. We will therefore give a brief
overview of the history of supercomputing and high-performance computing.

8.2.2 Early Years

8.2.2.1 Hardware

The early history of supercomputing is tightly interwoven with the early his-
tory of computing. Many early computers were also the supercomputers of
their time because there were not that many computers and the computers
that were in use were usually used to tackle computational problems that
could not be solved by hand. A good example of this is the Colossus com-
puter built during World War II to break the FISH cipher. But it was not a
Turing complete machine (cp. Section 2.2.1); it was purpose-built to solve
one problem and one problem only. The first fully electronic computer built
that is Turing complete was the ENIAC. It was designed in 1943 to calculate
artillery tables for the U.S. Army. Building the machine took until 1946 and it
was not until 1947 that it was actually in use by the U.S. government. A good
account of the early history of computing is given in Rojas and Hashagen
(2002).

We jump ahead now into the early 1960s, when the introduction of the
transistor had revolutionized the way computers are built. At this time the
Control Data Corporation (CDC) was the market leader for supercomputers,
building the fastest machines in the world. It had been set up by a few former
employees of the Sperry Corporation. The most notable of these was Seymour
Cray, a name that is now synonymous with high-performance computing. His
ideas and designs would shape the way supercomputers were built for the
next 30 years. Arguably the first supercomputer introduced by CDC was its
model 6600. It had a central processor running at 10 MHz combined with 10
auxiliary processors that dealt with I/O. The successor to the 6600 was the
model 7600, which ran at 36 MHz and was able to perform about 36 million
floating-point operations per second (MFLOPS).

After the design of the 7600, trade began work on a model 8600, but this
was never completed. A competing design team at CDC had started work on
what would become the STAR-100 and funding for the 8600 project was cut.
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At this time Cray left CDC to form his own company—Cray Research. The
STAR-100 was introduced in 1974 and was again the fastest computer of its
time, with an aggregated processing speed of 150 MFLOPS. Two years after
the introduction of the STAR-100, the first computer from Cray Research, the
Cray-1 was introduced. It provided an aggregated processing speed of 250
MFLOPS. Within a time span of 10 years the speed of the fastest computer
had therefore increased 10-fold. Both the Cray-1 and the STAR-100 are ex-
amples of vector processing machines. These processors could be told, with a
single instruction, to fetch several long vectors of numbers from memory, add
or multiply these and write the result back to memory. This style of comput-
ing can be considered a precursor to the SIMD instructions found in almost
all modern microprocessors.

We have left out one other supercomputer of that era; this is the ILLIAC
IV, built by the University of Illinois for the Burroughs Corporation. It used
a radically different design than the STAR-100 or Cray-1. By combining
many small and simple processing engines using a sophisticated mesh net-
work, the ILLIAC IV was able to achieve a sustained processing speed of 150
MFLOPS. However, it was quite difficult to program at the time, since the
problem had to be decomposed in order to profit from the parallel processing
capabilities of the machine.

The 1980s saw a boom in the supercomputing business. Many new com-
panies entered into the market, each using a slightly different approach by
combining different levels of parallelization and vector processing in their
machine. Some of these companies were Thinking Machines, NEC, Hitachi,
and Convex.

There was also a new breed of computers that evolved during this time
frame, the workstation and the personal computer. Especially later model
workstations from manufacturers like Sun, SGI, HP or DEC are conceptu-
ally not very different from scaled-down supercomputers. Since they were
sold in much higher volume, it became increasingly difficult for companies
such as Cray to justify the cost of developing their own microprocessors. In-
stead, many manufacturers began to use common off-the-shelf components to
build high-performance systems. The thing setting them apart from a cluster
of workstations was the high-speed interconnect between the different nodes
of the system. There were two possible configurations for this type of ma-
chine. It could be a shared memory system, where each processor had access
to all of the system memory, or it could be a distributed memory system,
where each processor or small cluster of processors had a certain amount of
local memory available and in order to access nonlocal memory, the proces-
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sor would need to query the other nodes so that the data could be sent to the
querying node over the interconnect.

8.2.2.2 Software

At this point, it might be a good idea to go back and look at the development of
the supporting software ecosystem that happened during this time frame. Just
as the hardware was highly specialized in the early years of high-performance
computing, so was the software usually tailored to the problem at hand. This
was in part necessitated by the different architectures and floating-point for-
mats of the machines and partially caused by the lack of libraries or collec-
tions of common subroutines. Adding to this problem, no single program-
ming language had gained enough traction in the numerical computing realm
and oftentimes users were forced to write critical sections of their code in
non portable assembly language to squeeze every last drop of performance
out of the available hardware. By the end of the 1960s, however, FORTRAN

had established itself as the dominant numerical programming language. In
turn, this allowed the development of larger bodies of portable FORTRAN

code that encapsulated standard numerical procedures so that in the mid to
late 1970s, in short succession EISPACK (Smith et al., 1976), a collection of
routines for dense eigenvalue problems, LINPACK (Dongarra et al., 1979), a
library of linear algebra routines and MINPACK (Moré et al., 1980), a suite of
nonlinear optimization routines were published free of charge by the Argonne
National Laboratory. These libraries were designed to be portable across a
wide range of machines, from smaller DEC PDPs up to and including the
large Cray and CDC machines.

The LINPACK routines were also the first larger software package to use
the Basic Linear Algebra Subroutines (BLAS, see Lawson et al., 1979), which
had been developed at NASAs Jet Propulsion Laboratory and released to the
public in 1979. The initial BLAS version (later termed BLAS Level 1) con-
tained many kernels for vector-vector type operations. The idea behind BLAS

was that each manufacturer or computing site could provide their own opti-
mized copy of the routines for a higher-level library, such as the LINPACK

package, to use. They would therefore all profit from any new optimizations
done to these low-level routines. This idea was so powerful that to this day, the
BLAS are still a de facto standard application programming interface (API)
for basic vector and matrix computations, and all the major companies that
build microprocessors or complete supercomputers provide their own opti-
mized copy of the BLAS. Over time the initial BLAS release of vector-vector
operations was extended with the so-called Level 2 routines of matrix-vector
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Table 8.1: List of All First Placed Computers on the TOP500 List

Date Machine # cores Rmax Rpeak

1993-06 – 1993-06 CM-5/1024 1024 59 131
1993-11 – 1993-11 Num. Wind Tunnel 140 124 235
1994-06 – 1994-06 XP/S140 3680 143 184
1994-11 – 1995-11 Num. Wind Tunnel 140 170 235
1996-06 – 1996-06 SR2201/1024 1024 220 307
1996-11 – 1996-11 CP-PACS/2048 2048 368 614
1997-06 – 1998-11 ASCI Red 7264 1068 1453
1999-06 – 1999-06 ASCI Red 9472 2121 3154
1999-11 – 2000-06 ASCI Red 9632 2379 3207
2000-11 – 2000-11 ASCI White 8192 4938 12288
2001-06 – 2001-11 ASCI White 8192 7226 12288
2002-06 – 2004-06 Earth-Simulator 5120 35860 40960
2004-11 – 2004-11 BlueGene/L 32768 70720 91750
2005-06 – 2005-06 BlueGene/L 65536 136800 183500
2005-11 – 2007-06 BlueGene/L 131072 280600 367000
2007-11 – 2007-11 BlueGene/L 212992 478200 596378
2008-06 – 2009-06 Roadrunner 122400 1026000 1375780
2009-11 – 2010-06 Jaguar 224162 1759000 2331000
2010-11 – 2010-11 Tianhe-1A 186368 2566000 4701000
2011-06 – 2011-06 K computer 548352 8162000 8773600
2011-11 – 2011-11 K computer 702024 10510000 11280400
2012-06 – 2012-06 Sequoia 1572864 16324800 20132700
2012-11 – 2012-11 Titan 560640 17590000 27112500
2013-06 – . . . Tianhe-2 3120000 33826000 54902400

Note: Rmax is the maximum attained speed on the LINPACK benchmark in
GFLOPS and Rpeak the theoretical maximum, again in GFLOPS. All values
are rounded to the nearest GFLOP. The table is current as of November 2013.

operations in 1984 and support for matrix-matrix operations was added to
the BLAS in 1988 as the Level 3 functionality. Much of the history of these
collections of routines is given in Dongarra (2005).

The LINPACK routines are also the basis of another de facto standard in
the supercomputing world. They are used as a benchmark to rank machines
for the TOP500 (Meurer and Dongarra, 2010) list of fastest supercomputers
of the world. This list has been released every June and November since 1993,
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and it tracks the speed of the fastest computers on earth by measuring the time
it takes them to solve a system of dense linear equations using the LINPACK

routines. From that the number of floating-point operations per second per-
formed is derived, and that number is used to rank the systems. Additionally,
a theoretical maximum for the number of floating-point operations that can
be performed in one second is determined for each machine by counting the
number of floating-point operations a single processor can complete in one
instruction cycle multiplying that by the clock frequency of the processor and
the number of processors in the system. Combining these two values, allows
one to judge the efficiency of the machine.

Table 8.1 list all machines that at one time were ranked first in the TOP500
list. Looking at the maximum attained speed on the LINPACK benchmark,
we see that the number of floating-point operations performed per second has
grown exponentially over time. This can also be seen in Figure 8.2, where
apart from the best system, the 10th ranked, 125th ranked, 250th ranked, and
500th ranked systems are also shown. From that figure, we can also see that
it takes approximately 10 years for a system to drop out of the TOP500 list or
put another way, a systems rank doubles approximately every year. A some-
what dated, but still accurate, more in-depth analysis of the TOP500 data is
performed by Feitelson (1999).

One final software package that needs to be mentioned is the LAPACK

(Anderson et al., 1999) set of highly-portable routines developed as a re-
placement for LINPACK and EISPACK and introduced in 1990. By incor-
porating new design ideas to better utilize parallel machines the newer LA-

PACK routines tend to achieve a higher efficiency than their older counter-
parts from both the EISPACK and the LINPACK collection of routines. This
was achieved by using not just the Level 1 BLAS routines but also the newer
Level 2 and Level 3 routines, thereby expressing matrix-vector and matrix-
matrix type operations more naturally and offering both the compiler and the
BLAS implementer more freedom to optimize these routines. This collec-
tion of high-level linear algebra routines is to this day the de-facto standard
in high-performance computing and widely used in all types of numerical
software. It has undergone two major revisions in its lifetime. Version 2 was
initially released in 1994, and version 3 was released in 1999. Apart from the
software routines, the LAPACK team also provides an extensive manual (An-
derson et al., 1999) for the software which includes a whole chapter on the
numerical accuracy and stability of the included routines.
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Figure 8.2: Development of Rmax of the TOP500 supercomputers over time.
Maximum achieved processing speed of each system on the LINPACK bench-
mark (in GFLOPS) is plotted against the year and month the list was pub-
lished.

8.2.3 Recent History

Looking at the TOP500 list for the last 10 years shows a clear trend in super-
computing. Instead of building highly specialized vector processors, as was
the case in the 1970s, 1980s, and early 1990s, nowadays, off-the-shelf proces-
sors or derivatives of common processors are used to build very large clusters
on which the computations take place. IBM took this idea to the extreme with
their BlueGene series of supercomputers introduced in 2004. These were built
from low power PowerPC 440 processors that had been modified so that sev-
eral processing cores would fit on a single die with the associated networking
peripherals. Not only did these chips run at a, for their time, moderately low
clock frequency of initially 700 MHz, but they were also very energy efficient
compared to other designs of that era. The current, as of 2012, leader of the
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TOP500 list is a U.S. system named Titan, which combines general purpose
CPUs with specialized GPUs, in this case Nvidia Tesla cards, to achieve its
speed of more than 17.5 trillion floating-point operations per second. The idea
of using specialized coprocessors to speedup calculations is by no means new,
but the availability of low-cost and high-performance graphics processors that
can be repurposed for scientific calculations is dramatically changing scien-
tific computing. Because of their low cost and availability, GPUs are used
not only in high-end supercomputers, but also in ordinary desktop PCs to, for
some calculations, drastically cut computation times.

In the previous section we described the push for standardized libraries
of numerical routines in the early years of supercomputing. This trend has
continued to this day, but the APIs in use have not changed much. In fact, the
BLAS and LAPACK routines are still in common use. Instead of designing
new libraries, software development has focused on optimizing these routines
for each architecture. With the advent of massively parallel machines with
many thousands, if not tens or hundreds of thousands, of processors another
area had to be standardized. Since most of these systems are distributed mem-
ory parallel computers, a standardized API to transfer data from one node in
the cluster to another had to be specified. Initially there were two main con-
tenders in this area, on the one hand there was the Message Passing Interface
(MPI, see Message Passing Interface Forum, 2009) API and on the other hand
we had the Parallel Virtual Machine (PVM, see Geist et al., 1994) API. De-
velopment of the latter has largely ceased and it seems that MPI has won the
“race”. Almost all clusters and supercomputers provide an implementation of
the MPI for programmers to use.

This concludes our brief tour of the history of scientific computing and su-
percomputing in particular. We have focused our attention on the U.S. devel-
opment of the supercomputing scene, but similar developments can be traced
back in Japan and Central Europe. Especially Japan is a traditionally strong
market for vector processing. Both NEC and Hitachi have a long history of
building vector processors and supercomputers using these vector processors.
Not much is known about the developments of supercomputer technology in
Soviet Russia. What is known today is that the focus of the Russian industry
was somewhat different than in the West. Instead of creating ever faster mi-
croprocessors, the Russian scientists spent more time researching compilation
strategies, which would allow them to better utilize their existing computing
infrastructure. Building custom-tailored processors for certain tasks that en-
coded the algorithm in hardware instead of software was also more popular
in the USSR, especially among the Russian military. Finally we point out
that in our discussion of the available numerical software we have focused
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on freely available libraries and subroutine collections. There are quite a few
established commercial numerical libraries that provide similar functionality.
The two most prominent examples are the NAG and IMSL libraries.

8.2.4 Summary

This section gave a brief review of the historical development of scientific
computing. It highlighted some of the major milestones along the way: the
first electronic computing machines, the development of vector processors,
the introduction of the PC, and the advent of cheap and ubiquitous micro-
processors, leading to massively parallel computers. In parallel, the software
used matured and standardized around a core set of APIs. Of most interest to
statisticians are the BLAS and LAPACK libraries for basic matrix and linear
algebra computations. Finally, we hinted at the future, which will see a rise in
the use of GPUs and other special purpose hardware to tackle the computing
challenges of tomorrow.

8.3 Optimization

After our overview of the high-performance computing history, and before we
dive into the different paradigms of high-performance computing we should
briefly touch on the topic of optimization. Optimization in this context is not
related to the subject covered in Chapter 4. Instead, we want to improve the
runtime of our code not by switching to a faster algorithm, but rather by mak-
ing the algorithm’s implementation more efficient. Given that the exercises of
this book are meant to be solved using the programming environment R, we
will focus on tips and techniques that are applicable to this environment.

8.3.1 Examples in R

Because R is an interpreted language, it is important that each statement that is
run by the interpreter do as much work as possible. R provides many facilities
to express loops and other repetitive types of statements as so-called vector
operations. The clever use of the sapply, lapply, and mapply functions and
the vectorized versions of addition, multiplication, subtraction, and division
can often lead to dramatic performance increases. However, prematurely op-
timizing code blocks can lead to a code base that is difficult to understand
and maintain. It is therefore important to thoroughly test each optimization,
document it, and make sure that it has no detrimental side effects. One area in
particular that needs to be looked after in R is the increase in memory usage
that the vectorization of a given code block incur.
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Example 8.1: Mean Calculation
Assume for a minute, that the mean function did not exist in R. Here are four
different possible implementations.

One based on a simple for loop:

for_mean <- function(x) {

sum <- 0

for (xx in x) {

sum <- sum + xx

}

sum / length(x)

}

One using vector-vector multiplication (%*%):

cp_mean <- function(x)

drop(rep(1, length(x)) %*% x / length(x))

One functional approach using Reduce:

reduce_mean <- function(x)

Reduce(‘+‘, x) / length(x)

And finally, one using sum:

sum_mean <- function(x)

sum(x) / length(x)

Which one would you consider to be the fastest? Are any faster than
mean? How is the runtime influenced by the length of x? See Exercises 8.3.1
and 8.3.2.

Using more specialized functions is another area of possible code opti-
mizations in R. Let us again look at a very simple example of this.

Example 8.2: Vector of Integers of length(x)
Given an R vector x, generate the vector of integers from 1 to length(x).
Here are a few possibilities:

1:length(x)

seq(1, length(x))

seq.int(1, length(x))

seq_len(length(x))

seq_along(x)

On a 3 GHz Intel Core2Duo machine running Windows XP, R 2.13.0
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and with length(x) = 10,000, the following median of 100 runtimes 3 is
measured:

Expression Time [ns] Rank

1:length(x) 16996.5 3
seq(1, length(x)) 37001.0 5
seq.int(1, length(x)) 18804.5 4
seq_along(x) 16122.0 2
seq_len(length(x)) 13067.5 1

Three things are surprising. First, the intuitive expression 1:length(x)

is not the fastest approach. It is beat by both seq_along(x) and
seq_len(length(x)) expressions. Secondly, seq_along(x) is slower than
seq_len(length(x)). Since seq_along is the most specialized function,
we might have assumed that it would be the fastest approach. And finally
seq.int(1, length(x)) is noticeably slower than 1:length(x), although
both functions4 provide similar functionality.

Both of the previous examples have been somewhat contrived to simplify
the presentation. It was fairly clear what we wanted to optimize. This is gen-
erally not the case. We might have a code base with many hundreds of lines
of code distributed over tens of files and functions. Which ones are worth
optimizing? There are two ways to tackle this problem:

1. Look at the structure of the source code and identify basic blocks or func-
tions that are called in tight loops. Look for code that is vectorized and
operates on large data sets. These building blocks are worthwhile targets
for optimizations.

2. Profile the code. Use Rprof and Rprofmem functions of R to identify
hotspots in the code base. However, sometimes the output of the profiler
might be misleading. If we do not run the program with realistic input, it
might behave completely different. Remember that we are trying to fine-
tune an implementation for a certain workload.

After manually or automatically identifying the hotspots of the code, we can
go about optimizing them. The first step should always be a review of the
algorithm used. Is there a better-fitting algorithm for our use-case? Remem-
ber that Bubble Sort might be faster than Quick Sort if the input is small for
example. On the other hand, some algorithms might break down if the input
size becomes too large. If we think a different algorithm could significantly

3Runtimes measured using the microbenchmark package.
4Yes, : is a regular R function; try ‘:‘(1, 10) as an example.
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benefit us, we need to implement it and then empirically determine if and
to what degree it speeds up the calculation. This step is crucial. We should
not believe theoretical promises about an algorithm’s superiority. Instead, we
must verify that it leads to the same numerical results even for worst case in-
put (cf. Chapter 3), and that the speed gains are substantial enough to warrant
the change.

If we still need to improve the execution speed, we can profile our new
code once more and now attempt some of the micro-optimizations detailed
above by comparing the speed of different implementation strategies. Do not
expect to gain much in this step. Improvements of 10% to 20% might be
possible, but more is rare. We should only invest time into scaling out an al-
gorithm at this stage if we truly see a benefit in such a comparatively small
reduction of the execution time. The trade-off here is one of productivity ver-
sus performance. If we spend more time optimizing our code than we save
later on when running our experiment, we gain nothing.

Should more speed be required, we now have two options. We can either
reimplement our algorithm in a compiled language that is generally orders
of magnitude faster than R for some operations or we can try to run our al-
gorithm in parallel on multiple CPUs or even computers. Parallelization will
be dealt with in depth in the next section so we will not discuss it here, but
rewriting core functions in C or FORTRAN might buy us the speedup we are
looking for. But this is a two-edged sword; on the one hand, we potentially de-
crease runtimes and on the other we increase the complexity of our software
system. If we are already using vectorized R functions the expected improve-
ment is not that large because internally the vector operations are already
implemented in efficient C code. Larger gains can be expected for operations
that are not easily vectorized, such as for or while loops whose loop body
is not independent.

8.3.2 Guidelines

We conclude this section with a list of practical advice to increase the scala-
bility of your code. While it is again focused on R projects, much of it applies
to Matlab, Python or any other interpreted language as well.

1. Have tests in place to ensure that optimizations do not decrease numerical
accuracy or stability.

2. Have code in place to accurately time your code with realistic input. Real-
istic input is important because you will want to tune your implementation
to a certain type of input. Do not make the mistake to always use the same
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input. You will be overly optimistic about the results you achieved. This is
akin to the generalization error we wanted to estimate in Chapter 7.

3. Set your goal regarding the desired decrease in runtime and the amount of
time you are willing to invest to achieve such a decrease.

4. Make sure you know the hotspots of your code. Use profilers or manual
source code review to find them and verify that indeed these are the code
parts where most of the execution time is spent.

5. Investigate if a change of algorithms might be all you need. Often this will
lead to the most drastic improvements in performance.

6. Vectorize your hotspots if possible. Vectorization lets the interpreter do
more work per evaluated expression. This is for the most part a good thing
because the vectorized code is usually written in a compiled language and
heavily optimized. Also, any new optimization of a vectorized primitive
immediately benefits your code. Make sure you weight in the possible in-
crease in memory consumption when vectorizing code.

7. If all else fails, consider implementing core functions in C or FORTRAN.
This may look daunting at first, but remember that you do not need to write
a full-blown C program, and most of the mundane tasks, such as reading
data in from a file, checking arguments etc. can be done in R. You only
need to implement the CPU-intensive parts in C. See also Exercise 8.3.6.

By following the above advice, you should be able to solve most scalabil-
ity problems. If, on the other hand, you are in the situation that your data sets
are so large or your computations so complex that even after optimizing your
code you feel the expected runtime is still too high, you may want to explore
parallelization as another way to improve runtime. In the next section we will
explore some of the many ways that we can take a sequential program and
turn it into a parallel one.

8.3.3 Summary

We started our discussion of optimization of program code with a motivat-
ing example in R. From the observations made, we looked at other examples
where we can increase the efficiency of our software at little or no cost. It
turned out that some of the small changes required were entirely non-intuitive.
This led to a set of guidelines for program optimization. Even though code
can often be sped up using many of these (micro)optimizations, we should
heed the following warning:
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We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.

Donald Knuth

8.4 Parallel Computing

If after optimizing our implementation according to the guidelines of the pre-
vious section our code is still not fast enough, we can literally throw hardware
at the problem by using not just one CPU or computer, but many, to solve the
problem. This is called parallel computing and has a long history in the
field of HPC. As we saw in the section on the history of supercomputing, the
idea of using multiple CPUs to tackle a problem is almost as old as the field
of supercomputing itself. However, it was not until modern microprocessors
started to contain more than one CPU core that the general public took no-
tice of this development. Parallel computing used to be a specialized field for
a select few algorithm designers and engineers who worked on some of the
toughest computing problems around. Nowadays almost anyone has access
to a few CPUs, and it is not uncommon for a department at a university or
a medium-sized firm to have a compute cluster containing tens, maybe even
hundreds, of CPUs that is available to anyone wishing to use it. So what types
of statistical problems might benefit from parallel computing, and what kind
of reductions in runtime can we expect?

8.4.1 Potential

At first, parallel computing might look like a silver bullet to solve all our
resource and runtime problems, but we must remember that if we throw n

CPUs at a problem, the runtime will, at best, be reduced by a factor of n:

tparallel =
tserial

n
.

For this to be the case, we have to assume that everything in our algorithm
can be done in parallel. This is obviously never the case, although there are
certainly algorithms that come very close, like bootstrapping or subsampling.
So the first thing to remember is that using more compute nodes will not
necessarily decrease computation times. If we assume a more realistic model
for our algorithm, namely that a proportion πparallel can be parallelized and the
remainder πserial = 1−πparallel has to be executed sequentially, then we arrive
at Amdahl’s Law (Amdahl, 1967).

Theorem 8.1: Amdahl’s Law
Given an algorithm of which a portion πparallel can be executed in parallel
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Figure 8.3: Amdahl’s law for different values of πparallel. Note the logarithmic
axes.

and the remainder πserial = 1−πparallel has to be executed sequentially, then
the maximum speedup a computer with n CPUs can achieve relative to a
sequential computer is given by

SAmdahl(πparallel) =
1

(1−πparallel)+
πparallel

n

=
1

πserial +
πparallel

n

.

The expected speedup according to Amdahl’s law is shown in Figure 8.3
for different values of πparallel. It is clear that even for moderately large values
of πparallel, say 0.75, even throwing hundreds of CPUs at the problem will
not yield a 10-fold increase in processing speed. This is one of the reasons
why optimization should be the first step when scaling an algorithm. It is
especially crucial to optimize serial parts of a program or reduce the amount
of work done in the sequential sections.

There are arguments to be made why more CPUs might still be better
and one of them goes like this. Amdahl’s law only applies if the input to the
algorithm is fixed; i.e., we do not increase the data set we wish to handle. So
what happens if we consider πparallel and πserial to be functions of the input
size k. The expected speedup is then given by

SGustafson(k) =
1

(1−πparallel(k))+
πparallel(k)

n

=
1

πserial(k)+
πparallel(k)

n

.

If we assume, as is reasonable, that πparallel(k) is monotonically increasing in
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k, then as our problem size increases, the time we spend in the parallel part
of the algorithm increases, and we therefore have potentially more use for
further processors. This model was first proposed by Gustafson (1988). It is
therefore often referred to as Gustafson’s law.

Let us look at how Gustafson’s law applies to a very simple algorithm,
namely, calculating the distance matrix that is used in a hierarchical cluster-
ing.

Example 8.3: Distance Matrix
Given a data set data with k observations, the Algorithm 8.1 calculates the
k× k distance matrix D that contains all pairwise distances between two ob-
servations:

Algorithm 8.1 Distance Matrix Calculation

Require: Data set data with k observations data1 to datak.
1: for i = 1 to k−1 do

2: for j = i+1 to k do

3: Di j← distance(datai,data j)
4: end for

5: end for

6: return D

The body of the outer for loop of this algorithm is independent in the sense
that it may be executed in parallel for all i. Even the inner for loop could be
parallelized once the value of i is known. So on a machine with (k− 1)(k−
2)/2 processors the execution time of this algorithm could be reduced to the
time it takes to execute one distance calculation.

In Example 8.3 we glossed over one detail while studying the scalability
of the algorithm. If we were to indeed run the algorithm on multiple CPUs,
each CPU would need access to the data set and would have to be able to write
into the distance matrix variable. In practice, when running on multiple CPUs
that might not even be part of the same machine, there is an overhead asso-
ciated with this read and write access. For some types of algorithms, this one
included, this communication overhead can become overwhelming. It is an
additional factor we need to consider when talking about practical scalability.

That concludes our introductory thoughts on the theoretical limits of par-
allelization. We have seen that there are limits to what can be achieved by
throwing hardware at a problem. We have also seen that optimizing our code
before we think about parallel computing is an important step since the se-
quentially executing parts of our algorithm will ultimately limit our scalabil-
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ity. Next we will describe the setup we will assume for the rest of this chapter
so that we can look at some practical examples of parallel computing.

8.4.2 Setting

For the next sections we will need to fix some context in which we want to
run parallel computations. In the context of this book, we will not deal with
extreme scalability to many hundreds or thousands of processors. Instead,
we will assume that we have access to a moderately sized cluster with tens,
maybe even hundreds, of nodes. Each node will contain several processors
each with several cores. One node might be a two processor machine with
four cores per processor for a total of eight cores per node. The nodes should
be networked with regular gigabit Ethernet or some other form of inexpensive
interconnect. We do not assume a low latency interconnect, such as Infiniband
or Myrinet, for the following, although it might help for some problems. We
do not make any assertions about the amount of memory per node; we only
assume that all cores on a node have access to all memory of that node and that
separate nodes have separate address spaces, meaning they cannot directly
access each other’s memory. All nodes should have access to a shared file
system although we do not explicitly need this. It makes it easier since we
do not have to worry about the distribution of our programs and data to each
node. The easiest way to provide such a file system would be NFS, but Lustre
and other parallel file systems might yield better performance.

On the software side we will restrict ourselves to nodes running Linux
or some other Unix-like operating system. This includes Mac OS X, but not
Windows with Cygwin. Windows is a world of its own when it comes to
HPC and while almost all the software mentioned later does exist in one form
or another for Windows, it is much more common to see clusters running
under Linux. The cluster should have a working MPI implementation and
may have some sort of batch system, such as Torque, Slurm, or Platform LSF
running on it. We will not cover the use of such systems, although their use is
common and makes job scheduling and resource allocation much easier and
more transparent. Finally, we assume R is available on all cluster nodes.

8.4.3 Data Parallel Computing

In the previous sections we have looked at some rather trivial algorithms and
how these might be optimized. In this section we will look at an algorithm
of moderate complexity and how we can reduce its runtime using techniques
from parallel computing. The algorithm in question is the k-means algorithm,
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one possible iterative method to find a solution to the k-means clustering prob-
lem.

8.4.3.1 Example: k-means Clustering

Given n observations x1,x2, . . . ,xn, the goal of the k-means algorithm is to
find cluster centers or means m1 to mk so that the sum of the squared dis-
tances between each observation and its closest mean becomes minimal. We
can then cluster the data by viewing the means as our cluster centers and
forming clusters by collecting all observations that are closest to the clus-
ter center in one cluster. This problem is NP-hard5 if we use the L2 metric
no matter what value of k we choose. There are, however, heuristics to find
“good” means. One of them is the k-means algorithm. It uses the EM frame-
work of Chapter 5 by first choosing k means at random, then assigning each
observation to its expected cluster if the means were the true cluster centers.
Next, we recalculate the cluster centers as the mean of all members of the
cluster. This is the maximization step. A sequential version of the algorithm
is given formally given in Algorithm 8.2.

Algorithm 8.2 Sequential k-means Algorithm

Require: Number of clusters k

Require: Observations x1 to xn

Require: k ≤ n

1: Choose k initial means m1 to mk

2: Initialize cluster sets c1 to ck as empty
3: while not converged do

4: for i = 1 to n do

5: j← argmin j‖xi−m j‖
6: c j← c j ∪{i}
7: end for{Expectation step}
8: for j = 1 to k do

9: m j← |c j|−1 ∑i∈c j
xi

10: c j← /0
11: end for{Maximization step}
12: end while

13: return m1 to mk

Before we begin to parallelize this algorithm, we need to step back and

5It is conjectured that an NP-hard problem cannot be solved in polynomial time (see
Definition 2.6).
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look at its complexity. The algorithm is composed of two for loops, the ex-
pectation and the maximization step respectively, that are repeated until some
convergence criterion is met. Just by looking at the for loops, we see that
the expectation step is more costly than the maximization step6 because there
are more loop iterations to perform and there is even more work to be done
per iteration. Finding the minimum dmin of ‖xi−m j‖ amounts to calculating
every norm unless we use specialized data structures, which we won’t for this
example. Our goal will be to scale Algorithm 8.2 to large values of n by using
techniques from parallel computing. We will start off with some very low-
level optimizations and work our way up to more high-level optimizations as
we go.

Our first concern is that we should fully exploit the instruction set of our
CPU. It is safe to assume that the processors in our cluster have some form
of SIMD instruction set and that we could benefit from this. The question
is, what benefits and how do we use it? There are two operations that likely
benefit the most. The calculation of the norm could be vectorized as well as
the averaging of the cluster members to calculate the cluster center. Since we
are presumably working with an interpreted language (R), there is no way
for us to control what exact instructions the interpreter will issue to calculate
these quantities. What we can do however is make sure that we are using an
optimized BLAS routine that exploits these instructions for vector-vector and
vector-matrix type operations. This is easy and gives us our first form of data

parallel computing almost for free. The hard part of managing what values
to put into which register at what time has already been done for us by experts
who are likely more knowledgeable in this area. This type of parallelization
is called implicit parallelization because we do not explicitly state what is
executed in parallel on which processor, or in this case, processing element in
the processor.

Before we continue, we should define what we mean by data parallel
computing, the term we used to describe the parallelization technique we just
applied. Data parallel computing executes the same program, subprogram or
operation for different input values in parallel. This model is sometimes also
referred to as the single program, multiple data (SPMD) model of comput-
ing. As we scale out our k-means algorithm, it will become clearer why it is
called this.

The next target for parallelization is the calculation of the minimum of
the norm. Instead of implicitly writing this optimization step, we could also
transform it into an explicit for loop as shown in Algorithm 8.3. Initially it

6For this we assume that n≫ k.
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might seem like this cannot be parallelized, because the loop body depends
on the value of dmin and it might change in each iteration. There are two
ways to deal with such a data dependence. The first is to use synchronization
primitives to ensure only one if block can be executed at any time. For this
to be efficient we need two requirements. First, we need a shared memory
system so that each processor can access the memory location holding dmin

and jmin and second, we need some sort of fast locking scheme. Both of these
requirements are met if we restrict ourselves for the moment to executing
on one node of our cluster. Still, getting the locking right is tricky and can
lead to all kinds of problems if done incorrectly. Errors in locking can lead
to so-called race conditions, where the result of an operation is dependent on
the sequence or timing of other uncontrollable events, a class of errors that is
hard to detect and even harder to debug. It is therefore advisable to look for a
different approach to parallelize the algorithm.

Algorithm 8.3 Assign Cluster to an Observation in the Sequential k-means
Algorithm

Require: k cluster centers m1 to mk

Require: Observation x

1: dmin← ∞

2: jmin← 0
3: for j = 1 to k do

4: d←‖x−m j‖
5: if d < dmin then

6: dmin← d

7: jmin← j

8: end if

9: end for

10: return jmin

How this might be done will become clearer once we look at a slightly
rewritten version of Algorithm 8.3. In Algorithm 8.4 we have split the for

loop into two consecutive for loops. This may look odd at first, because not
only have we introduced another for loop, but we have also increased the
memory consumption of our algorithm from O(1) to O(k). What we have
effectively done is separate out the hard part, computing the norm, and the
easy part, determining the minimum. The increase in memory consumption is
negligible compared to the memory required to store our data set. The beauty
of this reformulation is that the body of the first loop now only depends on
the inputs. We can compute any d j without knowing anything about the other
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d j′ . This gives us the option to execute the for loop in parallel. Say we have
p processors available on our node; then we only need to calculate ⌈k/p⌉
norms per processor and our execution time is decreased proportionally. One
other reason why this parallelization fits nicely is that both k and p are usually
small.

Algorithm 8.4 Assign Cluster to an Observation in the Sequential k-means
Algorithm (Version 2)

Require: k cluster centers m1 to mk

Require: Observation x

1: dmin← ∞

2: jmin← 0
3: for j = 1 to k do

4: d j←‖x−m j‖
5: end for

6: for j = 1 to k do

7: if d j < dmin then

8: dmin← d

9: jmin← j

10: end if

11: end for

12: return jmin

Where it gets tricky is when we want to actually implement this. No stan-
dard way of expressing this type of parallelism has yet matured to a point
were it is ubiquitous. There is one approach that is applicable to compiled
languages such as C and FORTRAN. It is called OpenMP. The beauty of
OpenMP is that it only relies on annotations that are added to the source code
to signal the compiler that a loop body should be run in parallel using multiple
threads on the same node. The algorithm is still written in a sequential style
and can still be run sequentially if the compiler does not support OpenMP
or the machine only has one processor. While the annotations explicitly state
what should be executed in parallel, the programmer does not have to deal
with workload distribution among the available processing cores, and does
not have to spawn the workers or explicitly collect the results.

The closest we can get to this style of programming in R is using the fore-

ach package (Revolution Analytics, 2011c). Using it, we can write explicit
parallel loops that execute for each element of some series. It has several
back ends to run these loops in parallel, such as doMC (Revolution Analyt-
ics, 2011a), doSNOW (Revolution Analytics, 2011b), doMPI (Weston, 2010),
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which use different approaches to distribute the workload across multiple pro-
cessors. However, the package is not quite in the spirit of OpenMP because
all of these methods do not exploit the fact that we are assuming that the
program is running on a shared memory system. That is, instead of implic-
itly communicating through shared memory between the workers, there is
explicit communication between distinct processes using some form of inter-
connect. Again, as when exploiting the SIMD instructions of our processor,
as a statistician it is best to look for compiled code that has been explicitly
parallelized with OpenMP or some other framework in this situation. The
overhead incurred with a framework such as foreach will likely trump any
gains in performance we might achieve due to the parallel execution of the
loop body. Since there are only a few loop iterations, any initialization time,
which is part of the sequentially executing portion of the program, will likely
further hinder scaling (see Theorem 8.1).

Since we just saw how the foreach package can be used to turn a regular
for loop, given each iteration does not depend on any results of the previous
iteration, into a parallel loop that is executed on several CPUs of the same
node or even across many nodes of a cluster, we might be tempted to go ahead
and turn every for loop of Algorithm 8.2 into a parallel loop. While it is
technically possible to do this if we rewrite the loops slightly to eliminate any
data dependencies, this is not wise. It does not increase the scalability of our
algorithm much because we still have some master node that needs to load all
the data into memory and coordinate the execution of the parallel sections. So
this solution will quickly see its limits when the number of observations (n)
increases. If there is enough available memory, the communication overhead
of distributing the observations to the nodes in each while loop iteration of
the algorithm will ultimately overwhelm all other computational costs.

To overcome this, we will reformulate Algorithm 8.2 yet again as a col-
lection of workers that execute independently on a subset of the data and
only communicate when necessary to synchronize the current cluster centers.
This is deemed the message passing style of parallel programming and is the
classical example of the SPMD programming paradigm mentioned earlier.

Before we examine a parallel version of the k-means algorithm, we need
to discuss how message passing works. Our model will be based on MPI,
although we cannot and will not cover this API in its full breath7. Conceptu-
ally MPI assumes that each node in the cluster is running the same program.
Each instance of the program is initially part of the global communicator

7MPI contains over 200 functions for message passing and parallel IO, of which only a
small subset is required to start writing efficient message passing style parallel code.
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and has an associated unique rank. Communicators are an MPI concept that
groups a number of processes that can pass messages to each other. For our
purposes we will not need more than the global communicator, but highly
parallel code that has to scale to many hundreds of nodes and thousands of
processors would use different communicators to minimize communication
overhead by exploiting the physical topology of the cluster when grouping
nodes into communicators. Ranks are assigned consecutively within a com-
municator, starting with rank 0. Each instance of the program is free to use
additional levels of parallelization, namely, SIMD instructions or OpenMP,
but must take care that the required additional resources are available.

There are many different ways that nodes in an MPI communicator can
pass messages to each other, but we will only be concerned with three types
here. First, we can send a message from one instance to another. This is
called point-to-point communication and is facilitated by the MPI_Send

and MPI_Recv functions. We will use the more readable names send and
receive in our pseudocode. If we want to send a message to every process in
a communicator, we can use the broadcast functionality of MPI (MPI_bcast,
in pseudocode broadcast). This is useful to distribute common data to all
processes in an efficient manner. Finally, we will use a reduce operation
named MPI_allreduce (pseudocode all_reduce). It takes a value and an
aggregation function and returns the aggregate of all the values in the com-
municator to all nodes. It is an efficient way to calculate the sum or product
of the result of a calculation performed by each node and distribute the result
back to all nodes.

Using these three forms of message passing, we can now write a paral-
lel version of Algorithm 8.2 that scales to large n by adding additional pro-
cessors. We assume that our data set has been divided into p approximately
equally sized chunks that will be processed by the p nodes in our cluster.
While not explicitly shown, all previous optimizations are still applicable to
the parallel version of the algorithm. The idea of Algorithm 8.5 is that all we
need to communicate between the nodes are the current cluster centers. Given
the cluster centers, each node can do one expectation and maximization step
before it needs any information from another node.

One detail we need to handle specifically is the initial choice of cluster
centers. Here we have chosen to let the first node choose the cluster centers
and send them to all the other workers using a broadcast. After that, all nodes
execute the same EM step and then combine their respective cluster centers
to form the new centers. In our code all nodes report the final solution, but
in practice we would probably add another guard so that only the first node
emits the final result.
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Algorithm 8.5 Parallel k-means Algorithm

Require: Number of independent workers p

Require: Rank of this worker r (r = 0 to p−1)
Require: Number of clusters k

Require: Observations x1 to xnr

1: if r is 0 then

2: Choose k initial means m1 to mk

3: broadcast(m1, . . . ,mk)
4: else

5: receive(m1, . . . ,mk)
6: end if

7: Initialize cluster sets c1 to ck as empty
8: while not converged do

9: for i = 1 to nr do

10: j← argmin j‖xi−m j‖
11: c j← c j ∪{i}
12: end for{Expectation step}
13: for j = 1 to k do

14: n j← |c j|
15: s j← ∑i∈c j

xi

16: c j← /0
17: end for{Maximization step}
18: for j = 1 to k do

19: n j← all_reduce(+,n j)
20: s j← all_reduce(+,s j)
21: m j← s j/n j

22: end for

23: end while

24: return m1 to mk

We have ignored how convergence is detected and especially how all
nodes know that we have converged. Convergence detection usually amounts
to monitoring the change in location of the cluster centers. If this change is
close to zero, we say the procedure has converged. Since all nodes know the
current cluster centers at all times, they will also all terminate at the same
time under this regime. So while convergence detection could again fall to
one node that then broadcasts the result to all others, we have, in the interest
of simplicity, opted to have each node check for convergence.
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8.4.3.2 Summary and Outlook

Summary

This concludes the section on data parallel computing. Using the k-means
algorithm as an example, we have looked at ways to parallelize an algorithm
at several different levels. We saw how SIMD instructions can be used to
improve the performance of critical primitives of an algorithm, how for loops
can be distributed across several cores of a machine in the presence of data
independence. If data independence is not given, we use a trick to achieve
it by using additional memory to save temporary results. Finally, we scaled
the algorithm to data set sizes so large that a single node of our hypothetical
cluster would not have been able to handle it. In the process we learned about
OpenMP and MPI as two programming APIs that can be used to explicitly
express parallel algorithms on a machine.

Outlook

Some details have been glossed over. On a true cluster, we would have used
a batch processing system to handle the orchestration of our MPI runs for
us. Setup and teardown of parallel jobs are a notoriously tricky business best
left to software. We did not talk about some of the finer points of measuring
scalability, such as strong scaling, weak scaling, and isoefficiency.

8.4.4 Task Parallel Computing

Task parallel computing is conceptually much simpler than data parallel com-
puting. Instead of having to worry about how to partition the data over the
available processing resources, the program is divided into several indepen-
dent computational tasks. Each task is then scheduled to run on one node of
the cluster. Since no data are shared between the tasks, this style of computing
is much simpler to work with and much easier to reason about. The challenges
are not so much in writing the programs than in providing an infrastructure to
efficiently execute these types of programs. The biggest problem is one of re-
source starvation. What happens if the number of available nodes is less than
the number of tasks? Then we need some algorithm that will distribute the
workload across the nodes for us and schedule them in an optimal manner.

In its simplest form, task parallel computing amounts to decomposing one
large program into many smaller ones and then running these as multiple jobs
using a batch scheduling system on a cluster. In this scenario, the scheduler
does all the hard work of finding a free node, starting our job and monitoring
its execution. If we need more fine grained control, we are of course free to
use a message passing style of programming to distribute the workload to
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other nodes. This amounts to writing an MPI program where the master, i.e.
rank 0, does all the work, and when it wants to start a task in parallel it finds
another free node, sends it a message detailing the job to execute, and then
later collects the answer that was sent back from the node at the end of the
calculation.

There are two primary uses for task parallel computing in statistics. The
first is interactive data analysis. This may not sound like a classical domain
of parallel computing, but when we explore a data set interactively, we do
not want to be stopped in our tracks by a long-running computation. We can
use task level parallelism to run one type of analysis in the background, on
another CPU of our machine or possibly even on a different node, while we
continue with our exploration on the master node. Later, when the analysis
is finished, we collect the results and visualize them or draw our conclusions
from them. At first, this might sound like a trivial usage, but in using the R

package multicore, this has become such a trivial job that we, the authors, use
it quite often. The other main area where task level parallelism is exploited is
in large studies or computational experiments.

Example 8.4: Choosing k in the k-means Algorithm
For choosing k in the k-means algorithm we need to run the algorithm for
different values of k and compare the quality of the clustering in some manner.
Instead of sequentially looping over the values of k, we could just as well run
k parallel tasks and then collect the respective quality measures to decide on
a value of k.

Example 8.5: Cross-validation
More complex examples would be choosing a classification or regression
method for a particular machine learning task. Here we would need to do,
e.g., a cross-validation (see Chapter 7) for each learner to assess its predictive
power. Again, these can be run in parallel.

Because task level parallelism is easy to detect and exploit, it is generally
better to first look for ways to apply it to a problem before looking for op-
portunities to apply data parallel computing. The reason is that data parallel
computing always entails communication among the nodes, and this commu-
nication might easily become the bottleneck of the computation. We should
also consider the effort required to implement and debug an algorithm in such
a way that it can exploit data level parallelism. Task parallel computing is
much simpler in these regards. We can always run a single task locally and
observe its computations if we need to debug it. Adding more processors to



440 SCALABILITY AND PARALLELIZATION

a task parallel problem will always speedup the computation as long as there
are still tasks to be worked on.

Finally, combining both task and data parallel computing is of course a
viable option. If, say, we already had a data parallel algorithm and wanted to
tune some of its hyperparameters using grid search, there is nothing stopping
us from doing so using a task parallel computing approach to evaluate several
grid points in parallel. This nesting does require some experience because it
is not clear how to balance the resources between the task parallel execution
of jobs and the data parallel algorithm. Deciding if an additional CPU should
go toward the task or data parallel part is tricky. Devising these hierarchies of
nested parallel algorithms is currently still more of an art than a science, and
little practical advice is to be found that generalizes well. Often configurations
are published that have been devised for one kind of cluster with a certain
resource limit and communication topology. Whether this configuration can
be adapted to other types of clusters or similar problems is uncertain.

Before we conclude this chapter on scalability and parallel computing,
we will shine a light on some modern concepts of parallel computing that are
currently the area of intense research.

8.4.5 Modern Paradigms

In this section we will look at some parallel computing concepts that have not
been covered so far and which have only recently gained traction in the HPC
world. There are two topics we wish to discuss. First there is the upcoming
trend of using graphics processing units (GPUs) for general purpose com-
puting (GPGPU computing). Secondly we will take a look at the ideas and
concepts behind the MapReduce paradigm as popularized by Google (Dean
and Ghemawat, 2008) and its open-source variant Hadoop.

The first modern paradigm really is just an application of an old idea to
a new class of hardware. Instead of using a general purpose processor to do
all calculations early computers often had coprocessors to take care of some
specialized operations. In the history of supercomputing these were often IO
processors meant to relieve the main CPU of the boring task of moving data
to and from stable storage. Later on, the first PCs had coprocessors to handle
floating-point math, and some even had dedicated digital signal processors or
RISC CPUs to offload some computations from the main CPU. All of these at-
tempts were ultimately doomed because they were too expensive, too slow or
were outdated by the progress of technology before their full potential could
be harnessed. Not so with GPUs. The market for ever-faster graphics process-
ing units has seen fierce competition in the past 10 years, and there is a steady
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increase in their performance. Modern GPUs are much more powerful than
their CPU counterparts when it comes to floating-point math. But their power
can only be harnessed if the problem can be formulated in a massively paral-
lel manner since GPUs are composed of many hundreds of simple processing
elements that all execute the same code but using different input. Reformu-
lating existing algorithms or inventing new algorithms that harness the power
provided by these GPUs for tasks not related to 3D graphics is the field of
general purpose GPU (GPGPU) computing. One of the earliest examples
of GPGPU computing from the machine learning literature is Steinkrau et al.
(2005), where they trained a neural network using a GPU.

Developing for these massively parallel hardware platforms is a major
challenge. On the one hand, these systems are so fast that it is hard to transfer
data to and away from the graphics processor fast enough, and on the other
hand, the functions that can be implemented are quite limited. Until recently
for example, conditional branching was not possible in a GPU program. Of-
ten clever pre- and post-processing is necessary on the CPU to prepare and
digest the input and output of a GPU algorithm. There is also still quite a bit
of movement in how these processors should be programmed. The currently
most popular option is Nvidia’s CUDA toolkit, but it is only available for
GPUs from that vendor and requires careful tuning of each program for each
new GPU introduced to the market. OpenCL, the Open Computing Language,
is a cross-platform and cross-vendor API specified to rectify this situation.
However, it has not caught on so far in the HPC sector.

The other modern paradigm that we have not covered so far is MapRe-

duce style parallel computing. The ideas and principles behind MapReduce
are not new; both the Map as well as the Reduce function are well-established
ideas in functional programming. The innovation of MapReduce and its open-
source incarnation Hadoop is more technical and methodological. So what
makes MapReduce different? The core idea of MapReduce is to divide a com-
putation into a series of Map and Reduce steps. During the mapping phase a
function is applied to each observation in a data set. This function can re-
turn one or more key value tuples. These tuples are then passed to the reduce
function, which combines or aggregates them to the final result. Typical re-
ductions could be summing the output of the map function or calculating
other aggregates but could also be complex operations such as the fitting of
a classification model in cross-validation (see Chapter 7). This result could
then either be the input to the next map step or be reduced to a single result.8

8For a sequential implementation of the two functions map and reduce, see the R functions
by the same name.
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In the cross-validation case, the map step would fit the model to each fold of
the data and the reduce step would then aggregate the estimated errors.

By definition each function application to an observation in the mapping
step is independent of all other function applications and can therefore be
executed in parallel to them. The innovation that MapReduce brings to the
table is technical. Instead of moving the data around the cluster, MapReduce
evaluates the function on a node that is topologically close to the data. That
is, apart from the execution framework, one of the core components of any
MapReduce system is a filesystem or storage layer that distributes massive
data sets across all the nodes.

This idea has allowed some of the many innovative companies to scale
their businesses to tens or hundreds of terabytes of data that need to be pro-
cessed. The type of processing done ranges from such mundane tasks as min-
ing log files for anomalies to computations on the social graph of the mem-
bers of a social network. When dealing with such data sets, it is not wise
to translate established algorithms to this framework. Instead, new types of
models are required for such large data sets, and certain types of analysis
have only become possible because of the vast and rich amount of data that
is collected and stored nowadays. One interesting project that is working on
this front, based on the Hadoop framework, is the Apache Mahout project
which plans to implement many classical and modern statistical methods as
scalable Hadoop procedures. See Ingersoll (2011) for a general overview of
the project.

There are many more parallel programming paradigms that are currently
being researched. We expect the future to be full of new and innovative ap-
proaches because the current trends in CPU design will lead to many-core
CPUs in the future so that just as we now face the problems that marked the
forefront of HPC 10 to 15 years ago, the current state-of-the-art in parallel
computing will become a commodity within the next years. This will likely
entail drastic changes in the way we program these computers since almost
all languages in use today were crafted to describe sequentially executed sets
of statements. Reasoning about large programs that use message passing be-
comes increasingly difficult, and we hope that the future will bring us tools
and languages that ease the burden of parallelization and make most paral-
lelization implicit instead of the current explicit formulation of parallelism.

8.4.6 Summary

In this section we have looked at different forms of parallel computing. Be-
fore we looked at different parallel computing architectures, we assessed
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the potential for parallelization by looking at Amdahl’s law, which quanti-
fies the maximum speedup we can expect when parallelizing an operation.
When looking at parallel computing architectures, we divided the possible ap-
proaches into so-called data parallel computing and task parallel comput-

ing paradigms. In the former, a single operation is applied to multiple pieces
of data in parallel. Using data parallel computing is usually easy and often
happens automatically when using modern compilers. Task parallel comput-
ing, on the other hand, requires that we explicitly break down our overall pro-
gram into smaller tasks and schedule their execution in parallel. We concluded
the section with a short review of modern parallel computing paradigms such
as MapReduce where operations are mapped over the data and the outcome
of these operations then reduced to the final result.

8.5 Implementation in R

There are myriad available options to implement parallel algorithms using R.
These would be the Rmpi (Yu, 2010), snow (Tierney et al., 2011), snowfall

(Knaus, 2010), and foreach packages for distributed computing using mes-
sage passing, although the latter packages abstract away the message passing
interface and usually provide apply style functions to express explicit paral-
lelism. The Rdsm (Matloff, 2011) package provides an API that simulates a
distributed shared memory computing environment on top of R. The RScaLA-

PACK (Samatova et al., 2009b) and sprint (University of Edinburgh SPRINT
Team, 2011) packages are somewhat special in that they provide data paral-
lel algorithms implemented using MPI which have been heavily optimized.
RScaLAPACK is an interface to the ScaLAPACK routines that provide data
parallel versions of some of the LAPACK routines. sprint currently provides
only a few statistical algorithms but these have been tuned for extreme scal-
ability by the authors. Finally, the multicore (Urbanek, 2011) and taskPR

(Samatova et al., 2009a) packages both provide convenient APIs for task par-

allel computing.

8.6 Conclusion

In the final chapter of this book we have looked at the issues of scalability
and parallelization.

After discussing the hardware developments, we studied the evolution of
the software available to us for scalable and parallel computing. Various APIs
were presented with increasing degrees of abstraction.
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Next, we looked at some of the ways a sequential program can be sped
up, culminating in a list of practical guidelines to optimize our code.

After optimizing our code, three levels of parallel computing were pre-
sented. SIMD instructions can be used to perform work in parallel at the pro-
cessor level. Explicit and implicit loop parallelization is one way to make use
of the multiple processors in a cluster node, a so-called shared memory sys-
tem, and finally, we can use message passing to distribute our computation
across multiple nodes in a cluster.

All of these strategies relied on some form of data parallelism. If we can-
not exploit this in our algorithms, there is still task parallel computing to
decrease runtimes. Here a computation is split into several, often many, sep-
arate tasks that can be executed independently of each other. These are then
distributed across multiple processors in a node or even across many nodes in
a cluster. This framework proved especially useful because it is, if applicable,
much easier to implement from an existing code base.

Finally we gave an outlook on some new and promising paradigms in
parallel computing. These include GPGPU computing and MapReduce.

Let us conclude this chapter with the reminder that while scaling an algo-
rithm is desirable and parallel computing can be fun and rewarding, we should
not overdo it. Optimization, scaling, and parallel computing know-how are
tools for the statistician to use when they are required. Before starting on any
scaling endeavor, we should evaluate our goals and decide if they are feasible.
Once we reach these goals, we should restrict ourselves and refrain from any
further optimizations.

8.7 Exercises

Exercise 8.1.1: Describe what is meant by (empirical) scalability and how
parallelization plays into scalability.

Exercise 8.1.2: Compare the empirical scalability of the sort algorithms de-
scribed in Chapter 2.

Exercise 8.1.3: What are advantages and disadvantages of a symmetric mul-
tiprocessing machine compared to a cluster of machines using message pass-
ing.

Exercise 8.2.1: Research what algorithm is used for the QR factorization in
the LAPACK routine DGELS which can be used to solve a LLS problem.
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Hint

It is not one of the algorithms discussed in Chapter 2.

Exercise 8.2.2: What other routines does LAPACK include to solve
LLS problems?

Exercise 8.3.1: Using the microbenchmark package, answer the questions
posed in Example 8.1. What do the difference stem from? Can you deduce
general principles from the example for writing efficient code? Does this help
or hinder readability?

Exercise 8.3.2: Can you think of a simple optimization to further speedup the
cp_mean function of Example 8.1?

Exercise 8.3.3: Research why the R function ‘:‘ is faster than seq.int on
most systems for similar inputs.

Exercise 8.3.4: Why might the R function seq_along be slower than the
combination of seq_len and length as demonstrated in Example 8.2?

Exercise 8.3.5: Consider the following function to calculate the mean squared
error:

mse <- function(predicted, true) {

error <- predicted - true

squared_error <- error^2

mean(squared_error)

}

Assume that our input vectors predicted and true have about 10 000 en-
tries. Look for ways to speedup this function without resorting to C or FOR-

TRAN code.

Exercise 8.3.6: Use the following template to rewrite the mse function of
Exercise 8.3.5 in C. The R function is reduced to

dyn.load(paste0("mse", .Platform[["dynlib.ext"]]))

mse_in_c <- function(predicted, true)

.Call("do_mse", as.numeric(predicted),

as.numeric(true))

and the C template is given by

#include <R.h>

#include <Rinternals.h>

#include <Rmath.h>
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SEXP do_mse(SEXP s_predicted, SEXP s_true) {

double mse;

/* Unpack the ’s_predicted’ vector:

* n_predicted - length of the ’s_predicted’

* predicted - pointer to the values

*/

const R_len_t n_predicted = length(s_predicted);

double *predicted = REAL(s_predicted);

/* Unpack the ’s_true’ vector:

* n_true - length of ’s_true’

* true - pointer to the values

*/

const R_len_t n_true = length(s_true);

double *true = REAL(s_true);

/* Your code goes here */

/* And finally return the value stored in ’mse’ */

return ScalarReal(mse);

}

The C code can be compiled using R CMD SHLIB mse.c. Make sure your
code is well behaved in the face of NA, NaN and Inf values. How much faster
is your code compared to the naive R implementation?

Exercise 8.3.7: In Section 8.2 we learned about the BLAS and how it has
become a de facto standard for basic linear algebra operations. R uses the
BLAS and LAPACK libraries extensively to accelerate certain types of opera-
tions. Apart from the obvious of *, %*%, eigen, and qr, what other common
R functions use the BLAS and LAPACK routines to speedup calculations?

Exercise 8.3.8: Find out if R uses an optimized BLAS on your system. If yes,
what version is used? If not, find out if any optimized BLAS is available for
your system (hint: there probably is).

Exercise 8.3.9: Name some of the reasons why compiled code written in C

or FORTRAN is generally faster than interpreted R code. Why don’t we use
C or FORTRAN to write all our software, but instead rely on tools such as R

for our data analysis?

Exercise 8.4.1: Give a concise argument for Amdahls law (Theorem 8.1).
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Exercise 8.4.2: Devise an experiment to estimate πparallel of an unknown al-
gorithm.

Exercise 8.4.3: Investigate the overhead the foreach package adds to a simple
for loop. Use a loop body with a known execution time such as

library("foreach")

## Load and initialize some parallel back-end for

## foreach

foreach(i=1:10, .combine=c) %dopar%

Sys.sleep(0.1)

How do you think the overhead added by the foreach package influences the
possible performance gains when parallelizing tight inner loops?

Exercise 8.4.4: Why does the run time of Algorithm 8.5 stay the same, or pos-
sibly get worse, if we have one node check for convergence and then broad-
cast the result to all nodes?
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A new and refreshingly different approach to presenting the foundations of 
statistical algorithms, Foundations of Statistical Algorithms: With Refer-
ences to R Packages reviews the historical development of basic algo-
rithms to illuminate the evolution of today’s more powerful statistical algo-
rithms. It emphasizes recurring themes in all statistical algorithms including 
computation, assessment and verification, iteration, intuition, randomness, 
repetition and parallelization, and scalability. Unique in scope, the book 
reviews the upcoming challenge of scaling many of the established tech-
niques to very large data sets and delves into systematic verification by 
demonstrating how to derive general classes of worst case inputs and em-
phasizing the importance of testing over a large number of different inputs. 
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•	 Covers historical development as this clarifies the evolution of more 

powerful statistical algorithms
•	 Emphasizes recurring themes in all statistical algorithms: computation, 

assessment and verification, iteration, intuition, randomness, 
repetition, and scalability and parallelization

•	 Discusses two topics not included in other books: systematic 
verification and scalability

•	 Contains examples, exercises, and selected solutions in each chapter
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solutions in each chapter as well as access to a supplementary website. 
After working through the material covered in the book, the reader should 
not only understand current algorithms, but should also gain a deeper 
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problems statistical programmers face, and how to take an idea for a new 
method and turn it into something practically useful. 
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