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PREFACE 
 

 

This book provides new research on computer vision and simulation. 

Chapter One studies and compares the representation capability of several 

different layers in convolutional neural network (CNN) showing that they 

contain more accurate information about the face image than to believe. 

Chapter Two finds, empirically, the best methods for describing a given 

texture using an ensemble to harness the discriminative power of different 

texture approaches. Chapter Three provides a computer study of the 

interaction of mercury with graphene. Chapter Four discusses the influence of 

yttrium(III) ion on calcium(II) and zinc(II) biospeciation in human blood 

plasma by computer simulation. Chapter Five reviews the simualation of 

diffraction gratings in the Fresnel diffraction regime using the ab-initio 

iterative Fresnel Integral Method (IFIM). Chapter Six introduces an example 

of a simple visual feedback control system of a mobile robot with an axis-

symmetric shape for mechatronics education. 

Chapter 1 - Most of recent advances in the field of face recognition are 

related to the use of a convolutional neural network (CNN) and the availability 

of very large scale training datasets. Unfortunately, large scale public datasets 

are not available to most of the research community, which therefore can 

hardly compare with big companies. To overcome this drawback, in this work 

the authors suggest to use an already trained CNN and the authors perform a 

study in order to evaluate the representation capability of its layers. Most of 

previous face recognition approaches based on deep learning use a CNN self-

trained on a very large training set, taking one on the last intermediate layer as 

a representation and adding a classification layer trained over a set of known 

face identities to generalize the recognition capability of the CNN to a set of 

identities outside the training set. The idea is that the representation 
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capabilities of the last one of two layers of a deep trained CNN is higher than 

traditional handcrafted features. In this work, starting from a CNN trained for 

face recognition, the authors study and compare the representation capability 

of several different layers in CNNs (not only the last ones) showing that they 

contain more accurate information about the face image than to believe. The 

proposed system extracts learned features from different layers of a CNN and 

uses them as a feature vector for a general purpose classifier. Moreover, the 

authors study the independence of the different sets of features used and 

between learned and handcrafted features, showing that they can be exploited 

to design an effective ensemble.  

The proposed approach gains noticeable performance both in the FERET 

datasets, with the highest performance rates published in the literature, and the 

Labeled Faces in the Wild (LFW) dataset where it achieves good results. The 

MATLAB source of the authors’ best ensemble approach will be freely 

available at https://www.dei.unipd.it/node/2357 “+Pattern Recognition and 

Ensemble Classifiers” 

Chapter 2 - The goal of this chapter is to find empirically the best methods 

for describing a given texture using an ensemble to harness the discriminative 

power of different texture approaches. The authors begin the authors’ 

investigation by comparing the performance of a large number of different 

texture descriptors and their fusions. The best fusion approach is then tested 

across a diverse set of databases and compared with some of the best 

performing approaches proposed in the literature. Whenever possible the 

original code of each approach is used on the datasets for fair comparison. 

Both stand-alone and ensembles of texture descriptors are investigated. In 

addition, some tests based on deep learning features are reported. The support 

vector machine is tested as a stand-alone classifier and as the base classifier in 

ensembles. Extensive experiments conducted on benchmark databases 

spanning several domains show that the authors’ proposed approach 

outperforms recent state-of-the-art approaches. The proposed tool is available 

at (https://www.dei.unipd.it/node/2357 + Pattern Recognition and Ensemble 

Classifiers). 

Chapter 3 - The contamination of natural waters and the lower atmosphere 

by heavy metal ions creates a serious ecological problem. Mercury is one of 

the most toxic heavy metals, because it is not biodegradable. The authors have 

studied the physical properties of mercury films on partially hydrogenated 

imperfect graphene by means of molecular dynamics at 300 K. Films prepared 

on the basis of three various types of the atomic interaction potential for 

mercury and other constant interaction potentials are considered. It is shown 
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that the one most promising is the Schwerdtfeger potential function, at which 

mercury atoms do not fall into the divacancies present on graphene and atom 

packing with the lowest energy are realized in a liquid film and the film 

gradually fold into a drop. Another computer experiment has been employed 

to study rapid heating of a mercury film on graphene containing Stone–Wales 

defects. Hydrogenated edges of a graphene sheet withstand heating by 800 K. 

As the film contracts into a droplet, the horizontal component of the self-

diffusion coefficient of Hg atoms monotonically decreases, while the vertical 

component passes through a deep minimum, which reflects the onset of 

droplet rising over the substrate. Formation of the droplet leads to a decrease 

in the blunt contact angle. Temperature–related changes in graphene manifest 

themselves as a rise in the intensity of additional peaks in the angular 

distribution of the closest neighbors, oscillatory pattern of the stress acting in 

its plane, and an almost linear growth of roughness. Molecular dynamics 

simulation of the bombardment of a target with a Xe13 cluster beam at energies 

of 5–30 eV and incidence angles of 0°–60° aiming to remove a mercury film 

from partially hydrogenated imperfect graphene has been performed. The 

graphene is completely cleaned of mercury at a cluster energy of EXe ≥ 15 eV. 

Mercury is removed from the graphene film via sputtering of single atoms and 

droplet detachment. A stress in graphene resulting from forces normal to the 

sheet plane is noticeably higher than that due to forces acting in its plane. 

Bombardment at an angle of incidence of 45° is more efficient than that at 

incidence of 0° and 60° and leads to lower graphene roughness. Thus, mercury 

can be removed from graphene by heating or bombarding with heavy noble 

gas clusters. 

Chapter 4 - The effect of yttrium(III) ion on calcium(II) and zinc(II) 

speciation in human blood plasma was studied by computer simulation using 

the program Hyss2009. Calcium-hydrogen carbonate [CaHCO3]+ and ternary 

zinc-cysteinate-citrate [ZnCysCit]-3 complexes are predominant species of 

Ca(II) and Zn(II) ions in normal human blood plasma. Exogenously 

introduced yttrium(III) ion can compete with Ca(II) and Zn(II) ions for low 

molecular mass (LMM) ligands in blood plasma, thus influencing their 

biospeciation. The results showed that at the normal blood yttrium 

concentration all the Y(III) species are soluble and no precipitate appear. 

However, at total Y(III) concentration higher than 1×10−6 molL-1, the insoluble 

species become dominant (Y2(CO3)2 and YPO4). At this concentration level of 

Y(III) the distribution of Ca(II) and Zn(II) species does not change 

appreciably. If the total concentration of Y(III) is higher than 1×10−3 molL-1 its 

influence on biodistribution on Ca(II) and Zn(II) ions is significant. The 
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concentration of free calcium ion increase from 79% to 86% and decreases 

[CaHCO3] percentage. With further increasing of yttrium concentration 

(5×10−2 molL-1), [CaHCO3] disappear and dominant species is free calcium 

ion, whit redistribution of zinc species. Main species ZnCysCit (~38%) 

becomes minor species (<1%), while ZnCys2 (~35%) and ZnCysHis (~20%) 

become major zinc species.  

Chapter 5 - Computer-based virtual experiments and simulations in all 

branches of physical sciences and engineering has attracted wide spread 

interest among the researchers from all parts of the scientific world due to its 

multifaceted applications and versatility. Computer simulation of diffraction 

phenomena, including simulation of diffraction gratings, has widespread 

applications, since diffraction gratings, especially amplitude diffraction 

gratings, are used extensively in spectrographs and spectrometers. Usually, 

these are used in the Fraunhofer (far-field) regime. In this Chapter, the authors 

have used the ab-initio Iterative Fresnel Integral Method (IFIM) for the 

complete simulation of the near-field Fresnel diffraction images from any 

amplitude diffraction grating. The simulations can be performed in any PC in a 

reasonable amount of time and are executed in the MATLAB language. 

Complete explanations of the computational method, as applied to the 

diffraction gratings, are described, along with the simulation algorithms. 

Comparison of the simulated results with certain situations, which can be 

described by analytical equations, is made. The agreement confirms the 

correctness of the present simulation methods that will pave the way for future 

studies. The authors finally mention some extensions of the N-stilt problem, 

namely the application to tilted and rotating gratings and multi-wavelength 

illuminations.  

Chapter 6 - Recently, visual feedback control system is becoming more 

attractive for mechatronics education due to the development of RGB-D 

cameras such as Kinect and Xtion. In this paper, an example of a simple visual 

feedback control system of a mobile robot with an axis-symmetric shape is 

introduced for mechatronics education which has to be demonstrated within a 

time limit of a lecture. Positions of a robot in image plane and projected plane 

can be calculated by referring to RGB stream and depth stream obtained from 

Xtion camera, respectively. As the first simple exercise, a virtual barrier fence 

is designed, so that a mobile robot can move within the virtual fence even 

without a real one. In addition, if a mobile robot has an axis-symmetric shape, 

e.g., circle, from the top view, it is difficult for a vision system to identify the 

orientation of the robot in the coordinate system. Another exercise is 

introduced to deal with an orientation following control using a forward 
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direction vector. The forward direction vector can be calculated from point 

cloud data obtained by making the robot move forward for a short distance, 

e.g., 30 mm, every dynamic sampling period. The effectiveness and usability 

of the presented work is demonstrated experimentally. 
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ABSTRACT 
 

Most of recent advances in the field of face recognition are related to 

the use of a convolutional neural network (CNN) and the availability of 

very large scale training datasets. Unfortunately, large scale public 

datasets are not available to most of the research community, which 

therefore can hardly compare with big companies. To overcome this 

drawback, in this work we suggest to use an already trained CNN and we 

perform a study in order to evaluate the representation capability of its 

layers. Most of previous face recognition approaches based on deep 

learning use a CNN self-trained on a very large training set, taking one on 

the last intermediate layer as a representation and adding a classification 

layer trained over a set of known face identities to generalize the 

recognition capability of the CNN to a set of identities outside the 

training set. The idea is that the representation capabilities of the last one 

                                                           
* Corresponding author: E-Mail: alessandra.lumini@unibo.it. 
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of two layers of a deep trained CNN is higher than traditional handcrafted 

features. In this work, starting from a CNN trained for face recognition, 

we study and compare the representation capability of several different 

layers in CNNs (not only the last ones) showing that they contain more 

accurate information about the face image than to believe. The proposed 

system extracts learned features from different layers of a CNN and uses 

them as a feature vector for a general purpose classifier. Moreover, we 

study the independence of the different sets of features used and between 

learned and handcrafted features, showing that they can be exploited to 

design an effective ensemble.  

The proposed approach gains noticeable performance both in the 

FERET datasets, with the highest performance rates published in the 

literature, and the Labeled Faces in the Wild (LFW) dataset where it 

achieves good results. The MATLAB source of our best ensemble 

approach will be freely available at https://www.dei.unipd.it/node/2357 

“+Pattern Recognition and Ensemble Classifiers” 

 

Keywords: face recognition, similarity metric learning, deep learning, shallow 

descriptors 

 

 

1. INTRODUCTION 
 

Face recognition has been an area of intense research since the 1960s 

(Zhou et al. 2014), and the great interest about it is justified by the growing 

number of applications ranging from biometric security to criminal 

identification, from access management to human machine interaction, from 

photo album management in social networks to digital entertainment. Many 

innovative applications making use of this technology are continuously being 

developed at a rapid pace. Such applications can be categorized into three 

classes according to the goal of the face recognition task: face verification, 

where the aim the authentication of an individual to assert his/her identity; face 

identification, where the aim is to find a correspondence in a database of faces; 

face tagging, where the aim is to label face images based on identification. The 

face recognition problem consists in comparing two images of faces and 

determining whether both images frame the same person or not. The typical 

face recognition pipeline consists of four steps: face detection, face alignment, 

feature extraction and classification, where feature extraction is the crucial 

step. Most conventional face recognition techniques based on hand-crafted 

features such as Local Binary Patterns (LBP) (Ahonen et al. 2006), Local 

Phase Quantization (LPQ) (Chan et al. 2013) or Patterns of Oriented Edge 
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Magnitudes (POEM) (Vu 2013)(Nanni et al. 2013) perform well when facial 

images are captured in optimal (controlled) conditions; but their performance 

is quickly degraded when facial images are captured in the wild. 

Unfortunately, faces appearing in most applications, like social networks and 

digital entertainment, are acquired in uncontrolled conditions: they usually 

exhibit dramatic pose, expression and illumination variations and often a low 

image quality. The main difficulty of face identification consists in separating 

the specific features carrying information on the identity from the huge mass 

of features expressing other characteristics. It is still an open problem to find 

an ideal feature set for face recognition, robust under any acquisition setup. In 

the last few years, a new class of methods has been proposed, based on 

convolutional neural networks (CNN), and referred to as “deep methods” in 

opposition to “shallow methods” which are based on hand-crafted features. 

Deep methods learn their features during a training phase, and the set of 

learned features are more robust than handcrafted ones in detecting complex 

intra-personal variations.  

Deep learning is a real breakthrough in the field of face recognition: a 

CNN model can not only characterize large data variations but also learn a 

compact and discriminative feature representation that can be generalized to 

dataset that were not involved in training. Deep learning has a great advantage 

over shallow methods in both identification and recognition. The deep features 

learned by trained CNN models are highly discriminative in performing large-

scale face identification.  

The first precursor paper in this area was proposed in 2005 (Chopra et al. 

2005) and employed a convolutional neural network to learn a metric between 

face images. The deep learning approach was so dominant that after a decade 

of study, researchers (Taigman et al. 2014) have finally closed the “gap to 

human-level performance in face verification”: DeepFace has achieved 

97.25% accuracy on the LFW dataset, which is very close to human level 

accuracy (97.53%) using an ensemble of CNNs to find a good numerical 

representation of the face. Afterwards, many other deep learning approaches 

(Lu and Tang 2014)(Sun et al. 2014b)(Sun et al. 2014a)(Sun et al. 2015) have 

significantly outperformed previous shallow methods. For example, the 

approach based on Gaussian Processes and multi-source training sets in (Lu 

and Tang 2014) has achieved 98.52% accuracy on the LFW dataset, which is 

better than human performance. 

Even if the LFW dataset is the de-facto benchmark for face recognition in-

the-wild, some researchers have pointed out (Zhou et al. 2015) some 

limitations existing relationship between big training set and recognition 
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performance. During the history of LFW benchmark, the largest performance 

improvements have been gained the last few years by deep learning techniques 

trained from huge datasets (from ~10000 samples in (Cao et al. 2013) to 

~4,000,000 images in (Taigman et al. 2014)). The best performance using a 

training set of less than 10,000 images with deep learning was lower than 

85%. Since Deep Learning approaches require millions of images for training, 

their results on benchmarks cannot be directly compared with approaches 

obtained using a testing protocol based on a few training samples.  

The approach presented in this paper can be referred to as a “transfer 

learning” method. Unlike shallow approaches, it is not based on a 

representation of the face image by means of handcrafted descriptors only. It is 

also different from deep methods, since it is not based on a supervised deep 

neural networks specifically trained for this face recognition problem, i.e., to 

minimize the distance between features of the same identity while 

simultaneously decreasing intra-personal variations.  

The system presented here is an evolution of the approach in (Lumini et 

al. 2016) where preliminary results about transfer learning were discussed as a 

direction for future research. The approach presented in (Lumini et al. 2016) is 

a shallow method based on a combination of handcrafted local image 

descriptors. The system is based on a combination of different preprocessing 

techniques and of several handcrafted feature extractors: then, similarly to this 

work, the classification is performed by an ensemble of classifiers. Moreover, 

in (Lumini et al. 2016) preliminary results about the combination of “learned” 

and “handcrafted” features were discussed.  

In this paper we further evaluate the idea of performing “transfer 

learning” from an already trained CNN, analyzing the layer of the network 

which is most suited for face representation. The feature extraction step, 

obtained by convolving the input face image with a CNN and extracting the 

response of several different layers, is inserted into a well-tested framework 

consisting in face detection and cropping, frontalization, feature extraction and 

classification. The components used in each step have been already tested and 

tuned in (Lumini et al. 2016) and demonstrated good performance both in the 

FERET and LFW datasets. In this work we test the proposed system using 

different set of “learned” features, which have been obtained from the internal 

representation of a deep method, specifically a Convolutional Neural Network 

(CNN) trained for the face recognition problem.  

The resulting fusion with the handcrafted features proposed in (Lumini et 

al. 2016) obtains, to the best of our knowledge, the highest mean accuracy 

ratings on the FERET datasets and very good results on the LFW dataset.  
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2. THE PROPOSED APPROACH 
 

The method proposed in this work is an evolution of the approach 

presented in (Lumini et al. 2016) where learned features are employed instead 

of handcrafted descriptors. The general schema of the approach is shown in 

Figure 1 and consists of the following steps:  

 

 Face detection and crop: once the precise position of the face image 

is detected according to the approach in (Hassner et al. 2015a) the 

resulting face is tight cropped and aligned according to eye position; 

 Frontalization: recent experiments (Lumini et al. 2016) demonstrated 

the importance of frontalization for precise face recognition also in 

presence of pose changes; in this work the approach proposed in 

(Hassner et al. 2015a) is used to synthesize frontal views of faces 

from the detected face; 

 Feature extraction: feature extraction is performed using learned 

features obtained taking the response to the input face image of one 

intermediate layer of a CNN. Several experiments are reported to 

evaluate the best combination of layers; 

 Feature Transformation: before classification the dimensionality of 

each descriptor is reduced via Principal Component Analysis (PCA) 

(Duda et al. 2000); 

 Classification: a general-purpose classifier is trained on each reduced 

feature vector. The final decision is then determined according to the 

sum rule by summing up the scores/similarity values (SIMi) obtained 

from each classifier. In this work, the simple angle distance is used in 

the FERET datasets, where the aim is identification. SML classifier 

(Cao et al. 2013) is used on the LFW dataset, where the aim is to 

verify a given match. 

 

 

Figure 1. Schema of the proposed face recognition ensemble. 
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2.1. Hard Frontalization (HF) 
 

Hard Frontalization (HF) (Hassner et al. 2015b) is a technique that uses a 

unique 3D geometrical shape to obtain a frontal view from a set of face 

pictures acquired in the wild from different angles. This is in contrast to the 

other approaches that employ a different 3D shape for each person considered. 

While the last approach aims at a more accurate reconstruction, the first one 

assumes that the difference between a “standard” 3D shape and the real one 

can be neglected for the purpose of frontalization. 

Images acquired in the wild are first processed to extract faces. Each face 

is rescaled to a standard size, and a set of 49 facial features are detected in the 

sample. Such features are exploited to estimate the 3×4 projection matrix 𝑃 

describing the camera pose under which the face was framed, i.e., the 

rototranslation between the camera and the framed face. The 𝑃 matrix 

describes the geometrical association between each pixel and the portion of the 

face it represents. In other words, by knowing 𝑃 it is possible to understand 

which part of the face is represented by each pixel found in the image, and it is 

also possible to project such pixel onto the standard 3D face model considered 

in the HF algorithm, thus associating a color to each 3D location. The model 

itself is supposed to have a plane of symmetry, therefore some parts of the 

model that are not seen are filled with the color of the symmetrical locations; 

for example, if the left half of the mouth is seen in the image, the right half 

will be completed exploiting the symmetry. 

The HF algorithm generates the frontalized view starting from the textured 

3D model described above following a four step process. In the first step, a 

frontal synthetic view of the model is obtained by projecting the 3D model 

using a camera matrix whose rotation matrix and translation vector define a 

frontal projection that is used as a reference coordinate system. The second 

step generates the frontal pose synthesis by projecting the facial features from 

the 3D model onto such reference system. Step 3 deals with visibility 

estimation, which depends on the projection of the reference 3D model onto 

the given view. Finally, in step 4 the detection problems introduced by 

conditional soft-symmetry are tackled; this is done based on a standard 

representation based on LBP (Local Binary Pattern) and an SVM classifier.  
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2.2. Feature Extraction  
 

In this paper we extract “learned” features from a CNN already trained for 

face recognition. However, we do not rely only on the data provided by the 

last layer of the CNN, as it is usually the case. Rather, we consider the 

information provided by other layers throughout the network (deep layers). 

The layers of a CNN can be considered as a set of features that are 

automatically learned during the training phase, and whose characteristics 

depend on the depth of the layer itself. Those layers that are closer to the input 

data, process information coming from a small neighborhood of pixels, and 

extract low-level, local features. Conversely, layers that are far from input data 

are made of nodes getting input that has passed through several processing 

steps, and depends on a larger set of pixels: this leads to the conclusion that 

such layers provide as output high-level, global features. The transition from 

local to global features can be seen as a gradual process that is the 

consequence of the peculiar scheme of the connections among nodes in a 

CNN, that makes it particularly suited for processing 2D data, as it is the case 

of images. 

The features extracted from different stages of a CNN are used in the same 

way as it usually happens with hand-crafted features: the feature vectors 

become the input of a classifier – a set of SVMs in our case – that is trained to 

solve the face classification problem. This structure, composed of a previously 

trained classifier connected to a second classification stage for changing the 

problem to be solved, is known as transfer learning. It is particularly 

convenient when dealing with Deep Neural Networks (DNNs), because it 

allows to skip the training phase of such networks, which is computationally 

very intensive and requires a huge number of samples. Instead, the training of 

a set of SVMs requires smaller datasets and reduced computational effort. 

The transfer learning scheme described above has been applied 

considering different combinations for the layers of the CNNs to be used as 

features. This enables to investigate the representation capabilities at various 

depths of a convolutional network, and the dependencies among their 

information representation. In this study, the CNN presented in (Parkhi et al. 

2015) was considered: it is a VGG- Very-Deep-16 CNN architecture whose 

models, trained on a very large face collection, are freely available for 

downloadin 
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2.3. Feature Transform  
 

The features described above represent a high amount of data that could 

cause the system to fall into the curse of dimensionality. To cope with this 

problem, dimensionality reduction methods have been applied. The best 

performance was achieved using PCA, Principal Component Analysis (Duda 

et al. 2000), which is a common approach. This technique generates a 

projection of the original space onto a reduced number of directions in order to 

maximize the variance of the projected vectors. In our experiments, the 

orthogonal basis used for projecting the features expresses 99% of the input 

variance. When the classifier is chosen to be an SML, the first 300 

components are selected, as suggested in (Lumini et al. 2016). 

 

 

2.4. Classification 
 

The descriptors previously detailed are processed using a separate distance 

function or classifier (depending on the problem being addressed) for each 

feature. Such functions are then combined by sum rule to obtain the final 

classification output. This technique was selected because it does not require a 

deep analysis of the uncertainty space of the ensemble classifiers, as it was 

performed in (Fernández-Martínez and Cernea 2015). 

The similarity function chosen for comparing faces in the experiments on 

identification (run on the FERET datasets) are angle distance. The angle 

distance 𝛼 between two vectors 𝑣1 and 𝑣2 is evaluated as: 

 

𝛼 = sin−1
𝑣1 × 𝑣2
‖𝑣1‖‖𝑣2‖

, 

 

and represents the size of the angle defined by the two directions defined by 

the vectors. A different function is used for the experiments aiming at 

verifying given matches, run on the LFW dataset. In this case, a general 

purpose binary classifier – Similarity Metric Learning or SML (Cao et al. 

2013) in our experiments – is used to distinguish between good and bad match. 

SML is a novel regularization framework proposed for learning similarity 

metrics for unconstrained face verification. The similarity function between 

the images xi, xj is defined as: 

 

𝑓𝑀,𝐺(𝑥𝑖 , 𝑥𝑗) = 𝑠𝐺(𝑥𝑖, 𝑥𝑗) − 𝑑𝑀(𝑥𝑖 , 𝑥𝑗) 
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where 𝑠𝐺(𝑥𝑖 , 𝑥𝑗) and 𝑑𝑀(𝑥𝑖 , 𝑥𝑗) are a weighed similarity and a weighed 

distance, respectively. The weight matrices 𝐺 and 𝑀 are learned from the 

training set with the goal of being robust to large intra-personal variations. 

 

 

3. EXPERIMENTS 
 

3.1. Datasets  
 

The performance of the proposed approach was assessed on the FERET 

(Phillips et al. 2000) and LFW (Huang et al. 2007) datasets. The FERET 

dataset was collected in the context of FacE REcognition Technology 

(FERET) program; it is made of five datasets acquired in different time 

periods, under different weather conditions – the gallery set Fa (1196 images), 

and four datasets used for testing: 

 

 Fb: 1195 samples acquired in the same day as Fa, using the same 

camera and under similar lighting conditions; 

 Fc: 194 samples taken in the same day as Fa, but with a different 

camera and under different lighting conditions; 

 Dup1: 722 samples acquired within one year since the acquisition of 

Fa; 

 Dup2: 234 samples acquired more than one year after the acquisition 

of Fa. 

 

FERET proposes a standard evaluation protocol that requires each test 

image to be compared against all the images in the gallery set. In our 

experiments we modified the images by aligning all the faces using the true 

eye positions and cropping the images to a fixed size of 110×110 pixels. Some 

samples from the FERET databases are reported in Figure 2. 

Some samples from the FERET databases are reported in Figure 2. 
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Figure 2. Samples from the FERET database.  

The LFW (Labeled Faces in the Wild) database addresses the problem of 

unconstrained face recognition. It is made of more than 13000 internet images 

of 5749 celebrities, 1680 of which appear in two or more images. It represents 

a very difficult testbed because images were acquired in a totally uncontrolled 

way, and there is no control over imaging system, lighting, image quality and 

appearance of the subjects, since images of the same person at different ages 

are present. The database is divided into two views: the first one shall be used 

for training and testing (supports 10-fold validation), while view 2 is meant for 

benchmarking. Our experiments are designed to follow the testing protocol 

and dataset subdivision guidelines proposed by the authors of the database.  

 

 

Figure 3. Samples from the LFW database. 
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Table 1. Accuracy obtained by our ensemble as a variation of the CNN 

layers for tight cropped images  

 
Layers FERET recognition rate LFW 

accuracy Level Dimensionality Fb Fc Dup1 Dup2 

30 100352 98.66 100 84.21 86.32 92.70 

31 100352 99.33 98.97 90.3 89.74 93.07 

32 25088 99.16 99.48 90.58 89.74 92.12 

33 4096 98.66 98.97 91 91.88 92.15 

34 4096 98.66 98.97 90.72 91.88 93.00 

35 4096 98.66 98.97 89.89 91.88 92.82 

36 4096 98.66 100 89.61 91.45 92.88 

37 2622 97.49 98.97 87.67 87.18 92.30 

[33 34] 8192 98.74 99.48 90.86 91.45 93.43 

[36 37] (Lumini et 

al. 2016) 

6718 98.33 99.48 89.06 91.03 93.22 

 

The performance of our algorithms was measured by means of recognition 

rate for the FERET dataset, and accuracy for the LFW dataset, defined as the 

ratio between correct classification results (true positives and true negatives) 

and the total population. Some samples from the LFW database are reported in 

Figure 3. 

Some samples from the LFW database are reported in Figure 3. 

 

 

3.2. Results  
 

The first experiment is aimed at evaluating the importance of the 

frontalization step: starting from results published in (Lumini et al. 2016), 

where the CNN outputs of the 37th and 36th fully-connected layers were used 

for describing the images, we evaluate the recognition performance on the 

LFW dataset. 

The recognition accuracy reported using frontalization is 93.22, while it 

drops to 92.82 without frontalization. Therefore, all the following experiments 

will be carried out maintaining the frontalization step. 

The second experiment is aimed at comparing the representation 

capabilities of several different layers of the VGG-Very-Deep-16 CNN 

proposed in (Parkhi et al. 2015). In the first column of Table 1 the layers used 

for representation purposes are reported (the presence of two numbers denotes 

the concatenation of two layers); the second column is the dimensionality of 
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the feature vector, and the remaining columns report the recognition 

accuracies. The last row of Table 1 also reports the result of the fusion of the 

last two layers, already published in (Lumini et al. 2016). The experiments are 

carried out using the complete approach described in Figure 1 (including the 

steps of frontalization and feature transformation). The classifiers used in these 

experiments are SML for LFW and the angle distance for the FERET datasets. 

The best result is obtained when the CNN outputs of the 33th and 34th layers 

are used for describing the images. 

All the results reported in Table 1 were obtained using a tight cropping, 

i.e., cropping faces so that the background is minimally involved in 

classification. For the sake of completeness we also report in Table 2 

performance obtained using larger images (in Figure 4 an example of different 

cropping sizes is reported). Large crop include portions of hairs and clothes 

that can be considered as “soft biometrics”, useful to improve the recognition 

rate. In order to confirm this hypothesis we also tested the performance 

obtained by a large crop image where the face was removed (see Figure 2.d) 

obtaining a surprisingly high accuracy of 75.52%. 

The third experiment, reported in Table 3, is a comparison with the state-

of-art for both the FERET and LFW datasets for methods not based on outside 

training data. In Table 3 the best approach tested in this work is denoted by 

HERE (i.e., the one reported in last line of Table 1 and related to tiny cropped 

images and to the layers [33 34]). The last four rows of Table 3 report the 

weighed fusion of HERE and some of the best shallow methods proposed in 

the literature. Examining Table 3, it is clear that the system performance has 

significantly increased in the last few years: the proposed system gains very 

good performance in both the datasets. The fusion between the “learned 

features” proposed in this work and the handcrafted features of (Lumini et al. 

2016) further improves both approaches obtaining one of the best recognition 

performance ever published for the FERET databases, and very valuable 

results in LFW too. When different approaches are combined, before the 

fusions, their scores are normalized to have zero mean and standard deviation 

1. The methods 2 × X + Y means that the methods are combined with 

weighted sum rule where the weight of X is 2. 
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Figure 4. Sample of different cropping from the LFW database: (a) original image, (b) 

tight crop (c) large crop, (d) face removed. 

Table 2. Accuracy obtained by our ensemble as a variation of the CNN 

layers for large cropped images  

 

Layers FERET recognition rate LFW 

accuracy Level Dimensionality Fb Fc Dup1 Dup2 

30 100352 98.83 98.97 69.81 60.68 93.87 

31 100352 99.33 97.94 89.75 85.47 95.53 

32 25088 99.67 98.97 91.27 87.61 94.72 

33 4096 100 99.48 94.6 94.02 96.03 

34 4096 100 98.97 94.6 93.59 96.95 

35 4096 99.92 98.97 93.21 91.88 96.40 

36 4096 99.92 99.48 92.94 92.74 96.93 

37 2622 99.75 99.48 90.03 88.46 96.50 

[33 34] 8192 100 99.48 95.01 94.02 96.85 

[36 37] (Lumini et 

al. 2016) 

6718 99.92 99.48 92.11 91.88 96.75 

 

Our deep transfer learning approach does not achieve performance 

comparable with the state of the art of deep learning methods (e.g., see (Zhou 

et al. 2015)). However, we use the CNN only for extracting the features from 

the images, and only the standard training set of LFW is used for training 

SML. Interestingly, in the FERET dataset (high quality frontal images) the 

hand crafted features work better than the features extracted by CNN, but their 

fusion nevertheless permits to boost the performance. 

 

 

 

 

 

 

(a)  (b)  (c)  (d) 
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Table 3. Comparison among the proposed ensemble with the state-of-the-

arts approaches 

 

Methods 
FERET 

recognition rate 
LFW 

accuracy 
Reference Year Fb Fc Dup1 Dup2 Avg 

(Ahonen et al. 2004)  2004 93.0 51.0 61.0 50.0 63.8 --- 

(Zhang et al. 2005)  2005 94.0 97.0 68.0 58.0 79.2 --- 

(Deng et al. 2005)  2005 96.3 99.5 78.8 77.8 88.1 --- 

(Zhang et al. 2007)  2007 97.6 99.0 77.7 76.1 87.6 --- 

(Tan and Triggs 2007)  2007 98.0 98.0 90.0 85.0 92.8 --- 

(Xie et al. 2010)  2010 99.0 99.0 94.0 93.0 96.3 --- 

(Yang et al. 2012)  2012 99.7 99.5 93.6 91.5 96.07 --- 

(Vu 2013)  2013 99.7 100 94.9 94.0 97.2 86.2 

(Nanni et al. 2013)  2013 98.7 100 94.6 93.6 96.7 76.9 

(Chai et al. 2014)  2014 99.9 100 95.7 93.1 97.17 --- 

(Nowak and Jurie 2007)  2007 --- --- --- --- --- 73.9 

(Wolf et al. 2008)  2008 --- --- --- --- --- 78.5 

(Pinto et al. 2009)  2009 --- --- --- --- --- 79.35 

(Li et al. 2013)  2013 --- --- --- --- --- 84.08 

(Arashloo and Kittler 2013)  2013 --- --- --- --- --- 79.08 

(Simonyan et al. 2013)  2013 --- --- --- --- --- 87.47 

(Cao et al. 2013)  2013 --- --- --- --- --- 88.51 

(Li and Hua 2015)  2015 --- --- --- --- --- 88.97 

(Arashloo and Kittler 2014)  2015 --- --- --- --- --- 95.89 

(Li et al. 2015)  2015 --- --- --- --- --- 91.10 

(Juefei-Xu et al. 2015)  2015 --- --- --- --- --- 87.55 

(Lumini et al. 2016)  2016 99.2 100 94.6 94.0 97.0 91.7 

HERE  - 98.74 99.48 90.86 91.45 95.13 93.43 

HERE+(Lumini et al. 2016)  - 99.58 100 97.37 96.15 98.27 93.32 

2×HERE+(Lumini et al. 

2016)  

- 99.58 100 97.78 97.44 98.7 93.65 

HERE + (Lumini et al. 

2016) + (Cao et al. 2013)  

- --- --- --- --- --- 93.97 

2 × HERE+(Lumini et al. 

2016)+(Cao et al. 2013)  

- --- --- --- --- --- 94.08 

 

 

CONCLUSION  
 

In this work we studied the representation capability of convolution neural 

networks using intermediate layers of an already trained CNN for extracting 
                                                           
1 Obtained using the source code shared by the authors of (Cao et al. 2013) and the testing 

protocol described in this work (which is slightly different from the one used in (Cao et al. 

2013)). 
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features for the face recognition problem. Our experiments, carried out 

considering two of the most used benchmark databases in this field, show that 

not only the last two layers, but also several different internal layers in CNNs 

contain accurate information about the face image. 

The proposed approach gains noticeable performance both in the FERET 

dataset, with the highest performance rates published in the literature, and the 

Labeled Faces in the Wild (LFW) dataset, where it achieves good results. 

In the LFW dataset the approach proposed here, combined with the 

method in (Lumini et al. 2016), obtains a 93.65% accuracy, which can be 

further improved to 94.08% considering also the method in (Cao et al. 2013). 

The only approach which outperforms our method, without using outside 

training data, is (Arashloo and Kittler 2014) with 95.89% accuracy, but the 

authors do not share their source code, therefore results are not easily 

reproducible. 

Another important aspect to be analyzed in face recognition approaches is 

the dimension of the cropping for the face image: our experiments demonstrate 

that there is a noticeable performance gap between loosely cropped and tightly 

cropped images. In this work we observe that even if a tight crop produces a 

performance drop, it is more fair for pure face recognition, since it allows to 

base the recognition task only on the face region, discarding possible 

information in the contours. Unfortunately, results reported in the literature 

using the LFW or FERET benchmark do not always clearly explain which 

kind of crop was used, therefore a fair comparison is not possible.  

In the future, we plan to experiment CNN not specifically trained for the 

face recognition task (i.e., object recognition, scene classification, etc.) in 

order to evaluate the degree of independence of such sets of features and their 

ability to work with different classification problems. 
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ABSTRACT 
 

The goal of this chapter is to find empirically the best methods for 

describing a given texture using an ensemble to harness the 

discriminative power of different texture approaches. We begin our 

investigation by comparing the performance of a large number of 

different texture descriptors and their fusions. The best fusion approach is 

then tested across a diverse set of databases and compared with some of 

the best performing approaches proposed in the literature. Whenever 

possible the original code of each approach is used on the datasets for fair 
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comparison. Both stand-alone and ensembles of texture descriptors are 

investigated. In addition, some tests based on deep learning features are 

reported. The support vector machine is tested as a stand-alone classifier 

and as the base classifier in ensembles. Extensive experiments conducted 

on benchmark databases spanning several domains show that our 

proposed approach outperforms recent state-of-the-art approaches. The 

proposed tool is available at (https://www.dei.unipd.it/node/2357 + 

Pattern Recognition and Ensemble Classifiers). 

 

Keywords: texture descriptors, ensemble, local binary patterns, deep learning, 

support vector machines 

 

 

1. INTRODUCTION 
 

Texture analysis is a branch of computer vision that aims to solve 

problems related to texture (e.g., classification, segmentation, etc.). The idea is 

to extract a compact representation of the texture information included in an 

image so that it can be processed through mathematical and logical algorithms. 

Applications requiring an understanding of texture cover a wide spectrum: 

medical [1–3] and biological [4–7] image processing, material sciences [8], 

food quality assessment [9,10], and even music classification [11]. Yet, despite 

the fact that the word texture has been in common use in the field of computer 

vision for the last fifty years, the term is still quite ambiguous; there is 

currently no clear and generally agreed upon definition of the term. Originally, 

the word texture was adopted from textiles, where it refers to the weave or 

structure of various threads (whether loose or tight, even or mixed) [12,13]. In 

the computer vision literature, many attempts have been made to capture and 

formalize the idea of texture [14–18]. Despite differences in approaches, two 

main ideas about texture have emerged from the literature: (i) texture involves 

the occurrence of repetitive patterns characterized by the same size in the 

textured area and (ii) the patterns’ non-random spatial organization in a region 

is larger than the patterns’ size [19]. Texture analysis has proven to be an 

incredibly versatile discipline.  

A number of important approaches have been developed to tackle texture-

based segmentation and classification. To analyze a texture’s spatial 

distribution, statistical approaches derive a set of local statistical features from 

the distribution of the grey values at each point in the image [20]. First order 

statistics (such as mean, variance, skewness, kurtosis, etc.) estimate properties 

of individual pixels, consequently ignoring the spatial relations between 
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neighboring pixels. Increasing the number of pixels for the computation of the 

local features allows higher-order statistics to be used. The most common 

example of second order statistical features was presented by Haralick et al. in 

1973 [21], where the spatial relationships between adjacent pixels were 

summarized in the grey level co-occurrence matrix (according to a specific 

orientation and distance between pixels) and from which a set of fourteen 

features was extracted. 

Spectral approaches exploit image filtering to extract textural information 

from the image spectra. Fourier transform is useful for describing the 

orientation of bidimensional periodic patterns, but it lacks information about 

the patterns spatial localization. An improved description of the spatial 

localization is offered by Gabor filters [22], especially when gathered in a 

bank of filters including different scales and orientations. A similar approach 

exploits the wavelet transform, which still allows for a multiscale description 

of the image; this approach offers a large variety of wavelets to choose from to 

meet the needs of specific applications [23]. 

But the real Copernican Revolution happened with the introduction of 

neighborhood based texture descriptors, i.e., operators that assign a label to 

each pixel of the image according to the information gathered from a 

neighborhood of that pixel. The most seminal example is the Local Binary 

Pattern (LBP) [24], which computes labels according to the binarization of the 

difference between the grey intensities of the neighboring pixels and the 

central pixel in the neighborhood. The simplicity and effectiveness of the LBP 

formulation generated a plethora (of which the following list is a simplified 

and incomplete representation) of LBP-based texture descriptors. These are 

based on changes in (i) the coding which was extended to ternary and quinary 

coding [6, 25], (ii) the neighborhood shape, considering other geometric loci 

instead of the original circular neighborhood [26], (iii) the area of the image 

from which the textural information is extracted (e.g., considering textures 

from the edges in the image) [27] or even (iv) by pushing LBP to a totally new 

level, i.e., by not considering anymore the spatial relationships between pixels 

but rather the spatial relationships to LBP labels in the image, such as in the 

Rotation Invariant Co-occurrence among Adjacent Local Binary Pattern (RIC-

LBP) [28].  

Recently [26, 29], the effectiveness of preprocessing has been 

demonstrated for texture-based image classification. Preprocessing not only 

reduces noise and enhances particular characteristics of the image but it also 

augments the dataset under investigation and enhances the classification 

performance. The simplest approaches consist in rotating and mirroring the 
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image [30–32]. However, the very same techniques introduced as spectral 

approaches mentioned above have proved their utility in generating new views 

of a given image, e.g., by mean of Gabor filters or wavelet transform [26]. 

Finally, it has been theoretically and empirically demonstrated that 

combining different texture descriptors (possibly combining them as well with 

some preprocessing procedures) allows for further improvements of the 

performance of classification techniques [26, 33, 34]. This is due to the 

different information that different descriptors extract from the image. For 

example, LBP informs on the spatial organization of the gray tones, Local 

Phase Quantization (LPQ) moves the analysis in the Fourier domain, 

exploiting the invariance of the phase of the image 2D Fourier transform, RIC-

LBP informs on the spatial organization of whole patterns, and so on. 

Moreover, different kinds of features not strictly related to textures, e.g., 

morphological characteristics or colors, can also be effectively combined with 

texture information. 

This chapter aims to fulfill two distinct goals: 

 

1. Providing a survey of state-of-the-art texture descriptors that have 

most-widely been used during the last decade; 

2. Providing one or more sets of texture descriptors, not tailored to a 

specific problem (e.g., classification of subcellular parts or crowd 

identification in images from security cameras), that perform well on 

a large variety of datasets. This was accomplished by testing different 

state-of-the-art descriptors on several different datasets. 

 

 

2. METHODS 
 

In this chapter, we present different methods for building ensembles that 

enhance the classification of image datasets. All approaches consist in 

augmenting the feature set obtained by means of state-of-the-art texture 

descriptors that describe each image in the dataset.  

In this section, we describe the following: i) the stand-alone descriptors 

tested in this work (see Table 1), ii) ensembles of variants of the Local Binary 

Pattern Histogram Fourier, iii) the preprocessing techniques used in this work, 

iv) methods for splitting an image into different images for building an 

ensemble, v) an ensemble of different Binarized Statistical Image Features 

sets, and vi) an ensemble obtained using deep transfer learning for applying 

non-handcrafted features. Regarding ensembles, whenever a given ensemble is 
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built up with x descriptors, the scores are summed and normalized by dividing 

the sum by x (this is useful when different ensembles are combined). Note as 

well that before each fusion the scores of each descriptor are normalized to 

mean 0 and standard deviation 1. 

 

 

2.1. Descriptors 
 

In Table 1 we list the stand-alone descriptors that are tested in this work. 

The most important of these are described below. 

 

Table 1. Texture descriptors and their parameter sets. This table is partly 

reproduced from [26] under the Creative Commons Attribution  

(CC BY) license 

 

Acronym Descriptor and parameters Ref 

LHF Multi-scale LBP Histogram Fourier features with 2 (radius, 

neighboring points) configurations: (1,8) and (2,16). 

[35] 

LPQ Multi-scale Local Phase Quantization with radius ∈ {3, 5}. [36] 

HOG Histogram of Oriented Gradients with 30 cells (5 by 6). [37] 

LBP Multi-scale Uniform LBP with 2 (radius, neighboring points) 

configurations: (1,8) and (2,16). 

[24] 

LTP Multi-scale Uniform LTP with 2 (radius, neighboring points) 

configurations: (1,8) and (2,16). 

[33] 

MOR Strandmark Morphological Features. [38] 

LCP Multi-scale Linear Configuration model with 2 (radius, neighboring 

points) configurations: (1,8) and (2,16). 

[39] 

NTL Multi-scale Noise Tolerant LBP with 2 (radius, neighboring points) 

configurations: (1,8) and (2,16). 

[40] 

DEN Multi-scale Densely Sampled Complete LBP histogram with 2 

(radius, neighboring points) configurations: (1,8) and (2,16). 

[41] 

CLBP Completed LBP with 2 (radius, neighboring points) configurations: 

(1,8) and (2,16). 

[42] 

RICLBP Multi-scale Rotation Invariant Co-occurrence of Adjacent LBP with 

radius ∈{1, 2, 4}. 

[28] 

WLD Weber Law Descriptor. [43] 

HASC Heterogeneous Auto-Similarities of Characteristics [44] 

Gab The mean-squared energy and the mean amplitude were calculated 

from 5 different scale levels and 14 different orientations. In this 

way, a feature vector of size 5×14×2 is obtained. 

[45] 
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Table 1. (Continued) 

 

Acronym Descriptor and parameters Ref 

RLBP Rotated Local Binary Pattern with 2 (radius, neighboring points) 

configurations: (1,8) and (2,16). 

[46] 

MRE Default parameter settings in the original journal paper were used: 

radius ∈ {2, 4, 6, 8} and a point set of 8. The image are resized to 

a fixed size (height of 150 pixel) before feature extraction. 

[47] 

MSJ Using the default parameters for the code the authors shared with 

us. 

[48] 

LTDP Local Directional Texture Pattern with two configurations:  

mask size ∈ {3, 5}. 

[49] 

LAP Laplacian Features [50] 

HA Average energy of the three high-frequency components is 

calculated up to the tenth level decomposition using both the 

scaling and the wavelet functions of the Haar wavelet. 

[51] 

DB4 Average energy of the three high-frequency components is 

calculated up to the tenth level decomposition using both the 

scaling and the wavelet functions of the DB4 wavelet. 

[51] 

COI Average energy of the three high-frequency components is 

calculated up to the tenth level decomposition using both the 

scaling and the wavelet functions of the Coif2 wavelet. 

[51] 

FDCT Fast Discrete Curvelet Transform via wedge wrapping. [52] 

DISC Discriminative completed Local Binary Pattern, with the best 

approach used and labeled dis(S+M), as in the original paper; the 

number of neighborhoods is 8 and the radius ∈ {1, 3, 5}.  

[53] 

GO Gaussians of Local Descriptors. Here we train a different support 

vector machine from each region of the spatial pyramid and 

combine them by sum rule. We also use one level spatial pyramid 

decomposition. The decomposition consists of the entire image, 

followed by level one, where the image is subdivided into four 

quadrants 

[54] 

 

 

2.2. Local Binary/Ternary Coding 
 

The ternary coding aims i) to overcome some limitations of LBP [24], 

such as the high sensitivity to noise in near-uniform regions, and ii) to 

introduce a higher level of granularity, which allows the descriptor to catch a 

greater number of textural features [6]. The traditional LBP codes, as 

formulated in [24], are represented by the following equation: 
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𝐿𝐵𝑃𝑃,𝑅 = ∑ 𝑠(𝑥)2𝑝𝑃−1
𝑝=0 , 

 

where 𝑥 = 𝑞𝑝 − 𝑞𝑐 is the difference between the intensity levels of the 

neighboring pixels (qp) and the central (qc) within a circular neighborhood of 

radius R and P neighboring pixels, while s(x) is the simple binary coding 

 

𝑠(𝑥) = {
1, 𝑥 ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Consequently, each digit of a LBP code is assigned or 0 or 1, thus 

producing codes ranging in [0, 2P-1]. 

The first step to obtain ternary descriptors consists in extending s(x). In 

[25] and [6], two non-binary codings s(x) were proposed: ternary coding, 

which generates LTP and quinary coding which generates LQP. The ternary 

coding encodes the difference x with three values, by means of threshold : 

 

𝑠(𝑥) = {
1, 𝑥 ≥ 
0,− ≤ 𝑥 < 
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

The quinary coding further extends the non-binarization by using a couple 

of thresholds (1, 2), where 1 < 2 encodes x with five different values: 

 

𝑠(𝑥) =

{
 
 

 
 
2, 𝑥 ≥ 2
1, 1 ≤ 𝑥 < 2
0,−1 ≤ 𝑥 < 1
−1 −2 ≤ 𝑥 < −1
−2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

The higher verbosity of the ternary coding (3P LTP possible codes 

compared to 2P LBP codes for a P-pixel neighborhood) is then compensated 

by splitting the LTP histograms into binary subhistograms, which are then 

concatenated. Each LTP code is divided into a positive and negative binary 

pattern according to the sign of its components. 

The multi-threshold approach can be extended to all those texture 

descriptors which exploit a binarization, e.g., LPQ. In [6], we extended the 

simple binary quantizer of LPQ [36] with its multi-ternary version (MLPQ), 

which was computed using  ∈ {0.2, 0.4, 0.6, 0.8, 1}. 
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In this chapter different configurations of LPQ are examined. We combine 

sets of LPQ extracted by varying the parameters: r (the neighborhood sizes 

and with r{1, 3, 5}), a (the scalar frequency and with a{0.8, 1, 1.2, 1.4, 

1.6}), and ρ (the correlation coefficient between adjacent pixel values and with 

ρ{0.75, 0.95, 1.15, 1.35, 1.55, 1.75, 1.95}). This is the same set as proposed 

[55] coupled with the ternary encoding. Each extracted descriptor is used to 

train a different support vector machine (SVM), thereby avoiding the curse of 

dimensionality. 

 

 

2.3. Ensemble of Local Binary Pattern Histogram Fourier  
 

The Ensemble of Local Binary Pattern Histogram Fourier (MLHF) is an 

ensemble of variants of the LBP Histogram Fourier [33]. Seven descriptors 

(each trained by an SVM and with SVM scores summed and normalized by 

dividing the sum by seven) are used in building the ensemble.  

 

1. FF (the original method): from each discrete Fourier transform (DFT), 

the first half of coefficients are retained.  

2. DC: from each discrete Cosine transform (DCT), the first half of 

coefficients are retained. 

3. WFF: the histogram is decomposed by Daubechies wavelet before 

DFT, and then FF is performed.  

4. WDC: the histogram is decomposed by Daubechies wavelet before 

DCT, and then DC is performed.  

5. AWFF: the histogram is decomposed by Daubechies wavelet before 

DFT (retaining all coefficients).  

6. AWDC: the histogram is decomposed by Daubechies wavelet before 

DCT (retaining all coefficients). 

7. AH: all bins of the histogram are retained.  

 

As another variation (labeled MLHF_t), we test the same ensemble 

starting from the local ternary bins instead of the local binary bins.  

 

 

2.4. Binarized Statistical Image Features 
 

The canonical Binarized Statistical Image Features (BSIF) descriptor 

consists in assigning an n-bit label to each pixel of an image by a set (n) linear 
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filters, thus projecting local image patches (size l x l pixels) onto a subspace. 

The n-bit label can be determined by binarizing as so:  

 

𝑠 = 𝑾𝒙, 

 

where x is the l2 x 1 vector notation of the l x l neighborhood and W is a n x l2 

matrix containing the compilation of the filters’ vector notations. In detail, the 

i-th digit of s is a function of the i-th linear filter wi, and it is expressed as 

 

𝑠𝑖 = 𝒘𝑖
𝑇𝒙. 

 

Thus, each bit of the BSIF code can be obtained as  

 

𝑏𝑖 = {
1, 𝑖𝑓 𝑠𝑖 > 0
0, 𝑖𝑓 𝑠𝑖 ≤ 0

 

 

The set of filters wi is created by maximizing the statistical independence 

of the filter responses si on a set of patches from natural images by 

independent component analysis [56]. To improve the descriptive power of the 

canonical BSIF, it was expanded by varying the parameters of filter size 

(SIZE_BSIF, size ∈ {3, 5, 7, 9, 11}) and the threshold used for binarizing 

(FULL_BSIF, th ∈ {-9, -6, -3, 0, 3, 6, 9}). In total, this approach produces 35 

possible (size, th) combinations, each one used to train a different SVM that 

were all combined by sum rule (we label this approach FBSIF). 

 

 

2.5. Deep Transfer Learning Features 
 

This is a set of features obtained through a remapping of a given deep 

Convolutional Neural Network (CNN) trained to solve one problem (e.g., a 

specific image problem, say, the classification of houses) so that it solves an 

entirely different problem (e.g., the classification of horses).  

Abstractly, let 𝑨 = {𝑎0, 𝑎1, … , 𝑎𝑁} be a set of labels representing some 

classification problem 𝑄1 into which a given input 𝒙 should be classified, and 

let 𝒚 = 𝑓𝐴(𝒙) be the classification function implemented by the deep CNN. 

The deep learner takes the input vector 𝒙 and provides an output vector 𝒚 of 

length N that contains the scores assigned to all the possible outcomes 

considered in the classification problem. The features obtained through deep 

transfer learning take the input x of an entirely different problem, say 𝑄𝑛, and 
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sends input to several deep CNNS that have been trained to solve a set of very 

different classification problems, e.g.,, Q1, Q2, Q3, each characterized by a 

different number of labels (M, N, P, respectively). These three deep networks 

provide three output vectors: {𝑎0, . . . , 𝑎𝑀}, {𝑏0, . . . , 𝑏𝑁}, {𝑐0, . . . , 𝑐𝑃}. With deep 

learning transfer, these outputs subsequently become the inputs to three SVMs 

that are trained to provide a result that solves problem 𝑄𝑛, and the outputs of 

the three SVMs are combined using the sum rule for a final decision. In other 

words, the SVMs learn the correlations between the problems Q1, Q2, Q3 as 

they pertain to problem 𝑄𝑛. In this double-stage classification pipeline, the 

deep CNNs implement models that have already been trained for different 

problems (stage 1). This is computationally a very expensive process. The 

SVMs in stage 2 learn the correlations between problems: a process that is 

computationally far less expensive. 

A major assumption behind this approach is the existence of a certain 

degree of similarity between the different classification problems. In other 

words, it is assumed that a class 𝑎𝑖 belonging to classification problem 𝑄𝑛 will 

have some degree of similarity with another class 𝑏𝑗 belonging to classification 

problem 𝑄𝑚. A certain amount of similarity is likely to exist with image 

problems. Taken alone, however, the degree of similarity between problems 

will probably be limited and lacking in discriminant power. It is necessary, 

therefore, to consider multiple classification problems simultaneously, 

allowing each problem to contribute its own degree of similarity to the 

problem at hand. Thus, a large number of output classes given in the different 

problems is key to the success of this approach.  

However, the large number of resulting features (partially correlated) 

provided by each CNN (which are the inputs of each SVM), coupled with the 

relatively small number of training samples that are commonly available in the 

datasets of the new problems (in the order of 500-2000 images), is a major 

source of performance degradation due to the curse of dimensionality. This 

problem can be resolved using a random subspace (RS) ensemble [57, 58] in 

place of a stand-alone classifier. A RS ensemble reduces the number of input 

values by considering randomly drawn subsets of the input features. The RS 

ensembles used in this work are composed of 50 SVMs combined by sum rule 

and trained using a random subset of 50% of the given input values. 

All input images are preprocessed before being sent to the CNNs. Because 

it is necessary to have a fixed size for the input data, images are resized to 

have the same number of rows and columns. The average training image is 

also subtracted from each image before processing as suggested in [59] to 

reduce the outlier affect. The trained CNN models used in this work are those 
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available with the MatConvNet1 toolbox [59]. These models result in 1000 

categories.  

In the following tests, we report two methods: 

 

 DpSA: a single feature set is extracted using the imagenet-vgg-

verydeep-19 model; 

 DpEN: a set of features are extracted using the following models: 

imagenet-vgg-verydeep-19; imagenet-vgg-verydeep-16; imagenet-

vgg-f; imagenet-vgg-m; imagenet-vgg-s; imagenet-vgg-m-2048; 

imagenet-vgg-m-1024; imagenet-vgg-m-128 pretrained; imagenet-

caffe-ref; imagenet-caffe-alex. 

 

 

2.6. Supervised Local Quinary Pattern 
 

Proposed in [60], the goal of Supervised Local Quinary Pattern (SLQ) is 

to enhance performance by selecting a set of rotation invariant bins to train an 

RS of SVM.  

This seven-step approach is accomplished as follows. 

 

 Step 1: extract the rotation invariant bins (labeled SET-A) using LQP 

(with 1 = 3 and 2 = 7).  

 Step 2: retain in SET-A, 250 bins with highest variance. 

 Step 3: select from SET-A a random subset of 125 features. 

 Step 4: reduce the set of 125 features obtained in step 3 to 45 using 

principal component analysis (PCA) followed by neighborhood 

preserving embedding (NPE). 

 Step 5: train and test a SVM using the features extracted in Step 4. 

 Step 6: repeat steps 2–4 for a total of 50 times. 

 Step 7: obtain a set of class similarity measures (labeled SCORE-A) 

by combining the 50 classifier results using the sum rule. 

 

It will be noticed that in step 1 we use a variance selection process. We 

then select the histogram bins with the highest variance in the training data. 

The NPE feature transform is used in step 4 as a bin selector. PCA is used first 

                                                           
1 The models are available at: http://www.vlfeat.org/matconvnet/pretrained/. 
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to reduce computation time; since 99.999% of the variance in the data is 

retained, little information is lost. 

Finally, we combine scores obtained by SLQ with SVM trained using LTP 

based on uniform bins (as described in Table 1), before the fusion the scores of 

SLQ and LTP are normalized to mean 0 and standard deviation 1; we label this 

approach SLQT. 

 

 

2.7. Preprocessing 
 

The ensembling approach detailed in this section uses preprocessing 

before feature extraction to augment the features describing an image [61]. 

The general procedure consists in applying a specific preprocessing procedure 

to an image to obtain a new set of images, each of which is then processed by 

texture descriptors. For each descriptor, classification is performed separately 

with SVM. 

We tested the following preprocessing methods: wavelet decomposition, 

Gaussian scale-space representation, gradient image, and an image enhancer.  

 

2.7.1. Wavelet 

A wavelet transform is used to obtain four new images from the original 

image: viz. its approximation and three new images containing the horizontal, 

vertical, and diagonal details of the original image. Using wavelets [62] for 2D 

image decomposition requires a 2D scaling function 𝜑(𝑥, 𝑦) and three 2D 

wavelets functions, 𝜓𝑖(𝑥, 𝑦), where 𝑖 = {𝐻, 𝑉, 𝐷} represents the three possible 

directions: horizontal, vertical, and diagonal. 

The scaled and translated basis functions are defined as: 

 

𝜑𝑗,𝑚,𝑛(𝑥, 𝑦) = 2
𝑗/2𝜑(2𝑗𝑥 −𝑚, 2𝑗𝑦 − 𝑛), 

𝜓𝑗,𝑚,𝑛
𝑖 (𝑥, 𝑦) = 2𝑗/2𝜓𝑖(2𝑗𝑥 −𝑚, 2𝑗𝑦 − 𝑛), 𝑖 = {𝐻, 𝑉, 𝐷}. 

 

For an arbitrary initial scale𝑗0, the three discrete wavelet transform 

functions 𝑊𝐻, 𝑊𝑉 , and 𝑊𝐷 of a 𝑀 ×𝑁 function 𝑓(𝑥, 𝑦) are formulated as: 

 

𝑊𝜑(𝑗0, 𝑚, 𝑛) =
1

√𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦)𝜑𝑗0,𝑚,𝑛(𝑥, 𝑦)

𝑁−1
𝑦=0

𝑀−1
𝑥=0 , 

𝑊𝜓
𝑖 (𝑗,𝑚, 𝑛) =

1

√𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦)𝜓𝑗,𝑚,𝑛

𝑖 (𝑥, 𝑦)𝑁−1
𝑦=0

𝑀−1
𝑥=0 ,𝑖 = {𝐻, 𝑉, 𝐷}, 
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The 𝑊𝜑(𝑗0,𝑚, 𝑛) coefficients represent an approximation of 𝑓(𝑥, 𝑦) at the 

𝑗0 scale. The 𝑊𝜓
𝑖 (𝑗,𝑚, 𝑛) coefficients represent the three directional details at 

scales higher than 𝑗0.  

In our tests, the Daubechies wavelet family (Wa) with four vanishing 

moments was used. 

 

2.7.2. Gaussian Scale-Space Representation 

Gaussian Scale-Space Representation (MRS) smooths the original image 

by means of a 2D symmetric Gaussian low-pass filter. According to the 

number of different kernel sizes used for MRS, a more or less comprehensive 

multiscale representation of the original image is obtained. In the following, 

we used two kernel sizes, 3 and 5 pixels, thereby obtaining two new smoothed 

images for each original image. 

 

2.7.3. Gradient Image 

Gradient is an image operation that is commonly used to detect edges. 

Gradient Image (GR) calculates the magnitude of the gradients of each pixel in 

the x- and y-direction based on its neighbors. The processed image at 

coordinates (𝑥, 𝑦) is given by the magnitude of the gradient vector at the same 

coordinates. Thus, each pixel of a gradient image measures the change in 

intensity in a given direction of the corresponding point in the original image.  

 

2.7.4. Image Enhancement 

In this work we apply a novel Exposure-Based Sub-Image Histogram 

Equalization (ENH) method proposed in [63] that enhances the contrast of low 

exposure grayscale images. Exposure thresholds are computed to divide the 

original image into subimages of different intensity levels and the histogram is 

cropped using a threshold value (the average number of gray level 

occurrences) to control the enhancement rate. The individual histograms of the 

subimages are then equalized independently, with all subimages finally being 

integrated into a single image, which is used for analysis.  

 

 

2.8. Region-Based Descriptors 
 

As the name suggests, the region-based descriptors are descriptors whose 

function is to extract information from the various “subcomponents” (Edge, 

Saliency, Difference of Gaussians, and Wavelet) that constitute an image [64].  
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2.8.1. Edge 

In [65], it was hypothesized that, when we attentively observe an image, 

the most likely perceived locations present the highest spatial frequency edge 

information. Another approach [27] proposed the edge-based LBP variant 

Edge, which is an interesting approach since it uses the original image edge 

information to segment the LBP from the same image. 

The following steps formulate the Edge descriptor:  

 

1. Obtain the LBP image (LBPI) from the original image; 

2. Use the Sobel filter to obtain the original image edge information. 

This produces two binary edge maps: E, where edge pixels are coded 

as 1 and the background as 0, and NE, the inverse of E, i.e., where the 

background is coded as 1 and the edge pixels 0; 

3. Compute the two histograms (hE for edge pixels and hNE for non-

edge pixels) after segmenting the LBPI with NE and E; 

4. Retrieve the final histogram using weighted concatenation, fusing the 

hNE and hE: 

 

𝐻 = (𝑤𝐸 × 𝐻𝐸 , 𝑤𝑁𝐸 × 𝐻𝑁𝐸), 𝑤𝐸 > 𝑤𝑁𝐸, 

 

where wE and wNE are empirically determined weights.  

Our approach does not merge the two histograms into a single feature 

vector but rather consists in training two different SVMs with hE and hNE, the 

results of which are then fused by sum rule.  

Using the same approach as in Edge, other methods are applied for map 

extraction in order to obtain different histograms. Specifically, the following 

steps required are: 

 

1. Apply the chosen descriptors to the texture image to get the labeled 

image DescI; 

2. Compute two maps, Map+ and Map-, according to Edge, Saliency, 

Difference of Gaussians or Wavelet (details are provided below); 

3. Compute the two histograms, H+ and H- by combining DescI with 

Map+ and Map-, respectively; 

4. Train two separate SVMS with H+ and H- and combine results by sum 

rule. 

 



Review on Texture Descriptors for Image Classifcation 35 

2.8.2. Saliency 

The method used for extracting the saliency map was taken from Hou  

et al. [66]. The first step in the methodology is to obtain the image signature, 

defined as: 

 

𝐼𝑚𝑎𝑔𝑒𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒(𝒙) = 𝑠𝑖𝑔𝑛(𝐷𝐶𝑇(𝒙)), 

 

with sign() as the sign operator and DCT() as the Discrete Cosine Transform. 

In [66] the authors demonstrate that by using the inverse procedure it is 

possible to approximate the support of the foreground of an image by the 

reconstructed image 𝒙̅: 

 

𝒙̅ = 𝐼𝐷𝐶𝑇(𝐼𝑚𝑎𝑔𝑒𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒(𝒙)). 

 

From this transformation we can obtain the saliency map m as 

 

𝒎 = 𝑔 ∗ (𝒙̅ 𝑜 𝒙̅ ), 

 

where g is a Gaussian kernel (standard deviation of the Gaussian kernel was 

set to 2) and o is the entrywise matrix product operator. The value g blurs the 

noise due to by the sign quantization. This approach is particularly useful 

when the foreground of the reconstructed image is clearly contrasted with the 

background. Using this methodology, two regions are extracted that present 

higher or lower saliency values compared with a prefixed threshold. Using two 

thresholds, 0.5 and 0.7, we obtain two saliency maps and four histograms for 

each image. 

 

2.8.3. Wavelet 

Wavelet decomposition was performed using Daubechies wavelet 

considering the horizontal, vertical and diagonal coefficients. Each matrix was 

normalized to the original image size, and the mean value was taken from 

each. This mean value is used to segment the original image into two regions. 

This produces six histograms, extracted from each image. 

 

2.8.4. Difference of Gaussians 

Difference of Gaussians (DO) computes two maps from a given image: 

Map+ and Map-, where Map+ corresponds to the “positive” side of the image 

edges and Map- corresponds to the “negative” side of the image edges. 
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Textural information is extracted from these two maps, and a Gaussian low-

pass filter (with size = 5 and sigma = [1, 4]) is applied. 

 

 

3. DATASETS 
 

Since the aim of this chapter is to present ensembling techniques that 

improve the classification power of state-of-the-art texture descriptors that are 

not tailored to a specific project but rather offer a more general approach, we 

test our ensembles on a wide variety of image datasets, ranging from 

biomedical images to images of insects and paintings. In this section each 

dataset is briefly presented with the most significant information about each 

dataset, e.g., the number of classes, reported in Table 2. Unless specified 

otherwise, each dataset is classified using a 5-fold cross-validation protocol. 

The area under the ROC curve (AUC) is the performance indicator since it 

provides a better overview of classification results. AUC is a scalar measure 

that can be interpreted as the probability that the classifier will assign a higher 

score to a randomly picked positive sample than to a randomly picked negative 

sample [67]. In the multi-class problem, AUC is calculated using the one-

versus-all approach (i.e., a given class is considered “positive” while all the 

other classes are considered “negative”) and the average AUC is reported.  

Here is the list of datasets, along with a brief description, that were used in 

our experiments: 

 

 PS: the PAP SMEAR dataset contains 917 images acquired during 

Pap tests to identify cervical cancer diagnosis [68].  

 VI: the VIRUS dataset contains 1500 images of viruses, divided into 

10 classes. Images were acquired by negative stain transmission 

electron microscopy [69]. VI also includes the masks for background 

removal, which are not used in our tests. 

 CH: the CHINESE HAMSTER OVARY CELLS dataset contains 327 

fluorescent microscopy images, divided into 5 classes [70].  

 SM: the SMOKE dataset contains 1383 images of smoke, divided into 

2 classes used for a challenge of intelligent video surveillance systems 

[71]. The same training and testing sets proposed in [71] are used 

here. 

 HI: the HISTOPATHOLOGY dataset contains 2828 images of 

connective, epithelial, muscular, and nervous tissue classes [72].  



Review on Texture Descriptors for Image Classifcation 37 

 BR: the BREAST CANCER dataset contains 1394 images divided 

into the control, malignant cancer, and benign cancer classes [73].  

 PR: the DNA dataset contains 329 proteins, divided into the DNA-

binding and non-DNA-binding classes [74].  

 HE: the 2D HELA dataset contains 862 images of HeLa cells 

acquired by fluorescence microscope and divided into 10 classes [70].  

 LO: the LOCATE ENDOGENOUS dataset contains 502 images of 

mouse sub-cellular images showing endogenous proteins or specific 

organelle features [75]. The images are unevenly divided into 10 

classes. 

 TR: the LOCATE TRANSFECTED dataset contains 553 mouse sub-

cellular images showing fluorescence-tagged or epitope-tagged 

proteins transiently expressed in specific organelles [75]. The images 

are unevenly divided into 11 classes. 

 PI: the HOLY BIBLE dataset contains images extracted from 

digitalized pages of ancient editions of the Holy Bible (1450 - 1471 

A.D.). The images are divided into 13 classes [76].  

 RN: the FLY CELL dataset contains 200 images of fly cells acquired 

by fluorescence microscopy and divided into 10 classes.  

 PA: the PAINTING dataset contains 2338 paintings by 50 artists 

divided into 13 painting styles [77]. The same training and testing sets 

proposed in [77] are used here. 

 LE: the BRAZILIAN FLORA dataset contains 400 images of several 

species of Brazilian flora evenly divided into 20 classes [78]. Each 

image was manually split into three windows of size 128×128 pixels 

leading to 1200 texture samples. 

 IS: the ISMIR 2004 GENRE CLASSIFICATION dataset contains 

1458 music pieces assigned to six different genres: classical, 

electronic, jazz/blues, metal/punk, rock/pop, and world. It is one of 

the most widely used datasets in music information retrieval research. 

The audio signal is converted into a spectrogram image (x axis: time; 

y axis: frequencies) from which texture features are extracted [11].  

 KU: the BUTTERFLY dataset contains 140 butterfly images divided 

into 14 classes of different butterfly species of Styridae family. Each 

image was cropped to a 256 × 256 pixel image before processing [79]. 

Each image was split into two non-overlapping equal regions (an 

upper and lower region). For each region a set of descriptors were 

extracted. 
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Table 2. Datasets used in this paper 

 

Dataset #Classes #Samples Sample size Available at 

PS 2 917 Variable http://labs.fme.aegean.gr/decision/d

ownloads 

VI 15 1500 41 × 41 http://www.cb.uu.se/~gustaf/virust

exture 

CH 5 327 512 × 382 http://ome.grc.nia.nih.gov/iicbu200

8/hela/index.html#cho 

SM 2 2868 100 × 100 http://staff.ustc.edu.cn/~yfn/vsd.ht

ml 

HI 4 2828 Variable http://www.informed.unal.edu.co/h

istologyDS 

BR 2 584 Variable Upon request to 

ge.braz@gmail.com 

PR 2 349 Variable Upon request to 

loris.nanni@unipd.it 

HE 10 862 512 × 382 http://ome.grc.nia.nih.gov/iicbu200

8/hela/index.html 

LO 10 502 768 × 512 http://locate.imb.uq.edu.au/downlo

ads.shtml 

TR 11 553 768 × 512 http://locate.imb.uq.edu.au/downlo

ads.shtml 

PI 13 903 Variable http://imagelab.ing.unimo.it/files/bi

ble_dataset.zip 

RN 10 200 1024 × 1024 http://ome.grc.nia.nih.gov/iicbu200

8/rnai/index.html 

PA 13 2338 Variable http://www.cat.uab.cat/~joost/paint

ing91.html 

LE 20 1200 128 × 128 Upon request to bruno@ifsc.usp.br 

IS 6 1424 513 × 800 Upon request to 

loris.nanni@unipd.it 

KU 14 140 128 × 256 Upon request to 

yilmazkaya1977@gmail.com 

FM 10 1000 192 × 256 http://people.csail.mit.edu/celiu/CV

PR2010/FMD/ 

SR 15 4485 Variable http://www-

cvr.ai.uiuc.edu/ponce_grp/data/ 

FR 102 8148 Variable http://www.robots.ox.ac.uk/~vgg/d

ata/flowers/102/ 
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 FM: the FLICKR MATERIAL dataset contains 1000 images of 10 

different materials classes: fabric, foliage, glass, leather, metal, paper, 

plastic, stone, water, and wood. For each class, 50 images are close-up 

views, and the other 50 are views at object-scale. The location of the 

object is defined in each image by a binary, manually-labeled mask. 

Here we considered only the foreground image and use the same 

training and testing sets suggested in [80].  

 SR: the SCENE dataset contains 8100 images divided into 15 classes 

scene [81]. The testing protocol requires five experiments, each using 

100 randomly selected images per class for training; the remaining 

images are used for testing. Each image was split into four non-

overlapping equal regions and a central region half the size of the 

original image. For each region a set of descriptors were extracted. 

 FR: the OXFORD FLOWERS 102 dataset contains 8189 images 

divided into 102 categories, containing 40 to 250 images each [82]. 

Twenty images were selected for each class [82].  

 

 

4. EXPERIMENTAL RESULTS 
 

The aim of the first experiment, reported in Table 2, was to compare the 

different stand-alone descriptors that were listed and described in section 3 and 

reported in Table 1.  

We compared all the descriptors reported in Table 3 using the Wilcoxon 

signed rank test (p-value 0.1). The best performing approaches are the 

following: 

 

 LTP outperforms 20 other approaches. 

 DEN outperforms18 other approaches. 

 CLBP outperforms18 other approaches. 

 RIC outperforms18 other approaches. 

 

In the last two rows of Table 3, we reported two ensembles of classifiers 

that significantly boosts the performance of the stand-alone methods: 

 

 F1 is the sum rule among LTP, GO and RIC. 

 F2 is the sum rule among LTP, GO, RIC, MOR, HOG and CLBP. 

 



 

Table 3. Comparison among state-of-the-art approaches 

 

 PS VI CH SM HI BR PR HE LO TR PI RN PA LE IS KU FM SR FL 

LHF 86.4 92.5 97.9 99.7 84.7 91.1 82.5 95.9 97.1 97.6 85.5 92.4 79.1 96.5 90.4 89.5 76.5 96.4 86.4 

LPQ 90.3 94.9 99.2 99.8 91.3 95.6 86.1 97.5 97.6 97.6 90.7 95.3 88.3 98.9 91.9 91.1 78.2 97.8 90.8 

HOG 90.2 95.0 99.2 93.8 92.0 95.7 86.2 97.2 97.6 97.7 92.8 95.2 79.2 90.9 90.4 91.9 78.3 93.0 90.7 

LBP 90.1 92.1 99.4 99.7 89.1 93.7 80.1 98.0 98.6 98.5 91.7 94.7 85.3 98.3 92.2 89.9 76.8 97.1 89.3 

LTP 91.4 93.4 99.9 99.7 91.5 96.9 89.6 98.1 99.4 99.2 92.8 96.9 89.0 97.9 92.3 91.5 79.0 97.6 89.8 

MOR 91.1 96.5 99.9 99.3 89.9 89.1 87.6 97.8 99.3 99.4 87.5 97.1 83.8 95.4 88.1 89.6 73.5 95.4 87.2 

LCP 77.7 87.3 98.8 97.1 81.9 93.1 80.0 96.1 98.9 96.8 83.3 94.4 77.9 93.3 90.4 82.7 71.5 94.6 78.9 

NTL 83.2 91.6 99.3 99.5 84.6 82.1 70.9 96.5 96.3 97.5 93.7 88.6 93.7 86.7 79.6 93.1 76.1 93.8 83.7 

DEN 85.7 95.2 99.7 99.8 91.8 93.6 87.9 98.0 98.8 98.3 92.2 95.3 89.5 98.2 91.7 90.9 78.9 98.2 88.3 

CLBP 88.0 95.6 99.3 99.9 92.4 95.3 83.9 98.7 98.4 98.6 91.7 94.9 89.2 98.1 92.7 89.9 80.1 98.0 90.0 

RIC 91.8 97.6 99.2 99.8 90.2 92.9 88.6 97.3 99.0 98.8 90.8 96.6 86.7 97.4 88.6 89.3 80.3 97.0 92.3 

WLD 79.5 88.0 99.9 98.4 87.2 93.0 85.4 94.1 97.9 98.8 87.0 97.4 85.9 96.5 90.4 91.0 73.8 96.0 86.8 

HASC 90.1 94.2 99.7 99.8 87.2 90.6 88.9 97.2 99.0 99.3 88.0 96.7 85.6 98.1 93.2 89.8 74.0 96.0 86.1 

GAB 90.0 91.5 99.3 98.1 83.0 91.0 83.4 95.0 98.0 98.4 89.4 96.7 79.4 95.4 91.6 91.6 66.2 94.5 82.3 

RLBP 87.4 94.2 99.0 99.8 89.4 90.3 81.3 97.6 99.1 99.4 85.5 95.2 85.9 97.4 89.2 88.4 80.4 95.9 90.1 

MRE 87.5 98.0 98.6 99.8 91.9 78.0 86.4 98.2 98.4 97.5 91.7 90.2 85.9 97.3 88.5 89.3 76.2 97.1 92.0 

MSJ 85.7 91.0 98.9 99.1 85.0 91.0 84.8 96.0 98.9 98.2 85.4 96.8 84.6 95.4 91.8 81.4 78.5 92.5 59.3 

LDTP 87.8 88.1 99.6 99.0 86.4 90.3 84.4 97.1 98.6 98.4 86.1 96.4 82.8 95.9 90.4 89.4 66.7 96.3 85.8 

LAP 81.4 89.1 99.3 99.8 83.5 91.5 77.2 97.4 99.3 98.7 86.3 92.9 81.2 92.2 89.7 89.5 77.2 96.7 88.8 

HA 82.9 90.0 96.6 97.8 76.9 79.6 74.2 95.4 98.6 98.2 84.7 91.2 73.4 94.5 90.4 89.8 65.4 95.4 80.7 

DB4 83.6 91.7 98.7 97.7 78.5 82.8 78.0 95.9 96.9 97.7 79.7 91.9 72.5 91.6 90.3 89.3 63.8 95.8 80.0 

COI 85.0 92.5 98.8 97.1 77.4 81.0 75.5 96.4 97.3 98.0 82.1 91.1 74.0 92.6 91.2 90.0 64.2 95.2 81.1 

FDCT 85.4 91.2 99.1 96.8 82.2 91.8 84.7 95.2 98.3 98.5 84.3 96.8 83.0 95.8 92.0 89.4 70.9 93.3 79.4 

DISC 87.9 97.0 99.2 99.8 90.3 79.3 86.5 97.1 97.7 51.6 88.9 94.3 87.9 98.0 89.5 88.4 78.2 96.5 91.9 

GO 89.1 95.3 99.1 99.8 87.4 80.1 91.2 98.2 98.4 96.1 98.7 90.2 88.4 97.0 93.3 92.6 75.4 98.2 94.4 

F1 94.6 98.9 99.9 99.9 92.9 95.2 94.2 99.4 99.9 99.7 98.3 97.5 93.2 98.6 94.3 91.2 84.5 98.9 96.1 

F2 96.0 98.3 99.9 99.9 94.5 96.7 94.5 99.5 99.8 99.8 98.0 98.6 94.2 98.8 95.3 91.9 85.5 99.1 95.8 



 

Table 4. Ensemble of descriptors 

 

 PS VI CH SM HI BR PR HE LO TR PI RN PA LE IS KU FM SR FL 

LPQ 90.3 94.9 99.2 99.8 91.3 95.6 86.1 97.5 97.6 97.6 90.7 95.3 88.3 98.9 91.9 91.1 78.2 97.8 90.8 

MLPQ 91.8 97.6 100 99.3 93.1 97.0 94.7 99.2 99.8 99.6 95.3 98.4 92.1 97.7 95.6 90.8 81.5 98.4 94.0 

DpSA 84.6 95.0 98.2 97.0 84.0 77.6 74.0 96.7 98.2 95.4 83.4 87.7 74.5 94.6 85.7 88.1 61.7 95.2 86.6 

DpEN 91.4 97.9 99.9 99.2 90.5 85.7 90.5 98.8 99.1 98.7 91.4 92.1 79.7 96.0 91.8 90.4 69.9 97.6 86.7 

LHF 86.4 92.5 97.9 99.7 84.7 91.1 82.5 95.9 97.1 97.6 85.5 92.4 79.1 96.5 90.4 89.5 76.5 96.4 86.4 

MLHF 91.3 93.9 99.2 99.7 90.1 94.6 85.4 97.7 98.2 98.4 90.9 95.1 85.1 98.0 90.3 90.0 78.9 97.1 89.1 

MLHF_t 91.5 93.3 99.6 99.5 90.5 96.7 86.5 97.3 99.2 98.7 91.8 97.2 87.2 97.5 91.7 91.0 80.6 97.2 89.4 

BSIF 87.1 91.2 99.3 99.8 91.0 94.8 89.2 97.2 98.7 98.6 93.5 93.5 87.0 97.8 92.6 92.5 76.0 96.5 91.5 

FBSIF 91.4 97.0 99.9 99.9 94.0 96.7 91.9 99.2 99.8 99.8 95.7 98.2 93.2 99.1 94.8 90.6 79.8 98.6 94.4 

LTP 91.4 93.4 99.9 99.7 91.5 96.9 89.6 98.1 99.4 99.2 92.8 96.9 89.0 97.9 92.3 91.5 79.0 97.6 89.8 

SLQ 85.2 95.3 100 99.7 92.2 95.5 79.9 97.8 99.2 99.7 83.2 97.2 88.2 97.4 91.3 88.9 82.0 96.4 92.0 

SLQT 90.1 95.7 100 99.8 93.2 97.6 87.7 98.8 99.7 99.7 91.2 97.7 90.7 98.4 93.1 90.6 82.9 98.0 92.4 

F2 96.0 98.3 99.9 99.9 94.5 96.7 94.5 99.5 99.8 99.8 98.0 98.6 94.2 98.8 95.3 91.9 85.5 99.1 95.8 

F3 96.5 98.5 100 99.9 94.9 97.1 95.0 99.6 99.9 99.8 98.2 98.8 94.8 98.9 95.9 90.6 85.5 99.2 95.9 

 

  



 

Table 5. Preprocessing validation 

 

 PS VI CH SM HI BR PR HE LO TR PI RN PA LE IS KU FM SR FL 

RIC 91.8 97.6 99.2 99.8 90.2 92.9 88.6 97.3 99.0 98.8 90.8 96.6 86.7 97.4 88.6 89.3 80.3 97.0 92.3 

RICep 91.8 98.2 99.6 99.7 92.8 96.6 90.9 98.3 99.5 99.5 92.1 96.2 58.9 98.1 90.7 88.7 83.0 98.2 92.3 

LPQ 90.3 94.9 99.2 99.8 91.3 95.6 86.1 97.5 97.6 97.6 90.7 95.3 88.3 98.9 91.9 91.1 78.2 97.8 90.8 

LPQep 91.6 96.7 99.5 99.7 92.8 96.8 90.2 98.0 99.0 98.9 93.3 96.1 91.4 99.2 93.0 90.7 81.2 98.6 91.8 

HASC 90.1 94.2 99.7 99.8 87.2 90.6 88.9 97.2 99.0 99.3 88.0 96.7 85.6 98.1 93.2 89.8 74.0 96.0 86.1 

HASCep 92.8 96.7 99.9 99.9 89.7 94.8 90.5 98.6 99.5 99.8 91.5 98.2 88.7 98.9 95.3 91.2 77.6 97.5 88.6 

GAB 90.0 91.5 99.3 98.1 83.0 91.0 83.4 95.0 98.0 98.4 89.4 96.7 79.4 95.4 91.6 91.6 66.2 94.5 82.3 

GABep 92.6 94.6 99.7 99.1 86.9 94.2 88.8 96.5 99.2 99.5 91.8 97.1 82.2 97.1 93.8 91.6 70.5 96.1 84.0 

CLBP 88.0 95.6 99.3 99.9 92.4 95.3 83.9 98.7 98.4 98.6 91.7 94.9 89.2 98.1 92.7 89.9 80.1 98.0 90.0 

CLBPep 90.7 97.1 99.9 99.7 93.1 95.9 91.4 98.2 99.0 99.1 92.8 94.9 91.9 98.4 93.6 90.3 81.9 98.7 91.0 

LTP 91.4 93.4 99.9 99.7 91.5 96.9 89.6 98.1 99.4 99.2 92.8 96.9 89.0 97.9 92.3 91.5 79.0 97.6 89.8 

LTPep 91.0 95.8 99.9 99.8 93.0 97.7 91.1 98.6 99.8 99.6 94.4 97.7 91.5 97.9 93.4 89.3 81.6 98.5 91.6 

 

Table 6. Region-based validation 

 

 PS VI CH SM HI BR PR HE LO TR PI RN HP PA LE IS KU FM SR FL 

RIC 91.8 97.6 99.2 99.8 90.2 92.9 88.6 97.3 99.0 98.8 90.8 96.6 93.5 86.7 97.4 88.6 89.3 80.3 97.0 92.3 

RICer 92.6 97.8 99.8 99.9 91.9 94.5 89.9 98.5 99.5 99.2 93.5 97.0 94.2 89.5 97.7 91.4 89.7 82.5 97.4 93.8 

LTP 91.4 93.4 99.9 99.7 91.5 96.9 89.6 98.1 99.4 99.2 92.8 96.9 88.8 89.0 97.9 92.3 91.5 79.0 97.6 89.8 

LTPer 91.3 94.5 100 99.7 92.4 97.4 92.8 98.8 99.7 99.6 93.6 97.3 91.6 90.8 97.9 93.6 91.5 77.5 97.9 91.5 

LPQ 90.3 94.9 99.2 99.8 91.3 95.6 86.1 97.5 97.6 97.6 90.7 95.3 90.9 88.3 98.9 91.9 91.1 78.2 97.8 90.8 

LPQer 90.7 95.3 99.7 99.9 92.3 97.0 89.8 98.3 98.6 98.7 93.4 95.3 92.3 89.8 98.9 94.0 91.3 80.5 98.1 92.3 
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In the following experiment (see Table 4), we reported the performance of 

different fusions among descriptors. Clearly, the ensemble versions of a 

descriptor improved the stand-alone versions, i.e., MLPQ outperformed LPQ, 

DpEN outperformed DpSA, and so on. Among the methods reported in Table 

4, the best performance was obtained by MLPQ, which outperformed LTP (the 

best stand-alone descriptor) with a p-value of 0.01. We tried to improve the 

ensemble F2 reported in Table 4 by combining it with methods reported in 

Table 4; the highest performance was obtained by combining the descriptors 

that belong to F2 with MLPQ, DpEN, and FBSIF using the sum rule (we label 

this ensemble F3). Notice that before each fusion the scores of each descriptor 

were normalized to mean 0 and standard deviation 1.  

In Tables 5 and 6, we compared standard texture descriptors with their 

ensembles built using the preprocessing and the region-based methods detailed 

in sections 2.7 and 2.8. To reduce the computation time, we run this 

experiment only with a subset of the whole set of texture descriptors. Given a 

descriptor named X, its ensemble version based on preprocessing methods was 

labeled Xep, while its ensemble version using the region-based approach was 

labeled Xer. As expected, the ensembles clearly outperformed the stand-alone 

versions of each descriptor. 

The ensemble Xep was given by weighted sum rule among SVM, trained 

using the descriptor extracted from the original image (with weight 4), and the 

SVMs trained on the images obtained by the four preprocessing methods 

presented in section 2.7 (each with weight 1). 

The ensemble Xer was given by sum rule among SVM trained using the 

descriptor extracted from the original image and the SVMs trained using the 

histograms built by the methods Edge, Saliency, and Wavelet. Whenever a 

given method built x histograms, the scores were summed and normalized by 

dividing the sum by x. 

We attempted to improve F3 by combining it with the approaches reported 

in Tables 5 and 6 but found no improvement with a p-value of 0.1. 

 

 

CONCLUSION 
 

In this chapter, we attempt to determine empirically, using a large set of 

benchmark databases representing a broad range of problems, the best 

ensemble method for extracting features from an image using a set of texture 

descriptors. Both stand-alone and ensembles of descriptors are compared, 
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along with many stand-alone and state-of-the-art ensemble approaches 

proposed in the literature. 

Our experimental results lead us to propose an ensemble of descriptors 

that works extremely well across the entire set of tested datasets. Experiments 

clearly demonstrate that our proposed ensemble F3 gets very good results, 

even when we compare it with systems that were built ad-hoc for a given 

image classification problem, such as the following: 

 

 In [77] the dataset PA was proposed and an ensemble of different 

descriptors (along with bag-of-feature approaches and color 

descriptors) obtained an accuracy of 62.2%, while F3 obtains an 

accuracy of 66.3%. 

 In [11] a set of texture descriptors obtained an accuracy of 81.6% in 

the IS dataset, whereas F3 obtains an accuracy of 86.3%. 

 

In the future, we plan on improving our ensemble approaches by 

combining them with color-based descriptors and approaches based on bag-of-

features (e.g., SIFT). 

The MATLAB source code to replicate our experiments will be made 

available at (https://www.dei.unipd.it/node/2357 +Pattern Recognition and 

Ensemble Classifiers). 
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ABSTRACT 
 

The contamination of natural waters and the lower atmosphere by 

heavy metal ions creates a serious ecological problem. Mercury is one of 

the most toxic heavy metals, because it is not biodegradable. We have 

studied the physical properties of mercury films on partially 

hydrogenated imperfect graphene by means of molecular dynamics at 300 

K. Films prepared on the basis of three various types of the atomic 

interaction potential for mercury and other constant interaction potentials 

are considered. It is shown that the one most promising is the 

Schwerdtfeger potential function, at which mercury atoms do not fall into 

the divacancies present on graphene and atom packing with the lowest 

energy are realized in a liquid film and the film gradually fold into a drop. 

Another computer experiment has been employed to study rapid heating 

of a mercury film on graphene containing Stone–Wales defects. 

Hydrogenated edges of a graphene sheet withstand heating by 800 K. As 

the film contracts into a droplet, the horizontal component of the self-

diffusion coefficient of Hg atoms monotonically decreases, while the 
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vertical component passes through a deep minimum, which reflects the 

onset of droplet rising over the substrate. Formation of the droplet leads 

to a decrease in the blunt contact angle. Temperature–related changes in 

graphene manifest themselves as a rise in the intensity of additional peaks 

in the angular distribution of the closest neighbors, oscillatory pattern of 

the stress acting in its plane, and an almost linear growth of roughness. 

Molecular dynamics simulation of the bombardment of a target with a 

Xe13 cluster beam at energies of 5–30 eV and incidence angles of 0°–60° 

aiming to remove a mercury film from partially hydrogenated imperfect 

graphene has been performed. The graphene is completely cleaned of 

mercury at a cluster energy of EXe ≥ 15 eV. Mercury is removed from the 

graphene film via sputtering of single atoms and droplet detachment. A 

stress in graphene resulting from forces normal to the sheet plane is 

noticeably higher than that due to forces acting in its plane. Bombardment 

at an angle of incidence of 45° is more efficient than that at incidence of 

0° and 60° and leads to lower graphene roughness. Thus, mercury can be 

removed from graphene by heating or bombarding with heavy noble gas 

clusters. 

 

 

1. INTRODUCTION 
 

Environmental pollution with heavy metals is a global problem [1, 2], due 

to its detrimental consequences for health [3]. Composite membranes based on 

graphene for the accumulation of mercury have were proposed in [4]. The 

structure and physical properties of liquid mercury–graphene interfaces remain 

unstudied; meanwhile, the prospect of using graphene as a filter demands their 

study. Liquids with isotropic pair interactions encounter vibrational interface 

structures at temperatures close to melting point mT , providing that the cm TT /  

ratio (where cT  is the critical temperature) is low. The melting point of bulk 

mercury mT  = 234 K. Cold liquid metals such as Hg  and Ga  have low 

cm TT /  = 0.13 and 0.15, respectively.  

Molecular dynamic (MD) modeling reveals their nonmonotonous density 

profiles near the liquid mercury/vapor interface [5]. On the other hand,  

the interface range has a non-zero thickness that depends on temperature. 

Calculating the properties of a Hg  liquid–vapor interface with clear 

allowance for the dependence of the potential on density did not result in 

satisfactory agreement with the experimental data on ionic and electron 
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density distributions orthogonal to the surface or on the reflection coefficient 

[6]. 

Theoretical study of liquids of the Hg type requires knowledge of the 

effective atomic potential, which allows correct predictions of the liquid/vapor 

phase diagram in temperature–density coordinates. Out of all the proposed 

potential functions for mercury, it is difficult to choose one on whose basis the 

structure of liquid mercury on graphene can be reproduced satisfactorily. 

The structure of solid metals in contact with graphene (e.g., deposited 

copper films) has been studied more thoroughly [7]. 

Mercury absorption from smoke fumes has been studied with the use of 

X–ray absorption fine structure (XAFS) spectroscopy [8, 9]. XAFS spectra 

suggested that there is chemisorption of Hg on activated carbon. These data 

gave grounds to think that adsorption took place via halides, sulfides, and 

oxygen anions present on an activated–carbon surface. Moreover, chlorinated 

and bromated activated carbon was revealed with the use of X–ray absorption 

spectroscopy and X–ray photoelectron spectroscopy after exposure of carbon 

samples in smoke fumes containing Hg  in an amount of 204 μg/m3 [10]. 

Mercury was not found on the surface of activated carbon; however, Hg – Br  

and Hg – Cl  complexes were present. This fact underlay the assumption that 

sites containing Cl  and Br  were formed on a carbon surface prior to the 

capture of Hg . 

The mechanism of mercury binding by activated–carbon–based sorbents 

was studied in [11]. It was shown that, at low Hg concentrations, it was 

difficult to distinguish between the mechanisms of oxidation and adsorption. 

The difference between them gradually grew with Hg  concentration and 

enhancement of Hg – Hg  interaction. However, because of the close values 

of the bond energies in HgO , 22BrHg , and 2HgBr , these surface–bound 

compounds were, as a rule, indistinguishable by photoelectron spectroscopy. 

Liquid mercury does not wet graphite. Indeed, on highly ordered pyrolitic 

graphite, fresh mercury droplets have a contact angle of 152.5° [12]. As do any 

other liquid metals with surface tensions   higher than 0.18 N/m, mercury 

does not wet carbon nanotubes [13]. The surface tension of mercury is 0.46 

N/m. Nevertheless, wetting and filling of internal cavities of carbon nanotubes 

with mercury take place due to electrowetting [14]. The effect of electrostatic 

interactions on the sorption of hydrocarbons by water droplets ( OH2
  = 0.0729 

N/m) was shown in [15]. The mercury contact angle linearly increases with the 
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curvature of carbon nanotube walls. Therefore, the internal surface of a 

nanotube has a higher phobicity with respect to mercury than the planar 

surface of graphene has [16]. Graphene wetting with mercury has not been 

studied. 

Mercury is the only one of the most abundant metals that remains liquid 

at room temperature. The study of the adsorption of mercury at activated 

carbon was, as a rule, carried out experimentally. There is a limited number of 

theoretical studies concerning this theme. 

Steckel [17] has investigated the interaction between elemental mercury 

and a single benzene ring in order to explain the mechanism through which 

elemental mercury is bound with carbon. Padak et al. [18] investigated the 

effect of different surface functional groups and halogens present on the 

surface of activated carbon on the adsorption of elemental mercury. It has been 

established that the addition of halogen atoms strengthens the adsorption of 

mercury. In [19], Padak and Wilcox have demonstrated a thermodynamic 

approach to the examination of the mechanism of binding of mercury and its 

capture in the form of HgCl  and 2HgCl  on the surface of activated carbon. 

The energies of different possible surface complexes have been determined. In 

the presence of chlorine, the mercury atoms are strongly coupled to the 

surface. In the case of dissociative adsorption, Hg can undergo desorption, 

while HgCl  remains on the surface. The compound 2HgCl  was not found 

on the stable carbon surface [20]. Understanding of the mechanism of the 

adsorption of mercury at activated carbon is important for the development of 

efficient technologies for capturing mercury. 

Mercury is one of the most toxic heavy metals, and its presence is due to 

a combination of natural processes (volcanic activity, erosion of the mercury–

containing sediments) and anthropogenic activity (extraction of minerals, 

pollution from the leather–dressing production and metallization of objects). 

Adsorption is considered to be one of the most efficient and economical 

methods of removing mercury from wastewater and air.  

Recently, graphene membranes have begun to be used in filters for 

separation of trace amounts of undesirable impurities [21–23]. Repeated use of 

graphene in filters requires its nondestructive purification from adsorbed 

substances. Graphene may be purified from metals by irradiating with cluster 

beams of noble gases [24–29] or heating [30–33]. However, heating is 

reasonable to be used, when a metal has rather low boiling temperature Tb. 

Mercury seems to be a possible candidate for the use of this procedure. As a 

rule, ideal graphene is not destroyed upon heating to the boiling temperature of 
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many metals, such as Al, Ni, or Cu, although its edges are damaged [30–32]. 

Graphene edges may be reinforced by hydrogenation. Graphene treated in this 

way withstands cluster bombardment even at a beam energy of 30 eV [34]. It 

is unclear how graphene with a high concentration of Stone–Wales defects 

will behave, because these defects are formed before its melting [35]. 

The aim of this work is to choose an effective pair potential that allows 

reproduction of the structural, thermodynamic and kinetic properties of 

mercury films deposited on graphene in a molecular dynamics model. This 

work also studies the morphology and variations in physical properties 

(induced by rapid–heating) of mercury film on graphene with hydrogenated 

edges and high concentration of Stone–Wales defects. This investigation is 

also aimed at studying the possibility of removing adsorbed mercury from 

graphene via bombardment by xenon clusters. 

 

 

2. MOLECULAR DYNAMIC MODEL  
 

The interatomic interactions in graphene are represented by the many–

body Tersoff potential [36]. The energy of pairwise interaction of atoms i and j 

taking into account the influence of other atoms (many–body effects) is 

written as 
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Here,
 ijr  is the spacing between the atoms i  and j  and the parameters A  

and B  assign the energy characteristics of the repulsion and attraction. The 

many–body parameter of the bond order ijb
 
describes how the binding energy 
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(attractive part ijV
 
of the bond) is formed during a local atomic arrangement 

due to the presence of other neighboring atoms. The function Cf
 
decreases 

from 1 to 0 in the region of 
)2()1( RrR ij  . The parameters 

)1(R
 
and 

)2(R
 

were selected so as to include into the consideration only nearest neighbors. 

The potential energy is a many–body function of the positions of atoms i , j , 

and k  and is determined by the parameters 
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where the parameters n , in , and   assign the binding force depending on 

the environment. The effective coordination number ij
 

determines the 

average number of nearest neighbors with taking into account not only the 

distances between them, but also the bond angles ijk . The summing up in 

expression (4) is conducted over all k  first–order neighbors not equal to i  and 

j . These neighbors are selected for each i - j  pair and are defined at each 

time moment; )( ijkg 
 
is the function of the angle between ijr

 
and ikr

 
where 

ijr  is the vector drawn from the point of the location of the atom i  to the point 

where the atom j  is located. The parameter d  assigns the width of the sharp 

maximum in the )( ijkg 
 
angular dependence, the parameter c  assigns the 

height of this peak, and the function )( ijkg   has a minimum at h = )cos( . 

All parameters of the potential were selected so as to match the theoretical and 

experimental data (energy of cohesion, lattice parameters, bulk moduli) for 

real and hypothetical graphite and diamond. 

Because of the insufficiently precise determination of the force 

characteristics that control the C-C  bonds, the Tersoff potential does not 
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have a barrier to the rotation about the single bond. The inadequacy of the 

semiempirical Tersoff potential is revealed when studying the dynamic 

properties of graphite; it manifests in the rotation of the entire fragment to be 

simulated and can be corrected due by adding a torsion–like term [37]. The 

parameters of this potential were refined via fitting to the observed properties 

(standard deviations for the vibration frequencies) of graphite and diamond. 

The new analytical form of the potential of local torsion is given in [38]. The 

use in this work of weighting functions for the bond orders ensures a smooth 

removal of the energy of torsion connected with the dihedral angle upon any 

sequential break of bonds [38]. The distance 
)2(R  of the covalent binding in 

the original Tersoff potential was limited to the value of 0.21 nm. The 

simulation of graphene with this potential led not only to an uncontrollable 

rotation, but also to the cracking of the graphene sheet [39, 40]. Therefore, we 

increased the value of 
)2(R  to 0.23 nm and also included an additional weak 

attraction at r  0.23 nm assigned by the Lennard–Jones (LJ) potential with 

the parameters used in [38]. 

The modeling of mercury adsorption on surface requires exact potentials 

of Hg – Hg  and Hg – substrate interaction. Potentials presented as pair 

interactions are usually used to describe adsorption. The Lennard–Jones 

potential is the simplest of these. The parameters of this potential were chosen 

according to the data on the viscosity of gaseous mercury [41]. The Silver–

Goldman potential (SG) is adjusted to ab initio data and provides good 

agreement with experimental data on spectroscopic constants [42]. The SG 

potential is based on the Hartree–Fock model of dispersion, 
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where  

 

 2)1/28.1(exp)(  rrrf cc , crr 28.1  

=1.0,      crr 28.1  

        (7) 

 

The parameters of this potential are given in [42]. 
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The pair potential that was utilized mainly for the description of Hg-Hg  

interactions was proposed in [43] in the following form: 
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The authors of [43] corrected the original Schwerdtfeger (SCH) potential 

[44] for mercury dimer by scaling distances using the coefficient   = 1.167. 

The parameters 
*

2 ja  represented in [43] correspond to the density of liquid 

Hg  at T  = 300 K. The C-Hg  and Xe-Xe  interactions were assigned by 

a Lennard–Jones potential with the parameters established in [45, 46]. The 

interaction between Xe  atoms and the atoms of the target ( Hg  and C ) was 

assigned by a purely repulsive Ziegler–Biersack–Littmark (ZBL) potential as 

follows [47]: 
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where iZ  and jZ  are the atomic numbers of the atoms i  and j ; e  is the 

elementary electric charge; r  is the interatomic distance; and the parameter a  

is determined by the expression 

 

  123.023.0

08854.0


 ji ZZaa , (10) 

 

where 0a  is the Bohr radius.  

We disregard the weak attraction between the atoms of Xe  and Hg  and 

also between Xe  and C , since the primary purpose of this investigation is 

the examination of the transfer of energy and momentum, rather than of the 

chemical bonding [48]. 
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The choice of interaction potential between atoms of mercury placed on 

graphene was carried out in the presence of divacancies in the substrate. 

Divacancies are one of the most widespread defects in graphene. The presence 

of such defects remarkably enhances the coupling of graphene with a 

deposited metal. In present model, nine divacancies were formed nearly 

uniformly on a graphene sheet. The hydrogenation of graphene results in slight 

surface ribbing, which also increases the linkage between metal and graphene. 

Preliminary partial hydrogenation strengthened the graphene edges and 

stabilized divacancies. A hydrogen atom was effectively added to each 

boundary C  atom (including those in the vicinities of divacancies). More 

specifically, an entire CH  group was considered in considering interactions, 

rather than individual H atoms. This group interacted with C  atoms, other 

CH  groups [49], and Hg atoms [42] through the LJ potential. Fourteen CH  

groups were arranged along the perimeter of each divacancy. Each group was 

described according to monoatomic scheme in [49]. This general scheme was 

designed in developing translated force fields used to predict the 

thermodynamic properties of complex molecules [50]. Similar hydrogenation 

was employed to strengthen graphene edges in cases of modeling of the 

mercury heating on graphene and the Xe cluster bombardment of the 

“mercury–graphene” target. 

Stone–Wales defects along with divacancies are ones of the most 

widespread defects in graphene. Each Stone–Wales defect is a combination of 

two contiguous, five, and seven–membered rings. When heating or 

bombarding was investigated the graphene sheet that used to deposit Hg  had 

six such defects approximately uniformly distributed over its surface. 

A film of mercury on graphene was formed in a separate molecular 

dynamic calculation in two stages. At the first stage, the Hg  atoms were 

placed above the centers of nonadjacent cells of graphene in such a way that 

the interatomic distance between Hg  and C  atoms be equal to 2.30 Å, 

calculated according to the density–functional method [11]. On top of this 

loose film consisting of 49 mercury atoms, 51 additional Hg  atoms were 

deposited randomly. Then, the system, which consists of 100 atoms of Hg  

and 406 atoms of C , was brought to equilibrium in the MD calculation with a 

duration of 1 million time steps ( t  = 0.2 fs). For the numerical solution of 

the equations of motion, the Verlet algorithm was used [51]. The thus–

obtained target was then bombarded with icosahedral 13Xe  clusters. Five 
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starting points for the positioning of the centers of 13Xe  clusters were located 

uniformly along a line parallel to the oy  axis (the armchair direction). This 

line was placed either along the left–hand edge of the graphene sheet (upon the 

vertical bombardment) or with an additional displacement to the left from it 

(upon the inclined bombardment), and was lifted to a height of 1.5 nm in the 

direction of the oz  axis. The interval equal to the length of the graphene sheet 

in the direction of the ox axis (the zigzag direction) was divided into five equal 

sections with a length 5/xi LL  . At the beginning of every subsequent 

cycle of cluster impacts, the line of the starting points of the 13Xe  clusters 

was advanced a distance iL
 
horizontally. As a result, the surface of the film 

approximated by the plane was covered with 25 evenly distributed points at 

which the cluster impacts were aimed. Each series included 5 cycles, or 25 

impacts. At the starting point, all atoms of the 13Xe  cluster were given the 

same velocity in the direction of bombardment. The clusters were sent off in 

turn toward the target. The lifetime (determined by the sum of the time of 

flight and time of interaction with the target) of each cluster was limited to 8 

ps. After this time, the Xe  atoms of the destroyed cluster were excluded from 

the consideration and a new 13Xe  cluster began moving from another initial 

point. The cycle of bombardment by five clusters took 40 ps, while the series 

of five cycles took 0.2 ns and the entire time of bombardment (five series) 

took 1 ns. The clusters used for bombardments had kinetic energies of 5, 10, 

15, 20, and 30 eV; the angles of incidence were 0°, 45°, and 60°.  

The impact of a cluster on the surface was accompanied by heating the 

system. The moderate removal of the heat released from the system was 

performed according to the Berendsen scheme with a coupling time constant 

c  = 4 fs [52]. The forced reduction in the temperature was conducted via the 

scaling of velocities v  at each time step as follows: 
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where v  and v  is the new and current value of velocity, respectively,  is 

the scaling factor,
 0T  is the assigned temperature (300 K), and T  is the 

current temperature.  

The density profile of the metallic film was calculated as follows: 
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where )(zn  is the number of Hg  atoms in the layer parallel to the plane of 

the graphene, Hgσ  is the effective diameter of the Hg  atom, h  is the width 

of the layer, xyS  is the area of the graphene surface, and sN  is the number of 

tests. 

In order to calculate contact angle   between a droplet (film) surface and 

graphene, the largest horizontal cross–sectional area of a droplet was divided 

into three regions: (1) a circle with a constant area, which determines the 

region of the contact with graphene, (2) a ring comprising the projections of 

neighbors closest to region (1), and (3) an analogous ring used to reveal the 

external atoms of the droplet. Mercury atoms closest to the graphene surface 

were located in regions 1 and 2. Parameters of the procedure used for 

determining angles   were selected empirically. The averaging over the sizes 

of the rings and heights (or the number of selected Hg  atoms), at which Hg  

atoms were located in regions 2 and 3 yielded the average values of the 

horizontal and vertical coordinates used to find tan . The determination of 

angle   required averaging over time as well. 

The self–diffusion coefficient was defined through the mean square of the 

displacement  2)(tr  of the system consisting of N  atoms of Hg  as 

follows: 
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Here, 3  is the dimensionality of space;
 

...  means averaging over p , 

where p  is the number of time intervals (with the initial time 0t ) for the 

determination of    
2
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)()(
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j

jj tt
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t rrr  and jr  is the radius 

vector of the atom j . Averaging is performed over five time dependences, 

each calculated in an interval   = 200 ps. 

To calculate stresses that appear in graphene, the graphene sheet was 

divided into surface elements. The stresses )(lu  that appear under the 

action of the forces of direction   (= x , y , z ) are calculated on each 

element with the order number l  that has the orientation u . In these 

calculations, products of the projections of the velocities of atoms and the 

projections of the forces 


ijf  that act on the l th element from the other atoms 

with the fulfillment of corresponding conditions are used as follows [53, 54]: 
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Here, k  is the number of atoms on the element l ,   is the volume per atom, 

m  is the mass of an atom,
 

iv  is the   projection of the velocity of atom i , 

and lS  is the area of the element l . The conditions for summation over j  in 

the last sum in expression (14) are given in the lower and upper indices of the 

sum, the force that appears upon the interaction of atoms i  and j  goes 

through the l th element, and iu  is the current coordinate of the atom i  ( u  

can take values zyx ,, ). In the case when u = z , u  represents the average 

level (height) of atoms C  in graphene. 

The graphene sheet had dimensions of 3.4 × 2.8 nm and contained 406 

atoms. Each element l  separated on this sheet and elongated along the axis 

oy  (perpendicular to the zigzag direction of graphene) contained 14 C  atoms 

and had an area of 0.68 nm2. Specifically, this layout corresponds to the data 

shown in Figure 17.  
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The total stresses that act in the plane of graphene were determined by 

summing the corresponding elementary stresses as follows: 
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where lN  is the number of surface elements. 

The roughness of the surface (or the arithmetic mean deviation of the 

profile) was calculated as 
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where gN  is the number of sites (atoms) on the surface of the graphene sheet,
 

iz  is the level of atom i , z  is the level of the graphene surface, and the levels 

iz  and z  are determined at the same time moment. 

The total energy of a free one–sheeted graphene obtained at T  = 300 K is 

equal to –7.02 eV, which is in agreement with the quantum–mechanical 

calculation (–6.98 eV) [55]. The value of the isochoric heat capacity of liquid 

mercury at this temperature (28.4 J/(mol K) calculated in the MD model 

agrees with the experimental value of 26.9 J/(mol K). 

 

 

3. CHECK OF THE HG–HG INTERACTION POTENTIAL  

FOR MERCURY DEPOSITED ON GRAPHENE 
 

Energy HgHgU  of Hg – Hg  interaction in the film, which was set after 

equilibrating the system with the LJ potential, was one-third that of the bond 

energy in a 2Hg  dimer, determined with the same potential [42]. The energies 

HgHgU  for three potentials with energies of mercury–graphene interaction 

CHgU  are given in the Table 1. It can be seen the highest absolute values of 

energy HgHgU  were obtained for the Sch potential; the lowest, for the SG 
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potential. On the other hand, the best cohesion between mercury and graphene 

was provided by the LJ potential; the worst, by the Sch potential. 

 

Table 1. Energies HgHgU  and CHgU  of a liquid mercury film on 

graphene for three potentials 

 

Energy Potentials 

LJ  Sch  SG  

HgHgU , eV -0.0236 -0.0280 -0.0011 

CHgU , eV -0.0154 -0.0121 -0.0148 

 

 

Figure 1. Configuration of a mercury film on a modified graphene system, obtained at 

the moment of 200 ps. The positions of H atoms correspond to the coordinates of CH-

groups reduced to one point at the initial moment in time. 

Using the LJ, Sch, and SG potentials for mercury yielded metal films of 

various structures on graphene. The LJ potential yields a denser packing of 

Hg  atoms, while the SG potential yields more loose and uniform packing. 

There is a tendency toward the vaporization of atoms at temperatures as low as 

300 K for the SG potential. The configuration of the H –graphene– Hg –film 

system obtained with the Sch potential is given in Figure 1 for the moment of 

200 ps. At this time, graphene had a slight ribbing that could be detected from 

the deviation of boundary C  atoms from the even row of H  atoms built 

along the initial coordinates of the CH -groups. The Hg  film was in this case 

quite uniform. However, it did not spread over the entire graphene surface; 

rather, it gathered into an elongated drop that was flattened to graphene. None 

of the Hg  atoms spilled onto the other side of graphene through a divacancy, 
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though several metal atoms did get stuck in defects. The movement of Hg  

atoms to the other side of the graphene was observed for two other potentials, 

though these spills were less than 0.08 nm long. The Sch potential was the one 

that was best from the viewpoint of retaining atoms on graphene. 
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Figure 2. Radial distribution functions of mercury films on graphene, obtained with the 

atomic interaction potentials (1) LJ, (2) Sch, (3) SG; (4) g(r) of bulk liquid mercury 

(MD calculations) [56]. 

Due to the thinness of the film, its z -profile of density was determined 

quite roughly and revealed no oscillations for the three types of potentials. 

However, the distribution of Hg  atoms over the graphene surface was neither 

homogeneous nor uniform for the considered cases. The greatest tendency 

toward the formation of dense clusters in a film was characteristic for the 

system created using the LJ potential for mercury (Figure 2), where the first 

three peaks of function )(rg  were the highest and well resolved. A tighter 
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and more compact structure was characteristic of the film obtained using the 

Sch potential: only the first four peaks of function )(rg  were clearly resolved. 

In this case, however, the Hg  film was also shown to be very loose, so the 

first peak of function )(rg  shifted ~0.07 nm away from the position of the 

corresponding peak of function )(rg  for bulk liquid mercury [56]. The four 

first peaks of the film were distributed between the positions of the first and 

third peaks of function )(rg  for liquid mercury. The radial distribution 

function for the film obtained with the SG potential had the greatest (~0.17 

nm, relative to the position of peak of liquidrg )( ) shift of the first peak. The 

emergence of the second peak )(rg  of this film only slightly anticipated the 

position of the third peak of this function for the Hg  film formed using the 

Sch potential. 

The specificity of the geometry of system requires individual 

consideration of horizontal and vertical mobility of Hg  atoms. The behavior 

of the horizontal xyD  and vertical zD
 

components of the self-diffusion 

coefficient of Hg  when calculating at the time intervals p  of 200 ps with 

different atomic interaction potentials for mercury is shown in Figure 3. 

Component xyD
 
grows only up to p  = 2. At subsequent time intervals, xyD

 
usually stabilized or fell inconsiderably.  

This behavior of xyD
 
was due mainly to the initial sealing of the Hg  film 

and the subsequent retention of its density. The highest values of xyD  were 

obtained using the SG potential, while the lowest values were obtained with 

the LJ potential. The Sch potential produced most stable values of xyD
 
at p  

≥ 2. In addition, these values did not differ appreciably from the xyD
 
value 

obtained with the LJ potential. The vertical component of the mobility of Hg  

atoms behaved differently for all considered potentials. In all cases, the zD
 

value grew nonmonotonously along with p . Finally, the maximum value of 

zD
 
was reached with the LJ potential; the minimum value, with the SG 

potential. In this context, the situation is inverse to the behavior of component 

xyD
 
at high p . Another feature of dependence )(nDz  

was determined by the 
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tendency toward vaporization from the film of Hg  atoms with each potential. 

For all three of our model potentials, self-diffusion coefficients were obtained 

that were lower than the experimental value of D  (15.9 × 10–11 m2/s at T  = 

298 K) for liquid mercury [57]. Somewhat better agreement with the 

calculated values of zxy DDD 
 
was achieved when D  was determined 

via nonelastic neutron scattering on liquid mercury (14.3 × 10–11 m2/s at = 297 

K) [58]. 
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Figure 3. (а) Horizontal and (b) vertical components of the mobility coefficients of Hg 

atoms in mercury films on graphene, obtained using the atomic potentials (1) LJ, (2) 

Sch, (3) SG; p is the number of the interval in which coefficients Dxy and Dz were 

determined. 
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Figure 4. Evolution of the roughness of graphene coated by mercury films, obtained 

using the atomic potentials (1) LJ, (2) Sch, and (3) SG. 

Like hydrogenation, a mercury film that forms on graphene affects its 3D 

structure (i.e., its roughness aR ). In calculations, the aR  value increases for 

Hg  films that form with all three potentials (Figure 4). The highest aR  values 

are characteristic of graphene with a metal film obtained via Lennard Jones 

interaction. The Hg  films created with the Sch and SG potentials have similar 

aR  values throughout all calculations. At the final step of calculation, 

however, the aR  value for the Hg  film formed as the result of using the SG 

potential becomes lower. 

 

 

4. MERCURY DROPLET FORMATION  

ON A GRAPHENE SURFACE 
 

Results present in this section, obtained using the Sch potential. Taking 

into account the value of the time step, the calculation time, and the addend for 

the increase in the temperature, it is easy to show that the average rate of the 

system heating is ~1011 K/s. Under these conditions of incomplete structural 

relaxation of the system, it may be superheated. In the case of metals, the 

superheating is aggravated by the effect of the electron subsystem, which 

stabilizes the condensed state. Variations accompanying the heating of a 
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mercury film on graphene are illustrated in Figure 5. The liquid metal film 

begins to partly separate out of graphene already at T  = 300 K. 

 

 

Figure 5. Configurations of the “Hg film on partly hydrogenated defective graphene” 

system resulting from stepwise heating at temperatures of (a) 300 and (b) 1100 K. 

Coordinates of atoms are given in angstroms. 

This is reflected in the rise of the film edges over graphene and film 

thickening. The atoms of the central region of the bent Hg  film are more 

strongly bonded to the substrate and have average minimum distance (created 

by 12–18 Hg  atoms) = 0.28 nm. At 600 K, the Hg  film is completely 

transformed into a droplet contacting with graphene. In this case, average 

distance 
min

HgCr  increases to 0.34 nm. A further increase in the temperature 

leads to a higher rise of the majority of the droplet mass over the graphene 

surface. For example, at 1100 K,
 

min

HgCr  = 0.47 nm. 

As the Hg  film contracts into the droplet, horizontal component xyD  of 

the mobility coefficient of mercury atoms decreases, while vertical component 

zD  passes through a minimum at 600 K (Figure 6). The smooth decrease in 

xyD  characterizes the rolling of the film into a dense droplet. The behavior of 

component zD  indicates that the process of droplet formation ends at T  = 

600 K, and, upon a further increase in the temperature, the vertical mobility is 

somewhat enhanced because of a slight increase in the distance between the 

droplet and the graphene surface. 
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Figure 6. Temperature dependences of the (1) horizontal and (2) vertical components 

of the mobility coefficient for Hg atoms. 

The extent of the transformation of the vibrational spectra of Hg  atoms 

with the temperature increasing from 300 to 1100 K is illustrated in Figure 7. 

At T  = 300 K, the spectrum of the horizontal vibrations is characterized by 

strong bursts diminishing with frequency. At 1100 K, the asymptotic of this 

spectrum remains unchanged, but the intensity of the decreasing peaks drops 

by six or seven times. The intensity of the vertical vibration spectrum 

gradually decreases down to disappearance at frequencies   9.1 × 1012 s–1 

irrespective of the temperature of mercury. However, as the temperature 

increases, the small–scale vibrations imposed onto the spectrum pattern are 

smoothed out. The vertical vibration spectrum is wider than the spectrum of 

horizontal vibrations of Hg  atoms. 
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Vertical (scanned along the oz axis) density profiles )(z  of mercury at 

300 and 600 K are presented in Figure 8. The narrow )(z  profile measured 

at T  = 300 K has two sharp peaks, which suggest a predominantly two–layer 

arrangement of Hg  atoms on graphene. However, at T  = 600 K, the density 

profile widens and shifts upward. The low intensity of the )(z  spectrum at 

the edges and the higher density of the intense peaks in the middle of the 

spectrum characterize the appearance of a spherelike formation, i.e., a droplet 

with a layered structure, which is evident from the large number of narrow 

peaks in the )(z  spectrum. The very close arrangement of a number of these 

peaks indicates the irregularity of the formed structure. 
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Figure 7. Frequency dependences of the (1, 2) horizontal and (3, 4) vertical 

components of phonon spectrum of liquid mercury on graphene measured at different 

temperatures: (1, 3) 300 and (2, 4) 1100 K. 
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Figure 8. Vertical density profiles for liquid mercury on graphene at different 

temperatures: (1) 300 and (2) 600 K. 

The )(rg  radial distribution functions (Figure 9) plotted for the Hg  

atom nearest to the center of mass of liquid mercury also indicate the 

formation of a more compact structure at T  = 1100 K than that at an initial 

temperature of 300 K. The )(rg  function reflects the spherically averaged 

structure of liquid mercury, including that in the horizontal plane, while the 

)(z  function does not do so. A reduction in the number of peaks in the 

)(rg  function at T  = 1100 K suggests the formation of an irregular compact 

structure, in which the distances to the first– and second–order neighbors  

are estimated to be 1r  = 0.29 nm and 2r  = 0.48–0.57 nm, respectively.  

The experimental values of these parameters for liquid mercury at 300 K are 

1r  = 0.31 nm and 2r  = 0.59 nm [59]. 

Variations in the wettability that accompany mercury film rolling into a 

droplet are evident from the temperature dependence of calculated contact 

angle   (Figure 10). An initial increase in the )(T  function (up to T  = 500 

K) is due to the predominance of the influence of film heating over the effect 

relevant to variations in its morphology. It is known that, as the temperature 

increases, the blunt contact angle of a droplet becomes closer to the flat angle. 

In spite of a noticeable rise of the droplet over graphene, which begins from 
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600 K, its separation from the substrate may only be related to a temperature 

of 800 K. The calculation at 600 K ends when seven Hg atoms are still located 

at distances r from graphene shorter than distance minr  = 0.3727 nm 

corresponding to the minimum of the LJ potential describing the Hg –С  

interactions. At 700 K two such cases are observed, while, at T  = 800 and 

900 K, none take place. However, one and two Hg  atoms with minrr   arise 

at T  = 1000 and 1100 K, respectively. Average angle   = 127.1°, which 

corresponds to temperatures of 900–1100 K, may be considered to be the 

contact angle of a 100–atom cluster of Hg  on graphene. This angle is 

noticeably smaller than the contact angle for a macroscopic droplet of mercury 

on pyrolytic graphite (dashed line in Figure 10) [16]. This agrees with the 

common ideas of a reduction in angle   with a decrease in the droplet radius. 

The inset of Figure 10 shows the time dependence of   at 600 K. It can be 

seen that angle   has begun to noticeably decrease by the end of the 

calculation at this temperature. 
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Figure 9. Radial distribution functions calculated for liquid mercury on graphene at 

different temperatures: (1) 300 and (2) 1100 K. 
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Figure 10. Temperature dependences of contact angles for (1) mercury on graphene 

and (2) macroscopic mercury droplet on pyrolytic graphite [16]. The inset shows the 

temperature dependence of contact angle for a mercury droplet on graphene at  

T = 600 K. 
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Figure 11. Angular distributions for nearest neighbors in graphene at a high 

concentration of Stone–Wales defects and different temperatures: (1) 300 and (2)  

1100 K. 
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Figure 12. Temperature dependences of the components of the stress tensor in the 

plane of a mercury–coated defective graphene sheet: (1) σzx, (2) σzy, and (3) σzz. 

A peak at 120°, which indicates the presence of the main elements of the 

two–dimensional structure, i.e., hexagonal honeycombs, dominates in the 

angular distribution of the nearest neighbors in graphene at T  = 300 K (Figure 

11). Additional peaks arise in this distribution due to the high density of the 

Stone–Wales defects (penta– and heptagonal cells). In spite of the fact that 

1100 K is not a high temperature for graphene (its melting temperature is  

mT  = 4900 K), its structure has already suffered from obvious changes. The 

peak at 120° C has become significantly wider. Moreover, the intensities of 

peaks at 30°, 90°, and 148° have substantially increased. 

These changes indicate the growth of the defects in the graphene structure 

at T  = 1100 K. Stresses zx  and zy , which characterize the action of the 

internal horizontal forces in the grapheme plane have close values, which 

weakly vary with an increase in the temperature (Figure 12). A noticeable 

difference between these stresses, which is observed at T  = 300 K, disappears 

while approaching a temperature of 500 K. The values of stress zz , which 

characterizes the action of the vertically directed forces, have the same order 

of magnitude as stresses zx  and zy  have. The )(Tzz  function comprises 

two regions of the most rapid variations, i.e., a decrease upon heating to 400 K 
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and an increase upon heating after 1000 K. The lowest values of zz  are 

observed in a temperature range of 600–800 K, in which the majority of the 

droplet mass rises over graphene. 

Roughness aR  of graphene saturated with the Stone–Wales defects 

rapidly increases with temperature (Figure 13). As a result of vertical 

bombardment by 13Xe  clusters with an energy of 30 eV, graphene containing 

vacancies and coated with a mercury film acquires a roughness, which is close 

to aR  at 400 K without the bombardment [34]. The strong bond between 

carbon atoms in graphene is better preserved at a high temperature (T  ≥ 1000 

K), when the simulation is performed in terms of the Sch potential than within 

the framework of the SG potential. 
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Figure 13. Temperature dependences of roughness coefficient for mercury–coated 

graphene with regard to Hg–Hg interactions plotted with the use of different models: 

(1) SG potential and (2, 3) Sch potential. Temperature is varied by means of (1, 2) 

heating and (3) vertical bombardment by Xe13 clusters with an energy of 30 eV. 

 

5. THE XENON CLUSTER BOMBARDMENT  

OF MERCURY ON GRAPHENE  
 

In this section we consider the behavior of the mercury film on graphene 

when the Hg – Hg  interaction is based on the Schwerdtfeger interaction 

potential. The cluster bombardment using 125 impacts with an angle of 

incidence of 0° did not lead to any significant removal of mercury from 
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graphene at all energies of 13Xe
 
clusters in the range of 5–30 eV. As a rule, 

more than half of the Hg  atoms after the completion of the bombardment 

were bound with graphene, as before. The variations in the principal 

components ( xxσ , yyσ , and zzσ ) of the stress tensor for the Hg film located 

on graphene under the action of 5–eV cluster impacts is shown in Figure 14. In 

the case of structured media, the pressure tensor is not necessarily symmetric, 

because the extrinsic angular momentum can transform into the intrinsic one, 

and vice versa. Here, only the total angular momentum must be conserved. In 

the first approximation, the liquid–metal film on a solid surface can be 

regarded as a viscous liquid. Successive 13Xe  cluster impacts force this liquid 

to move. In this case, the stress tensor is defined as [60] 
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Figure 14. Time dependence of the diagonal stress tensor components (1) σxx, (2) σyy, 

and (3) σzz for the Hg film on graphene subjected to 5–eV Xe13 cluster bombardment. 

αβαβαβ σδσ  P ,  (17) 

 

where αβσ  is the viscous stress tensor.  

The closeness of the functions )(σxx t  and )(σ yy t  (Figure 14) indicates 

very small values of xxσ  and yyσ . At the same time, the function )(σ zz t  

differs significantly from the functions )(σxx t  and )(σ yy t . This is related to 
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the fact that graphene hinders motion in the vertical downward direction. The 

effective zzσ  turns out to be very large (compared with P ). Large oscillations 

of the function )(σ zz t  are also related to the presence of graphene reflecting 

Hg  atoms upward after each collision with Xe  atoms. It can be seen that the 

relaxation of stresses xxσ  and yyσ  occurs faster than the decrease in the stress 

zzσ . 

 

 

Figure 15. Configuration of a system consisting of a mercury film on a partially 

hydrogenated imperfect graphene sheet after bombardment by a beam of Xe13 clusters 

at the angle of incidence of 60° and the energy equal to 10 eV. The coordinates of 

atoms are given in angstroms. 

The bombardment at the angle of incidence equal to 45° was considerably 

more successful. In this case, beginning with the energy of beam equal to 15 

eV, graphene was almost completely cleaned of mercury. Only single atoms 

could remain connected with the graphene sheet; moreover, the majority of 

these atoms were retained at the edges of the sheet. The remaining atoms of 

Hg  were scattered far beyond the limits of the graphene sheet predominantly 

in two directions (in the horizontal direction at a sharp angle to the axis ox , 

and upward). As a rule, the Hg  atoms were knocked out from the film one by 

one and less frequently in the form of dimers and trimers. However, at the 

energies of the cluster beam XeE  15 eV there was always separated also a 
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drop of mercury from graphene. An increase in the angle of incidence of the 

13Xe
 
clusters to 60° led to the removal of mercury from graphene upon the 

energy of the beam of 10 eV (Figure 15). A subsequent increase in the energy 

of the cluster beam at   = 60° did not give a desired result: graphene was not 

cleaned of mercury. 
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Figure 16. Vertical profiles of the density of liquid mercury on graphene. Numbers 

(eV) indicate the energies of the falling clusters. 
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Figure 17. Self-diffusion coefficients of Hg atoms calculated for the cases of 

bombardment of the target at the angles of incidence (1) 0°, (2) 45°, and (3) 60° 

depending on the energies of the cluster beam EXe. 

The vertical profiles of the mercury density reflect the displacement of the 

atoms of metal predominantly upward as a result of the cluster bombardment 

of the target at the angle of incidence of clusters equal to   = 0° (Figure 16). 

The maximum of the density profile is consecutively displaced upward with an 

increasing energy of the bombarding clusters. A delay in this motion is 

observed only at XeE  = 15 eV, where the position of the density maximum 

deflected slightly to the reverse side in comparison with the position for the 

profile at XeE  = 10 eV. However, already at XeE  = 20 eV the position of the 

maximum density substantially increased in height and continued increasing at 

XeE  = 30 eV. The density profiles at XeE  20 eV increase their vertical 

extents in both directions (upward and downward). 

With an increase in the angle of incidence of the xenon clusters, there 

occurs an increase in the self–diffusion coefficient of mercury atoms; 

especially, this is noticeable on going from the angle   = 45° to the angle of 

60°. The lowest value of the self–diffusion coefficient of Hg  atoms is 

observed upon the vertical bombardment with the energy of 13Xe  clusters 

equal to 5 eV (Figure 17). At energies XeE  10 eV and at an angle of 

incidence   = 0°, there is a very weak dependence of the self–diffusion 

coefficient on the energy of the falling clusters. A similar weak dependence is 
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manifested in the entire range of cluster energies at the angle of incidence   = 

45°. At the angle   = 60°, the )( XeED  function has a deep minimum at 15 

eV. The origin of this minimum is most likely connected with the fact that it 

occurs upon bombardment with precisely such energy of clusters that the most 

rapid rolling of the mercury film into a drop occurs, from which the Hg  

atoms can be kicked out only with difficulty. Except for this specific feature, 

no significant changes in the behavior of the coefficient of self–diffusion is 

observed upon the variations in the energy with an angle of incidence   = 

60°. The weak change in the )( XeED  function indicates the effective removal 

of heat that is separated upon the impacts using the Berendsen thermostat. In 

other words, the energy is not accumulated in the system in the course of the 

bombardment. 

The )( XeE  dependences of the stresses in the plane of graphene 

caused by horizontal (Figures 18a, 18b) and vertical (Figure 18c) forces 

exhibit a complex behavior, which is different for the different angles of 

incidence. As a rule, the stresses zz  created by vertical forces are noticeably 

higher than the stresses zx  and zy  that appear due to the action of 

horizontal forces. At cluster energies XeE  that lead to the detachment of the 

majority of Hg  atoms from graphene, the stress zz  has relatively low 

values. Recall that this occurs at energies XeE  15 eV at an angle of 

incidence of 45° and at XeE  = 10 eV at the angle   = 60°. 

The roughness aR  of graphene increases continuously in the course of 

cluster bombardment. The inset in Figure 19 gives a representation of the 

variation of the function )(a tR  in time in the case of bombardment with an 

energy of 13Xe  clusters equal to 15 eV at the angle of incidence of 0°. The 

bombardment has a significant effect on the roughness of graphene. The 

magnitude of aR  increases by 20–40%, even as a result of the bombardment 

with the energy of clusters equal to only 5 eV; the effect is strongest at an 

angle of incidence of 60°. The form of functions )( Xea ER  obtained at 

different values of the energy of the 13Xe  clusters is shown in Figure 19. It 

can be seen that bombardment at an angle of   = 45° leads to the lowest 
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values of aR . Thus, after this bombardment at an energy of the beam equal to 

30 eV, the value of aR  proves to be below the appropriate characteristics that 

correspond to the angles of incidence of 0° and 60° by 9.6% and 11.8%, 

respectively. 
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Figure 18. Components of the stress tensor in graphene ((a) σzx, (b) σzy, (c) σzz) obtained 

for the cases of the bombardment of targets at the angles of incidence (1) 0°, (2) 45°, 

and (3) 60° depending on the energies of the cluster beam EXe. 
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Figure 19. Roughness of graphene obtained as a result of the bombardments of the 

target at the angles of incidence (1) 0°, (2) 45°, and (3) 60° at the energies of the 

cluster beam EXe. Inset shows the change in the roughness of graphene in the course of 

the bombardment of the target by Xe13 clusters at the angle of incidence equal to 0° 

and at an energy of the cluster beam of 15 eV. 

 

DISCUSSION 
 

Variations in the state of a liquid under a real regime may lead to its 

superheating, i.e., the existence of the liquid above the boiling temperature 

upon evaporation. A liquid is superheated as a result of either a rapid heating 

at a constant pressure or a rapid loss of sealing at a constant temperature. In 

any case, the liquid enters the region of a nonequilibrium or metastable state, 

in which its temperature becomes higher than the saturation temperature at 

normal pressure. The degree of superheating for nonmetal liquids may be as 

high as several hundred degrees and depends mainly on the rate of heating or 

reduction in pressure. In the limiting case of complete absence of vapor, very 

high degrees of superheating may be reached. The superheating is eliminated 

via an instantaneous change in the phase state, such as explosive boiling up. A 

high superheating of a liquid is limited by homogeneous nucleation. The 

ultimate superheating that has been reached for water is (329–333) K [61, 62]. 

Therewith, a critical nucleus contained nearly 20 molecules [63]. Phase 

transitions in metal–based systems are distinguished by some specific features. 
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In this case, the electronic and molecular structures of liquid and vaporous 

phases occurring at equilibrium are greatly different. For example, liquid 

mercury and cesium at temperatures close to their ordinary melting points are 

considered to be normal liquid metals having properties typical of a condensed 

state. Slight changes in the main properties, such as electrical conductivity or 

magnetic susceptibility as a result of melting show that the electronic structure 

of the liquid is similar to that of a crystalline solid. This behavior is commonly 

explained by the fact that the short–range atomic correlations in a small 

volume are analogous for a liquid and a crystal. In addition, the ion charges in 

metals are strongly screened by conduction electrons; therefore, the long–

range order of ion potentials is of no importance for either a liquid or a solid. 

The unusual behavior of a metal–based system is evident from the metal–

nonmetal transition, which takes place upon the evaporation of a dense liquid, 

i.e., when it passes into a rarefied vapor, or in the case of liquid expansion 

upon heating. The low surface free energy of the majority of nonmetal solids 

excludes their wettability with inert (nonreactive) liquid metals. However, for 

mercury located on glass, quartz, or sapphire, a prewetting transition is 

distinctly observed. The existence of the metal–nonmetal transition noticeably 

affects the thermodynamic, structural, interfacial, and dynamic properties of 

metals. The conductivity–density dependence for bivalent mercury may be 

divided into three regions. 

Mercury is a polyvalent metal, which is available for studying in the 

liquid state at low temperatures. The critical point of its vapor is characterized 

by the following parameters: cT  = 1751 K, cP  = 167.3 MPa, and c  = 5.8 

g/cm3. Mercury has the lowest critical temperature of those known for all 

liquid metals. This fact is of importance from the point of view of precise 

measurement of physical properties at high temperatures and pressures. 

The experimental data on droplet evaporation on a hot surface indicate 

the existence of a discontinuity in the dependence of temperature difference 
ii TTT liqvap   (i denotes the interface) on vapor pressure 

iPvap  [64, 65]. At 

a liquid–vapor interface, the temperature is always higher on the side of the 

vapor. This is explained by the fact that high–energy molecules are primarily 

evaporated, while molecules with lower energies remain in the droplet. A 

reduction in the flux of molecules to the vapor phase is mainly observed at 

high temperatures – for water, at 84.0/ cTT  [66]. The value of the 

temperature discontinuity for water may be higher than 1400 K [66]. Mercury 

atoms are 11 times heavier than water molecules. Mercury is characterized by 
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another type of interaction. It may be thought that a mercury droplet remains 

stable at high temperatures because of a reduction in the flux of Hg  atoms to 

the vapor phase; however, the characteristic features of this process differ from 

the behavior of water. 

The high stability of a model mercury droplet may also be explained as 

follows. The interaction potential between two mercury atoms is, as a rule, 

considered to be a potential between highly polarizable closed shells, which 

permit very low migration of electron density from one partner to another; i.e., 

this potential is, to some extent, similar to a potential function that describes 

the interaction between atoms of noble gases. We have proven (using the Sch 

potential) the formation of a mercury droplet on graphene upon rapid heating 

using a calculation similar to that reported here, but performed in terms of the 

SG potential.  

In [67], it was noted that the model approximations that use pair 

interaction potentials to describe the liquid–gas transition for mercury are 

rough [67]. Experimental gas–liquid coexistence curves may be precisely 

reproduced, provided that the two–atom curves obtained for potential energy 

from the former principles are supplemented with the many–body potential, 

which describes the associative interaction of an atom with neighboring atoms 

that altogether form a virtual cluster. The liquid–gas transition for mercury is 

distinguished by the fact that the local electronic states change from metal to 

nonmetal ones because of weakened many–particle interactions and decreased 

average coordination numbers. 

According to the calculation in terms of the Sch potential, Hg film rolls 

into a droplet upon heating. By the end of the calculation at 600 K, an almost 

spherical droplet is formed on graphene, with the droplet remaining near the 

graphene surface even at 1100 K. When the SG potential function is used, the 

distance between the droplet and graphene rapidly increases up to a 

temperature of 1000 K. No significant separation of Hg  atoms from the 

droplet takes place in this case. Most likely, the Sch and SG potentials give an 

overestimated indirect effect of the electron component on the Hg – Hg  

interaction, which leads to the high stability of liquid mercury with respect to 

its vapor. 

It is of interest to compare the results of the study of the removal of films 

of copper and lead by the bombardment with clusters of rare gases with the 

present investigation of the purification of graphene from mercury. First of all, 

the different mechanisms of the detachment of these heavy metals from 

graphene during the irradiation of the target by a cluster beam should be noted. 
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In the case of the bombardment of the copper film with 13Ar  clusters, separate 

Cu  atoms are knocked out [24–29]. No regime of bombardment led to the 

separation of fairly large fragments of the Cu  film from graphene. When the 

lead film is bombarded, separate atoms are also knocked out, but the 

prevailing mechanism of the removal of the metal form graphene is the 

separation of islands of a Pb  film from the substrate [34]. Since it was only 

detached away graphene, the island experiences a transformation from a two–

dimensional to a three–dimensional structure; otherwise, mercury is separated 

from graphene. The unique behavior of mercury is due to its liquid state and 

the poor wetting of graphene; as a result, the Hg  film has a tendency to roll 

into a drop. For this reason, both separate atoms and droplets of significant 

size are separated from graphene in the course of bombardment. Let us 

emphasize that it is precisely a drop that is torn off, rather than an island with a 

two–dimensional morphology. There are several other differences in the 

processes of the removal of the film of heavy metals from graphene. Thus, the 

film of copper is not completely removed from graphene, even at an energy of 

the beam equal to 30 eV at angles of incidence of 0° and 60° [24], and the 

most efficient method is removal using cluster bombardment at an angle   = 

45°. In the case of lead, the most efficient procedure can be considered to be 

irradiation by a cluster beam at the angles of incidence of 0° and 60°. In this 

case, graphene was completely cleaned of metal at energies of the beam equal 

to 10 and 15 eV. Complete cleaning was also achieved at an angle   = 45°, 

but the energy of the cluster beam required in this case was equal to 20 eV. 

The greatest effect from the bombardment of the mercury–on–graphene target 

is obtained at an angle of incidence equal to 45°. At this angle of incidence, 

graphene is cleaned of Hg  at all energies XeE  15 eV. A less stable 

cleaning effect was achieved at an angle of incidence of 60°. In the case of an 

angle of incidence equal to 0°, no significant removal of mercury from 

graphene occurs in the range of energies of the beam equal to 5⎯30 eV. Thus, 

the removal of different heavy metals requires different conditions for 

bombardment and occurs via different mechanisms. 

To check the correctness of the results, we also conducted calculations 

with another pair potential for mercury and another potential that describes the 

mercury–graphene interaction. The Hg – Hg  interactions were determined 

based on applying the potential proposed by Silver and Goldman with the 

parameters given in [42]. Here, we obtained results close to those where the 

Sch potential served as the potential function for mercury. In the calculations 



Computer Study of the Interaction of Mercury with Graphene 87 

that applied the SG potential, upon bombardment, the Hg film was more 

rapidly transformed into the drop and was separated from graphene. The 

complete removal of mercury from graphene was only achieved at an angle of 

incidence equal to 45° at XeE  15 eV. When using a Morse potential with 

the parameters given in [68] for the representation of Hg – C  interactions, 

mercury upon the bombardment was separated from graphene more difficultly, 

and the complete cleaning at the angle   = 45° was achieved at the energies 

XeE  20 eV. 

 

 

CONCLUSION 
 

The forces of cohesion between mercury and graphene atoms are weak, 

compared to the ones between mercury atoms. Mercury tends towards its 

natural boundary angle while wetting decreases and mercury gradually 

consolidates into individual drops. This phenomenon is largely reproduced 

using the Sch potential. A tendency toward drop formation is also observed for 

the LJ and SG potentials, but in these cases there are considerably more 

individual atoms on the graphene surface, and each drop has a less distinct 

profile. For real mercury, vaporization proceeds at temperatures above 291 K. 

Cohesion with modified graphene does not allow Hg  atoms to detach from 

the film at distances much greater than atomic ones at 300 K. However, the 

tendency toward the vaporization of Hg  atoms is still observed in model 

systems and is clearer when using the SG potential. 

Molecular dynamics has been employed to study the stepwise heating of a 

mercury film on imperfect graphene. A graphene sheet with a high 

concentration of Stone–Wales defects and hydrogenated edges has been 

examined. An increase in temperature has been shown to cause gradual rolling 

of the film into a droplet and a slow movement of the droplet away from 

graphene. The horizontal component of the mobility coefficient of Hg  atoms 

smoothly decreases in the course of this process, while the vertical component 

nonmonotonically increases after a reduction reached by a temperature of 600 

K. As a whole, the spectra of the horizontal and vertical vibrations of Hg  

atoms similarly vary with a rise in the temperature; i.e., the small–scale 

thermal fluctuations in the spectra are smoothed. The vertical profile of 

mercury density shifts upward and widens to a size that corresponds to the 
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diameter of the formed liquid metal droplet. The formation of the mercury 

droplet is accompanied by a reduction in the domain of the radial distribution 

function and a decrease in the number and intensity of pronounced peaks of 

the )(rg  function. An increase in the temperature accelerates the formation 

of the droplet and decreases the contact angle. In the angular distribution of 

nearest neighbors, the intensity of the main peak at 120°, which reflects the 

hexagonal cells, decreases, while intense peaks corresponding to angles of 30°, 

90°, and 148° arise. The stresses in the graphene plane that are caused by the 

horizontal and vertical forces have close magnitudes in the considered 

temperature range. Graphene roughness rapidly grows with temperature, 

reaching a maximum value at 1000 K. Hydrogenated graphene edges are not 

damaged significantly upon heating to high temperatures. Thus, upon rapid 

heating, a mercury film on graphene is transformed into a droplet with 

substantial changes in atomic packing and physical properties. 

The behavior of a system of mercury–on–partially–hydrogenated–

graphene has been investigated under irradiation by a beam of 13Xe  clusters 

with energies of 5–30 eV at angles of incidence equal to 0°, 45°, and 60°. Over 

a wide range of energies ( XeE  15 eV), the almost complete removal of 

mercury from graphene was only achieved at an angle of incidence of 45°. The 

film of mercury, which has a tendency to become rolled up into a drop, is 

separated from graphene in the form of single atoms, dimers, trimers, and 

spherical droplets. In the course of the bombardment, mercury exhibits a weak 

cohesion with graphene. With an increase in the energy of the falling clusters 

from 5 to 30 eV, the )(z  profile evolves in a complex way, demonstrating 

the formation of a drop of mercury on graphene, as well as the formation of a 

vapor of Hg  monomers. The smallest change in the components of the 

mobility of Hg  atoms upon the variation of the energy of the cluster beam 

occurs at an angle of incidence equal to 45°. At the energies of the cluster 

beam under consideration, the stresses in the plane of graphene caused by 

vertical forces noticeably exceed the stresses created by the horizontally 

directed forces, regardless of the angle of incidence. The roughness of 

graphene increases noticeably in the course of cluster bombardment. The 

lowest roughness is demonstrated by graphene subjected to irradiation by the 

beam of clusters with an angle of incidence equal to 45°. The hydrogenated 

edges of graphene do not suffer noticeable damages at all the energies 

investigated and at all the angles of incidence of the bombarding clusters. 
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ABSTRACT 
 

The effect of yttrium(III) ion on calcium(II) and zinc(II) speciation in 

human blood plasma was studied by computer simulation using the 

program Hyss2009. Calcium-hydrogen carbonate [CaHCO3]+ and ternary 

zinc-cysteinate-citrate [ZnCysCit]-3 complexes are predominant species 

of Ca(II) and Zn(II) ions in normal human blood plasma. Exogenously 

introduced yttrium(III) ion can compete with Ca(II) and Zn(II) ions for 

low molecular mass (LMM) ligands in blood plasma, thus influencing 
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their biospeciation. The results showed that at the normal blood yttrium 

concentration all the Y(III) species are soluble and no precipitate appear. 

However, at total Y(III) concentration higher than 1×10−6 molL-1, the 

insoluble species become dominant (Y2(CO3)2 and YPO4). At this 

concentration level of Y(III) the distribution of Ca(II) and Zn(II) species 

does not change appreciably. If the total concentration of Y(III) is higher 

than 1×10−3 molL-1 its influence on biodistribution on Ca(II) and Zn(II) 

ions is significant. The concentration of free calcium ion increase from 

79% to 86% and decreases [CaHCO3] percentage. With further increasing 

of yttrium concentration (5×10−2 molL-1), [CaHCO3] disappear and 

dominant species is free calcium ion, whit redistribution of zinc species. 

Main species ZnCysCit (~38%) becomes minor species (<1%), while 

ZnCys2 (~35%) and ZnCysHis (~20%) become major zinc species.  

 

Keywords: speciation, calcium(II), zinc(II), yttrium(III), blood plasma, 

computer simulation 

 

 

INTRODUCTION 
 

Metal ions in human organism may be classified as essential, beneficial, 

detrimental and toxic. Normally, they are present in trace levels and can 

exhibit metal-metal interactions. These interactions may be either cooperative 

or competitive (i.e., synergistic or antagonistic). Metal ions may compete for 

storage, transport or functional proteins or for binding sites on cellular 

membranes. In addition, trace metals may compete for blood plasma ligands of 

low molecular weight especially those forming metal-ligand precipitates. 

Externally introduced yttrium (eg, in the form of its radiopharmaceutical 

complexes) may compete for blood plasma ligands with bivalent ions, Ca and 

Zn. Since free yttrium ion is present at concentration levels lower than 10-7 

molL-1 no suitable analytical methods exist to measure such low 

concentrations. Thus, biospeciation could be evaluated only by computer 

simulation. In this work we used the computer program Hyss2009 [1] to 

calculate biospeciation of Ca and Zn in the presence of various concentration 

levels of Y ion in human blood plasma. Earlier, we described the multiphase 

blood plasma model consisted of about 6000 complexes including insoluble 

and metal-protein species [2]. 

Ca(II) and Zn(II) play important roles in the human body [3]. There are 

many similarities between tri-positive rare earth ions and calcium(II) ions, 

such as ionic radii, ligand-exchange rates, and coordination numbers.  
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Thus, tripositive rare earth ions are widely used as calcium(II) probes in 

biological systems [4]. Moreover, the displacement of calcium(II) ions from 

biological molecules by rare earth ions closely relates to the biological effects 

of these ions [4]. 

Zinc(II) ion is one of the most abundant divalent metal in living organisms 

and is essential cofactor of many metabolic enzymes and transcription factors. 

Zinc-deficiency studies of microorganisms followed by those in plants and 

animals established the importance of zinc to the growth and development in 

all forms of life [5, 6].  

In recent years, application of the rare earths is wide; for example, rare 

earths as a fertilizer are being applied in agriculture in China [7]. It causes 

more and more rare earths to enter the environment and human body via the 

food chain. Therefore, increasing consideration has been given to the effects of 

rare earths occurring in the biofluids on bioelements essential for life such as 

Ca and Zn [6]. Because biological effects of metal are controlled by its in vivo 

speciation; the research on the effect of rare earth ions on bioelement 

speciation is helpful in understanding the distribution, metabolism, and 

biological effects of rare earth ions in the life system. However, it is difficult 

to determine particular metal-complex in the human body using the 

conventional analytical techniques; thus, computer simulation has been 

developed as a suitable method to study speciation without disturbing delicate 

equilibria in body fluids. 

Yttrium sources. Yttrium is used to produce electronic devices, including 

electrodes, electrolytes, electronic filters, lasers and superconductors. At 

present, yttrium is believed to be hazardous for human health. However, the 

disposal of yttrium –containing devices enhances the possibility that yttrium 

may become an environmental pollutant. No biological role has been 

identified for yttrium although environmentally derived yttrium may 

concentrate in bones (70 ppb), liver (10 ppb), lung (20 ppb), brain (20 ppb), 

kidney (6 ppb) and blood (6 ppb) in healthy humans [8]. Human breast milk 

contains 4 ppm of yttrium. Water soluble yttrium salts, such as the nitrate, are 

regarded as mildly toxic while its insoluble compounds are non-toxic. 

However, the element is suspected of being carcinogenic for some animals and 

humans. Edible plants can have quite a range of yttrium levels, from 20 to 100 

ppm (fresh weight) with the highest values being recorded for cabbage [8]. 

The seeds of woody plants have the highest amounts of all (700 ppm) [8]. 

Although coal contains yttrium (7-14 ppm) this is not thought to indicate its 

selective absorption by the organic substances from which it was derived. In 
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Chinese yttrium mines the dust yttrium concentration ranged from 1.3 to 25.9 

mg m-3 where 64.1% is yttrium oxide [8]. 

In experiments on animals, yttrium and its compounds caused lung and 

liver damage. In rats, inhalation of yttrium citrate caused pulmonary edema 

and dyspnea, while inhalation of yttrium chloride caused liver edema, pleural 

effusions and pulmonary hyperemia [9, 10]. Exposure to yttrium compounds 

in humans may cause lung disease. 90Y obtained from the 90Sr–90Y generator 

system finds widespread use in the cancer treatment in the form of 

radiopharmaceutical chelate [11-16]. As other radiopharmaceuticals yttrium is 

administered by intravenous injection. Radiopharmaceutical yttrium chelates 

(DTPA, DOTA, etc.) are very stable and usually safe for use. Their injected 

concentration is about 1×10−8 molL-1. The known adverse effect of yttrium 

radiopharmaceuticals is development of renal toxicity [11]. In blood plasma 

free yttrium may occur by dissociation of the radiopharmaceutical chelates 

(e.g., Y-DTPA) or by transmetalation with other ions present in blood plasma, 

such as zinc and copper ions. These two ions have relatively high stability 

constants with DTPA (logβZn-DTPA=18.75, logβCu-DTPA=21.53) compared to 

yttrium ion (logβY-DTPA=22.05). To estimate released free yttrium 

concentration due to the processes of dissociation and trans-metallation 

knowledge of the stability constants (under physiological conditions) of metal 

ions with DTPA are needed. Literature values of Y-DTPA stability constants 

do not refer to physiological conditions. So, in this work we studied the 

complexation of Y3+ ion with DTPA ligand by potentiometric method under 

physiological conditions (μ=0.15 molL-1 NaCl, t=37°C). To confirm 

potentiometrically obtained results ESI-MS measurements on Y – DTPA 

solutions were also performed. 

Potentiometric titrations. Potentiometric measurements were made on a 

Tacussel Isis 20000 pH meter (Courthezon, Vaucluse, France, precision ± 0.1 

mV or ± 0.001 pH units) equipped with a Radiometer combined electrode. A 

Metrohm Dosimat model 665 automatic burette with anti-diffusion tip 

(Herisau, Switzerland), was used for delivery of the titrant. Potentiometric 

titrations were carried out in a double-walled glass vessel, thermostatted at 37° 

C. The ionic strength of all test solutions was adjusted to 0.15 molL-1 with 

sodium chloride. All measurements were performed under a nitrogen 

atmosphere. The electrode parameters, E0, Q and Ej from Nernst equation: E = 

E0 + Q logh + Ej were determined by strong acid-strong base titration to check 

the system suitability. During the titrations of the test solutions the E0 and Ej 

were determined using the data in the acidic region where no hydrolysis or 

complexation takes place (assuming that h is equal to the analytical 
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concentration of proton), by plotting E–Q log h against h and extrapolating the 

straight line so obtained to h = 0. The free proton concentration was then 

calculated through the equation: logh = (E – E0 – Ej)/Q which was applied to 

the whole titration curve. All titrations were carried in duplicate. The 

agreement between duplicate titration was better than 1%. The Y3+-DTPA 

solutions were titrated with sodium hydroxide and all titration were performed 

in the pH range from ca. 2 to 11 with constant ionic strength (I = 0.15 molL-1 

NaCl) and under purified nitrogen atmosphere at 37° C. Molar ratios between 

yttrium ion and DTPA ranged from 1:1 to 1:2, respectively. The concentration 

stability constants of complexes formed in the solutions were calculated with 

the aid of the suite of computer programs Hyperquad2006 [1].  

The species formed in the studied systems were characterized by the 

general equilibrium: 

 

𝑝𝑌3+ + 𝑞𝐷𝑇𝑃𝐴5− + 𝑟𝐻+ ↔ [MpDTPAqHr]
(3𝑝−5𝑞+𝑟)  

 

and the corresponding constants are given by: 

𝛽𝑝,𝑞,𝑟 =
[𝑌𝑝(𝐷𝑇𝑃𝐴𝑞)𝐻𝑟]

[𝑌]𝑝[𝐷𝑇𝑃𝐴]𝑞[𝐻]𝑟
  

The obtained results indicated that formation of 1:1 complexes are 

dominant. Calculated overall stability constants of the yttrium ion with DTPA 

are given in Table 1. This is in agreement with the majority of published 

papers [17]. 

The distribution diagrams of complexes in Y3+ -DTPA solutions were 

calculated with the aid of program HySS2009. Distribution diagram is shown 

in Figure 1. As can be seen from Figure 1, dominating complex is Y(DTPA), 

with the maximum concentration at pH=4. Y(DTPA)H complex appear at 

lower pH, ca. 2, in small amount. Main complex Y(DTPA) is dominant 

complex in wide pH region. 

ESI-MS measurements. ESI MS spectra were collected on an LCQ Fleet 

3D Ion Trap Mass Spectrometer (Thermo Fisher Scientific, Waltham, MA, 

USA). To further confirm the speciation derived from potentiometric 

measurements, ESI-MS measurements were made on yttrium-DTPA solution. 

The most intensive signals can be attributed to the 1:1 (metal to ligand) 

complexe. The ESI-MS data of yttrium-DTPA solution pH 5.5 adjusted with 

ammonium formate buffer show evidence to formation of the complex 



Ivan Ž. Jakovljević, Djordje Ž. Petrović, Milica S. Cvijović et al. 98 

Y(DTPA) as shown in Table 2. Representative ESI-MS spectra is shown in 

Figure 2.  

 

Table 1. Calculated overall stability constants logβpqr (SD)  

for complexation of Y3+ ion with DTPA at physiological conditions (T=37° 

C, I=0.15 molL-1 NaCl) 

 

p,q,r logβ±SD 

1,1,0 22.51±0.03 

1,1,1 24.41±0.05 

statistic χ2=11.21; s= 1.23 

 

 

Figure 1. Distribution diagram of Y3+ -DTPA species at ligand-to-metal concentration 

ratio 1:1 and total metal concentration 1.0 mmolL-1. 

Table 2. Experimental and theoretical m/z values of ESI-MS spectra in 

Y3+-DTPA solution at pH = 5.5; ((m/z)e and (m/z)t denote experimentally 

determined and calculated value, respectively) 

 

(m/z)e  (m/z) t Identificated ions species ESI-

MS ion 

200 200 [DTPA +Y3+ +2Cl--3CO2 –H2O]2- Y DTPA2- 

198 198 [DTPA +Y3+ +2Cl--2CO2 –2CH4 –2NH3]2- Y DTPA2- 

161 161 [DTPA +Y3+ +2Cl-- 4CO2 –2NH3 –H2O]2- Y DTPA2- 

Y-DTPA
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Figure 2. ESI-MS spectrum of Y-DTPA system. 

Estimation of yttrium blood concentration. Estimation of yttrium blood 

concentration could be based on environmental sources and iatrogenic i.e., 

administrated yttrium chelates (e.g., Y-DTPA) for therapeutic purposes. If Y-

DTPA chelate is administrated then free Y3+ may appear by dissociation and 

trans-metallation processes. Assuming that administrated dose is ~10-9 molL-1, 

and taking into account that logβY-DTPA= 22.5, free Y3+ is ~ 10-12 molL-1. 

Trans-metallation could be represented as: 
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M2+ + Y-DTPA↔ MDTPA + Y3+ 

 

with equilibrium constant 

 

𝐾𝑒𝑞 =
[𝑀𝐷𝑇𝑃𝐴][𝑌3+]

[𝑀2+][𝑌𝐷𝑇𝑃𝐴]
 (1) 

 

where M2+ could be Zn2+, Cu2+ or Fe2+. 

The equilibrium constant Keq in equation 1 can be calculated as 

 

𝐾𝑒𝑞 =
𝛽𝑀

′

𝛽𝑌
′
 

 

where β’
M is conditional cumulative stability constant of M-DTPA while β’

Y is 

conditional cumulative stability constant of Y-DTPA complex. 

Cumulative conditional stability constant is defined as  

 

𝛽𝑀
′ =

[𝑀 −𝐷𝑇𝑃𝐴]

[𝑀][𝐻𝑛𝐷𝑇𝑃𝐴]
 

 

and is valid only for a particular pH (pH=7.4). [HnDTPA] is a mixture of 

protonated ligand species. Equilibrium and conditional stability constant are 

related through the relationship: 

 

𝛽𝑀
′ = 𝛼𝑛 × 𝛽𝑀 

 

where   𝛼𝑛 =
𝛽𝑛
𝐻[𝐻]𝑁−𝑛

∑ 𝛽𝑛
𝐻[𝐻]𝑁−𝑛𝑁

𝑛=0
 

 

where N is the maximum number of bound protons and n=1,2,…,N. βH
n is 

cumulative protonation constant of the ligand. By convention αH
0 =1. For 

DTPA acid α5=1.19×10-3, for pH=7.4. 

Taking into account normal blood plasma concentration of Zn2+ (3×10−6 

molL-1), Cu2+ (3×10−12 molL-1) and Fe2+ (1×10−11 molL-1) and that of 

Y(DTPA) (~10-9 molL-1) total free Y3+ is ~5×10−10 molL-1. Therefore, this is a 

reason why the concentration of free yttrium in our modeling was examined in 

wide range of concentration (10-9- 5×10−2 molL-1). 

Human blood plasma model and Speciation calculation. In developing the 

computer modeling of blood plasma we improved May et al. [18] model of 
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blood plasma and constructed multi-phase model including 10 metals, 43 

ligands and over 6300 complexes. Total concentrations of all components 

were taken from published papers and Geigy tables [19]. Almost all stability 

constants of binary and ternary complexes were abstracted from published 

databases (JESS, IUPAC, NIST [20-22]) and where necessary converted to 

physiological conditions (t=37° C, I= 0.15 mol L-1 NaCl) using the program 

SIT (Specific Interaction Theory). Part of the stability constants was updated 

on the basis of recent literature data. A complete list of complexes of 

components in blood plasma database and constants was described in our 

previous work [2]. 

Two general approaches to simulate complex equilibria systems are 

widely used namely, Gibbs free energy minimization and the equilibrium 

constant method. The latter is based on the solution of a set of equilibrium 

conditions satisfying stoichiometric mass balance equations. The system 

stoichiometric equations 

 

𝑇𝑅𝑖 =∑𝜈𝑗𝑖𝛽𝑗

𝑛

𝑗=1

∏[𝑅𝑖]
𝜈𝑗𝑖

𝑚

𝑖=1

+∑𝜈𝑖.𝑘

𝑠

𝑘=1

𝐴𝑘 

 

𝑖 = 1 ÷𝑚 number of components 

𝑗 = 1 ÷ 𝑛 number of reactions (products) 

𝛽𝑗 - formation constant of particular product, j 

ν𝑗𝑖 - stoichiometric coeficients, ν𝑗𝑖 = 1 for 𝑗 = 𝑖 and 𝑗 ≤ 𝑚 and ν𝑗𝑖 = 0 for 

𝑗 ≠ 𝑖 and 𝑖 ≤ 𝑚 (first m products are identical to components) 

𝐴𝑘  - relative amount of the insoluble species, k, formed. 

[𝑅𝑖] – free concentration of components 

 

were solved using the Newton-Raphson iterative method as implemented in 

computer program Hyss2009. The solution is obtained in the form  

 

δx=-J-1 ˟ F 

 

where δx is a shift: [Ri,new]= [Ri,old] + δx and F= TRi,(exp) - TRi,(calc) 

The Cholecki factorization of coefficient matrix is used for solution of the 

set of linear equations. 

The results showed that main yttrium complexes at normal blood plasma 

concentration of yttrium (estimated to be 1×10−9 molL-1) are YCit and soluble 

Y(CO3)2. The percentage distribution of Ca(II) and Zn(II) ions in human blood 
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plasma is shown in Table 1. It shows that most (~79%) of Ca(II) is free metal 

ion, ~9% is distributed in protonated carbonate, ~4% in citrate, < 3% in 

phosphate, < 2% in carbonate, ~1% in lactate and the rest in other complexes. 

Zinc is distributed amongst ternary and binary complexes with cysteinate 

(Cys), citrate (Cit), histidinate (His) and cysinate (Cis). Main zinc species are 

ZnCysCit (~38%), ZnCys2 (~20%) and ZnCysHis (~11%). Influence of Y(III) 

ion on distribution Ca(II) and Zn(II) ions under physiological conditions is 

shown in Table 3. 

 

Table 3. *Main species and distribution of Ca(II)** and Zn(II)** ions  

in the presence of Y(III) ion (%) 

 

Species  Total concentration of Y(III) ion (molL-1) 

 0 1×10-

9 

1×10-

7 

1×10-

6 

1×10-

3 

1×10-

2 

3×10-

2 

5×10-

2 

Free Ca(II) 78.62 78.62 78.62 78.62 79.10 86.07 96.41 96.55 

CaHCO3 9.26 9.26 9.26 9.26 8.74 4.08 0 0 

CaCit 3.83 3.83 3.83 3.83 3.83 3.91 0.02 0.01 

CaPO4 2.95 2.95 2.95 2.95 2.96 1.11 0 0 

CaCO3 1.54 1.54 1.54 1.54 1.45 0.68 0 0 

CaLac 1.12 1.12 1.12 1.12 1.12 1.22 1.10 1.02 

         

Free Zn 0.58 0.58 0.58 0.58 0.58 0.59 1.08 1.10 

ZnCysCit 37.77 37.77 37.77 37.77 37.63 36.33 1< 1< 

ZnCys2 19.91 19.91 19.91 19.91 19.96 20.48 35.10 35.37 

ZnCysHis 10.89 10.89 10.89 10.89 10.92 11.19 19.47 19.67 

ZnHis 3.68 3.68 3.68 3.68 3.70 3.80 6.81 6.91 

ZnHCys2 2.81 2.81 2.81 2.81 2.82 2.89 4.96 5.00 

ZnHCysCis 2.21 2.21 2.21 2.21 2.22 2.27 3.98 4.02 

ZnCys 2.14 2.14 2.14 2.14 2.14 2.20 3.88 3.93 

Y2(CO3)2(s) 0 0 5.9 90.44 100 97.52 54.44 32.66 

YPO4(s) 0 0 0 0 0 2.48 1.27 0.76 

Soluble Y 

species 

0 100 94.1 9.56 0 0 44.29 66.58 

*Cit-citrate, Lac-lactate, Cys-cysteinate, His-histidinate, Cis-cystinate, charge are 

omitted for simplicity. 

** [Ca(II)]=1.45×10−6 molL-1; [Zn(II)]=3.0×10−6 molL-1. 

 

The data in Table 3 show that at the concentration of 1×10−6 molL-1, 

yttrium ions is almost completely bound to carbonate (90.44%) to form 

precipitate of Y2(CO3)2(s). When the total concentration of Y(III) increases, 
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insoluble species reaches 100% (at 1×10−3 molL-1 of Y). Further increasing of 

yttrium concentration leads to increasing of free calcium percentage and 

increasing of soluble yttrium species. In meantime small amount of another 

precipitate appears (YPO4(s)). In the case of zinc distribution, influence of 

yttrium is not significant until yttrium reaches the concentration of 1×10−2 

molL-1. Higher concentration of these lead to redistribution of zinc complexes. 

Main species ZnCysCit becomes minor species while ZnCys2 and ZnCysHis 

become major ones. 

 

 

CONCLUSION 
 

In human blood plasma, the increase of Y(III) level will lead to the 

increase of free calcium ion and to the redistribution of zinc species. 

Concentration of calcium complexes CaHCO3 and CaCit decrease (from ~9% 

and ~4% to ~0%, respectively) while free calcium ion concentration increases 

from about 79 to 97%. Ternary zinc complex (ZnCysCit) which is main 

complex in normal blood plasma, with increasing concentration of yttrium 

completely disappears, while percentage of ZnCys2 and ZnCysHis complexes 

increase. Bearing in mind that these changes occur at [Y3+] > 0.05 molL-1 

which is normally not encountered in humans, use of yttrium-based 

radiopharmaceuticals is safe from the standpoint of view of essential metal 

ions metabolism. 
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ABSTRACT 
 

Computer-based virtual experiments and simulations in all branches 

of physical sciences and engineering has attracted wide spread interest 

among the researchers from all parts of the scientific world due to its 

multifaceted applications and versatility. Computer simulation of 

diffraction phenomena, including simulation of diffraction gratings, has 

widespread applications, since diffraction gratings, especially amplitude 

diffraction gratings, are used extensively in spectrographs and 

spectrometers. Usually, these are used in the Fraunhofer (far-field) 

regime. In this Chapter, we have used the ab-initio Iterative Fresnel 

Integral Method (IFIM) for the complete simulation of the near-field 

Fresnel diffraction images from any amplitude diffraction grating. The 

simulations can be performed in any PC in a reasonable amount of time 
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and are executed in the MATLAB language. Complete explanations of 

the computational method, as applied to the diffraction gratings, are 

described, along with the simulation algorithms. Comparison of the 

simulated results with certain situations, which can be described by 

analytical equations, is made. The agreement confirms the correctness of 

the present simulation methods that will pave the way for future studies. 

We finally mention some extensions of the N-stilt problem, namely the 

application to tilted and rotating gratings and multi-wavelength 

illuminations.  

 

Keywords: computer simulation, Fresnel diffraction, Iterative Fresnel 

Integrals Method, rectangular apertures, diffraction gratings 

 

 

1. INTRODUCTION 
 

The use of computers in simulating real-world situations and modeling has 

received immense interest and attention in recent years. Computer simulations 

have widely been used in industrial applications, fundamental research and in 

computer-aided education and visualization [1-4]. With the tremendous 

improvement in computer hardware and software in the last few decades, it 

has been possible to simulate some real-world problems even in an ordinary 

PC or workstations. In particular, in the field of optics, computer simulation 

and modeling have been used to model wave propagation in various media, 

diffraction, optical filtering, design of optical instruments of all sorts, teaching 

of optics, etc. [5-15]. Since optical hardware is not cheap, in some situations, 

computer simulations can be used as an effective substitute of real-life 

experiments, and have enabled researchers to perform virtual experiments in a 

PC. 

Diffraction of light and other waves from an aperture or obstacle is a well-

known phenomenon and is of tremendous interest in optics [16-19]. In short, 

diffraction is the ability of light to move around obstacles in a restricted way, 

and is a manifestation of the wave nature of light itself. Diffraction phenomena 

affect the real-life behavior of optical systems, such as microscopes, 

telescopes, lasers, semiconductor lithography, electro-optical modulators, etc. 

For example, diffraction limits the fundamental resolution achievable in 

microscopic, telescopic and interferometric systems. For these reasons, it is 

extremely important to accurately simulate diffraction phenomena in many 

practical situations.  
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In general, diffraction phenomena can be classified into two types, near-

field (Fresnel) diffraction and far-field (Fraunhofer) diffraction. Fraunhofer 

diffraction is the simpler to handle mathematically, because both the 

wavefront incident on the aperture and on the observation screen are planar. In 

this case, the diffraction pattern can be described in terms of the Fourier 

transform of the aperture function. In the other case, i.e., in the case of near-

field (Fresnel) diffraction, where either the aperture-source distance or 

aperture-screen distance is finite, the wavefronts are not planar, and the 

solution becomes much more complex [16, 17]. 

In the case of Fresnel diffraction, the analytical form of the diffraction 

pattern cannot be found even in the simplest cases. Therefore, in these 

situations, numerical methods are the only viable option. Solutions can be 

derived in terms of certain types of diffraction integrals, known as Fresnel-

Kirchoff, or Rayleigh-Sommerfeld diffraction integrals [17]. The large amount 

of numerical data in the calculation of the integrals in any real-life situation 

means that the use of computers and computer simulation techniques can be 

put to use effectively. With the use of powerful modern computers and 

advanced software, two-dimensional fast-Fourier transform (FFT) methods 

can be used to calculate diffraction integrals. For example, the diffraction and 

propagation of waves from any arbitrary aperture have been simulated in 

computers by Rudolf et al. [20] using Helmholtz–Kirchoff diffraction 

integrals. While these Fourier methods are powerful and versatile, they do not 

provide much insight into the computation process itself. The computation is 

treated virtually as a black box, and no symmetry in the geometry of the 

aperture is utilized in simplifying the calculations. 

In previous publications [21-25], we introduced a new ab-initio technique 

to simulate the complete diffraction field of apertures having rectangular 

shapes or rectangular symmetry. This technique is called the Iterative Fresnel 

Integral Method (IFIM). It uses virtual displacement of the aperture, and 

repeated calculation of certain non-analytic integrals, knows as the Fresnel 

integrals, to construct the complete diffraction image (pattern) from a 

rectangular aperture, or combinations thereof. The technique is quite powerful 

and general, and despite being limited to rectangular-shaped apertures, can be 

applied to a variety of interesting problems of practical importance. Using the 

technique, implemented in any high-level computer language such as 

MATLAB, the diffraction field from any rectangular-shaped apertures in any 

arbitrary situation can be calculated in a few minutes or less [21]. 
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An amplitude diffraction grating [16, 19], is an array of small rectangular 

apertures separated by opaque regions. In a practical grating, both the width of 

the apertures and the opaque region are of the order of wavelength of light. 

This type of gratings is widely used in a variety of spectrometers and 

spectrographs, to separate the light into constituent wavelengths. In all these 

situations, the wavefront incident on the grating is rendered plane by a 

collimating mirror or lens, and the wavefront emitted from the grating are also 

rendered plane by another collimating mirror or lens. In that case, the 

analytical treatment of the diffraction grating becomes much simpler, because 

Fraunhofer diffraction regime can be used to calculate the diffraction field. 

The situation, where this Fraunhofer condition is not valid are not considered 

or used, partly because of difficulty of treating Fresnel diffraction from a 

grating. 

In this chapter, we describe how the IFIM technique can be used and 

extended to the non-trivial case of amplitude diffraction gratings, and discuss 

some potential applications in the case of tilted gratings. Complete and self-

contained discussions of the technique as well as the implementation of the 

algorithms in MATLAB is given and explained. 

This Chapter is organized as follows: First, the principle of the IFIM 

method is introduced as it is used for the rectangular aperture. The algorithm 

and the simulation technique are discussed, as well as the simulation program. 

Then this method is applied to the case of a 3-slit aperture, and is then 

immediately generalized to N-slits, which is effectively an amplitude grating. 

The algorithm used to generalize to N-slits, where N is an arbitrary odd or 

even number, is clarified. The details of some typical simulation results for the 

single slit as well as the amplitude gratings are presented and discussed.. The 

program is also applied to a real-life grating having grating period of the order 

of a wavelength of light and having a large number of apertures or slits. Then 

discussions are made regarding the extension of the technique to tilted gratings 

and multi-wavelength illuminations, and conclusions are drawn at the end of 

this Chapter. 

 

 

2. INTRODUCTION TO THE IFIM METHOD  
 

2.1. Single Rectangular Aperture: Theory 
 

As a very simple diffraction problem, let us consider the case of a 

rectangular aperture (Figure1). The solution of this problem by the Iterative 
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Fresnel Integral Method will help the reader to understand more complicated 

problems, where there are many slits. This rectangular-aperture diffraction 

problem has been discussed and analyzed in many textbooks, with the aid of 

Fresnel integrals and Cornu spirals [16-19]. Light of wavelength  emitted 

from a point source S is diffracted by a rectangular aperture of dimension 

2aX2b located at a distance p0 from it. The diffracted light is observed on the 

screen placed a distance q0 away. As shown in Figure 1, the coordinate 

systems on the aperture and on the image planes are chosen to be centered on 

the optical axis passing through the center of the aperture and normal to it, and 

are denoted by (y, z) and (Y, Z) axes, respectively. The Huygens–Fresnel 

principle is then employed to compute the total electric field at any given point 

of the image plane (Y, Z) by summing up all the contributions (taking into 

account both amplitude and phase), of all the non-planar elementary wavelets 

(Huygens wavelets) emitted by different area elements inside the clear 

rectangular aperture. 

 The contribution to the complex electric field at the point P (located at the 

origin of the YZ image plane) due to Huygens waves emitted by the small 

element dS located inside the clear aperture is [16, 17], 

 

  dStqpkj
pq

K
dE 0

0 )({exp
)(





  (1) 

 

where is the electric field of the source S, k (=2 is the wavenumber of 

the light waves and K( is the obliquity factor, which takes into account the 

decrease of intensity for secondary Huygens wavelets emitted from dS in an 

oblique direction. 

The total electric field at P due to the whole aperture can be calculated by 

summing up (or integrating) the contributions dE over the entire clear aperture, 

i.e., 

 

  dSt)qp(k{jexp
qp

)(K
E 0

aprerture

0
P 




  . (2) 

 

Upon integrating the contributions of the secondary Huygens wavelets 

over the entire aperture, it can be shown [16, 17] that the total complex electric 

field at P is given by the following expression 
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Figure 1. The basic configuration of Fresnel diffraction from a single rectangular 

aperture (Reprinted from Abedin. et al. Opt. Laser Technol. Vol. 39. pp. 237-246, 

Copyright, (2007) with permission from Elsevier). 

 2 2

1 12
( ) ( ) ( ) ( ) ,uE u v

P u v
E C u iS u C v iS v  (3)  

 

where Eu is the unobstructed electric field at P (i.e., the electric field that 

would have existed if the aperture were removed). C(u) and S(u) are the 

Fresnel cosine and sine integrals, being defined by, 
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 (4) 

 

Here w represents either of the two dimensionless variables u or v,  

 

 ./)(2,/)(2 00000000 qpqpzqpqpyu    (5) 
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The variables u and v are proportional to Cartesian coordinates x and y. The 

intensity at P is given by the square of Ep, in Eq. (3) i.e., by, 

 

 0
2 2 2 2

2 1 2 1 2 1 2 14
{ ( ) ( ) ( ) ( ) } { ( ) ( ) ( ) ( ) } .

I

PI C u C u S u S u C v C v S v S v  (6) 

 

In the above expression, I0 is the unobstructed intensity corresponding to 

Eu (I0 = Eu
2), i.e., the intensity that would be observed if the aperture were 

removed. To calculate the intensity at any off-axis point P' on the YZ image 

plane, one can fix the SOP line and instead of moving the point P, one can 

move the aperture itself by small amounts in the yz plane, so that the relative 

positions of the aperture in the new position and P remains the same. For 

example, to find the intensity a point P' 1mm above P, one can keep the screen 

undisturbed and move the aperture 1mm downwards, and find the intensity at 

P in this situation instead. The point P will now see a new set of values for z1 

and z2, and therefore, for v1 and v2 in Eq. (6). In principle, the intensity at any 

point P' on the image plane can be found in this way by making appropriate 

translations of the aperture in the y and z directions, and in Eq. (6), substituting 

the correspondingly new values of u1, u2, (which indicate the positions of the 

edges of the aperture in the y-direction as seen from P) and v1 and v2 (which 

indicate the positions of the edges of the aperture in the z-direction as seen 

from P). This implies that new values of Fresnel cosine and sine integrals need 

to be computed. Using this method, the entire intensity distribution in the 

image plane can be mapped out provided one is willing to calculate a large 

number of Fresnel integrals. From Eq. (6), it is clear that the calculation of the 

intensity at any point P' in the image plane requires the evaluation of 8 Fresnel 

integrals. For the rest of this Chapter, for simplicity, we consider mostly plane-

wave illumination of the apertures. This effectively moves the source S to 

infinity, which can be realized by placing S in the focal point of a convex lens 

and allowing the collimated light from the lens to fall on the aperture. If this is 

not actually done in reality, then Eq. (5) can be used to compute the 

appropriate values of the dimensionless variables u and v, and the calculation 

can proceed from there. For the simple case of plane-wave illumination, p0 is 

effectively infinity and, therefore, Eq. (5) can be simplified to, 

 

 
.q/2z,q/2yu 00  

 (7) 
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2.2. The Single Aperture: Simulation Strategy and  

Associated Algorithm  
 

We next explain the algorithm and the simulation program to construct a 

two-dimensional matrix of intensity values whose elements represent the 

intensities at an arbitrary point P' in the image plane. A flow chart of the 

algorithm is presented in Figure 2, and the complete MATLAB program 

rectan is given in the Appendix A. In the beginning, we need to specify certain 

input values to the program: the aperture dimensions 2aX2b and the size of the 

observation area 2WX2W in the image plane (screen), the aperture-screen 

distance q0 (all in millimeters) and the illumination wavelength l (in 

nanometers). These are essential inputs to the simulation program, and are 

done, by means of a MATLAB GUI (Graphical User Interface), in the first 

two lines of program. To specify the resolution of the calculations, we need to 

input a step size s (in mm), which indicates the increments s in the y and z 

directions of the positions of P'. This determines the spatial resolution or pixel 

size, because the number of the pixels in the image is simply given by 

(2W/sX2 W/s). For most of the simulations in this section, we selected a step 

size so that the number of pixels in the image is of the order of 800X800 

pixels. A screenshot of the MATLAB GUI, generated by the inputdlg 

command in the program, is shown in Figure 3. 

For calculation of the intensity distribution using Eq.(6), it is convenient 

to have a function to quickly and efficiently calculate Fresnel cosine and sine 

integrals for given values of the argument. In MATLAB, Fresnel cosine and 

sine integrals can be invoked by typing mfun('FresnelC', w) and 

mfun('FresnelS',w), respectively. If w is a single-valued variable, then these 

mfun functions return single values of Fresnel cosine or sine integrals. If, on 

the other hand, we type, for example, R=mfun('FresnelC', l: s: u), then this 

generates a one dimensional array R of Fresnel cosine integrals with 

arguments starting from l and ending in u, with a step size of s. These 

mfun('FresnelC', l: s: u) and mfun ('FresnelS', l: s: u) functions will be 

extensively used in the simulations that follow.  

An quick look at Eq. (6) shows that to calculate intensity values for 

different points P' in the image area which will see different values of y1, y2, 

z1, z2 (and hence different values of of u1, u2, v1, v2), we need to calculate 

arrays of Fresnel integrals with ranges of argument values corresponding to 

the ranges of values that u1, u2, v1, v2 will assume for different points P' in the 

image plane. Since the square aperture is symmetrical about the y and z axes, 
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Figure 2. Flow chart of the simulation algorithm (Reprinted from Abedin. et al. Opt. 

Laser Technol.. Vol. 39. pp. 237-246, single aperture. Copyright, (2007) with 

permission from Elsevier).  
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Figure 3. Screenshot of MATLAB GUI for the single aperture. 

the Fresnel diffraction pattern generated by it will also be symmetrical about 

the Y and Z axes in the image plane. We can use this inversion symmetry 

around Y and Z axes to reduce the amount of calculation in all the simulations. 

It is necessary to generate diffraction image in only one quadrant in the YZ 

plane (e.g., the first) and we can generate the image in the second quadrant by 

inverting it around the Z axis. Another inversion of these two image parts 

around the Y axis will produce the images in the third and fourth quadrants. By 

this method, the amount of calculation can be reduced by approximately 4 

times. In MATLAB, these inversions can be performed rather easily with a 

minimum of computation time, so this must be a timesaver. 

To generate the image in one quadrant (e.g., the first), the limits that 

should be used for the calculation of Fresnel cosine and sine arrays 

mfun('FresnelC', l:s:u) and mfun('FresnelS', l:s:u) need to be determined. To 

find these limits, let us imagine that we position ourselves at the right/left or 

upper/lower edges of the quadrant, and for each edge, determine the 

corresponding values of u1, u2 or v1, v2 (i.e., y1, y2 or z1, z2), for each edge. For 

example, imagine that we are located on the right edge of the first quadrant, Y 

= W (see Figure 4). As explained before, this is equivalent to staying at P and 

moving the aperture by W to the left. From P, the right and left edges of the 

displaced aperture now appear to be located at y2 = (W + a) and at y1 =  

(W - a), and hence the corresponding values of dimensionless variables u2 and 

u1 must be used for the calculation of C(u2), C(u1), S(u2) and S(u1) in Eq.(6). 

On the other hand, when we are located on the left side of the first quadrant, 
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i.e., at Y = 0, then the positions of the (un-displaced) aperture edges are simply 

y2 = a and at y1 = -a, respectively. The corresponding u2 and u1 values should 

be used for C(u2), C(u1), S(u2) and S(u1) in Eq. (6) for the calculation of 

intensity at this observation position. For any observation position between 

these two extremes, y2 should range between (W + a) and a, and y1 should 

range between W-a and -a (with corresponding ranges for u2 and u1). 

Therefore, the values of the four arrays C(u2), C(u1), S(u2) and S(u1) should be 

evaluated for arguments u1 and u2 ranging between these extremes (with a 

chosen step size of s). The same procedure can be adopted for the z (or v) 

direction, and arrays C(v2), C(v1), S(v2), S(v1) can be computed for appropriate 

ranges of v1 and v2. 

 

 

Figure 4. Apparent limits of the displaced aperture as seen from the observation point 

(Reprinted from Abedin. et al. Opt. Laser Technol..Vol. 39. pp. 237-246, Copyright, 

(2007) with permission from Elsevier).  

To summarize, the limits on the four variables are therefore: 

 

 for y2 = (W + a) to a: y1 = (W - a) to -a and,  

 

                          for z2 = (W + b) to b: z1 = (W - b) to -b, 
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with corresponding ranges on u2, u1, v2 and v1, respectively. The calculations 

of the Fresnel cosine and sine integrals corresponding to the above ranges are 

performed in lines 7-10 (for the u variable and in lines 12-15 (for the v 

variable) respectively. The first and the second factor in the intensity 

distributions of the image (see Eq. 6) are computed in lines 11 and 16, 

respectively, and are contained in matrix A and matrix B, respectively. 

The rest of the program can be understood with the aid of flow chart in 

Figure 2. The elements of the intensity matrix is normalized, and multiplied by 

the intensity factor t (line 20) to enhance the intensity of images that will be 

observed at large values of q0 or for very small apertures, so that they appear 

with sufficient brightness. Usually the intensity factor is kept at 1 for nearby 

images, and for distant images, it can be increased to a value greater than unity 

(2-10). (In a real diffraction experiment, this is equivalent to using long 

exposures in a camera to capture faint images). The generated image for the 

first quadrant is contained in matrix D. This image is folded twice along the y 

and z axes (lines 23-31) to obtain the complete image (matrix E) for the four 

quadrants in the image plane. At the end of the program, the matrix E is shown 

visually as a grayscale image in real dimensions y (in mm) by using the 

MATLAB imagesc command. 

 

 

2.3. Extension to N Apertures: Theory  
 

As before in the case of the single aperture, we assume that the N-aperture 

system is centered on the yz coordinate system, i.e., the origin of the 

coordinate system O is located at the exact center of the N-aperture (Figure 5, 

shown for N = 5). Let a be the individual aperture width, b be the inter-

aperture separation [the center-to-center aperture separation being (a +b)], and 

let c be the aperture height in the z-direction. The two edges of the central 

aperture of the N-aperture system (called aperture 0 in the figure) are then 

located at y0 = -a/2 and y0’ = a/2 respectively, and the edges of the aperture for 

the next aperture to the right (called aperture +1 in the figure) are located at y1 

= a/2+b and y1’ = 3a/2+b respectively. The next aperture to the right (called 

aperture +2) are located at y2 = 3a/2+2b and y2’=5a/2+2b. Finally the edges of 

the aperture +n will be at yn = (2n-1)a/2+nb and yn’= (2n+1)a/2+nb. 

Similarly, the edges of the first left aperture (aperture -1) will be at y-1’= -a/2-b 

and y-1 = -3a/2-b, and, the edges of the –n will be at y-n’ = -(2n-1)a/2-nb and  

y-n = -(2n+1)a/2-nb. 
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If illuminated by the light source S, the total complex electric field E at the 

center P of the YZ image plane consists of the contributions from each of the 

(2n +1) apertures. The electric field contribution from the aperture 1 is given 

[analogous to equation (3) for a single aperture] by 

 

 1'

1

'
1 2

( ) ( ) ( ) ( ) .uE u v
P vu

E C u j S u C v j S v  (8) 

 

 

Figure 5. Geometric configuration for Fresnel diffraction for N = 5. a is the individual 

aperture width and (a + b) is the center-to-center aperture separation. (Reprinted from 

Abedin et al. Optik Vol. 126. pp. 3743-3751, Copyright (2015) with permission  

from Elsevier). 

The limits u1 and u1’ are the values of the dimensionless variable u 

corresponding to two edges of aperture 1, i.e., for y1 = a/2+b and y1’ = 3a/2+b, 

respectively. Similarly, the limits v and v’ are the values of the dimensionless 

variable v corresponding to the lower and the upper edges of this aperture i.e., 

for z = -c and z’ = +c respectively. 
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The electric field contributed by the aperture n to the right is given by 
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where un and un’ are the values of u corresponding to two edges of aperture n, 

i.e., for yn = (2n - 1)a/2 + nb and yn’ = (2n + 1)a/2 + nb, respectively. The 

values v and v’ are the same as in equation (8). 

 The electric field contributed by the central aperture 0 is given by 
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where u0 and u0’ are the values of u corresponding to two edges of the central 

aperture, i.e., for y0 = -a/2 and y0’ = a/2, respectively. The values v and v’ are 

the same as in equation (8) or equation (9). The electric field contribution by 

the -1 aperture to the left is similarly obtained from 

 

 1'

1

'
1 2

( ) ( ) ( ) ( )uE u v
P vu

E C u jS u C v jS v  (11) 

 

where u-1 and u-1’ are the values of u corresponding to two edges of the -1 

aperture, i.e., for y-1’ = -a/2-b and y-1 = -3a/2-b. The electric field contribution 

by the last aperture -n is given likewise by 
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where un and un’ are the values of u corresponding to two edges of aperture n, 

i.e., for y-n’ = -(2n-1)a/2 - nb and y-n = -(2n+1)a/2 - nb, respectively. The 

values v and v’ are as before. 

The total complex electric field at P contributed by the (N = 2n+1) 

apertures is given by the simple arithmetic sum of all complex amplitudes EPn, 

…. EP1, EP0, EP-1, …..EP-n, 
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(13)
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Separating the cosine and sine integrals, and using a summation notation 

for the Fresnel sines and cosines, we can write the net complex electric field in 

abbreviated from as, 
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The summation on i from –n to +n for both the Fresnel cosine and sine 

integrals (for the u variable only), in effect, carries out the summation of the 

complex electric field contributions from aperture –n to aperture n, a total of N 

= (2n + 1) apertures in the system. No such summation is required for the v 

variable, since only two edges (upper and lower) of the apertures are involved 

in this z-direction for all the (2n + 1) apertures. 

The net intensity at P is proportional to the square of the net electric field, 

i.e., 

 

 0 *

4
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I
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where I0 denotes the intensity of the unobstructed wave, i.e., I0 = Eu
2. 

If instead of N = 2n+1, we assume N = 2n (N even), the analysis can be 

carried out in the same way as shown above. There will be still 2N aperture 

edges, and the after summing up the electric fields from all the 2N apertures in 

the system, equations similar to equation (14) and equation (15) will be 

obtained in the end. However, these calculations are not shown here. 

From equation (14), it is clear that the calculation of electric field or 

intensity at a point P requires, in general, the evaluation of 2N Fresnel cosine 

and 2N Fresnel sine integrals, corresponding to the 2N edges of the N aperture 

system for the u(y) variable. In addition, two pairs of Fresnel cosine and sine 

integrals are required for the v(z) variable. The cosine integrals form the real 

parts of the electric field, and the sine integrals form the imaginary parts. After 

calculation of the complex electric field, the intensity at P is calculated in 

equation (15) by simply multiplying the field by its complex conjugate. These 

equations are the basis of calculation of the complete intensity distribution of 

the Fresnel diffraction pattern from a N-aperture system, as will be explained 

in section 2.4. Equation (14) was used to calculate first the complex electric 

field, and then the intensity was calculated by taking the square of it. These 

equations have two factors, the first factor involves only the u (or y) coordinate 
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and expresses the dependence of electric field or intensity in the y direction. 

The second factor involves only the v (or z) coordinate and expresses the 

dependence of electric field or intensity in the z direction. 

 

 

2.4. Extension to N-Apertures: Simulation Strategy  

and Algorithm  
 

Equations (14) and (15) describe the electric field and intensity at P, 

respectively. In order to describe these for an off axis point P', a similar 

technique described in the case of a single aperture in section 2.2 was used. 

The observation screen and the SOP line were fixed. Then instead of moving 

P, the entire aperture in the yz plane was moved in the opposite direction, so 

that the relative position of the aperture is this new position and point P 

remains unchanged. We then calculate the electric field at P instead of at P'. 

The point P' will see a new set of values for y’s and z’s (and therefore for u’s 

and v’s). For example, to find the intensity at point P' 1mm to the right of P, 

the screen was kept undisturbed and the aperture system was moved 1mm 

leftwards, and the intensity at P in this configuration is calculated instead of at 

P'. Consequently, the point P will now see a new set of values for the y’s and 

therefore, for the u’s in equation (13) and equation (14). As in the case of the 

single aperture, the electric field and the intensity at any point P' on the image 

plane can be found in this way by making appropriate (virtual) movements of 

the aperture in the y and z directions, and in equation (13) or equation (14), 

using correspondingly a new set of values for the u and v’s.  

The flow chart of the algorithm is given in Figure 6. For calculation of the 

electric field distribution using equation (14) at all the points (pixels) on the 

image plane, a large number of the Fresnel cosine and sine integrals will need 

to be evaluated quickly, and this is done (as in the single aperture case) by the 

special functions mfun (‘FresnelC', i:s:f) and mfun (‘FresnelS', i:s:f). As in the 

case of a single aperture, inversion symmetry around the Y and Z axes can be 

used to reduce the calculation by four times. 
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Figure 6. Flow chart of the algorithm for the N-aperture problem. (Reprinted from 

Abedin et al. Optik Vol. 126. pp. 3743-3751, Copyright (2015) with permission  

from Elsevier). 

As shown in Figure 7 for N = 3 (three apertures for simplicity), the whole 

aperture was displaced (virtually) by an amount W, and the extreme limits of 

the 2N edges of the displaced aperture was determined and compared to the 

corresponding limits for the un-displaced aperture to find the required range of 

u and v values. In a more general N-aperture system, when the aperture is 
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moved by W to the left, the ranges for the 2N edges of the N = (2n + 1) 

apertures will be determined as:  

 

for yn : (2n -1)a/2+ nb to W+(2n - 1)a/2 + nb    for yn’ : (2n + 1)a/2+ nb  

                                                                         to i+(2n + 1)a/2+ nb 

 …………………………………………………………………………. 

for y1: (a/2 + b) to (W+a/2 + b)                   for y1’ (3a/2+b) to (W+3a/2+b),  

for y0’: (a/2) to (W+a/2),                              for y0: (-a/2) to (W-a/2),  

for y-1’: (-a/2-b) to (W-a/2-b)                       for y-1 (-3a/2-b) to (W-3a/2-b), 

 ……………………………………………………………………………. 

for y-n’ : -(2n-1)a/2-nb to W-(2n-1)a/2-nb     for y-n : -(2n+1)a/2-nb  

                                                                        to W-(2n+1)a/2-nb. 

 

  

Figure 7. Apparent limits of the virtually displaced aperture seen from the observation 

plane for N=3. (Reprinted from Abedin et al. Optik Vol. 126. pp. 3743-3751, 

Copyright (2015) with permission from Elsevier). 
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Arrays of both the Fresnel cosine and sine integrals need to be calculated 

corresponding to these input ranges by the mfun statements, with a step size s. 

By using these Fresnel arrays, the electric field or intensity dependence in the 

y(u) direction can be calculated (the first factor in equation 14). Following a 

similar procedure for the entire aperture, i.e., by moving the aperture by W 

downwards, the z1 and z2 ranges are determined: c to (W+c) for z2 and –c to 

(W-c) for z1. But only four arrays of Fresnel integrals are to be evaluated for 

these two ranges, giving numerical values for the calculation of the second 

factor in equation (14). 

The complete MATLAB program for the simulation is given in the 

Appendix B. The initial parameters to the program are entered through a GUI 

(Graphical User Interface) generated in lines 1-2 of the program. The GUI 

accepts the values of aperture width (a), aperture separation (b), aperture 

height (c), width of the image area (W), step size or resolution of the 

calculations s, aperture-image plane distance (q0) (all in mm), wavelength of 

light ( in nm), exposure factor (t) and the number of slits (N) as user-supplied 

variables. The dimensionless quantities corresponding to aperture dimensions 

a, b and c, step size s and image area size W are calculated in lines (4-5) of the 

program. The step size s determines the resolution of the simulated images, as 

in the single aperture. A reasonably small value of the step size should be 

selected in the simulations. If too small a value is selected, the simulation time 

will be too long and memory overflow may occur. On the other hand, if too 

large a value is chosen, a low-resolution, blurred image will be produced. A 

value of s = 0.01 mm is a good starting point in many cases. 

The summation of the complex electric field for the u variable over the N 

apertures, indicated in equation (14), is carried out inside the repetitive ‘for’ 

loop (between lines 7-14) wherein N iterations are performed. Inside this loop, 

the required Fresnel cosine integral arrays for the u (or y) dimension are 

evaluated in lines (8-9) using mfun statements and the Fresnel sine arrays are 

likewise determined in lines (11-12). The ranges of the input arguments in 

these integral arrays are controlled by the parameter j, which starts from N, 

and goes down to (–N + 2) in steps of 2 inside the loop. In lines 10 and 13, the 

sums are calculated inside the loop, separately for both cosine and sine arrays, 

thus performing the crucial summation over N apertures in equation (13). In 

line 15, outside the loop, the electric field in y (u) is calculated in complex 

form, corresponding to the first complex factor in equation (14). In the next  
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four lines, the Fresnel cosine and sine integrals are evaluated for the z (or v) 

dimension. Next, in line 20, the second complex electric field in v is 

calculated, corresponding to the second factor in equation (13). In the next 

lines, the matrix C, which contains the complex electric field variation in both 

u and v directions, is constructed. Finally, by squaring it, the matrix D, which 

contains the intensity values for the first quadrant of the image plane, in both y 

and z, is calculated (line 23). The elements of this matrix is then normalized 

(line 24), and the complete E matrix for the full image plane intensity 

distribution is constructed by inverting D twice (lines 27-35). Finally, the 

generated image is displayed as a grayscale image by the imagesc command 

with the appropriate scale (line 37). The complete MATLAB program, called 

Nslit, is given in the Appendix A. 

 

 

3. SIMULATION RESULTS 
 

3.1. The Single Aperture 
 

Using the program rectan, the values of the seven input parameters are 

inserted to the program: amm, bmm (aperture half-widths in mm), Wmm 

(image area half-width in mm), smm (step size in mm), lnm (the wavelength in 

nm), q0mm (the aperture-image plane distance in mm) and the intensity factor 

t. The computer simulated Fresnel image for  = 632nm, q0 = 400 mm and 

aperture dimensions 2mmX3mm is shown in Figure 8. The choice of 

wavelength of light (He-Ne laser wavelength) and the aperture-image plane 

distance is completely arbitrarily. The characteristic checkerboard pattern of 

Fresnel diffraction can be clearly observed. Though the program is suitable for 

calculating the diffraction pattern for any apertures, rectangular or square, for 

brevity, we limit our subsequent attention to square apertures only.  

To examine the effect of change of simulation parameters on the diffracted 

images, we generated a series of image where the size of the square aperture is 

gradually increased from small to large, keeping the aperture-screen distance 

and the wavelength constant (at 400 mm and 632nm respectively). These 

simulation results are shown in Figures. 9(a-d). For the case of a very small 

aperture 0.3mmX0.3mm [see Figure 8(a)], the simulated image resembles a 

Fraunhofer diffraction pattern, while for the largest apertures 3mmX3mm 

[Figure 9(d)] we clearly observe a Fresnel-type diffraction pattern. This is 

expected, since for a small aperture, the waves diffracted from it appears to be 

approximately planar to a distant observer (the Fraunhofer limit), while for a 
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large aperture, they will no longer be a plane wave at that position (Fresnel 

limit). As a rough rule of thumb, if we take a to be the dimension of square 

aperture, then Fresnel diffraction will occur if the dimension a satisfies the 

following relation [16], 

 

 

Figure 8. Computer simulated Fresnel diffraction pattern from a rectangular aperture of 

dimension 2mm3mm at a aperture-screen distance of 400mm. The wavelength is 

632nm. (Reprinted from Abedin. et al. Opt. Laser Technol.Vol. 39. pp. 237-246, 

Copyright (2007) with permission from Elsevier). 

 

Figure 9. Computer simulated Fresnel diffraction images for increasing aperture size. 

The wavelength is 632nm and the aperture-screen distance is 400mm. (Reprinted from 

Abedin. et al. Opt. Laser Technol. Vol. 39. pp. 237-246, Copyright (2007) with 

permission from Elsevier). 
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 .)/a(q 2

0   (16)  

 

Otherwise Fraunhofer diffraction will occur. Using the given numerical 

values, it can be immediately verified that this is indeed the case for Figures 

9(a) and 9(d). For an aperture of intermediate size of 0.75mm X 0.75mm 

[Figure 9(b)], we obtain a diffraction image that can be described as something 

between Fresnel and Fraunhofer patterns. This is indeed the transition regime, 

where the diffraction is undergoing a transition from Fraunhofer to Fresnel. 

 

 

Figure 10. Simulated Fresnel diffraction images for increasing aperture-screen distance 

q0. The wavelength is 632nm and the aperture size is 2mm2mm. (Reprinted from 

Abedin. et al. Opt. Laser Technol. Vol. 39. pp. 237-246, Copyright, (2007) with 

permission from Elsevier). 
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Figure 11. Simulated Fresnel diffraction images for increasing illumination 

wavelength. The aperture size is fixed at 2mm2mm and the aperture-screen distance 

is 400mm. (Reprinted from Abedin. et al. Opt. Laser Technol..Vol. 39. pp. 237-246, 

Copyright, (2007) with permission from Elsevier).  

As a second example of simulations, we fix the aperture size at 2mmX 

2mm and the wavelength at 632nm, and increase the aperture-screen distance 

from q0 = 400mm [same as image 9(c), a case of Fresnel diffraction] to q0 = 

8000mm in suitable steps. According to diffraction theory and the above 

criterion, we should expect a transition from the Fresnel regime back to 

Fraunhofer. The simulation images are shown in Figures 10(a)-10(d). Clearly a 

transition from Fresnel to Fraunhofer diffraction pattern is really observed, 

with an image [Figure 10(c)] that can be described as being in a state of 

transition between the two regimes.  
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It is also possible to easily observe the effect of change of wavelength on 

the diffraction patterns. For example, starting from the situation in Figure 9(c) 

[Fresnel case], we can gradually increase the wavelength lnm from 632nm 

(red) to 6320nm (mid-infrared) and can readily observe the expected transition 

to the Fraunhofer regime. This is clearly shown in Figure 11(a)-(d). (A real 

experiment to reproduce the effect will be quite difficult to perform in a 

laboratory.) 

It must not be forgotten that in all the above cases, including those where 

the diffraction pattern is apparently Fraunhofer-like, we are basically using the 

general Fresnel diffraction formula [Eq. 3] and the Fresnel integrals to 

compute diffraction fields. No assumptions from the Fraunhofer theory was 

used. One can ask the question: how do they compare with the results of a 

purely Fraunhofer calculation? It can be shown that the Fraunhofer diffraction 

intensity distribution of a rectangular aperture of size 2a X 2b is exactly given 

by [16-17], 
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In this equation, I0 is the intensity at the central image point (P), 

aY/R, bZ/R and R is the distance between the aperture and the 

observation plane and is assumed to be sufficiently large. The variables and 

are proportional to image co-ordinates Y and Z. It is simple to write a 

MATLAB program which accepts the values of aperture dimensions 2a and 

2b, distance R, wavelength  desired image area 2WX2W, and then computes 

the normalized intensity distribution [I(Y,Z)/I0] from Eq.(17). The intensity can 

be shown either as an image, or for quantitative comparison, as a three-

dimensional intensity plot (called a mesh plot) in MATLAB. 

In Figure 12(a), we show the normalized 3-D mesh plot of the Fraunhofer 

image for an aperture size 2mmX2mm, for  =632nm and observation distance 

R=8000mm. This is the characteristic Fraunhofer diffraction graphs found in 

undergraduate textbooks. For quantitative comparisons, in Figure 12(b) we 

show the 3-D mesh plot of the image [Figure 10(d)] shown previously, which 

was calculated (simulated) by iterative Fresnel integrals method for the same 

aperture under identical conditions. Comparing the two 3-D patterns, we 

observe an excellent agreement, with respect to both the principal maximum 

and the subsidiary (minor) maxima. This shows that our calculations using the 



Simulation of Diffraction Gratings in the Fresnel Diffraction Regime  131 

Fresnel integral method must be correct, since it has a good quantitative 

agreement with the purely Fraunhofer result (Eq. 17) under similar conditions. 

 

 

Figure 12. (a) Normalized three-dimensional plot of Fraunhofer diffraction pattern of 

aperture size 2mm  2mm at an aperture-screen distance of 8000mm (632nm). (b) 

Simulated Fresnel diffraction pattern of this aperture under identical conditions. 

(Reprinted from Abedin. et al. Opt. Laser Technol.Vol. 39. pp. 237-246, Copyright 

(2007) with permission from Elsevier). 

 

Figure 13. (a) Screenshot of the MATLAB GUI, showing the 9 input parameters.  

(b) The computer simulated Fresnel image from N = 31 apertures. The input 

parameters correspond to those in the GUI. (Reprinted from Abedin et al. Optik Vol. 

126. pp. 3743-3751, Copyright (2015) with permission from Elsevier). 
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3.2. N-Apertures: Simulation Results 
 

We now present the simulation results for the N-aperture case. Using the 

program Nslit, the values of the inputs, i.e., aperture parameters a and b in mm 

(see Figure 2), height c in mm, image half-width W in mm, step size s in mm, 

the aperture image-image plane distance q0 in mm, the illuminating 

wavelength l in nm, the exposure factor t and the number N of the slits are 

input by a GUI to the program (Figure 13a). The exposure factor t is used to 

control the apparent visual intensity in the generated image, and be adjusted as 

necessary. The computer generated Fresnel image due to a N-aperture for 

wavelength λ=500 nm, q0=400mm, image half-width W = 5mm, aperture 

width a=0.1 mm, b = 0.1 mm (with aperture separation 0.2 mm), height c = 

4mm, s = 0.01mm and N = 31 is shown in Figure 13b. Since (a + b) = 0.2mm, 

this system is equivalent to an amplitude diffraction grating N = 31 with 5 

lines/mm. The diffraction image superficially resembles that of a grating in the 

far-field, with Fresnel-like characteristics exhibited in the top and bottom 

edges. Some interference effects, resulting in intensity variations can be seen 

in the left and right edges.  

The program equally works for even values of N. For example, the 

computer-simulated images for N = 10 and N = 20 for the input parameters λ = 

500 nm, q0 = 400mm, image area W = 5mm, aperture width a = 0.1 mm, b = 

0.1 mm (with aperture separation a + b = 0.2 mm), height c = 4mm, s = 

0.01mm are shown in Figures 14(a) and 14(b). 

 

 

Figure 14. The computer simulated Fresnel image for λ = 500 nm, q0 = 400mm, W = 

5mm, aperture width a=0.1 mm, b=0.1 mm (with aperture separation 0.2 mm), height c 

= 4mm, s = 0.01mm are shown for (a) N = 10 and (b) N = 20. (Reprinted from Abedin 

et al. Optik Vol. 126. pp. 3743-3751, Copyright (2015) with permission from Elsevier). 
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Figure 15. Computer simulated Fresnel diffraction images for decreasing (center-to-

center) aperture separation (a+b), while keeping the aperture width (a = 0.5mm) 

constant. for seven slits. Other parameters are: λ = 500 nm, q0 = 400mm, W = 8 mm, s 

= 0.01 mm and c = 3mm. Figure 7(d) corresponds to b = 0 (single aperture). (Reprinted 

from Abedin et al. Optik Vol. 126. pp. 3743-3751, Copyright (2015) with permission 

from Elsevier). 

To examine the effect of a change of experimental parameters on the 

diffracted image, we generated several sets of simulations. In the first set of 

simulations, the aperture separation (a + b) was made successively smaller, 

while keeping the aperture width (a = 0.5mm) constant. A series of diffraction 

images were generated as shown in Figures 15(a)-(d) for a value of N = 7. In 

Figure 15(a), in the region between the apertures, no interference could be 

detected between the light from each of the aperture diffraction patterns. But 

in Figure 15(b) and (c), some clear interference between diffracted light from 

the separate apertures was seen as the separation of the slits is reduced. As the 

separation was decreased to zero [Figure 15(d) for b = 0], a typical single 

aperture Fresnel diffraction was observed which will be generated by a single 

aperture of 3.5mmX3mm. 



Kazi Monowar Abedin and S. M. Mujibur Rahman 134 

In the next series of simulations, the width a of the apertures was made 

gradually narrower while their separation (a + b) was kept constant at 1.5 mm 

for N = 7 (seven slits). This is reproduced in figures 16 (a)-(d). From Figures 

16(a) and (b), as the apertures become narrower, the light is diffracted over a 

wider region and some interference between diffracted light can be observed. 

In Figures 16(c) and (d), at smaller aperture widths, strong mutual interference 

between diffracted light generates fringes which look like typical Young's 

fringes. Light from each aperture is diffracted over a wide portion of the image 

area, causing mutual interference. Moreover, the individual apertures can no 

longer be distinguished in the diffracted pattern, as an Figures. 16(a) and 

16(b). In Figures 16(c) and (d), fringe density is apparently the same, since this 

depends only on aperture separation. 

 

 

Figure 16. Computer simulated Fresnel diffraction images for decreasing aperture 

width a, while keeping the aperture separation (a+b)=1.5mm constant for a seven-slit 

system. λ=500 nm, q0 = 400mm, s = 0.01 mm and c = 3mm. (Reprinted from Abedin et 

al. Optik Vol. 126. pp. 3743-3751, Copyright (2015) with permission from Elsevier). 
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3.3. N-Apertures: Comparison with N-slit  

Fraunhofer Diffraction 
 

If the aperture-screen distance q0 is increased, it is well-known that a 

gradual transition from the Fresnel regime to Fraunhofer regime should be 

expected. We can use the criterion described in relation (16) to determine 

where the transition should occur. This is reproduced below: 

 

 .)/D(q 2

0   

 

In the present context, D represents the maximum dimension of the 

aperture system in the Y or Z directions. 

In the next series of simulations, for a 7-slit system, we increased 

aperture-screen distance q0, and selected input parameters as: the wavelength 

λ=500 nm, aperture width a=0.1 mm, b=0.3 mm (with aperture separation 0.4 

mm), height c=3mm, image area size W variable, s=0.01mm or 0.1 mm, as 

appropriate. We then increased the aperture screen distance q0 in steps from 

400 mm to 64,000 mm while keeping other parameters constant [Figure 17]. A 

transition from the Fresnel regime to Fraunhofer regime is clearly observed, 

being consistent with the above relation. For example, for a 7-slit system with 

(a + b) = 0.4mm, if we take the total lateral dimension of the slit system to be 

D = 2.8mm, then D2/λ is about 16,000 mm. We can expect the diffraction to be 

Fresnel-like if q0 is less than this value. On the other hand, if, (D2/λ) > q0, and 

we can expect the diffraction pattern to be Fraunhofer-like. In between these 

extremes, a transition from Fresnel to Fraunhofer regime is expected to occur. 

[as in Figures 17(c) and 17(d)]. 

The usual mathematical analysis of a N-slit system, as found in textbooks 

[16, 19] usually deals with the N-slit pattern only in the far-field Fraunhofer 

regime. The generalized Fraunhofer intensity distribution of an N-aperture 

system in the image plane (Y, Z) can be exactly calculated by an analytical 

formula  
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where β,  and α are defined as, 
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In the above equations, a is aperture width, (a+b) is the aperture 

separation, c is aperture height, λ is the wavelength and R is the distance 

between the aperture and the screen, assumed to be sufficiently large. As 

pointed out above, in our computer simulations, this Fraunhofer conditions can 

be considered to be sufficiently fulfilled in Figures 17(e) and 17(f), for R (or 

q0)=32,000 mm and R=64,000 mm, respectively. 

In the conventional analysis of Fraunhofer diffraction for this case [19], 

the principal maxima of the diffraction pattern occurs when the [sin N/sin . 

factor have maximum values, i.e., when, 

 

  mba  sin)(  (20) 

 

Here,  is the diffraction angle and m is known as the diffraction order. This 

equation is known as the grating equation. For m = 0, we have the zeroth-

order, for m = 1, we have the first order and so on. [Since (a + b)/a = 4 in the 

above simulation, m = 4 will the missing order, and hence it is not expected to 

occur.] In addition to these principal maxima, several minima of zero intensity 

and several much weaker secondary maxima are predicted to occur between 

the principal maxima. If N is the number of grating slits (apertures), then the 

number of secondary maxima is equal to (N-2), and the number of minima is 

equal to (N-1) [19]. 

To compare with simulations quantitatively, Figure 17(e) is enlarged and 

presented in Figure 18, with the intensity values multiplied by a factor of 10 to 

bring out the fainter details. We clearly observe 7 principal maxima, with m=0 

(at Y = 0), with m=+1 (at Y = 39.8 mm), m = +2 (at Y = 80.0 mm), m = +3 (at Y 

= 120 mm), with m=-1 (at Y = -39.8 mm), m = -2 (at Y = -80.0 mm), and m = -

3 (at Y = -120 mm). In addition, 5 (= N-2) secondary maxima are clearly 

visible between the principal maxima at the zeroth order and the first order, 

and between the first and the second orders, along with 6 minima of zero 

intensity, between the secondary maxima. All these observations are consistent 

with theoretical expectations. 

The values of sin  can be estimated by calculating the ratios (Y/R, with R 

= 32,000 mm) from the simulated image (Figure 18). These calculated values 

are: 1.23X10-3 (for m = +1 and m= -1), 2.50 X10-3 (for m=+2 and m= -2), and 

3.75X10-3 (for m = +3 and m = -3.) 

From equation (20), on the other hand, for  = 500 nm, (a + b)= 0.4 mm, 

the following values of sin  are calculated: 1.24X10-3 (for m = +1 and m = -1) 

2.50X10-3 (for m = +2 and m = -2), and 3.75X10-3 (for m = +3 and m = -3). 
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Figure 17. Computer simulated Fresnel diffraction images for a 7-slit system. 

Aperture-screen distance q0 is increased in steps, while keeping other parameters 

constant, with a = 0.1mm, b = 0.3mm, c=3mm, λ = 500 nm. (a) and (b) are in the 

Fresnel regime, while (e) and (f) are in the Fraunhofer regime, according to equation 

(16). (Reprinted from Abedin et al. Optik Vol. 126. pp. 3743-3751, Copyright (2015) 

with permission from Elsevier). 
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Figure 18. Computer simulated Fresnel diffraction images for a 7-slit system, 

reproduced for clarity for an aperture-screen distance q0=32,000 mm (Fraunhofer 

regime), with a = 0.1mm, b = 0.3mm, c = 3mm and. λ = 500 nm. The intensity values 

have been multiplied by a factor of 10 to bring out the fainter details. The principal 

diffraction orders can be seen, as well as the secondary maxima and the minima 

between them. M = 4 is the missing order, hence it is not expected to occur. (Reprinted 

from Abedin et al. Optik Vol.126. pp. 3743-3751, Copyright (2015) with permission 

from Elsevier). 

Therefore, we conclude: the computer-simulated results of the diffraction 

image, in the Fraunhofer limit, almost exactly agree, both qualitatively and 

quantitatively, with the results from the exact Fraunhofer theory, as 

represented by equations (18)-(20). This agreement strongly supports the 

validity of the present computation methods and techniques. 

 

 

3.4. N-Apertures: Simulation of Diffraction from Realistic 

Amplitude Gratings 
 

We simulated diffraction images with a realistic aperture spacing (a + b), 

so that it corresponds to a real amplitude grating where the grating period is of 

the order of the wavelength of light. We choose a = 0.001 mm, b = 0.003 mm, 
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and c = 5 mm, so that the aperture spacing is 0.004 mm. This is equivalent to a 

grating with grating constant of 250 lines/mm. Simulations are performed in 

both Fresnel and Fraunhofer regimes, but are shown in the Fraunhofer regime 

(with q0 = 100 mm and  = 500 nm) to facilitate comparison with the exact 

grating equation [Eq. 20]. The simulated images are shown in Figure 19 for 

three different aperture members N = 10, N = 100 and N = 1000. (M=4 will the 

missing order, and its expected position should be at Y = 50 mm according to 

the grating equation.) 

In all the above cases, there is excellent agreement with the observed 

positions of the principal maxima with those predicted by the exact Fraunhofer 

theory. The agreement is shown in Table 1. 

 

 

Figure 19. Computer simulated Fresnel diffraction images for some realistic gratings 

with different aperture numbers in the far-field regime, with a = 0.001mm, b = 

0.003mm, c = 10mm, q0 = 100 mm and λ = 500 nm. (a) N = 10, (b) N = 100 and (c) N 

= 400. The intensity values have been multiplied by a factor of 5 to bring out the 

fainter details. 
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Table 1. Comparison between Simulations and Theory for the Positions of 

the Primary Maxima for various grating orders for N = 10,  

N = 100 and N = 400 

 

Positions of 

the principal 

maxima (mm) 

From computer simulations in the far-field 

regime 

Calculated 

from the 

grating 

equation 

(mm) 
N = 10 N = 100 N = 400 

Zeroth 0 0 0 0 

First 12.5 12.5 12.51 12.5 

Second 25.0 25.03 25.13 25.0 

Third 37.55 37.59 37.49 37.5 

 

 From the above table, we observe that there is excellent agreement 

between the results of simulation and Fraunhofer theory regarding the 

positions of the principal maximum for a grating with a large number of slits 

(apertures) which can be put to a practical use. As the number of slits N is 

increased, the positions of the principal maxima remains unchanged, but the 

number of secondary maxima (N - 2) increases and their intensities also 

decrease significantly, becoming almost invisible for large N. The diffraction 

image is then dominated by the principal maxima only. 

 

 

4. DISCUSSION 
 

In this Chapter, we have described in detail how the Iterative Fresnel 

Integrals Method can be applied, first to a single aperture, and then extended 

to the case of multiple apertures (N apertures). Details of the simulation 

strategy and methodology are given, and the implementation plan in a 

MATLAB program. Using these MATLAB codes, the reader can perform 

these simulations by his own and see the results immediately. Extensive 

experience is MATLAB programming is not required, as all inputs to the  

programs are through MATLAB GUIs, and the only outputs are the computed 

diffraction images, which can be interpreted immediately. Our simulation 

method (for the single apertures) has already been used for the simulation of 

diffraction images in a variety of practical situations, such as in fabrication of 

UV mask for microfluidic systems [26, 27], contact mask lithography [28], 
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and more recently, for micro-nanofabrication [29] and in contact lithography 

for fabrication of photonics components [30]. 

 

 

4.1. Single Apertures 
 

In the single-aperture case, which is the simplest, the theory is developed 

ab-initio from the classic Huygens-Fresnel principle, and the diffraction 

integral is evaluated in terms of the Fresnel cosine and sine integrals. By a 

series of virtual displacements of the aperture, the complete diffraction pattern 

is mapped out in the image plane in terms of repeated (iterative) calculation of 

Fresnel integrals. This is the essence of the Iterative Fresnel Integrals method. 

Typical checkerboard pattern of Fresnel diffraction, which is reproduced in 

textbooks from real experiments, can be reproduced exactly. The effect of 

changing any of the experimental parameters, such as aperture size, aperture-

screen distance, and wavelength can be immediately observed by changing the 

input parameters in the simulation program. In a real diffraction experiment, 

changing the aperture size or the wavelength of light involves a significant 

amount of investment in experimental equipment, and therefore is not easy. 

This is particularly true for very small diffraction apertures (where 

microfabrication techniques have to be used), or very long (infrared) or very 

short (ultraviolet) illumination wavelengths, which must be monochromatic. 

It is well-known that in the limit of large aperture-screen distances, long 

illumination wavelengths, or small apertures, Fresnel diffraction become 

Fraunhofer diffraction, and the diffraction pattern can be exactly calculated by 

analytical equations. We actually observed this happening in our virtual 

experiments. In particular, in the limit of large aperture-screen distances, we 

calculated the Fresnel diffraction intensity distribution by our simulation 

technique, and compared with analytical formula for Fraunhofer diffraction. 

The excellent quantitative agreement between the two implies that the 

simulation technique is correct and accurately represents the reality. 

 

 

4.2. Multiple Apertures and Diffraction Gratings 
 

The theory was extended to the non-trivial case of multiple apertures, and 

the corresponding algorithm was described. The summation of the complex 

electric field for N apertures was performed inside an iterative loop containing 

Fresnel cosine and sine integrals, whose iterations depend on the value of N. A 
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number of different simulation images for even and odd number of apertures 

were produced. The intensity value was calculated by squaring the complex 

electric field. Here the complex number capability of MATLAB was used to 

full advantage. 

The simulated images were generated for a number of different 

experimental configurations. We found that as the individual apertures of an 

N-aperture system are brought closer, significant interference between 

diffracted light can be seen in the space between apertures. On the other hand, 

if the aperture widths of individual apertures are made narrower while keeping 

their separations constant, the light is observed to be diffracted over a wider 

region, and Young-like fringes appear on the image. The expected transition to 

the Fraunhofer diffraction at large aperture-screen distance was obtained by 

simulation for a diffraction grating having 7 slits for different experimental 

conditions. The diffraction pattern was compared with those predicted by the 

Fraunhofer theory. In the far-field Fraunhofer limit, the positions of the 

maxima correspond exactly to those predicted by the exact grating equation. 

The number and positions of the secondary maxima and minima also agree 

with the theory. 

The amplitude diffraction grating is extremely important in spectroscopy, 

as pointed out in the Introduction. Because of the difficulty of treating the 

near-field Fresnel diffraction theoretically, almost always the diffraction from 

an amplitude grating is treated in the far-field Fraunhofer regime. To render 

the incident and diffracted rays parallel, as required in the Fraunhofer limit, 

collimating lenses or mirrors are almost always used. 

Our simulation method enables one to treat the near-field Fresnel regime 

and also to examine the effects of the changing the various experimental 

parameters, such as grating spacing, number of lines, wavelength, and other 

parameters with a minimum of effort. In fact, complete virtual experiments 

can be performed with our program to simulate any experimental condition, 

without ever performing any real experiments. We are reasonably certain that 

all the outcomes will agree with the experiments, as long as our assumptions 

of the iterative Fresnel integrals method are valid to a reasonable degree. 

Finally, simulations were performed for realistic amplitude gratings 

having a large number of apertures N with spacings comparable to the 

wavelength of light. The MATLAB program was successfully able to handle 

large number of apertures without any memory overflow or errors. The 

simulations produced the expected results in the far-field Fraunhofer regime. 

In addition, it is able to generate the diffraction images in the Fresnel regime 

too. 
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4.3. Simulation Times 
 

All the above simulations can be performed in any modern PC where 

MATLAB is installed. The requirements on computational resources for all of 

the above simulations are quite modest. For most of the computer simulations, 

we used an ordinary office PC or a general purpose lab PC running under 

Windows 8. The CPU clock speed was about 2.4 GHz, and the installed RAM 

in the PC was 8GB. If the image sizes are of the order of 1000X1000 pixels, 

the computation time is of the order of less than a minute in most cases for 

single apertures. On the other hand, for much larger images (for example, 

3000X3000 pixels or larger), the computation time will be increased 

considerably. Using high-performance PCs or workstations using multicore 

processors and large amounts of RAM, the computation times for even large 

images can be expected to be significantly smaller. For N-apertures or 

diffraction gratings, computation time depends on the image size as well as the 

value of N, and for large images with large values of N (of the order of 

hundreds or thousands), computation time is can be of the order of tens of 

minutes or even an hour. But there is no limitations on RAM for large N, and 

the requirement of memory space do no increase with the value of N, since the 

summation of the electric field E is done inside a for loop, without any 

increase of memory requirements. The CPU speed then becomes the limiting 

factor. 

Though we have presented our program in MATLAB, it should be 

possible to translate the programs into other high-level scientific languages, 

such as Mathematica or MathCad. Depending on the efficiency of calculation 

of the Fresnel integrals and on the efficiency how the matrix calculations are 

performed, however, the computation times for the programs written in the 

above languages maybe significantly different. 

 

 

4.4. Further Extensions of the Problem 
 

Two variations of the N-slit problem can be considered. The first is the 

illumination by multiples optical wavelengths, which would be expected in a 

real-life situation, for example, a spectrograph analyzing light from a mercury 

discharge lamp emitting multiple wavelengths. The second will be the 

simulation of the near-field diffraction pattern for the case where the light is 

incident at an oblique angle on the grating which may be tilted and rotated by 

some mechanical means. This situation also occurs in a practical spectrograph 
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[31-33], for example, in the popular Czerny-Turner spectrograph 

configuration. In this case, the problem would be to combine the geometry of 

the tiled grating [23] with the geometry of the N-slits [25] and to find the total 

diffracted field in the case of a tilted N-aperture system.  

 

 

CONCLUSION 
 

In conclusion, we can say that we have explained the complete solution of 

the problem of near-field diffraction from an amplitude diffraction grating, 

with complete algorithms and MATLAB codes. Anybody can do the virtual 

experiments in his or her PC, using the codes we have provided in the 

Appendix. The codes can be used also as tool of learning diffraction 

phenomena from gratings in an educational environment, for example in an 

undergraduate course in optics and diffraction, or as a demonstration of a 

computer simulation experiment. 

 

 

APPENDICES 
 

A. rectan: Complete MATLAB program for the single aperture 

1. u=inputdlg({'a mm','b mm','W mm','Step mm','q0 mm','Wavelength 

nm','Exposure'}, … 

2. 'Fresnel Diffraction from Rectangular Aperture', [1,1,1,1,1,1,1]); 

3. for i=1:7; v(i)=str2num(u{i}); end 

4. l=v(6)*1e-6; t=v(7); q0=v(5);  

5. a=v(1)*sqrt(2/(l*q0)); b=v(2)*sqrt(2/(l*q0)); 

6. W=v(3)*sqrt(2/(l*q0)); s=v(4)*sqrt(2/(l*q0)); 

7. Cu2=mfun('FresnelC', a:s:W+a); 

8. Cu1=mfun('FresnelC',-a:s:W-a); 

9. Su2=mfun('FresnelS', a:s:W+a); 

10. Su1=mfun('FresnelS', -a:s:W-a); 

11. A=(Cu1-Cu2).^2+(Su1-Su2).^2; 

12. Cv2=mfun('FresnelC', b:s:W+b); 

13. Cv1=mfun('FresnelC', -b:s:W-b); 

14. Sv2=mfun('FresnelS', b:s:W+b); 

15. Sv1=mfun('FresnelS', -b:s:W-b); 

16. B=(Cv1-Cv2).^2+(Sv1-Sv2).^2; 
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17. B=B';n=size(B);B=repmat(B(:,1),1,n); 

18. A=A';A=repmat(A(:,1),1,n); A=(A)'; 

19. D=B*A; 

20. D=t*D/max(max(D)); 

21. m=2*fix(((2*W)/s)/2); 

22. E=zeros(m+1,m+1); 

23. for q=1:1:m/2+1; 

24. for p=1:1:m/2+1; E(m/2+2-p,q+m/2)=D(p,q); end 

25. end 

26. for q=m+1:-1:m/2+2; 

27. for p=1:1:m/2+1; E(p,-q+2+m)=E(p,q); end 

28. end 

29. for q=1:1:m+1; 

30. for p=1:1:m/2; E(-p+2+m,q)=E(p,q); end 

31. end 

32. y=-W:s:W;ymm=y*sqrt((l*q0/2)); 

33. imagesc(ymm,ymm,E,[0 1]);colormap(gray); 

 

B. Nslit: Complete MATLAB program for the N-aperture 

 

1. u=inputdlg({'a mm','b mm','c mm','W mm','s mm','q0 mm','l nm',... 

2. 'exposure', 'Slit Number'},'Fresnel Diffration from N apertures',  

 [1,1,1,1,1,1,1,1,1]); 

3. for i=1:9; v(i)=str2num(u{i}); end 

4. q0=v(6); t=v(8); l=v(7)*1e-6;f=sqrt(2/(l*q0)); 

5. a=v(1)*f; b=v(2)*f; c=v(3)*f; W=v(4)*f; s=v(5)*f;N=v(9);r=(N-1)/2; 

6. CuS=0; SuS=0; 

7. for j=N:-2:-N+2 

8. Cu2=mfun('FresnelC',j/2*a+r*b:s:W+j/2*a+r*b); 

9. Cu1=mfun('FresnelC',(j-2)/2*a+r*b:s:W+(j-2)/2*a+r*b); 

10. CuS=CuS+Cu2-Cu1; 

11. Su2=mfun('FresnelS',j/2*a+r*b:s:W+j/2*a+r*b); 

12. Su1=mfun('FresnelS',(j-2)/2*a+r*b:s:W+(j-2)/2*a+r*b); 

13. SuS=SuS+Su2-Su1;r=r-1; 

14. end 

15. A=complex(CuS,SuS); 

16. Cv2=mfun('FresnelC',c:s:W+c); 

17. Cv1=mfun('FresnelC',-c:s:W-c); 

18. Sv2=mfun('FresnelS',c:s:W+c); 
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19. Sv1=mfun('FresnelS',-c:s:W-c); 

20. B=complex(Cv1-Cv2,Sv1-Sv2); 

21. B=B';n=size(B);B=repmat(B(:,1),1,n); 

22. A=A';A=repmat(A(:,1),1,n);A=(A)'; 

23. C=B*A;D=C.*conj(C); 

24. D=t*D/max(max(D)); 

25. m=2*fix(((2*W)/s)/2); 

26. E=zeros(m+1,m+1); 

27. for q=1:1:m/2+1; 

28. for p=1:1:m/2+1; E(m/2+2-p,q+m/2)=D(p,q); end 

29. end 

30. for q=m+1:-1:m/2+2; 

31. for p=1:1:m/2+1;E(p,-q+2+m)=E(p,q);end 

32. end 

33. for q=1:1:m+1; 

34. for p=1:1:m/2;E(-p+2+m,q)=E(p,q);end 

35. end 

36. y=-W:s:W;ymm=y/f; 

37. imagesc(ymm,ymm,E,[0,1]);colormap(gray); 
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Abstract

Recently, visual feedback control system is becoming more attractive

for mechatronics education due to the development of RGB-D cameras

such as Kinect and Xtion. In this paper, an example of a simple visual

feedback control system of a mobile robot with an axis-symmetric shape

is introduced for mechatronics education which has to be demonstrated

within a time limit of a lecture. Positions of a robot in image plane and

projected plane can be calculated by referring to RGB stream and depth

stream obtained from Xtion camera, respectively. As the first simple ex-

ercise, a virtual barrier fence is designed, so that a mobile robot can move

within the virtual fence even without a real one. In addition, if a mobile

robot has an axis-symmetric shape, e.g., circle, from the top view, it is

difficult for a vision system to identify the orientation of the robot in the

coordinate system. Another exercise is introduced to deal with an orien-

tation following control using a forward direction vector. The forward di-

rection vector can be calculated from point cloud data obtained by making
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the robot move forward for a short distance, e.g., 30 mm, every dynamic

sampling period. The effectiveness and usability of the presented work is

demonstrated experimentally.

1. Introduction

In the previous research, the authors developed a network-based subsamption

architecture for multiple mobile robots whose memory specifications and soft-

ware development environments were not sufficient for a large-scaled applica-

tion [1]. Each robot has six PSD sensors as shown in Figure 1 to detect objects

around the body. Recently, visual feedback control system is becoming more

attractive for robotics and mechatronics systems because of the appearance of

RGB-D cameras such as Kinect and Xtion. First of all, several potential research

results using visual feedback are briefly introduced.

For example, Yu et al. developed a system which had standard network pro-

tocol and an interactive human-machine interface. An operator could control

a mobile robot to navigate in their laboratory while receiving visual feedback

information. The designed user interface enabled both researchers and students

to control and program mobile robots and to do some interesting experiments

from a remote computer [2]. Uchikado et al. coped with a problem concerning

navigation of a mobile robot with a camera in indoor environment. A visual

feedback control system using a vanishing point of parallel lines at both sides of

the corridor was proposed for guidance and obstacle avoidance [3]. Nierobisch

et al. developed a novel approach to large view visual servo of a mobile robot

with a pan-tilt camera. The rotational, lateral and longitudinal motions are con-

trolled separately by selecting appropriate image features which can decouple

the rotational and translational velocity components. This function was effec-

tive for traversing a confined indoor space [4]. Then, Slawinski et al. proposed a

control scheme for teleoperation of mobile robots with visual feedback in pres-

ence of undesirable time-varying delay. The controller was designed using a

model of the human operator to combine the velocity command generated by

the human operator in a delayed time instant, the received information in such

moment, and the current state of the remote site to set the velocity reference for

the mobile robot [5]. Lutvica et al. conducted a design and implementation of

a remote position control system for a mobile robot. The system was composed

of the mobile robot, PC-based positioning controller, camera and wireless com-

munication device using ZigBee. The camera captured images of the mobile
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robot. Developed image processing algorithms was able to estimate the position

and orientation of the robot [6]. Also, Hong et al. reported a visual and force

feedback method to enhance a human operator’s situational awareness in multi-

robot teleoperation environment by fabricating a global view of the multi-robot

system and transmitting its velocity information, while using only local infor-

mation of the robots [7]. Futher, Machida et al. proposed a tracking control

system of human motion with Kinect for control of a mobile robot, in which the

3D position information of human obtained from Kinect enabled to control the

velocity and attitude of the mobile robot [8]. Furthermore, Wang et al. presented

a new controller for the trajectory tracking of nonholonomic mobile robots us-

ing visual feedback without direct position measurement. This controller was

developed based on the basis of a novel adaptive algorithm for estimating the

global position of the mobile robot, in which natural visual features measured

by a vision system, its orientation and velocity measured by odometry, and At-

titude and Heading Reference System (IMU & Compass) sensors were online

used [9].

Wheel 1Wheel 2

Wheel 3

DC motor

DC motor

DC motor

MicroConverter®

PSD 1

PSD 2

PSD 3

PSD 4

PSD 5

PSD 6

Figure 1. Three wheeled mobile robot with six PSD sensors used for past ex-

periments.

However, it seems that mechatronics education systems using a visual feed-

back control have not been adequately developed and provided for undergrad-

uate students in mechanical engineering course. In this paper, a simple visual

feedback control system of a mobile robot with an axis-symmetric shape is in-

troduced for mechatronics education that should be concluded with a time limit
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of a lecture. Positions of a robot in image plane and projected plane can be cal-

culated by referring RGB stream and depth stream obtained from a Xtion cam-

era, respectively. As the first simple exercise, a virtual fence system is designed,

so that a mobile robot can move within the fence even without a real physical

one. In addition, if a mobile robot has an axis-symmetric shape as a circle from

the top view, it is not easy for a vision system to identify the orientation of the

robot in the coordinate system. Of course, although an axis-asymmetric marker

on the mobile robot easily overcome this problem, such a marker is not used

due to the problem setting in this paper. Odometry is commonly used as a typ-

ical dead reckoning for mobile robots. However, in this test bed, the friction

between the table and wheels is very small, so that undesirable slips and mea-

surement errors due to the integration tend to occur. To cope with this problem,

an orientation following control is considered using a forward direction vector.

The forward direction vector can be calculated from point cloud data obtained

by making the robot move forward for a short distance, e.g., 30 mm, every dy-

namic sampling period. The promise and usability as a mechatronics education

system are demonstrated experimentally.

2. Experiment System

Figure 2 shows the experimental setup, in which a three-wheeled mobile robot

with no sensors used is controlled by a server PC. A Xtion PRO LIVE camera

is taking view of the table top. A table coordinate system o − xyz is fixed on

the center of the table. Figure 3 shows the top view of the robot. The main

body is provided by TOSADENSHI LTD., on which a micro control unit called

MicroConverter is mounted. A simple DC motor without an encoder is built

in each wheel, so that the robot has a high cost performance. The robot can

communicate with a server PC through Bluetooth and has only to conduct the

reflex action command transmitted from the server PC. The server PC, which

was developed in the past, transmitted a reflex action command generated by the

already proposed network-based subsamption architecture [1]. The nine kinds

of reflex action commands are tabulated in Table 1. In this system, the same

reflex action commands are used.

As can be guessed, it is not easy for the camera system to identify the robot’s

orientation φ in Figure 2 because of the axis-symmetric shape from the top view.

Note that the symmetric shape of the mobile robot is the important problem

setting for students.
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3. Design of Virtual Fence

The whole work area on the table is given by xlft1 < x < xrht1,

ybtm1 < y < ytop1. [x y z]T is the estimated position of the robot mea-

Table side view

x

z
x

y

Xtion PRO camera

(xlft1,ybtm1)

(xrht1,ytop1)

(xlft2,ybtm2)

(xrht2,ytop2)

Table top view

o

o
Robot

3D depth data 

Robot

φ
Bluetooth 

Server PC 

Figure 2. Experimental setup, in which the inner rectangle is called the virtual

fence.

Wheel 1
Wheel 2

Wheel 3

Wheel 1

Wheel 2

Wheel 3

DC motor

DC motor

DC motor

MicroConverter®

Figure 3. Three wheeled mobile robot with no sensors used in experiments this

time.
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Table 1. The most simply subdivided reaction behaviors, i.e., reflex

actions, for a mobile robot

Cmd. code c(k) Corresponding reflex actions

0x30 Halt at the position

0x31 Move to the direction 1

0x32 Move to the direction 2 (Front)

0x33 Move to the direction 3

0x34 Move to the direction 4

0x35 Move to the direction 5 (Rear)

0x36 Move to the direction 6

0x37 Rotate to clockwise direction

0x38 Rotate to counterclockwise direction

sured by the Xtion. A virtual barrier fence is assumed that xleft2 < x < xrht2,

ybtm2 < y < ytop2. If the robot moves outside the virtual fence, the server PC

generates an opposite directional command and transmits a packet including

the command to make the robot return into the area, so that the virtual fence

is simply realized. Since the mobile robot takes only the actions shown in the

Table 1, a reflex behavior like bounding from a fence can be easily done by

generating the opposite directional command according to the last conducted

one. The control law of virtual fence is given by

If (xlft2 < x < xrht2) ∧ (ybtm2 < y < ytop2) is false,

c(k) =

{

c(k − 1) + 3 if 0x30 < c(k − 1) < 0x34
c(k − 1) − 3 if 0x33 < c(k − 1) < 0x37

(1)

where c(k) is the reflex action command code at discrete time k shown in Table

1. Figures 4 and 5 show the software flowcharts of the reflex action program

built-in the mobile robot and the timer interrupt in the virtual fence mode on the

server PC, respectively.

In Figure 5, BGR image and point cloud map are first retrieved, then the

threshold image of the target mobile robot with red color is extracted from the

BGR image. The resolution is 640×480, so that the zero-order moment, first-
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order ones in x- and y-directions are given as [10]

m0,0(k) =

639
∑

i=0

479
∑

j=0

fb(i, j) (2)

m1,0(k) =

639
∑

i=0

479
∑

j=0

ifb(i, j) (3)

m0,1(k) =

639
∑

i=0

479
∑

j=0

jfb(i, j) (4)

where fb(x, y) is a binarization function according to a threshold and the inten-

Software built in 
mobile robot

Receiving a packet including 
reflex action command and 
exec. time from server PC

Header code is 
detected?

Yes

No

Transmitting ACK code

Acting of reflex action 
command for execution time

Figure 4. Software flowchart of the reflex action program built-in the mobile

robot.
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sity value f(x, y) as given by

fb(x, y) =

{

1 if f(x, y) ≥ threshold

0 otherwise
(5)

Timer Interrupt on 
server PC

Setting a packet including opposite reflex 
action command and execution time

ACK is 
detected?

Transmitting one packet to mobile robot

Return from interrupt

Rx time 
out?

Re-transmitting one packet 
for error recovery 

Yes

No

No
Capture of BGR image and point cloud map

Getting of threshold image of target mobile 
robot with red color

Calculation of  COG (Gx, Gy) of target red 
color area

Extraction of position vector (x, y, z) at 
COG (Gx, Gy) from point cloud map

No

Yes

Outside of 
virtual fence?

Yes

Figure 5. Software flowchart of the timer interrupt in the virtual fence mode on

the server PC.
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The COG [Gx(k) Gy(k)]T in the image of the target robot is calculated by [10]

[Gx(k) Gy(k)]T =

[

m1,0(k)

m0,0(k)
,
m0,1(k)

m0,0(k)

]T

(6)

The position x(k) = [x(k) y(k) z(k)]T in table coordinate system correspond-

ing to the COG can be extracted from the point cloud data. In this paper, x(k)

is used as the robot’s current position estimated by the Xtion. If the robot is out-

side of the virtual fence, a command packet consisting of a header code of ‘S’,

i.e., 0x53, an opposite reflex action command based on Eq. (1) and an execution

time, e.g., 100 ms, are transmitted to the mobile robot.

On the other hand, as shown in Figure 4, the mobile robot is waiting for

the command packet with a header code. After receiving the command packet,

the robot has only to conduct the reflex action for a constant execution time. A

recovery process for communication error, i.e., retransmission of the packet, is

equipped in the timer interrupt routine on the server PC. Because undesirable

lack of code is easy to occur when the DC motor is running or just after running.

4. Orientation Following Control

Figure 6. Mobile robot with an axis-symmetric red circular shape from the top

view.



162 Fusaomi Nagata, Toshiyuki Tatai, Mamadou Ngom et al.

Timer Interrupt on 

server PC

Setting a packet having reflex 
action command and exec. time

ACK is 
detected?

Transmitting one packet to 
mobile robot

Return from interrupt

Setting command code (0x32) 
and execution time 

Rx time 
out?

Re-transmitting one 
packet for error recovery 

Switching to rotation mode

Yes Yes

No

No

Capture of BGR image and point 
cloud map

Getting of  threshold image of 
target red color

Calculation of  COG (Gx, Gy) of 
target red color area

Extraction of position (x, y, z) at 
COG (Gx, Gy) from point cloud

Calculation of forward direction 
vector (vx, vy, vz) & orientation φ

Output of reflex action (0x37 or 
0x38) & exe. time using P-action 

Switching to forward mode

Rotation
mode?

No

Yes

Figure 7. Software flowchart of the timer interrupt in the orientation following

control mode on the server PC.

It is not easy to estimate the orientation from images captured by a cam-

era in case of the axis-symmetric shape as shown in Figure 6. In this paper,

an orientation following control method is designed for the mobile robot with

the axis-symmetric shape. The orientation can be estimated by using the direc-
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tion vector which is measured by making the robot move a little to a direction,

e.g., forward direction. By using the position x(k) in table coordinate system

measured by the Xtion, the moving direction vector v(k) = [vx(k) vy(k)]T is

calculated as

v(k) = x(k) − x(k − 1) (7)

Hence, the orientation φ(k) [rad] of the robot shown in Figure 2 is easily esti-

mated by

φ(k) = tan−1 vy(k)

vx(k)
(8)

Here, let’s consider the execution time |tφ(k)| calculated by a simple P-action

given by

tφ(k) = Kφ{φd(k) − φ(k)} (9)

where φd(k) is the desired orientation of the robot.

Figures 7 shows the software flowchart of the timer interrupt routine in the

orientation following control mode on the server PC. The server PC transmits

a command packet consisting of one byte header code and two bytes command

vector Cmd(k) = [c(k) |tφ(k)|]T to the mobile robot. Note that, in the mobile

robot side, the same built-in program shown in Figure 4 is used, so that the

mobile robot has only to conduct c(k) for |tφ(k)|. After executing a reflex

action, the mobile robot returns ACK code ‘S’, i.e., 0x52 to the server PC as

shown in Figure 4. As can be seen from Figure 7, the forward mode and the

rotation mode are alternately switched. The switching period depends on the

time required for the handshake process between the program of the mobile

robot shown in Figure 4 and the timer interrupt of the server PC shown in Figure

7. In this paper, the switching period is called the dynamic sampling period.

The forward mode is important to steadily generate the direction vector

given by Eq. (7). In the forward mode, c(k) has a value of 0x32. On the other

hand c(k) has a value of 0x37 or 0x38 when the orientation is controlled by the

server PC in the rotation mode. The control law in the rotation mode on the

server PC is represented by

Cmd(k) =

{

[0x38 tφ(k)]T if tφ(k) ≥ 0
[0x37 − tφ(k)]T otherwise

(10)
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Finally, experiments were conducted to evaluate the effectiveness and us-

ability of the designed system. Figure 8 shows the experimental scenes, in

which the red-colored line is the robot’s actual trajectory and the white-colored

arrow is the final controlled orientation. As can be seen, the mobile robot could

successfully follow the two desired orientations, i.e., φd =90◦ and 45◦, by al-

ternately acting the forward mode and the rotation mode as shown in Figure

7.

φd = 90 [deg]

φd = 45 [deg]

x

y

o
φ

x

y

o
φ

Figure 8. Experimental results of orientation following control.
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Conclusion

In this paper, a simple visual feedback control system of a mobile robot with an

axis-symmetric shape has been introduced for mechatronics education which

has to be concluded successfully within a time limit of a lecture. Positions of a

robot in image plane and projected plane could be calculated by referring RGB

stream and depth stream obtained from a Xtion camera, respectively. As an ex-

ercise, a virtual barrier fence system was designed, so that a mobile robot could

move around within the fence without using any sensors. Furthermore, an ori-

entation following control using a forward direction vector is presented for a

mobile robot with an axis-symmetric shape from top view. The forward direc-

tion vector could be generated from the point cloud data obtained by making the

robot move forward for a short distance, e.g., 30 mm, every dynamic sampling

period. The effectiveness and usability were demonstrated experimentally.

The authors are planning to apply the proposed mechatronics education

system to an experimental lecture for the third year students, department of

mechanical engineering, Faculty of Engineering, Tokyo University of Science,

Yamaguchi. It is expected that students will be able to learn the basic applica-

tion technique of RGB-D camera such as Kinect and Xtion through experiential

learning.
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