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ABSTRACT
Intelligent systems often depend on data provided by information agents, for example, sensor
data or crowdsourced human computation. Providing accurate and relevant data requires costly
effort that agents may not always be willing to provide. Thus, it becomes important not only to
verify the correctness of data, but also to provide incentives so that agents that provide high-
quality data are rewarded while those that do not are discouraged by low rewards.

We cover different settings and the assumptions they admit, including sensing, human
computation, peer grading, reviews, and predictions. We survey different incentive mechanisms,
including proper scoring rules, prediction markets and peer prediction, Bayesian Truth Serum,
Peer Truth Serum, Correlated Agreement, and the settings where each of them would be suit-
able. As an alternative, we also consider reputation mechanisms. We complement the game-
theoretic analysis with practical examples of applications in prediction platforms, community
sensing, and peer grading.

KEYWORDS
data science, information elicitation, multi-agent systems, computational game
theory, machine learning
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Preface
Data has very different characteristics from material objects: its value is crucially dependent on
novelty and accuracy, which are determined only from the context where it is generated. On the
other hand, it can be freely copied at no extra cost. Thus, it cannot be treated as a resource with
an intrinsic value, as is the focus in most of game theory.

Instead, we believe that game theory for data has to focus on incentives for generating
novel and accurate data, and we bring together a body of recent work that takes this perspective.

We describe a variety of mechanisms that can be used to provide such incentives. We start
by showing incentive mechanisms for verifiable information, where a ground truth can be used
as a basis for incentives. Most of this book is about the much harder problem of incentives for
unverifiable information, where the ground truth is never known. It turns out that even in this
case, game-theoretic schemes can provide incentives that make providing accurate and truthful
information the best interest of contributors.

We also consider scenarios where agents are mainly interested in influencing the result of
learning algorithms through the data they provide, including malicious agents that do not re-
spond to monetary rewards. We show how the negative influence of any individual data provider
on learning outcomes can be limited and thus how to thwart malicious reports.

While our main goal is to make the reader understand the principles for constructing
incentive mechanisms, we finish by addressing several other aspects that have to be considered
for their integration in a practical distributed machine learning system.

This book is a snapshot of the state of the art in this evolving field at the time of this
writing. We hope that it will stimulate interest for further research, and make it itself obsolete
soon!

Boi Faltings and Goran Radanovic
July 2017
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C H A P T E R 1

Introduction
1.1 MOTIVATION
The use of Big Data for gaining insights or making optimal decisions has become a mantra of
our time. There are domains where data has been used for a long time, such as financial markets
or medicine, and where the improvements in current technology have enabled innovations such
as automated trading and personalized health. The use of data has spread to other domains, such
as choosing restaurants or hotels based on reviews by other customers and one’s own past pref-
erences. Automated recommendation systems have proven very useful in online dating services
and thus influence the most important choice of our lives, that of our spouse. More controversial
uses, such as to profile potential terrorists, profoundly influence our society already today.

Given that data is becoming so important—it has been called the “oil of the 21st
century”—it should not be restricted to be used only by the entity that collected it, but become
a commodity that can be traded and shared. Data science will become a much more powerful
tool when organizations can gather and combine data gathered by others, and outsource data
collection to those that can most easily observe it.

However, different from oil, it is very difficult to tell the quality of data. Just from a piece of
data itself, it is impossible to tell a random number from an actual measurement. Furthermore,
datamay be redundant with other data that is already known. Clearly, the quality of data depends
on its context, and paying for data according to its quality will require more complex schemes
than for oil.

Another peculiarity of data is that it can be copied for free. A value is generated only when
data is observed for the first time. Thus, it makes sense to focus on how to reward those that
provide those initial observations in a way that not only compensates them for the effort, but
motivates them to provide the best possible quality. This is the problem we address in this book.

To understand the quality issue, let us consider four examples where data is obtained from
others: product reviews, opinion polls, crowdsensing, and crowdwork.

1.1.1 EXAMPLE: PRODUCTREVIEWS
Anyone who is buying a product, choosing a restaurant, or booking a hotel should take into
account the experiences of other, like-minded customers with the different options. Thus, re-
views have become one of the biggest successes of the internet, a case where users truly share
information for each others’ benefit. Reviews today are so essential for running a restaurant or a
hotel that there is a lot of reason for manipulating them, and we have to wonder if we can trust
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Figure 1.1: Customer reviews.

any of this information. While review sites are going to great lengths to eliminate actual fake
reviews that have been written for money, there is still a self-selection bias because reviews are
written voluntarily, as we shall see below.

Who would have any motivation to leave a review, given that writing it takes effort and
there is absolutely no reward. While there are some truly altruistic reviewers, many of them fall
into two categories: those that are extremely unhappy and want to “get even,” and those that
have been treated extremely well, often with the hint that a nice review would be welcome. This
tendency is more than anecdotal: Hu, Pavlou, and Zhang [1] report a detailed analysis of reviews
found on the Amazon.com website and show that most of them have a skewed distribution like
the one shown in Figure 1.2. However, when they asked an unbiased population of 66 students to
test the product whose review distribution is shown on the left, they obtained a distribution close
to a Gaussian, as shown on the right in Figure 1.2. The same authors have further extended their
study and shown on four different product categories that voluntary review distributions often
contain strong biases, and furthermore argue that these biases cannot be easily corrected [2].
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Figure 1.2: Distribution of review scores for a particular music CD on Amazon.com and among
all students in a class (as reported in Hu, Pavlou, and Zhang [1]).
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Given such a biased distribution, we have to ask ourselves if it makes sense to give so much

weight to reviews when we make decisions. Clearly, there is a lot of room for improvement in
the way that reviews are collected, and this will be one of the main topics of this book.

1.1.2 EXAMPLE: FORECASTINGPOLLS
Another area where data has a huge impact on our lives are opinion polls, such as forecasts of
election outcomes, of public opinion about policies and issues, or of the potential success of
new products. We have seen some spectacular failures of these polls, such as in predicting the
outcome of the vote about Scottish independence in 2014 (see Figure 1.3), or the vote about
Britain leaving the EU in 2016. Political campaigns and party platforms could more accurately
reflect true voter preferences if they could rely on accurate polls. But political polls are just the tip
of the iceberg: huge inefficiencies are caused by products and services that do not fit the needs of
their customers because these have not been accurately determined by the polls that were used
in planning.

Figure 1.3: Evolution of the online opinion poll Swissnoise during the time leading up the
referendum on Scottish independence on September 18, 2014.

The internet could provide a great tool for collecting this information, but we find similar
issues of self-selection and motivation as we had with reviews. People who are fans of particular
idols or who have particular agendas will go to great lengths to influence poll outcomes to serve
their ulterior motives, while the average citizen has no interest in spending the effort necessary
to answer polls. We need schemes that encourage unbiased, knowledgeable participants, and
accurate estimates.

1.1.3 EXAMPLE: COMMUNITY SENSING
According to an estimate released by the World Health Organization in March 2014, air pol-
lution kills 7 million people each year. This makes it a more serious issue than traffic accidents,
which are held responsible for 1.25 million deaths by the same organization. While it was long
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thought that air pollution spreads quite uniformly across cities, recent research has shown it to
be a very localized phenomenon with big variations of over 100% even in the space of 100 m.
Figure 1.4 shows an example of fine particle distribution in the city of Beijing. Huge variations
of up to a factor of 5 exist not only between places that are only a few kilometers apart, but also
at one and the same place within just one hour. The influence on human health could be reduced
if people could adjust their movements to minimize exposure to the most polluted zones.

Figure 1.4: Fine particle distribution in the city of Beijing. Courtesy of Liam Bates, Origins
Technology Limited.

While some pollution can be seen and smelled, truly harmful substances such as fine
particles, CO and NO2, cannot be detected by humans, so theymust be alerted by sensors to avoid
exposure. Newly developed low-cost sensors hold the promise to obtain real-time measurements
at reasonably low cost. As a city does not have easy access to all locations, the best way to deploy
such sensors is through community sensing, where sensors are owned and operated by individuals
and they get paid by the city for feeding the measurements into a system that aggregates them
into a pollution map that is made available to the public.

An early example of such a low-cost sensor is the Air Quality Egg, an open source de-
sign developed in a kickstarter project in 2013, and sold over 1,000 times at a price of $185

(2013 price). The measurements are uploaded to a center controlled by manufacturer, and thus
provide a (albeit not dense enough) map of air pollution that everyone can inspect. While the
accuracy of such first-generation sensors is insufficient for practical use, the strong public interest
shows that such schemes are feasible.

Sensor quality is improving rapidly. At the time of this writing, the LaserEgg shown
in Figure 1.5 offers highly accurate fine particle measurements for just $85 (2016 price), and
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more comprehensive devices are under development at similar low cost. Buyers of the LaserEgg
can upload their data to the internet, and the map in Figure 1.5 shows the distribution of the
thousands of devices that have been connected in the city of Beijing alone; together they produce
a the real-time pollution map shown in Figure 1.4.

Figure 1.5: Example of a low-cost sensor: the Laser Egg. Courtesy of Liam Bates, Origins
Technology Limited.

Thus, we can expect community sensing to become commonplace in the near future.How-
ever, an important issue is how to compensate sensor operators for their efforts in procuring and
operating the sensors. This problem will be solved by the techniques we show in this book.

1.1.4 EXAMPLE: CROWDWORK
It has become common to outsource intellectual work, such as programming, writing, and other
tasks, through the internet. An extreme form of such outsourcing is crowdsourcing, where small
tasks are given to a large anonymous crowd of workers who get small payments for executing each
task. Examples of tasks found on the Amazon Mechanical Turk platform shown in Figure 1.6
include verifying the consistency of information on websites, and labeling images or natural
language texts.

Crowdwork is also used in massive open online courses (MOOC) where students grade
each others’ homework, a process known as peer grading.

Later in the book, we will show practical experiences with incentive schemes both in
crowdwork and peer grading. The difficulty in crowdwork is not only to obtain the right selection
of workers, but also to make them invest the effort needed to obtain results of good quality. Thus,
it is important that the incentives are significant enough to cover the cost of this effort.



6 1. INTRODUCTION

Figure 1.6: Example of a crowdworking platform: Amazon Mechanical Turk.

1.2 QUALITYCONTROL
There are three different ways to improve the quality of contributed data. They can all be used
together, and in fact often they can mutually strengthen each other.

The first and easiest to implement is filtering: eliminating outliers and data that is other-
wise statistically inconsistent. For example, in crowdwork it is common to give the same task to
several workers, and apply a weighted majority vote to determine the answer. When noise and
biases are known in more detail, statistical methods, such as those by Dawid and Skene [5], can
help to the underlying truth. As these techniques are well developed, they are not our focus in
this book, and should be used in parallel with the techniques we show.

The second way is to associate a quality score to the agents providing the data. For ex-
ample, in a crowdworking setting it is common to include gold tasks that have known answers;
workers are assigned a quality score based on the proportion of gold tasks they answer correctly.
Alternatively, worker quality can be estimated as a latent variable [3] by fitting a model of both
worker accuracy and true values to the reported data.

The third way is to provide incentives for agents to do their best to provide accurate in-
formation. For example, in a prediction platform, we could reward data as a function of how
accurately it predicted the eventual outcome. However, in many cases, data is not that easy to
verify, either because it may be subjective, as in customer experience, or the ground truth may
never be known, as in most elicitation settings. Somewhat surprisingly, using game-theoretic
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mechanisms it is nevertheless possible to provide strong incentives for accurate data in most
practical settings, and this is the focus of this book.

Among the three options, incentives is the only one that does not need to throw away
data—in fact, they work to increase the amount and quality of available data. Incentives can be
somewhat inaccurate, as long as agents believe that they are correct on average. Even a slightly
inaccurate incentive can elicit correct data 100% of the time, while filtering and reputation can
never completely eliminate inaccuracies.

However, an important condition for incentives to work is that the agents providing the
information are rational: they act to optimize their expected reward. Agents who misunderstand,
who don’t care, or who have strong ulterior motives will not react. Thus, it is important for the
schemes to be simple and easy to evaluate by agents providing information.

1.3 SETTING
In this book, we consider the multi-agent setting shown in Figure 1.7. We collect data about
the state of a phenomenon, which can be, for example, the quality of a restaurant in the case of
reviews, the true answer to a task in the case of crowdwork, or a physical phenomenon such as
the pollution in a city.

Qi(X|Si)

Agent i

Agent j

Agent k

CenterPhenomenon

2

1

3

4

Si

Sj

Sk

1. Observe Signals
2. Update Beliefs
3. Report Observations
4. Reward Agents and
    Publish the Distribution
    of the Reports

Figure 1.7: Multi-agent setting assumed in this book.

The state is characterized by a variable X that takes values in a discrete space fx1; : : : ; xng.
The phenomenon is observed by several information agents A D fa1; : : : ; akg. Agent ai observes
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a signal si taken from the same vocabulary as the states so that we assume that si takes values in
fx1; : : : ; xng as well.

A center is interested in data about the phenomenon in order to learn a model or make
decisions that depend on it. It asks the agents to report their information about the phenomenon.
In return, it provides agents with a reward that is chosen to motivate the agents to provide the
highest quality of information possible.

We distinguish between objective data, where every agent observes the same realization of
the phenomenon, and subjective data, where each agent observes a possibly different realization of
the same phenomenon. Measuring the temperature at a particular time and place is an example
of objective data. Judging the quality of meals in a restaurant is subjective data since every agent
eats a different meal but from the same kitchen. For objective data, the center is interested in
obtaining the most accurate estimate of this value, whereas for subjective data, the goal will
usually be to obtain the distribution of values observed by different agents.

For objective data, the state of the phenomenon has a ground truth that distinguishes
accurate from inaccurate reports. We distinguish the case of verifiable information, where the
center will eventually have access to the ground truth, and unverifiable information, where such
ground truth will never be known or does not exist. Examples of verifiable information are
weather forecasts and election polls. Subjective data such as a product review is always unverifi-
able; and in practice most objective data is also never verified since it would be too costly to do
so.

For subjective data, the objective of the center cannot be to obtain a ground truth, as such
a ground truth cannot be defined. The best it can do is to model the distribution of the signals
observed by the information agents: for restaurant reviews, the center would like to predict how
much another customer will like the meal, not the reasons why the restaurant obtains meals
with this quality distribution. Even for objective information, the center will sometimes be more
interested in modeling the observations rather than the objective truth: weather forecasts report
a subjective temperature that accounts for wind and humidity.

Therefore, we assume throughout this book that the center’s objective is to obtain accurate
reports of the signals observed by the information agents. Consequently, we will consider a su-
perficial but simple model of the phenomenon where the state is just the distribution of signals
that the population of agents observes. For example, for pollution measurements this would be a
distribution indicating a noisy estimate, and for product reviews it would reflect the distribution
of ratings. This allows methods to be general without the need for assumptions about detailed
models of the phenomenon itself.

Influencing an agent’s choice of strategy The crucial elements of the scenario, as given above,
are the agents that observe the phenomenon. Each agent is free to choose a strategy for reporting
this observation to the center. We distinguish heuristic strategies, where the agent does not even
make the effort to observe the phenomenon.
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Definition 1.1 A reporting strategy is called heuristicwhen the reported value does not depend
on an observation of the phenomenon.

And cooperative strategies.

Definition 1.2 A reporting strategy is called cooperative if the agent invests effort to observe
the phenomenon and truthfully reports the observation.

Examples of heuristic strategies are to always report the same data, to report random data, or
to report the most likely value according to the prior distribution. In cooperative strategies,
we sometimes distinguish different levels of effort that result in different accuracy. Cooper-
ative strategies are a subclass of truthful strategies, where agents report their belief about the
phenomenon truthfully. We will see later that when we are able to strictly incentivize truthful
strategies, we can also incentivize the effort required for cooperative strategies with the proper
scaling.

Except in the chapter on limiting influence, we assume that the agents have no interest in
influencing the data collected by the center toward a certain result. We assume furthermore that
agents are rational and risk-neutral in that they always chose the strategy that maximizes their
expected utility, and we assume that their utilities are quasi-linear so that they can be calculated
as the difference between reward and cost of their effort.

These characteristics make it possible for the center to influence the agents’ choice of
strategy through the rewards they offer. In game theory, this is called a mechanism, and the
design of such mechanisms is the main topic of this book. In general, we strive to achieve the
following properties:

• truthfulness: it induces agents to choose a cooperative and truthful strategy;

• individually rational: agents can expect a positive utility from participating; and

• positive self-selection: only agents that are capable of providing useful data can expect a
positive utility from participating.

Principle for mechanism design Agents incur a cost for obtaining and reporting data to the
center. They will not do so without being at least compensated for this cost. Depending on the
circumstances, they may be interested in monetary compensations for the cost they incur (where
monetary could also mean recognition, badges, or other such rewards), or they may be interested
in influencing the model the center learns from their data. In most of the book, we consider
the case of monetary incentives, and only Chapter 7 addresses the case of agents motivated by
influence. This is because such agents can hardly be expected to provide truthful data, but rather
opinions, and it is not clear that such situations actually allow accurate models.

The principle underlying all truthful mechanisms is to reward reports according to con-
sistency with a reference. In the case of verifiable information, this reference is taken from the
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ground truth as it will eventually be available. In the case of unverifiable information, it will be
constructed from peer reports provided by other agents. The trick is that the common signal that
allows the agents to coordinate their strategies is the phenomenon they can all observe. Thus,
by rewarding this coordination, they can be incentivized to make their best effort at observ-
ing the phenomenon and reporting it accurately. However, care must be taken to avoid other
possibilities of coordination.

Another motivation for this principle was pointed out recently by Kong and
Schoenebeck [4]. We can understand an agent’s signal si and a reference signal sj to be re-
lated only through the fact that they derive from the same underlying phenomenon. To make
a prediction of sj , the center can only use information from agent reports such as si . By the
data processing lemma, a folk result in information theory, no amount of data processing can
increase the information that signal si gives about sj . In fact, any transformation of si other than
permutations can only decrease the information that si gives about sj . Thus, scoring the reports
si by the amount of information they provide about sj is a good principle for motivating agents
to report information truthfully. It also aligns the agent’s incentives with the center’s goal of
obtaining a maximum amount of information for predicting sj .

Agentbeliefs Ourmechanisms use agents’ self-interest to influence their strategies.This influ-
ence depends crucially on how observations influence the agent’s beliefs about the phenomenon
and about the reward it may receive for different strategies. Thus, it is crucial to model beliefs
and belief updates in response to the observed signal.

The belief of an information agent ai is characterized by a prior probability distribution
Pi .x/ D fpi .x1/; : : : ; pi .xn/g of what the state X of the phenomenon might be, where we drop
the subscript if it is clear from the context.1 Following an observation, based on the received
signal si it will update its prior to a posterior distribution Pri .X D xjsi D s/ D Pi .xjs/, which
we often write as Qi .xjs/. As a shorthand, we often drop the subscript identifying the agent and
instead put the observed signal as a subscript. For example, we may write qs.x/ for qi .xjs/ when
the agent is clear form the context. Note also that we use Pr to denote objective probabilities
while P and Q are subjective agent beliefs.

Importantly, we assume that si is stochastically relevant to the states of the phenomenon
x1; : : : ; xn, meaning that for all signal values xj ¤ xk Qi .xjxj / ¤ Qi .xjxk/ so that they can be
distinguished by their posterior distributions.

Belief updates We assume that agents use Bayesian updates where the prior belief reflects all
information before observation, and the posterior belief also includes the new observation. The
simplest case is when the signal si simply indicates a value o as the observed value. When the
probability distribution is given by the relative frequencies of the different values, the update

1Throughout the book, we use uppercase letters to denote variables and probability distributions, and lowercase letters to
denote values or probabilities of individual values.
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could be weighted mean between the new observation and the prior distribution:

Oq.x/ D

�
.1 � ı/p.x/C ı for x D o

.1 � ı/p.x/ for x ¤ o
D .1 � ı/p.x/C ı � 1xDo; (1.1)

where ı is a parameter that can take different values according to the weight that that an agent
gives to its own measurement vs. that of others.

Two properties will be particularly useful for guaranteeing properties of mechanisms that
we show in this book: self-dominating and self-predicting.

Consider first objective data, where agents believe that the phenomenon they observe has
one true state and they all observe this state with some measurement noise. For example, they
count the number of customers in the same restaurant at a specific time, or they measure the
temperature at the same place and time.

Provided themeasurement is unbiased, the belief update would be to replace the prior with
the probabilities obtained by the measurement, since it more accurately characterizes the actual
value. This would correspond to ı D 1. We could allow for the case where the agent mistrusts
its observations and thus forms a convex combination of prior and observation.

As long as the measurement dominates the prior information, i.e., ı > 0:5, we can show
that the belief update will satisfy the following self-dominating condition.

Definition 1.3 An agent’s belief update is self-dominating if and only if the observed value o

has the highest probability among all possible values x:

q.ojo/ > q.xjo/ 8x ¤ o: (1.2)

The proof is straightforward: since ı > 0:5, q.ojo/ > 0:5 and is thus larger than all other
p.xjo/ that must be less than 0:5.

For subjective data, where agents observe different samples from the distribution, an
agent’s observation, even if absolutely certain, should not replace the prior belief, as it knows
that other agents observe a different instance. For example, a customer who is dissatisfied with
a product that has a very high reputation may believe that he has received a bad sample, and
thus could still believe that the majority of customers are satisfied. Thus, for subjective data the
observation is just one sample while the prior represents potentially many other samples.

The belief update should therefore consider an agent’s observation as just one of many
other samples, and give it much lower weight by using a much smaller ı. For example, ı D 1=t

would compute the moving average if o is the t th observation. ı could also be chosen differently
to reflect the confidence in the measurement. We call this update model the subjective update.
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Clearly, subjective belief updates do not always satisfy the self-dominating condition, as is al-
ready shown in the example of poor service. Thus, we introduce a weaker condition by only
requiring the increase in the probability of the observed value to be highest.

Definition 1.4 An agent’s belief update is self-predicting if and only if the observed value has
the highest relative increase in probability among all possible values:

q.ojo/=p.o/ > q.xjo/=p.x/ 8x ¤ o: (1.3)

This condition is satisfied when an agent updates its beliefs in a subjective way as in Equa-
tion (1.1), since its reported value o is the only one that shows in increase over the prior proba-
bility.

In amore general scenario, an agentmay obtain from its observation a vector p.obsjx/ that
gives the probability of its observation given the different possible values x of the phenomenon.
Using the maximum likelihood principle, it would report the value o that assigns the highest
probability to the observation:

o D argmax
x

p.si D obsjx/:

For its belief update, Bayes rule also allows to compute a vector u of probabilities for each of the
values:

ui .x/ D p.xjsi D obs/ D
p.si D obsjx/p.x/

p.si D obs/

where p.si D obs/ is unknown but can be obtained from the condition that
P

x ui .x/ D 1. A
Bayesian agent will use this vector for its belief update:

Oqi .x/ D .1 � ı/p.x/C ıui .x/ D .1 � ı C ı˛p.si D obsjx//p.x/; (1.4)

where ˛ D 1=.
P

x p.si D obsjx/p.x// is a normalizing constant. This form of updating has the
capability of taking into account correlated values. For example, when measuring a temperature
of 20ı, due to measurement inaccuracies 19 and 21 may also increase their likelihood. This could
be reflected in increases in the posterior probability not only for 20, but also the neighboring
values 19 and 21.

Provided that the agent chooses the value o it reports according to the maximum like-
lihood principle, this more precise update also satisfies the self-predicting condition, since
Oqi .x/=p.x/ D .1 � ı C ı˛p.si D obsjx// is largest for the maximum likelihood estimate o that
maximizes p.si D obsjx/. However, even for high ı there is no guarantee of satisfying the self-
dominating condition, since the prior probability of the maximum-likelihood value could be
very small.
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Deriving agent beliefs from ground truth One way to model an agent’s observation of ob-
jective data is that it observes the ground truth through a filter that has certain noise and sys-
tematic biases. Sometimes there exists a model of this filter in the form of a confusion matrix
F.sj!/ D Pr.si D sj� D !/ that gives the probability of an observed signal si given a ground
truth !, shown as an example in Figure 1.8. Such models have proven useful to correct noise in

Phenomenon state !

a b c
agent a 0.8 0.2 0
signal b 0.2 0.6 0.2
s c 0 0.2 0.8

Figure 1.8: Example confusion matrix, giving the probability distribution F.sj!/ D Pr.si D

sj� D !/ .

postprocessing data; for example, Dawid and Skene [5] show a method that uses the expectation
maximization algorithm to construct an optimal estimation of underlying values that is consis-
tent with the signal reports. Such a model could let us derive what an agent’s beliefs and belief
updates should be. This confusion matrix could arise, for example in the following crowdworking
scenario: agents are asked to classify the content of web pages into inoffensive (value a), mildly
offensive (b), and strongly offensive (c). The prior distribution for this example might be:

P.!/

p(a) p(b) p(c)
0.79 0.20 0.01

and the confusionmatrix of Figure 1.8might characterize the observation bias applied by crowd-
workers, who tend to err on the side of caution and classify inoffensive content as offensive. Note
that given this observation bias, the prior distribution of the signals shows this bias:

P.si /

p(a) p(b) p(c)
0.67 0.28 0.05

For our purposes, knowing the confusion matrix of the agents reporting the information
allows computing the posterior beliefs that an agent should have about its peers following an
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observation. Using the confusion matrix and the prior probabilities given above:

q.sj jsi / D
X
!2�

f .sj j!/f .!jsi /

D
X
!2�

f .sj j!/f .si j!/
p.!/

p.si /

D

P
!2� f .sj j!/f .si j!/p.!/P

!2� f .si j!/p.!/
;

where f refers to the probabilities defined by the confusion matrix model in Figure 1.8. Fig-
ure 1.9 gives the posterior probabilities q.sj jsi / assuming the shown prior probabilities for each
value. This prediction can be useful for designing incentive mechanisms, or for understanding

Agent i’s observation si

a b c
agent j’s a 0.77 0.54 0.17
observation b 0.22 0.37 0.53
sj c 0.01 0.09 0.3

Figure 1.9: Resulting belief updates: assuming the shown prior beliefs and the confusion matrix
shown in Figure 1.8, an agent would form the posterior probabilities q.sj jsi / shown.

conditions on agent beliefs that are necessary for such mechanisms to work.
We can see that for predicting the observation of the peer agent j , value a is dominating

for observations a and b, and b is dominating for observation c. Thus, the distributions are
clearly not self-dominating. Are they at least self-predicting? Using the same confusion matrix
and prior probabilities as above, we can obtain the relative increases of probability q.sj jsi /=p.sj /

as the following matrix:

Agent i’s observation si

a b c
agent j’s a 1.137 0.80 0.25
observation b 0.80 1.32 1.90
sj c 0.25 1.90 6.25

Clearly, the values on the diagonal are the highest in their respective columns, meaning the the
observed value also sees that largest increase in probability for the peer observation. Thus, the
distribution satisfies the self-predicting property.

However, this is not always the case. When the proportion of errors increases further, even
the self-predicting condition can be violated. Consider, for example, the following confusion
matrix:
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World state �

a b c
agent a 0.8 0.2 0
observation b 0.1 0.5 0.3
si c 0.1 0.3 0.7

This leads to the following prior probabilities of the different observations:

P.si /

p(a) p(b) p(c)
0.67 0.18 0.15

and so we can obtain the relative increases of probability p.sj jsi /=p.sj / as the following matrix:

Agent i’s observation si

a b c
agent j’s a 1.137 0.68 0.77
observation b 0.68 1.78 1.51
sj c 0.77 1.50 1.44

and it turns out that this belief structure is not self-predicting since p.bjc/=p.c/ D 1:51 >

p.cjc/=p.c/ D 1:44. This increased likelihood of b happens because mildly offensive content
is often misclassified as offensive. As mildly offensive content is much more likely than offen-
sive content, it is the most likely cause of an “offensive” signal, and the most likely peer signal.

What theoretical guarantees can be given for belief updates given based onmodeling filters
in this way? We present three simple cases, the first valid for general situations and the other
two for binary answer spaces. For the self-dominating condition, we can observe the following.

Proposition 1.5 Whenever for all agents i and all x, f .si D xj� D x/ and f .� D xjsi D x/ are
both greater than

p
0:5 D 0:71, then the belief structure satisfies the self-dominating condition, even

if agents have different confusion matrices and priors.

Proof. The conditional probability q.sj jsi / for si D sj D x is:

q.sj D xjsi D x/ D
X

w

f .sj D xj� D w/f .� D wjsi D x/

> f .sj D xj� D x/f .� D xjsj D x/

� 0:5:

Since q.sj D x0jsi D x/ � 1 � q.sj D xjsi D x/ < 0:5, we obtain that q.sj D xjsi D x/ >

q.sj D x0jsi D x/. �
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To ensure the self-predicting condition, we can impose a weaker condition, provided that

agents have identical confusion matrices and priors.

Proposition 1.6 For binary answer spaces and identical confusion matrices and priors, whenever
F.sj!/ is fully mixed and non-uniform, belief updates satisfy the self-predicting condition.

For conditional probability q.sj jsi / and si D sj D x we have:

q.si D xjsj D x/ D
X

!

f .si D xj� D !/ � f .� D !jsj D x/ D
X

!

f .xj!/2
�

p.!/

p.x/

D

P
! f .xj!/2 � p.!/P
! f .xj!/ � p.!/

>

�P
! f .xj!/ � p.!/

�2P
! f .xj!/ � p.!/

;

where the inequality is due to Jensen’s inequality, with the strictness following from the condition
that F.sj!/ is fully mixed and non-uniform.

Therefore:

q.si D xjsj D x/ >
X

!

f .xj!/ � p.!/ D p.si D x/ D 1 � p.si D y/

> 1 � q.si D yjsj D y/ D q.si D xjsj D y/

where the last inequality is due to q.si D yjsj D y/ > p.si D y/.
For heterogeneous beliefs, we can ensure the self-predicting condition under a slightly

stronger condition, but only valid for binary answer spaces.

Proposition1.7 For binary answer spaces and heterogenous confusionmatrices and priors, whenever
p.s D xj� D x/ > p.s D x/, belief updates satisfy the self-predicting condition.

Proof. Notice that:

q.si D xjsj D z/ D f .si D xj� D x/ � f .� D xjsj D z/C f .si D xj� D y/ � f .! D yjsj D z/

D Œf .si D xj� D x/ � f .si D xj� D y/� � f .� D xjsi D z/C f .si D xj� D y/:

Since:

f .si D xj� D x/ � f .si D xj� D y/ D f .si D xj� D x/ � 1C f .si D yj� D y/

> f .si D x/ � 1C f .si D y/ D 0

z that (strictly) maximizes q.si D xjsj D z/ is equal to z that (strictly) maximizes f .� D xjsj D

z/. Using Bayes rule and the condition of the proposition, we obtain:

f .� D xjsj D x/ D
f .sj D xj� D x/

p.sj D x/
� p.� D x/ >

p.sj D x/

p.sj D x/
� p.� D x/ D p.� D x/

f .� D xjsj D y/ D
f .sj D yj� D x/

p.sj D y/
� p.� D x/ <

p.sj D y/

p.sj D y/
� p.� D x/ D p.� D x/
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so it must also hold that f .� D xjsj D x/ > f .� D xjsj D y/. Therefore, z D x strictly max-
imizes pj .� D xjz/ and consequently p.xjz/. �

NOTATION
Notation Meaning
P; Q; R; : : : uppercase: probability distribution
p.x/; q.x/; r.x/; : : : lowercase: probability of value x

EP Œf .x/� expected value of f .x/ under distribution P :
P

x p.x/ � f .x/

H.P / entropy of probability distribution P , H.P / D
P

x �p.x/ log p.x/

DKL.P jjQ/ Kullback-Leibler Divergence DKL.P jjQ/ D
P

x p.x/ log p.x/
q.x/

�.P / Simpson’s diversity index �.P / D
P

x p.x/2

1cond selector function: 1cond D 1 if cond is true, D 0 otherwise
f .�x/, f�x f is a function that is independent of x

freq.x/ frequence of value x normalized so that
P

x freq.x/ D 1

gm.x1; : : : ; xn/ geometric mean of x1; : : : ; xn, gm.x1; : : : ; xn/ D n
p

x1 � : : : � xn

ROADMAP
This books presents an overview of incentives for independent self-interested agents to accurately
gather and truthfully report data. We do not aim to be complete, but our main goal is to make
the reader understand the principles for constructing such incentives, and how they could play
out in practice.

We distinguish scenarios with verifiable information, where the mechanism learns, always
or sometimes, a ground truth that can be used to verify data, and unverifiable information, where
a ground truth is never known.

When information is verifiable, incentives can be provided to each agent individually
based on the ground truth, and we describe schemes in Chapter 2. When information is not
verifiable, incentives can still be derived from comparison with other agents through a game-
theoretic mechanism. However, this necessarily involves assumptions about agent beliefs. Thus,
in Chapter 3, we describe mechanisms where these assumptions are parameters of the mecha-
nism that have to be correctly set from the outside. Often, setting these parameters is problem-
atic, so there are nonparametric mechanisms that obtain the parameters either from additional
data provided by the agents, or from statistics of the data provided by a group of agents. We
present mechanisms that follow these approaches in Chapters 4 and 5.

As verification also allows assessing the influence of data on the output of a learning algo-
rithm, incentives can be used to align incentives of agents with those of the learning mechanism.
One way is to reward agents for their positive influence on the model through prediction mar-
kets, a technique we describe in Chapter 6. Another is to limit their influence on the learning
outcome so as to thwart malicious data providers whose goal is to falsify the learning outcome.
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We discuss how maintaining reputation can achieve this effect in Chapter 7. In Chapter 8, we
consider issues that present themselves when the techniques are integrated into a machine learn-
ing system: managing the information agents and self-selection, scaling payments and reducing
their volatility, and integration with machine learning algorithms.
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C H A P T E R 2

Mechanisms for Verifiable
Information

The simplest case is when the accuracy of data can be verified later, so that rewards can be
given based on this information once it becomes available. This case is actually quite frequent.
It includes forecasts of weather, product sales, election outcomes and many other phenomena.
Sometimes environmental measurements, such as pollution, can be verified on a cumulative basis
at low cost. Crop diseases eventually become apparent.

In this chapter, we are going to consider two types of incentive mechanisms: eliciting a
single value, and eliciting a probabilty distribution of values.

2.1 ELICITINGAVALUE
We consider that the center would like to know or predict the value of a phenomenon X 2

fx1; : : : ; xN g, that we limit to discrete values. The scenario is as shown in Figure 1.7; agents can
observe the phenomenon, obscured by measurement noise. The center will obtain the ground
truth g 2 fx1; : : : ; xN g at a later time and can use it to compute the reward.

Here are some examples that fit this model.

• Is the crop at location l diseased? Possible answers are x1 for no disease, and x2 D

disease1; : : : ; xN for the different known diseases.

• Who will win the presidential election? Possible answers are x1 D cand1; : : : ; xN D candn

for the different candidates.

• Howmuch will this product sell? Possible answers are xi ; i 2 f1; : : : ; N g where xi means the
product sales are between .i � 1/ and i million.

A basic mechanism that incentivizes cooperative strategies in this example, is the basic
truth agreement mechanism, shown as Mechanism 2.1.

We claim that this mechanism will cause rational agents to adopt a cooperative reporting
strategy. To understand why this is the case, we have to consider how it makes the setting look
from an agent’s perspective, as illustrated in Figure 2.1.

1. The agent has a prior probability distribution pi .x/, with x0 D argmax pi .x/ the most
likely value. We abbreviate pi .x/ D p.x/.
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Mechanism 2.1 Truth agreement.

1. Agent reports data = (discrete) value x.

2. Center observes the ground truth g (at some later time).

3. Center pays agent a reward:

pay.x; g/ D

�
1 if x D g

0 otherwise. :

Agent Phenomenon

Report x Outcome g

Payment
Rule

Prob. distribution q

0   X    100

Pay 1 if x = g,
and 0 otherwise

Figure 2.1: Truth agreement mechanism seen from an agent’s perspective.

2. The agent i observes a signal si and obtains a posterior distribution qi .xjsi /. We abbreviate
qi .xjsi / D q.xjs/ or q.x/. x1 D argmax q.x/ is now the most likely value. Therefore, the
agent believes that x1 has highest probability q.x1/ to match g.

3. The agent reports x1 and expects (future) payoff q.x1/.

Two issues complicate this analysis: agents that do not observe the phenomenon can also
expect a positive payoff, and the fact that observations have a cost.

Discouraging heuristic reports With the basic truth agreement mechanism, an agent that
does not observe the phenomenon could use a heuristic strategy: simply report the value x0 that
is most likely according to its prior, and still expect a positive reward p.x0/. This would mean
that the center could be swamped by such uninformed reports! It is important to reduce the
payment so that heuristic strategies have an expected reward of 0. Note that this is different
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from concerns about the budget that the center has to spend to pay for the data, which has to
be dealt with through scaling.

We can do this by modifying the basic truth agreement mechanism to subtract the ex-
pected reward when reporting according to the prior, EpriorŒpay� D p.x0/, for example, by charg-
ing a fee for an agent to participate in the mechanism. Estimating p.x0/ is often not easy,
although there are some background constraints, for example, with N values we know that
p.x0/ � 1=N as at least one value must have higher than average probability. In Chapter 5,
we will see the correlated agreement mechanism that automatically determines this value from
agents’ reports.

Costlymeasurements Assume that the agent incurs a cost m for observing the signal si about
the phenomenon. If the cost is very high, or if the signal does not carry much information, there
is a danger that it might skip the observation. To avoid this problem, we have to ensure that m

does not exceed
q.x1/„ƒ‚…

EpostŒpay�

� p.x0/„ƒ‚…
EpriorŒpay�

:

To achieve this, we need to scale the payment by ˛ � m
q.x1/�p.x0/

. Note that this ˛ depends
on the measurement technology and agent’s confidence, and may be complex to determine.
However, it turns out that in general it will become apparent in agents’ behavior: if ˛ is too low,
rational agents will not participate as their expected reward will not be greater than zero. Thus,
in general, we can tune ˛ by gradually increasing it until we get sufficient participation.

Components of payment schemes To summarize, the final payment rule of the truth agree-
ment mechanism is as follows:

pay.x; g/ D ˛

�
�p.x0/C

�
1 if x D g

0 otherwise

�
D ˛

�
1xDg � p.x0/

�
with the following components:

• a reward for delivering truthful data: pay 1 if the ground truth is matched. Note the no-
tation 1xDg that we shall adopt in the rest of this book to denote such agreement-based
functions;

• an offset to make the expected reward of heuristic reports equal to zero; and

• a scaling factor ˛ to compensate for the cost of measurement.

The agent knows about the phenomenon only through the signal it observes, and so in
its expectation it delivers truthful data by reporting the value that is the most likely according
to the posterior distribution q it derives from this signal. To also achieve truthfulness from the
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center’s perspective, both the agent and the center must interpret the phenomenon in the same
way. For example, when reporting temperature there must be agreement on where and when it
is measured, and what scale (Celsius, Fahrenheit, Kelvin) is used.

Throughout the book, we will mainly focus on the first component: reporting truthful
data. The offset to discourage heuristic reports may have to be estimated by the center; many of
the mechanisms we present will include this component in their design.

When observing the phenomenon to obtain truthful data involves cost, the payment will
have to be scaled so that the incentive exceeds this cost. Note that this scaling is always possible
as long as the incentive is strict: the difference in reward between truthful and non-truthful
report is strictly positive. Thus, throughout this book we will focus on ensuring strict truthfulness,
as the scaling will depend very much on the application and technology used by information
agents. It is also possible to sharpen incentives by combining rewards for multiple data items;
we shall discuss such possibilities in Chapter 8.

We formally state the properties of the Mechanism 2.1 with the scaling given above as
follows.

Theorem 2.1 Provided the scaling factor ˛ is large enough, the scaled Truth Agreement Mechanism
induces dominant strategies that are cooperative. With the correct offset, heuristic strategies carry no
expected revenue.

In the theorem, the notion of dominant strategy means a solution concept in which an
agent is incentivized to adopt the specified reporting strategy regardless of the strategies of other
agents. We note that similar mechanisms can be designed for eliciting not only observed values,
but also properties of multiple values such as their mean or mode; see [6, 7] for more details.

Expected payment From the perspective of the information agent, the payment it can ex-
pect for a measurement x is ˛Œmaxy.q.yjx// � p.x0//�. As p.x0/ is constant and fixed by the
mechanism, the payment varies as maxx q.x/.

Truth agreement in crowdsourcing: Gold tasks A common way of discouraging lazy or un-
cooperative workers in crowdsourcing is to mix within the tasks some gold tasks. These are tasks
that agents cannot distinguish from others, but where the requester knows the answer and can
use this to check on the performance of the worker.

The simplest way to use gold tasks is by using truth agreement: workers can collect bonuses
for answering gold tasks correctly. Since they do not know whether a task is a gold task, this
translates into a (weaker) incentive for all tasks. However, for the incentives to be strong enough
to motivate workers to exert effort, either there must be a significant number of gold tasks, or
the bonus associated with each gold task must be very high. Having a large number of gold tasks
wastes worker effort, while having a high bonus is problematic because it increases the volatility
of the bonus.
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de Alfaro et al. [8] propose a solution where only a few gold tasks are used to incentivize

a highest layer of workers. Since one can assume that they will put in the required effort to
provide good answers throughout, their answers can then be used as gold tasks for a next layer
of workers, who can in turn provide the gold tasks for the next level, and so forth. In this way,
a small number of gold tasks can incentivize a whole hierarchy of workers. One issue with the
method is that workers higher in the hierarchy must be more proficient, which may be hard for
the requester to determine.

2.2 ELICITINGDISTRIBUTIONS: PROPER SCORING
RULES

Mechanism 2.2 Scoring rule.

1. Agent reports data = probability distribution A.

2. Center observes the ground truth g (at some later time).

3. Center pays agent a reward:

pay.A; g/ D SR.A; g/;

where SR is a proper scoring rule.

What if we would like the agents to not just report the value they consider most likely,
but their posterior probability distribution q (Figure 2.1)? For example, we would like a weather
forecaster to not just tell us what the weather next Sunday will most likely be, but also give us
an indication of confidence by providing us with a complete probability distribution.

Suppose that the prior probability, as obtained from historical averages, is:

p D
Rain Cloud Sun
0:2 0:3 0:5

Now our agent, with access to meterological data, examines this data and forms the posterior
distribution:

q D
Rain Cloud Sun
0:8 0:15 0:05

Using our truth agreement mechanism, we could get the agent to tell us that rain is most likely.
But since we were really hoping to go on a picnic, we are not happy with such an answer and
want to take our chances to maybe enjoy a sunny day after all. How do we get the agent to also
tell us its probability estimate for sunny weather?
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The answer is to use Mechanism 2.2. It is based on proper scoring rules, first proposed

by Brier [9] and Good [10], and illustrated in Figure 2.2. A proper scoring rule scores a reported

Agent Phenomenon

Report q Outcome g

Payment
Rule

Pay In(q(x)) if g = x,
and In(q(y)) if g = y

Prob. distribution q

q(x) = 0.25
q(y) = 0.75

x    y

Figure 2.2: Mechanism using a proper scoring rule.

probability distribution A against a ground truth g and provides a payment such that

.8q0
¤ q/

X
x

q.x/ � pay.q; x/ >
X

x

q.x/ � pay.q0; x/:

Well-known examples are
• the quadratic scoring rule [9]:

pay.A; g/ D 2 � A.g/ �
X
x2X

A.x/2
I and

• the logarithmic scoring rule [10]:

pay.A; g/ D C C ln A.g/:

An overview of proper scoring rules and their properties can be found in Geiting and Raftery
[11].

In our weather example, suppose that the agent provides us with its true distribution.
Depending on the weather we actually observe on Sunday, the agent would receive the following
payments.

Sunday’s weather Payoff (log) Payoff (quadratic)
Rain C C ln 0:8 D C � 0:22 2 � 0:8 � 0:665 D 0:935

Cloud C C ln 0:15 D C � 1:89 2 � 0:15 � 0:665 D 0:935 D �0:365

Sun C C ln 0:05 D C � 3:0 2 � 0:05 � 0:665 D �0:565

Average C � 0:6095 0:665
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where for the quadratic scoring rule we used the fact that .0:82 C 0:152 C 0:052/ D 0:665.
What offset do we need to choose to ensure that the expected reward for uninformed

reporting is equal to zero? Note that when using the logarithmic scoring rule, the expected
reward for reporting the prior distribution P is equal to:

EŒPay.P /� D
X

x

p.x/.C � ln p.x// D C �H.P /;

where H.P / is the entropy of the prior distribution P . Thus, we should set the constant to
C D H.P /. The expected reward for an agent is thus ˛ŒH.P / �H.Q/� where ˛ a constant
chosen to compensate effort. Note that the reward is thus proportional to the information that
the agent’s measurement gives about the true signal.

For the quadratic scoring rule, the expected payment for reporting according to the prior
is

EŒPay.P /� D
X

x

p.x/.2p.x/ �
X

y

p.y/2/ D
X

x

p.x/2

which is equal to Simpson’s diversity index [12] �.P /. Thus, we should subtract �.P / and the
expected reward is ˛Œ�.Q/ � �.P /�.

Why do proper scoring rules motivate cooperative reporting strategies? Let’s consider the
expected reward using the logarithmic scoring rule:

EŒpay.A; g/� D
X

x

q.x/ � pay.A; x/ D
X

x

q.x/ � ŒC C ln.a.x//�

and the difference between truthful and non-truthful reports:

EŒ.pay.Q; g/� �EŒpay.Q0; g/�

D
X

x

q.x/ � ŒC C ln q.x// � .C C ln q0.x//�

D
X

x

q.x/ � ln q.x/

q0.x/

D DKL.QjjQ0/:

By Gibbs’ inequality, DKL.QjjQ0/ � 0 with equality only when Q D Q0. Reporting a Q0 ¤ Q

can therefore only get a lower payoff than truthfully reporting Q.
Similarly, for the quadratic scoring rule, we have:

EŒpay.A; g/� D
X

x

q.x/ � pay.A; x/ D
X

x

q.x/ � Œ2a.x/ �
X

z

a.z/2�
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and the difference between truthful and non-truthful reports:

EŒ.pay.Q; g/� �EŒpay.Q0; g/�

D
X

x

q.x/ � Œ2.q.x/ � q0.x/� �
X

z

Œq.z/2
� q0.z/2�

D
X

x

Œq.x/2
� 2q.x/q0.x/C q0.x/2�

D
X

x

Œq.x/ � q0.x/�2

which again is greater than 0 except with Q D Q0, so the expected reward is maximized when
truthfully reporting Q.

We summarize these results about Mechanism 2.2 with proper scaling as follows:

Theorem2.2 For both the logarithmic and the quadratic scoring rule, with proper scaling the scoring
rule mechanism induces dominant reporting strategies that are cooperative. With the proper offset, the
expected payoff for heuristic reporting is equal to zero.
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C H A P T E R 3

ParametricMechanisms for
Unverifiable Information

In most cases, the ground truth is never known. For hotels and restaurants, there is no neutral
evaluator that can verify the correctness of reviews. In distributed sensing, many quantities are
never measured other than through crowd sensors. For predictions about hypothetical questions,
we never obtain the ground truth.

There is another complexity that is introduced when we cannot verify the ground truth,
illustrated by Figure 3.1. When information can be verified, such as a temperature measure-
ment, it is always objective: all agents observe exactly the same variable, which corresponds to
the ground truth. When it is unverifiable, it may also be subjective: agents observe different sam-
ples, all drawn from the same distribution. This is the case for example for restaurant reviews:
every customer gets a different meal, but cooked by the same chef. In such a situation, there is
no ground truth for individual data items. However, there is a ground truth for the distribution
of these items.

Agent 1 Agent 2 Agent 1 Agent 2

Objective Information Subjective Information

Figure 3.1: Objective vs. subjective information.

As a consequence of this distinction, the goals of the elicitation process also vary: while
for objective information, the goal is to obtain the particular value as accurately as possible, for
subjective information the goal is to obtain an accurate distribution.
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Peer consistencymechanisms To validate data in such scenarios, we need to use its coherence
with data submitted by other agents that observe the same phenomenon. We call such agents
peer agents and the class of incentive schemes based on peer reports peer consistency. Figure 3.2
illustrates the principle. We first consider peer consistency mechanisms for the simpler case of
objective information.

Agent

Report x

Peer

Peer

z

Report y

Payment
Rule

Pay by comparing
x and y

Figure 3.2: Peer consistency scenario.

3.1 PEERCONSISTENCY FOROBJECTIVE
INFORMATION

3.1.1 OUTPUTAGREEMENT

Mechanism 3.1 The output agreement mechanism.

1. Center gives a task to agents ai ; ai reports data xi .

2. Center randomly selects a peer agent aj that has also been given the same task
and reported data xj .

3. Center pays agent ai a reward:

pay.xi ; xj / D

�
1 if xi D xj

0 otherwise :

A well-known peer consistency mechanism that has been widely used to elicit objective
information from multiple agents is output agrement, a term coined in von Ahn and Dabbish
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[13]. It is shown in Mechanism 3.1. It involves giving the same task to two agents, and paying
them a constant reward if and only if they give the same answer.Thismechanismwas popularized
in the ESP game for labeling images with keywords, shown in Figure 3.3.

Common
Image

Progress
Meter Message

Area

Figure 3.3: Screenshot of a stage in the ESP game.

In this game, an image is shown to a person who has to input keywords that describe what
is seen in the image. Two people observe the same image at the same time, and the keywords they
type are compared to one another. Only if the keywords match, they obtain points as a reward.
Certain words are declared taboo to avoid coordination on trivial words that do not provide much
information.

In peer consistency mechanisms such as output agreement, reporting data becomes a game
among agents, as the reward depends both on the actions of the agent submitting the data and
on those of its peer agents. Where before we could consider each agent’s choice of strategy as
an optimization by itself, now the optimal strategies chosen by different agents depend on each
other.

Note that in an actual application, we may not want to give the same task to multiple
agents, since it increases the cost of information gathering. The peer report is thus often ob-
tained from peer reports on related tasks that are translated through a model. For example,
for a pollution measurement the peer report might be constructed by an interpolation between
several reports received for locations in the vicinity. However, analyzing the properties of such
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interpolation is too complex, and we therefore generally assume that there is one particular peer
agent.

3.1.2 GAME-THEORETICANALYSIS
Such situations are analyzed by game theory, and it is generally considered that the chosen
strategies should form an equilibrium: no agent can improve its expected payoff by deviating from
the equilibrium strategies, provided no other agent deviates. For example, if we use a reward
mechanism where we reward data if and only if it is the same as that reported by a random
peer agent, and all agents share the same observation, reporting this observation truthfully is
an equilibrium: if the peer agents are also truthful, our data will match and thus reporting it
accurately is the best strategy.

However, things become more complicated when observations are noisy: now an agent
cannot be so sure that a peer agent indeed observes the same signal, and so even if it makes
an effort to be truthful, it might not report the same data. For example, if we are measuring a
temperature, and report it with a precision of 1 degrees, it is quite likely that a peer will obtain
a slightly different measurement and report a non-matching value.

However, as long as the agent believes that the peer agent measures in the same way as
itself, the value that a truthful peer agent is most likely to report is the same as that observed
by the agent. Thus, we have a Bayesian game where there is uncertainty about the value of the
phenomenon, and agents share a belief about the distribution of this value. The game will have
at least one Bayes-Nash equilibrium, and as shown by the argument above cooperative reporting
is one such equilibrium.

More formally, as defined in the introduction, let pi .x/ be agent i’s prior belief about the
phenomenon x, and qi .x/ its posterior belief after observation.When observing objective data in
an unbiased way, we may assume that the agent’s beliefs are self-dominating as in Definition 1.3.
That is, the agent believes that her peer is most likely to observe the same value she does.

Note that this condition makes no assumption about the absolute strengths of agent be-
liefs, but only about the relative strengths, and it allows the posterior distributions to be quite
different.

The game-theoretic notion of Bayes-Nash equilibria assumes that all agents have a common
prior belief, and would require all their posterior beliefs to be identical as well. However, we can
see that the output agreement mechanism does not require such a strict condition. Thus, we use
an extended notion called ex-post subjective Bayes-Nash equilibrium, introduced in Witkowski
and Parkes [19].

Definition 3.1 A set of strategies s is an ex-post subjective Bayes-Nash equilibrium (PSBNE) if
it forms a Bayes-Nash equilibrium for all combinations of admissible agent beliefs.
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For example, we might define an admissible agent belief as one where it has a common

prior belief p, and the update to posterior beliefs satisfies the self-dominance condition described
above. We can then prove:

Theorem 3.2 For self-dominating belief updates, the output agreement mechanism shown inMech-
anism 3.1 has a strict ex-post subjective Bayes-Nash equilibrium in cooperative strategies.

The proof is straightforward: provided that its peer agent j adopts cooperative strategy,
an agent i , who observes x, believes that the most likely value that j observes (and reports) is
equal to x due to the self-dominant condition. Therefore, agent i will most likely get a reward
if it also adopts a cooperative strategy and reports x.

Let us appreciate this result: we now have a mechanism that will ensure, in a wide range
of conditions, that rational agents will make the effort to report objective data as accurately as
possible, even if we can never verify it! The trick is that we involve the agents in a game where the
winning strategy is to coordinate the data they report, and they all need to accurately measure the
phenomenon to achieve this coordination. This shows the great potential offered by involving
multiple agents, but unfortunately there are some complications, as we shall see below.

When agents’ observations are not perfect, but subject to a minimum error probability
that depends on the effort they exert, the center has to scale the rewards sufficiently so that
agents exert their best effort. Liu and Chen [14] show, for tasks with binary answers, how to
determine the minimal reward level for the output agreement mechanism such that exerting
maximal effort is an equilibrium. The analysis is complex and involves many assumptions so we
do not discuss it in detail here.

Uninformative equilibria Games often have multiple equilibria. What we have shown so far
is that one of the equilibria in the game induced by the output agreement mechanism is to adopt
cooperative strategies. However, there are also other equilibria where agents adopt heuristic
strategies. In particular, there are equilibria where every agent always reports the same identical
value, regardless of what it observed. Even worse, such equilibria have higher payoffs: there is
no measurement uncertainty, and often no cost of measurement either [16].

We call equilibria in heuristic strategies uninformative equilibria, since the agents provide
no information to the center when they adopt them.

There are several ways to avoid such equilibria. In the ESP game, certain common words
that were obvious candidates for such equilibria are considered “taboo” and do not result in any
points. In general, one could penalize agents if all reports are uniform, and thus eliminate such
equilibria. However, there are more elegant solutions when mechanisms can use multiple peer
reports, as we will see later in this book.

Parametric mechanisms The output agreement is a non-parametric mechanisms, meaning
that it does not contain any parameters related to agents’ beliefs. Unfortunately, such a restric-
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tion, does allow existence of a general truthful mechanism, as formally expressed by the following
theorem.

Theorem 3.3 There does not exist a non-parametric mechanism that has cooperative reporting as
a strict Bayes-Nash equilibrium for a general structure of agents’ beliefs.

The result was first shown in the context of uncommon beliefs [20], and was later shown
to hold even if agents have a common belief [34, 36]. This shows the limitations of nonpara-
metric mechanisms: even under a fairly constrained set of possible beliefs, it is not possible to
properly elicit private information, unless the mechanism has some knowledge about agents’
beliefs, encoded in its parameters.

The proof of the theorem is out of the scope of this book, but its intuition is fairly simple.
If a non-parametric mechanism elicits honest responses for one set of agents’ beliefs, then there
exists another set of agents’ beliefs for which the mechanism fails to provide proper incentives.
Namely, agents’ expected payoff crucially depends on their beliefs, so unless a mechanisms has
at least partial knowledge of agents’ beliefs, it cannot, in general, incentivize agents to report
truthfully. Note that the impossibility result does hold if agents’ beliefs satisfy the property of
stochastic relevance, which states that agents with different observations have statistically different
posterior beliefs (see Miller, Resnick, and Zeckhauser [15] for more details). This indicates the
non-triviality of the obtained result, as under the same assumptions one can achieve truthful
elicitation with a parametric mechanism, as described in the subsequent sections.

The impossibility result is especially important for elicitation of subjective beliefs, where
agents beliefs can be skewed toward a particular observation due to the prior biases in the type of
elicited information. We will see in the following sections how to establish truthful elicitation,
first when agents’ beliefs are fully known, and then when only prior beliefs are known, but agents’
posterior beliefs are constrained by a belief updating rule. As shown by Frongillo and Witkowski
[18], the latter can be done using different belief updating rule, but we focus in the book on one
that is relatively easy to explain in terms of the maximum likelihood principle.

3.2 PEERCONSISTENCY FOR SUBJECTIVE
INFORMATION

We now consider subjective information. Recall that subjective information arises when every
agent observes a distinct sample drawn from the same distribution, as illustrated in Figure 3.1
on the right. For example, consider providing a review of a recent experience with Blue Star Air-
lines, widely considered to offer one of the best service in the sky. Unfortunately, the individual
experience was not as good: the plane was delayed many hours, and the baggage was lost.

If we use the output agreementmechanism shown above, a rational agent would not report
this poor service: after all, it is well known that almost everyone receives good service, so a peer
agent is unlikely to match this poor experience.
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The problem is that it is no longer appropriate to believe that the peer agent will report

the same data, or, more formally, the agent’s beliefs will no longer satisfy the self-dominating
condition. So where could we anchor such a mechanism?

How does a poor experience affect an agent’s belief? While she might not believe that the
airline is all bad, we can still expect that the stellar image has received a dent, at least in this
agent’s belief, and that bad service will be considered more likely in the future than it was before
the experience. We can use this change to construct incentives that make cooperative strategies
optimal.

Types of peer consistency mechanisms for subjective tasks We use the characterization of
beliefs and belief updates defined in Section 1.3. For objective information, we showed that
output agreement induces a truthful equilibrium under the self-dominating condition (Defini-
tion 1.3) on agent beliefs, which is rarely violated in that setting. For subjective information,
we require more restrictive conditions. The mechanisms that are known make one of one of the
following two alternative assumptions.

• A homogeneous agent population with identical and known prior and posterior beliefs.
An example is the peer prediction mechanism we show below.

• Common and known prior beliefs, but belief updates can be heterogeneous as long as they
satisfy the self-predicting condition of Definition 1.4. An example we show below is the
peer truth serum (PTS).

3.2.1 PEERPREDICTIONMETHOD
In the peer prediction method, introduced by Miller, Resnick, and Zeckhauser [15], we define
for each observed value an assumed posterior distribution that reflects this shift (Figure 3.4).

Mechanism 3.2 Peer prediction.

1. Center gives a task to agents ai ; ai reports data xi .

2. Center randomly selects a peer agent aj that has also been given the same task
and reported data xj .

3. Center selects an assumed posterior distribution Oqxi
associated with report xi .

4. Center pays agent ai a reward:

pay.xi ; xj / D SR. Oqxi
; xj /;

where SR is a proper scoring rule.
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Agent Center

Example: Shadowing

p          q*          q

Report x Estimate q*

Peer

Peer

z

Report z

Payment
Rule

Pay In(q*(z))

Prob. distribution q

q(x) = 0.25
q(y) = 0.75

x    y

Figure 3.4: The peer prediction method.

The reward is calculated using a proper scoring rule as follows.

1. Each value for answer xi is associated with an assumed posterior distribution Oq.x/ D
OPr.xjxi /.

2. Oq is skewed so that xi is more likely than in the prior.

3. Use a proper scoring rule to score this posterior against a random peer report.

Thus, an agent implicitly reports its posterior probability distribution (provided, of course, that
the distribution assumed by the platform is indeed its posterior). This allows rewarding even
small shifts in the posterior beliefs. Note that the standard peer prediction procedure allows
private information xi to take real values, that is, xi 2 R, as long as the assumed posterior Oq.x/

is accurate, that is, it is equal to agents’ posterior belief for the observation xi .1
Let us see how this works in the example of the airline reviews. We assume that the agents

report one of two values good and bad, and that they share a common prior distribution p:

p.good/ D 0:8.D 0:8888888:::/; p.bad/ D 0:1.D 0:111111 : : :/

and construct the assumed posterior distributions Oq for each answer using the mixture up-
date (1.1) with ı = 0.1:
1 In the case of continuous xi , the posterior belief Oq.x/ is a probability density function.
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Observation Oq.good/ Oq.bad/

prior 0:8 0:1

good qg.g/ D 0:8C ı D 0:9 qg.b/ D 0:1

bad qb.g/ D 0:8 qb.b/ D 0:1C ı D 0:2

The payment function pay.x; y/ is a function of the report x and the peer report y. As-
suming that we use a quadratic scoring rule:

2 Oq.x/ �
X
x0

Oq.x0/2

we obtain the following payment function:

peer report
b g

agent b Sb.b/ D 2 � 0:2 � 0:68 D �0:28 Sb.g/ D 2 � 0:8 � 0:68 D 0:92

report g Sg.b/ D 2 � 0:1 � 0:82 D �0:62 Sg.g/ D 2 � 0:9 � 0:82 D 0:98

We can check that an agent who observed bad service now has reason to report this fact truth-
fully. The assumed posterior for reporting bad service is Oqb.g/ D 0:8:

EŒpay.‘‘bad”/� D 0:2 � pay.b; b/„ ƒ‚ …
D�0:28

C0:8 � pay.b; g/„ ƒ‚ …
D0:92

D 0:68

EŒpay.‘‘good”/� D 0:2 � pay.g; b/„ ƒ‚ …
D�0:62

C0:8 � pay.g; g/„ ƒ‚ …
D0:98

D 0:66:

Thus, we have made reporting the correct value profitable, even when it is not the most likely
answer!

In general, we can show for the mechanism:

Theorem 3.4 The Mechanism 3.2 has a strict Bayes-Nash equilibrium where all agents use coop-
erative strategy, provided that all agents have the common beliefs and belief updates assumed in the
mechanism.

The proof follows in a straightforward way from the fact that proper scoring rules yield
the highest expected reward when the correct distribution is used, and the only way for agents
to influence this distribution is to report their believed values as accurately as possible.

What is the revenue of the peer prediction mechanism for agents that report randomly
according to their prior distribution? This depends very much on how the assumed posteriors
are constructed.

If we assume that both mechanism and agent compute the posterior distributions using
the Bayesian update as in Equation (1.1), we obtain for the quadratic scoring rule the following
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expected payment for reporting x:

EŒpay.x/� D 2.p.x/.1 � ı/ı/ �
X

y

Œp.y/.1 � ı�2 C Œp.x/.1 � ı/�2 � Œp.x/.1 � ı/C ı�2

D .1 � ı/2

 
2p.x/ �

X
y

p.y/2

!
C ı � ı2

and thus the expected payment overall, given the prior distribution P :

EŒpay� D
X

x

p.x/EŒpay.x/� D .1 � ı/2

"
2
X

x

p2.x/ �
X

x

p.x/2

#
C ı � ı2

D .1 � ı/2
X

x

p2.x/C ı � ı2

which for small ı is proportional to �.P / D
P

x p.x/2. In the example above, n D 2 and
�.P / D 0:80, and with ı D 0:1, we would obtain EŒpay� D 0:738. This is the value that has
to be subtracted from the payments to eliminate rewards for reporting according to the prior.
Note that for an agent who receives bad service, the rewards of the final scheme are always sig-
nificantly negative, no matter what value is reported. The high volatility of payments can be a
big obstacle to practical use of the scheme.

For the logarithmic scoring rule, a similar derivation shows convergence to �H.P / for
small ı.

3.2.2 IMPROVINGPEERPREDICTIONTHROUGHAUTOMATED
MECHANISMDESIGN

The original construction of peer prediction through the use of a proper scoring rule was a
significant breakthrough, but the solution has two problems. The first is that general proper
scoring rules generate inefficient and volatile payments. In the example above, the gain from
truthfulness is only 0:02 on a payment of 0:68, so to compensate a measurement cost of $1 would
require payments of at least $34, which is a huge premium to be paid for truthful elicitation.

The second problem is that the mechanism has other, more profitable but uninformative
equilibria: always reporting “good” gives the much higher expected payoff of 0:98. In fact, it is
possible to show that any mechanism based on just 2 reports will always have uninformative
equilibria with a higher payoff than the truthful one [16].

Both problems can be solved using a technique called automated mechanism design, as we
will show next. The inefficiency can be addressed by automatically designing the entries of the
payment function pay.x; y/ by solving a linear program. The program can choose payments that
minimize the expected payments. The problem of uninformative equilibria can be avoided by
scoring reports against the distribution of multiple peer reports, using the same technique of
automated design through a linear program.
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Efficient payments To simplify the mechanism, we assume that there is no payment for re-
ports that do not agree. To ensure that cooperative, truthful strategies form an equilibrium, we
need to find payments pay.g; g/ and pay.b; b/ such that:

q.gjg/pay.g; g/ > q.bjg/pay.b; b/C �g

q.bjb/pay.b; b/ > q.gjb/pay.g; g/C �b;

where �g and �b are the minimum differences in reward we want to achieve for reporting truth-
fully “good” and “bad,” and we assume that we only pay for reports that agree with the peer (i.e.,
pay.g; b/ D pay.b; g/ D 0).

In this example, assuming �g D �b D 0:1:

0:9pay.g; g/ > 0:1pay.b; b/C 0:1

0:2pay.b; b/ > 0:8pay.g; g/C 0:1:

These constraints define a space of feasible payments shown in Figure 3.5.

pay(g,g)

pay(b,b)

0.3

0.2

0.1

1 2

Figure 3.5: Linear program for determining the optimal payments that support a truthful equi-
librium.

The optimization function is to minimize the expected expenditure, given that the data
can be assumed distributed according to the prior distribution:

Minimize p.g/q.gjg/pay.g; g/C p.b/q.bjb/pay.b; b/ D 0:8pay.g; g/C 0:02pay.b; b/:

Thus, we obtain as a solution the payments in the lower corner of the feasible region in Figure 3.5:

pay.g; g/ D 0:3; pay.b; b/ D 1:7:
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The expected payment is 0:27, where reporting truthfully is always better than not by a margin
of 0:1; thus, to compensate a measurement cost of $1, we need a payment of at least $2:78, which
is not such a big markup for guaranteeing the quality.

Uninformative equilibria The mechanism we just constructed has three pure-strategy equi-
libria:

1. truthful: expected payment = 0:27,

2. always reporting “good”: expected payment = 0:3, and

3. always reporting “bad”: expected payment = 1:7.

Clearly, agents would prefer to always report “bad,” leaving the center with no information about
the true value. Consider now scoring against not one, but several reference reports. For example,
we could use 3 reference reports and count the number of “good’s” among them. Thus, we obtain
the following 8 situations with their associated probabilities:

Pr.jpeer D gjjo/ 0 1 2 3
o D b 0.008 0.096 0.384 0.512
o D g 0.001 0.027 0.243 0.729

and we have to define a payment for each of them, such that the expected value of reporting
good exceeds that of reporting bad when the observation o is good, and vice versa for a bad ob-
servation. Together with the objective function of minimizing the expected payment, this again
defines a linear program to design the mechanism. However, we can add additional constraints.
In this case, to eliminate the uninformative pure-strategy equilibria, we can simply force the cor-
responding reward to (for all “bad” or all “good” reports) to zero, and to a small positive reward
� for deviating from this situation. We thus obtain a payment function such as:

pay.r; jpeer D gj/ 0 1 2 3
r D b 0 10 0 �

r D g � 0 2 0

where we note that truthtelling is a strict equilibrium:

o D bad W EŒpay.‘‘bad”/� D 0:96 > EŒpay.‘‘good”/� D 0:768

o D good W EŒpay.‘‘bad”/� D 0:27 < EŒpay.‘‘good”/� D 0:468

but all “good” or all “bad” is not a strict or weak equilibrium.
Kong, Ligett, and Schoenebeck [17] show how to modify scoring rules so that the truthful

equilibrium is guaranteed to have the highest payoff not only among pure strategies (as assumed
in the construction above), but also among mixed strategies. The construction is more complex
to follow so we do not describe it in more detail here.
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3.2.3 GEOMETRICCHARACTERIZATIONOFPEERPREDICTION
MECHANISMS

Frongillo and Witkowski [18] showed that there is a unique mapping between any truthful
payment rule for a peer prediction mechanism and a corresponding proper scoring rule. Thus,
even mechanisms designed using automated mechanism design can be understood as derived
from proper scoring rules in the same way as the original peer prediction mechanism.

The construction is based on considering the expected payments for reporting a value x:

EŒpay.x/jo� D
X

y

q.yjo/�.x; y/

as a function of the posterior distribution q.xjo/. For each possible posterior distribution q.xjo/,
there is a value x that gives the highest expected reward and that a rational agent would report.

We can now consider that the space of all possible posterior distributions is broken into
cells where a particular value is the optimal report. It turns out that because of the linearity
of the expectation, this division is that of a power diagram. The cells are defined by the areas
around the n points vx defined by the vectors of payments .�.x; x1/; �.x; x2/; : : : ; �.x; xn// that
are obtained when reporting the value x. Note that the expected payment for reporting x:

EŒpay.x/� D q � vx

is maximized when q D 1p
w.x/

vx , where w.x/ D jjvxjj. If there is a non-empty set of posterior
distributions where reporting x yields the optimal payment, then this distribution is one of them.
Furthermore, due to the linearity of the payment function, the same holds for a neighborhood of
similar posterior distributions that we call the cell associated with vx . Frongillo and Witkowski
[18] show that this cell is characterized by the distributions u such that vx has the lowest power
distance:

jju � vx
jj

2
� w.x/:

Figure 3.6 illustrates the construction for the example of good and bad service shown
earlier, and the payment rule derived using automated mechanism design. We have two values:
g(ood) and b(ad), and so the diagram has two dimensions .q.g/; q.b// that characterize the
agent’s possible posterior beliefs. However, since the points form probability distributions, the
space actually has only one dimension �, characterizing the probability of good service, and
distributions are characterized as q D .�; 1 � �/. This space is shown as a thick line. The sites are
vb D .0; 1:7/ and vg D .0:3; 0/, and the power distance to the site “g”, with weight w.g/ D 0:32

is:
.� � 0:3/2

C .1 � �/2
� 0:32

D 2�2
� 2:6� C 1

while the power distance to the site “b” with weight w.b/ D 1:72 is:

�2
C .1 � � � 1:7/2

� 1:72
D 2�2

C 1:4� � 2:4:
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q(g) = �

q(b) = 1-�

0

1

0.85 1

“b”

“g”

y

vg

vb x

x

Figure 3.6: Power diagram construction for the example.

For any of the possible agent posterior beliefs q on the admissible line, the value that will give the
higher expected payoff is the one of the site with the smallest power distance. Both distances
are equal for all points on the line that is perpendicular to the line that connects vg and vb

and passes through the point y at .0:85; 0:15/, shown as a dashed line in Figure 3.6. This line
forms two cells, and their projection onto the admissible line of distributions gives intervals of
� 2 Œ0; 0:85/ where “b” gives a better payoff, and � 2 .0:85; :1� where “g” gives a better payoff.
The power diagram construction can be carried out in higher-dimensional spaces and thus deal
with scenarios with more than two values.

The pivotal point in the power diagram construction is the point y where all cell bound-
aries meet. For a posterior distribution congruent with y, the mechanism gives an equal reward
to all values. Ideally, this should be the prior distribution, so that an agent that does not make
the effort to observe the phenomenon does not have a strategy that pays a reward.

Frongillo and Witkowski [18] show that any peer prediction mechanism can be character-
ized by such a power diagram, and suggest that this relationship can be exploited for designing
such mechanisms. Here is a slightly modified version of their procedure, that takes an estimated
prior probability distribution y as an input and ensures that the mechanism is ambivalent for
this distribution.

1. Starting with an assumption of how agents might form their posterior beliefs based on an
observation, one infers the shape of the cells in the power diagram where it results from a
particular observation—in the example, the assumption that agents increase the posterior
probability of the value they observed leads to the split along the prior probability at 0:85.
Furthermore, the prior probability distribution defines a central point y D .0:15; 0:85/.
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2. Pick an arbitrary point in one of the cells, say for value x1, as the site v1 for this cell. In

the example, we might pick b and vb D .1:7; 0/. The site fixes a tentative payment rule
for agents that report x1: the coordinates fix the payments for the different possible peer
reports.

3. Pick a site for a neighboring cell, say for x2, such that the difference is the vector u per-
pendicular to the cell boundary between them, characterized by the condition u � y D 0.
In the example, this would be for example the vector .�0:85; 0:15/, and so we could choose
vg D .0; 0:3/.

4. Iterate: pick a neighboring cell for value xk and choose its site to lie on the intersection of
lines that pass through the sites already chosen and that are perpendicular to the boundaries
between the respective cells (see Frongillo and Witkowski [18] for more details). In the
example, there are no further values so no further sites have to be found.

5. Set the weights: all sites must have equal power distance to the central point y, and so the
weights of the sites might have to be adjusted. In the example, this is not required, as the
points are already chosen to satsify this condition.

The mechanism is given by the payment rules corresponding to the coordinates of the
sites. Usually, they should be rescaled to optimize budget or other constraints, and ensure that
reports according to the prior give an expected reward of zero.

3.3 COMMONPRIORMECHANISMS
3.3.1 SHADOWINGMECHANISMS
Clearly, a big weakness of the peer prediction method is that it requires the mechanism designer
to know the exact posterior distributions formed by an agent for each different observation.
Even worse, since one and the same mechanism has to apply to all agents, these distributions
have to be the same for every agent that participates in the mechanism! Such a strict condition
is unlikely to hold, and so we should look for a way to weaken it.

It is important to observe that in most scenarios, it would actually be quite reasonable
to assume that agents have a common prior belief before they observe the phenomenon. For
example, our prior belief about the quality of a product could reasonably be formed by the reviews
published so far, our prior belief about the temperature would be the historical average, and we
may consider all answers to a crowdworking task to be equally likely. Furthermore, this prior
may actually be known to the center with reasonable precision.

However, agents differ a lot in the way they form their posterior beliefs: they have differ-
ent confidence in their own observations, their observations may differ, and so on. Witkowski
and Parkes [19] observed that when constructing the assumed posterior distributions, the exact
value of ı does not matter (for two values and the quadratic scoring rule): as long as an agent in-
creases q.bad/ over the prior when observing “bad,” the expected reward EŒpay.‘‘bad”/� is strictly
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greater than EŒpay.‘‘good”/� for any ı > 0 that satisfies some well-formedness constraints of the
distribution.

They were thus able to show that constructing the assumed posteriors by such shadowing
allowed the peer prediction principle to work even when agents differ in their posterior beliefs.
However, they used this observation in the context of a Bayesian Truth Serum construction (see
Chapter 4). The first version of the construction worked only for binary signals.

The construction using power diagrams we showed above clearly illustrates that this ob-
servation will hold more generally: the same mechanism will be truthful as long as agents’ pos-
terior beliefs fall into the right cells. Furthermore, when their posterior beliefs are derived by
incremental updates such as shadowing from the prior beliefs, the central point of the cells will
correspond to a common prior belief.

3.3.2 PEERTRUTHSERUM
We can go further on the shadowing idea and bypass the explicit construction of a posterior
distribution entirely, only relying on the presence of a common prior. This will give us a simple
mechanism that works for any number of values, which we call the peer truth serum.

In the construction, we apply the shadowing idea in a slightly different way; instead of
linearly increasing/decreasing the probability of the observed value by ı, we consider the fre-
quentist belief update introduced in Equation (1.1) from the common prior p, for an observed
value xi :

Oq.xi / D p.xi /C .1 � p.xi // � ı D ı C p.xi / � .1 � ı/

Oq.xj / D p.xj / � .1 � ı/ for xj ¤ xi

so that the derivative of Oq with respect to the parameter ı is as follows:

d Oq.x/

dı
D

�
1 � p.x/ x D xi

�p.x/ x D xj ¤ xi
D 1xDxi

� p.x/:

Our construction will use the logarithmic scoring rule:

LSR.q; g/ D C C ln q.g/

where we assume C D 0, to score a peer report xp against the assumed posterior beliefs:

LSR. Oq; xp/ D ln Oq.xp/

Alternatively, we can also interpret the assumed posterior beliefs as the model that the center
obtains after updating according to xi . The frequentist update would correspond for example to
the center maintaining a histogram of reports.

Rather than applying the scoring rule explicitly, we use an approximation by its Taylor
expansion with respect to ı for the improvement of the prediction of the peer report by the
updated model Oq in comparison with the prior p.
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The derivative of the log scoring rule is:

@LSR.p; xp/

@p.x/
D

�
1=p.x/ x D xp

0 x ¤ xp

and so the Taylor expansion of the logarithmic scoring rule applied to the assumed distribution
is as follows. Since we would like random reporting according to the prior distribution p to be
equal to 0, we make this the starting point of the expansion. We can then write the payment for
a peer report xp as:

LSR. Oq; xp/ � LSR.p; xp/ � ı �
dLSR. Oq; xp/

dı

D ı
X

z

@LSR. Oq; xp/

@ Oq.z/

d Oq.z/

dı

D ı
X

z

�1zDxp

p.z/

� �
1zDxi

� p.z/
�

D ı

 X
z

1zDxi
1zDxp

p.z/
�
X

z

1zDxp

p.z/

p.z/

!
D ı

�1xDxp

p.x/
� 1

�
We thus obtain expressions that are linear in ı, and in fact ı just becomes a scaling fac-

tor that does not influence the qualitative character of encouraging cooperative behavior in the
agents!

Mechanism 3.3 The peer truth serum (PTS).

1. Center informs all agents of prior distribution R used by the mechanism.

2. Agents ai carries out a task and observes value o; ai reports data xi .

3. Center randomly selects a peer agent aj that has also been given the same task
and reported data xj .

4. Center pays agent ai a reward:

pay.xi ; xp/ D
1xi Dxp

r.xi /
� 1:

We thus obtain the peer truth serum, shown in Mechanism 3.3. It has as main parameter
a distribution R that is known to the center, and rewards agreement of report xi with a peer
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report xp with

pay.xi ; xp/ D
1xi Dxp

r.xi /
� 1: (3.1)

We can see that this payment scheme by construction aligns incentives between the report-
ing agents and the model learning process of the center. Under what condition does this scheme
induce truthful, cooperative strategies? First assume that the agent prior P is equal to R. We
write the incentive compatibility condition:

EQ.xjxi /Œpay.xi ; x/� D q.xi jxi / � pay.xi ; xi / D q.xi jxi /=r.xi /

> EQ.xjxi /Œpay.xj ; x/� D q.xj jxi / � pay.xj ; xj / D q.xj jxi /=r.xj /

and note that when R D P , this translates to the self-predicting condition introduced in (1.3):

q.xi jxi /

p.xi /
>

q.xj jxi /

p.xj /
; i ¤ j

or, equivalently, xi must be the maximum-likelihood estimate:

q.xi jxi / > q.xi jxj /; i ¤ j:

Defining admissible beliefs as a common prior beliefs and belief updates that satisfy the self-
predicting condition, we can show the following theorem.

Theorem 3.5 For self-predicting belief updates, the Peer Truth Serum as shown in Mechanism 3.3
has a strict ex-post subjective Bayes-Nash equilibrium where all agents report truthfully.

The proof is straightforward given that we have shown the self-predicting condition as the
sufficient condition for truthful reporting to be the best response strategy in the PTSmechanism.
Note that the self-predicting condition is satisfied for example when agents use frequentist belief
updates according to Equation (1.1), but not when using amixture update (which can be handled
by an alternative version based on the quadratic scoring rule, shown below).

Clearly, agents’ beliefs can satisfy this condition to different degrees, reflecting the confi-
dence. Let us characterize this confidence 
 of agent a as:


a.xi / D
q.xi jxi /

p.xi /
� 1:

Given the payment function (3.1), and assuming that P D R, the expected revenue of an agent
with a cooperative strategy reporting xi is just equal to its expected confidence 
a.xi /

EŒpay� D EŒ
a� D
X
xi

p.xi /
a.xi /:
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Thus, the payment increases linearly with confidence, and the PTS scheme motivates agents to
invest effort to increase their confidence in the data. Another observation relates to the granu-
larity of measurement. As the expected confidence is capped by the fact that the posterior prob-
ability cannot exceed 1, observing a phenomenon with few values or a skewed prior distribution
has a lower potential for rewards than one with many values and an even prior distribution. This
is important for motivating agents to observe more complex phenomena (see Chapter 8). The
analysis here has made the simplifying assumption that R D P ; see Faltings et al. [22] for a
complete analysis without this assumption.

We further define the agent’s self-predictor as the smallest �a such that:

�a

�
q.xi jxi /

p.xi /
� 1

�
>

q.xj jxi /

p.xj /
� 1;8xi ; xj ; xi ¤ xj : (3.2)

�a is a number in Œ0; : : : ; 1� that characterizes how much values are correlated to one another. If
they are categorical, i.e., no value is positively correlated to another, it is equal to 0. On the other
hand, if there is a pair of values that are perfectly correlated (so that they are indistinguishable),
it is equal to 1. 1 ��a can be understood to characterize the efficiency of the mechanism. It
is equal to the fraction of the expected payment that is given for truthful reporting. The self-
predictor will also be important in the properties of a variant of PTS, the peer truth serum for
crowdsourcing, that we present in Chapter 5.

We also note that the PTS mechanism that we derived here from the logarithmic scoring
rule can also be derived for other scoring rules. Let us consider the analogous derivation to the
one shown above for the quadratic scoring rule. Consider thus a payment function:

pay.p; xp/ D 2p.xp/ �
X

y

p.y/2

with the derivative:
@pay.p; xp/

@p.x/
D �2p.x/C

�
2 x D xp

0 x ¤ xp
D 2

�
1xDxp

� p.x/
�

:
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The Taylor expansion from the prior distribution p is:

QSR. Oq; xp/ � QSR.p; xp/ ' ı �
dpay. Oq; xi /

dı

D ı
X

z

@pay.p; xi /

@p.z/

d Oq.z/

dı

D 2ı
X

z

�
1zDxp

� p.z/
� �

1zDxi
� p.xi /

�

D 2ı

0BBBB@Xz

1zDxi
1zDxp

� p.xi /
X

z

1zDxp„ ƒ‚ …
D1

�
X

z

1zDxi
p.z/C p.xi /

X
z

p.z/„ ƒ‚ …
D1

1CCCCA
D 2ı

�
1xi Dxp

� p.xi /
�

:

This payment rule is incentive-compatible under a slightly different version of the self-predicting
condition:

q.xi jxi / � p.xi / > q.xj jxi / � p.xj /

which is incomparable to the maximum-likelihood condition that results for the logarithmic
scoring rule but may be more suitable in some scenarios. Note that it is satisfied for example
when agents update their beliefs according to the Bayesian update given in Equation (1.1) for a
single value, but not always for the Bayesian update in Equation (1.4).

Likewise, similar derivations can bemade for any proper scoring rule, although theymight
not always result in simple expressions for the rewards.

Helpful reporting What happens if the R assumed by the center is different from the agents’
prior distribution P ?

When the center has little information about the data to be elicited, it may not have a
good idea of the prior distribution of the agents that collect the information, and so the R used
in the payment rule may differ from the P that characterizes agents’ common prior distribution,
and thus does not encourage truthful reporting.

However, in such a case, it will be reasonable to assume that the agents’ prior P

over/under-estimates R whenever P � under/over-estimates R, a property that we call informed.

Definition 3.6 Probability distribution P is informed with respect to distribution R and true
distribution P � if and only if for all values x, .r.x/ � p�.x//.r.x/ � p.x// � 0.

In this case, agents partition values into two sets:

• under-reported values, with r.x/ < p.x/: due to informedness, for these values we also
have r.x/ < p�.x/, and
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• over-reported values, with r.x/ � p.x/, and where informedness implies r.x/ � p�.x/

and this partitioning is the same for all agents due to the common prior belief.
If an agent adopts a non-truthful strategy to report a value x instead of y, we may find

one of the following two situations:

• the strategy may be profitable if x is under-reported or y is over-reported, since the center
under-estimates the correct reward for x and over-estimates it for y; but

• it is never profitable if x is over-reported and y is under-reported, since the agent would
expect a smaller reward from mis-reporting.

Thus, an agent whose prior beliefs are infored with respect to the distribution R will adopt a
helpful reporting strategy, defined as follows [20].

Definition 3.7 A reporting strategy is helpful if it never reports an over-reported value x for
an under-reported value y.

We will show in Chapter 8 that when the center updates the distribution R using the
Bayesian, frequentist update model (Equation (1.1)), such helpful reporting guarantees a prop-
erty called asymptotic accuracy.

Properties of the peer truth serum We can show several interesting properties of the Peer
Truth Serum. First of all, it is unique: any payment function that incentivizes truthful report-
ing with only the self-predicting condition must have the form f D 1=p.xi /C g.�xi /, where
g.�xi / is a function independent of the report xi . Because of this uniqueness, we can also show
that it is maximal, and that weakening any of the assumptions makes truthful incentive mecha-
nisms impossible.

In particular, the following theorem holds.

Theorem 3.8 There does not exist an asymptotically accurate mechanism that has truthful report-
ing as a strict ex-post subjective Bayes-Nash equilibrium for a general structure of agents’ beliefs.

The take away message of this impossibility is that one cannot trivially relax the self-
predicting condition. Notice that Theorem 3.8 does directly follow from Theorem 3.3, as we are
now allowing mechanisms to depend on parameter.

Finally, the peer truth serum incentivizes optimal information gathering: when the loss
function is the logarithmic scoring rule, the agents are incentivized to report in a way that most
reduces this loss function for the estimate constructed by the center. We will discuss this in more
detail in Chapter 8.
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Other equilibria As in the output agreement mechanism, cooperative, truthful strategies are
not the only equilibrium. In fact, it is easy to see that in the peer truth serum, the equilibrium
with the highest possible payoff is for all agents to report the x with the smallest r.x/. This will
lead to an uniformative, uniform distribution that will eventually reduce the payoff of any strat-
egy to 0, but we cannot exploit this feature to eliminate it. However, if employed by a significant
number of agents, it can be easily detected, as one would observe many agents simultaneously
reporting the same unlikely value, and this value would be different in different time intervals.
Thus, we can adopt a similar solution as in the ESP game: penalize all agents when an uninfor-
mative equilibrium is detected.

A more elegant solution to eliminate this possibility is to not publish distribution R, but
derive it from multiple answers. We will show such a mechanism in Chapter 5.

3.4 APPLICATIONS
We now present several applications of peer prediction and the peer truth serum that have been
presented in the literature. We stress that these are mostly simulated; the only existing applica-
tions of crowdsourcing to data acquisition are in human computation platforms such as Amazon
Mechanical Turk and usually lack incentive mechanisms.

3.4.1 PEERPREDICTIONFOR SELF-MONITORING
Providers of services, such as internet access, mobile phone service, or cloud computing services,
operate under Service Level Agreements (SLA). These agreements stipulate penalties for insuf-
ficient quality of service. However, monitoring and proving insufficient quality is costly, and it
would actually be best if it could be done by users themselves. However, since they can claim
refunds or other penalties if the conditions of the SLA are not met, they have a natural incentive
to incorrectly report poor service.

Here, we can use the peer consistency idea to make truthful reporting of the actual quality
of service an optimal strategy [21], and thus allow self-monitoring. Clearly, such a mechanism
is prone to uninformative equilibria where agents report poor service, and will only work under
the assumption that the size of coalitions that simulteneously report poor service can be limited.
This can be the case for example when the agents have to report more details of the service they
receive at many time points, and there are thus many uninformative equilibria that agents will
have difficulty to coordinate on. The mechanism is intended for cases where outages are sporadic
and cases where a large fraction of agents receives poor service do not need to be caught as they
will be detected by other means as well.

For example, consider a web service provider that delivers a data service (for example, a
weather forecast) to a homogeneous population of users. Assume the service has two quality
parameters:

• Q1.0=1/: whether the response was received within the stipulated response time, and
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• Q2.0=1/: whether the provided information is correct.

Assume, furthermore, that the cost the service provider incurs for providing the service is equal
to $1:0 per report, that the refund each user gets in case of a poor report is $0:01, and that the
synchronization cost of user misreporting is $10:00 for any number of reports.

We can design incentives according to peer prediction that balance the incentive to mis-
report ($0:01). Assuming that the prior probability distributions for the 2 quality indicators Q1

and Q2 are 0:9 for “1” (good) and 0:1 for “0” (bad), and that the posterior probability changes
by 20%:

Oq.1j1/ D 0:92; Oq.1j0/ D 0:88

Oq.0j0/ D 0:12; Oq.0j1/ D 0:08

then the expected cost of the incentives is as shown in Figure 3.7. The cost can, however, be
much reduced if there are some agents whose reports are absolutely trustworthy and that can be
used as peers to eliminate uninformative equilibria.
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Figure 3.7: Monitoring cost using peer prediction as a function of the maximum fraction of
colluding agents.

3.4.2 PEERTRUTHSERUMAPPLIEDTOCOMMUNITY SENSING
Faltings et al. [22] evaluated the performance of the peer truth serum on the community sensing
application we presented in the introduction. The study shows how agents can be incentivized
by peer consistency without the need for any ground truth.

A major challenge here is that the mechanism requires peer reports, but there are never
multiple sensors that measure at the exact same location. Thus, we need to either use a sensor
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that is close as a peer—a simple solution but we cannot expect exactly the data to completely
agree—or we use a pollution model to predict what data a peer should observe based on all peer
reports that enter the model in the same time period. This allows applying the peer truth serum
to reward sensor owners for their cost of operating the sensor in the most accurate way, as shown
in Faltings et al. [22].

The basis is a simulation model of NO2 constructed by environmental scientists for the city
of Strassbourg (France) (Figure 3.8). Measurements are discretized to a scale of three values. The
model is based on measurements taken by high-quality sensors over a period of four weeks, and
interpolation to other simulated sensors using a numerical pollution propagation model.

Figure 3.8: Pollution model of the city of Strassbourg. The red crosses show the 116 sensor
locations. Courtesy of Jason Li.

Simulations based on this data have been used to evaluate the peer truth serum (and also
other techniques shown later in the book). In the simulations, agents observe the values as given
in the dataset with varying degrees of noise. The center used Gaussian process regression based
on the other data obtained so far to derive reference measurements for the points where agents
reported data. This setup allowed for simulating different agent strategies and quantifying their
impact on the model learned by the center.

The first question is whether the game-theoretic properties hold up in the presence of
measurement noise, which can be quite substantial with low-cost sensors. Figure 3.9 shows the
performance of three different strategies as a function of the noise level.The blue curve shows the
average reward when always reporting truthfully the (noisy) simulated measurement, compared
to the strategy of reporting randomly according to the prior distribution, and always reporting
the lowest possible value.

Another interesting question is whether the incentive scheme encourages agents to place
their sensors at locations where their measurement contributes a lot of insight. Given an in-
centive scheme where payment is for agreeing with others, an agent can minimize her risk of
disagreement with a peer by choosing locations wheremeasurements are very certain.This can be
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Figure 3.9: Rewards for different strategies as a function of measurement noise (standard devi-
ation as percentage of average value). Courtesy of Jason Li.

observed for example when rewarding measurements according to a proper scoring rule (Chap-
ter 2). As Figure 3.10 shows, the peer truth serum tends to encourage measurements at locations
with higher uncertainty, even though this was not a design objective.

The big issue with the peer truth serum is of course whether the scheme is vulnerable
to uninformative equilibria where agents collude to report either always the same value, or the
value with the smallest value of r.x/ and thus the highest payment. The collusive strategies are
complicated somewhat by the fact that information is aggregated into the Gaussian model.

Figure 3.11 shows the average rewards for several different strategies in a situation where
a significant coalition of agents collude to report the value that is currently the least likely; this
is the most profitable uninformative equilibrium. We can see that strategies of always reporting
the lowest value, or reporting according to the prior distribution are not interesting. The truthful
strategy remains best up to a coalition size of over 60% of the agents, which means that the
scheme is actually quite robust. Even more so, when the coalition of colluders is below 40%, it
obtains almost no reward, so it’s difficult to motivate agents to join.

3.4.3 PEERTRUTHSERUM IN SWISSNOISE
In order to understand the design and behavior of public prediction markets, Garcin and Falt-
ings [55] have implemented a public platform called Swissnoise. It was operated from EPFL
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Figure 3.10: Expected reward as a function of the uncertainty of the measurement, as expressed
by the RMS deviation between the prior distribution and the actual value as given by the pollu-
tion model. Courtesy of Jason Li.

during from spring of 2013 to the summer of 2015 with up to 300 participants, and allowed
predictions on questions of current public interest, usually suggested by participants themselves.
It was operated with artificial money as a prediction market with a logarithmic scoring rule mar-
ket maker. The artificial money accumulated by each participant was shown in a leaderboard,
and each week the participant with the biggest profit was awarded a small gift certificate.

During its operation, Swissnoise handled more than 230 questions and 19,700 trading
operations were carried out. Questions were of different kinds, including:

• sports events, such as the FIFA soccer world cup in 2014;

• political events, such as the outcome of the referendum on Scottish independence in 2014,
and the outcomes of numerous Swiss referendums;

• technological milestones, such as when the first Chinese lunar lander would reach the
moon; and

• local events concerning the EPFL campus, such as whether the local grocery store would
close.
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Figure 3.11: Average rewards for different collusive strategies, as a function of the fraction of
agents adopting an uninformative strategy. Courtesy of Jason Li.

In Chapter 6, we describe the design and our experiences with the classical predictionmarket de-
sign in Swissnoise [55]. Here, we show how we implemented a novel peer prediction technique
within this platform, that allowed us to compare the two methods.

One of the main drawbacks of classical prediction markets is that they require that the
information that is provided can eventually be tied to a publicly verifiable outcome so that the
securities can be paid off. This strongly limits the applicability of this technique: for example, it
is not possible to elicit questions about hypothetical actions such as “What would be the success
of a new bus line between stops X and Y?” or “What would be the outcome of a referendum on
country X remaining in the EU?” when such actions are actually not planned. However, many
of the questions that we would like to have predictions for are of this kind. One can use peer
consistency to create prediction platforms that do not require that information is ever verified:
rewards are given depending on consistency with other predictions.

Classical prediction markets are easy to understand because of the analogy with securities
trading. The main challenge for adapting the peer consistency principle is to find a similar anal-
ogy (Figure 3.12). Swissnoise introduced the analogy of a lottery where agents can buy a ticket
for a certain prediction outcome and day (Figure 3.13). At the end of the day, we run a lottery
where all tickets bought that day are thrown into a pool. For each ticket, we randomly draw
another ticket from the rest of the set, and apply the PTS mechanism to the two outcomes,
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Prediction Market

Trading Stocks

Peer Prediction

Lottery Tickets

Figure 3.12: Analogies in prediction platforms.

Figure 3.13: Interaction for buying a lottery ticket on Swissnoise.
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where the distribution R is taken from the prediction that was valid during that day. Following
this, all tickets that were bought that day are aggregated with tickets of earlier days to form an
updated predicted distribution of the different outcomes.

The game-theoretic analysis of peer consistency mechanisms assumes that agents are risk-
neutral, i.e., they are indifferent between obtaining a very volatile reward and a completely sure
award equal to the expected value of the volatile reward. However, Swissnoise is dealing with
human agents, and they are known to be risk-averse. Thus, when this principle was first used on
the Swissnoise platform, there was a bias against unlikely answers because their reward carries
higher risk.

According to Fechner’s law [23], people perceive variations as equivalent if they are scale-
invariant, so that sensitivity to a stimulus is proportional to its logarithm. Applying this principle
to risk-aversion would mean that rewards should increase exponentially with 1=R.x/. This, how-
ever, proved too extreme for very unlikely values, so we used an average between 1=R and e1=R.

To validate the accuracy that could be obtained through this reward scheme, for the same
question the platform randomly assigned users to the classical prediction market and the peer
prediction market version. For example, Figure 3.14 shows the price evolution for the two out-
comes of the 2014 referendum on Scottish independence.

Figure 3.14: Price evolution for the question “Will Scotland be independent” using peer predic-
tion.

It should be compared to the price evolution in the classical prediction market, shown in
Figure 6.6, where wild price swings occured. They are due to two issues that plague classical pre-
diction markets: it is very hard to tune the liquidity parameter (how much the price is influenced
by share demand), and participants cashing in bets early changes predictions.

Both of these problems are absent in peer consistency, so not surprisingly the price evo-
lution of the peer prediction market is a lot smoother and actually reflects the evolution of ex-
pectations very well.

Garcin and Faltings [55] report a comparison of the average accuracy of the two types
of prediction markets on 32 different questions with good participation in both schemes. Fig-



56 3. PARAMETRICMECHANISMS FORUNVERIFIABLE INFORMATION
ure 3.15 shows the accuracy, measured as the percentage of questions where the predicted prob-
ability of the correct answer exceeded a given probability threshold. Thus, for a question with
4 answers, if the threshold is 0:3, the question is counted as correct if the probability of the cor-
rect answer is predicted to be at least 0:3. We can see that both schemes obtain about the same
accuracy; if we set the threshold at 0:5 the prediction is correct 72% of the time for the PTS
version and 62% of the time for the classical prediction market.
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Figure 3.15: Accuracy comparison of the two versions of prediction platforms (based on [55]).

However, the peer prediction version generally has amore stable price evolution that is eas-
ier to interpret, and it was better appreciated by participants since rewards were instantaneous.2
Finally, even though all questions on Swissnoise had a ground truth to allow comparison of the
two schemes, the peer consistency version is much more widely applicable.

3.4.4 HUMANCOMPUTATION
Human computation platforms such as Amazon Turk connect requesters with a pool of workers
who carry out small information tasks through the internet in return for small payments. A big
issue is to ensure that workers actually put in the effort required to obtain the carry out the tasks
that are requested of them. Requesters typically employ filtering mechanisms to identify unre-
2They, however, could not choose, but were randomly assigned to one or the other type.
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liable workers, and give the same task to several workers to obtain a majority answer. However,
these techniques fail to deal with the issue of bias.

Biases arise when workers carry out many similar tedious tasks and form a prior expecta-
tion of what the answer is likely to be. Workers will then develop a tendency to miss the unlikely
answers. Bias can also arise from social influence and word-of-mouth [24]. If all workers develop
the same bias, the redundancy obtained by using multiple workers cannot be used to eliminate
the errors, and this is an important open problem in crowdsourcing.

However, it has been shown that using the peer truth serum as a worker incentive scheme
can eliminate the answer bias [25]. It requires, however, that the bias is known, most naturally
through the distribution of answers that have been given earlier. Faltings et al. [25] reported a
study where the task was to count binoculars and cameras in an image, as shown in Figure 3.16.
The actual number of such objects in the image is 34. The study tested conditions where the
workers received no prior information, or where they were explicitly primed that the answer was
likely to be around 34, or that it was likely to be around 60. The effect of priming was clearly
visible: while without priming the answers were distributed normally around the correct answer
of 34, and a similar distribution was obtained when priming to the correct value, when priming
to 60 the distribution became skewed to larger values and the average was far off the true value.
Figure 3.17 shows the influence of priming on the answers. Clearly priming has a strong effect
and skews the answer distribution; the average error grows from 1:06 to 5:63.

Figure 3.16: Image used to test the effect of incentives on answer bias [26].

Four different incentive schemes were compared:

1. no incentive,

2. a vague bonus (“you receive a bonus if you do a good job”),

3. peer confirmation [27], which is equivalent to output agreement we discussed inChapter 2,
and
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Figure 3.17:Distribution of answers without bonus andwithout priming (left), andwith priming
to a prior expection of 60 (right) (based on [25]).

4. the peer truth serum described above, using a discretized version of a distribution centered
on the value used for priming.

Table 3.1 shows a comparison of different incentive schemes across the different priming scenar-
ios. Clearly, we can see that while peer confirmation offers some help, only the peer truth serum
is effective in eliminating the answer bias. We stress again that there is no alternative method
for getting rid of such answer bias, and incentives are essential for obtaining high-quality data.

Table 3.1: Comparison of different incentive schemes in the presence of priming

Bonus Scheme Priming Average Error t-test

none

vague

peer conf.

PTS

60

60

60

60

5.6316

6.6563

3.3429

0.8000

p = 0.3782

p = 0.1306

p = 0.0088

none

vague

peer conf.

PTS

34

34

34

34

2.9434

9.0984

2.4194

2.1667

p = 0.0110

p = 0.4020

p = 0.3731



59

C H A P T E R 4

NonparametricMechanisms:
Multiple Reports

Knowingagentbeliefs Aswe have seen, incentives for encouraging agents to be truthful hinge
crucially on their beliefs and the way they are affected by observations. Thus, the mechanisms we
have seen in Chapter 3 all have some characterization of agent beliefs as a parameter.

This is not desirable for two reasons. The first is that it is very hard for the center to guess
these parameters correctly. The second is that as the same mechanism is applied uniformly to a
large population of agents, their beliefs have to be very uniform.

Thus, it would be desirable to have mechanisms that do not require these beliefs to be
known. In this and the next chapter, we are going to see mechanisms that do this either by

• eliciting beliefs from the reporting agents through additional reports (this chapter), or by

• learning the necessary probability distributions through observation of the data reported
by the agents (Chapter 5).

4.1 BAYESIANTRUTHSERUM
The idea of the Bayesian Truth Serum [28] is to ask agents to provide two reports: an information
report xi that contains the data of interest, and a prediction report Fi that contains a prediction of
what other agents report as data, which is exactly the agent’s posterior belief q about the data.

Both reports receive a score and the reward given to the agent is obtained as the sum of
both scores:

�BTS.xi ; Fi ; : : :/ D �info.xi ; : : :/„ ƒ‚ …
information score

C �pred.Fi ; : : :/„ ƒ‚ …
prediction score

:

The original Bayesian Truth Serum [28] computes the scores from the following two quantities:

• freq.x/—(normalized) frequency of reports equal to x:

freq.x/ D
num.x/

n
:
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Mechanism 4.1 The original Bayesian truth serum (BTS).

1. Center gives the same task to agents A D fa1; : : : ; akg. Each agent ai reports an
information report xi and a prediction report Fi , where the prediction report is an
estimate of the distribution of answers xi among agents in A.

2. To compute the score of agent ai , the center computes the histogram of infor-
mation reports freq�i .x/ and the geometric mean of prediction reports gm�i .F /,
where the reports of ai are excluded from the mean.

3. The center computes the prediction score �pred D �DKL.freq�i .x/jjFi .x// and
the information score �inf D ln freq�i .xi / � ln gm�i .xi /.

4. The center rewards ai with a payment proportional to:

�BTS.xi ; Fi / D �inf C �pred:

• gm—geometric mean of agents’ predictions Fj :

log gm.x/ D
1

n

X
j

log fj .x/:

The prediction score �pred.Fi ; : : :/ is obtained by evaluating the prediction report Fi over
all peers using the logarithmic scoring rule:

�pred.Fi ; : : :/ D
1

n

X
j

log.fi .xj //C C D
X

x

freq.x/ � log.fi .x//C C:

By setting the constant C D �
P

x freq.x/ � log.freq.x// we obtain:

�pred.Fi ; : : :/ D
X

x

freq.x/ � log fi .x/

freq.x/
D �KL.freq.x/jjFi .x//

so that the prediction score �pred.Fi ; : : :/ measures how bad Fi is compared to the actual fre-
quencies observed in the information reports. This provides the incentive for an agent to be as
truthful as possible about the prediction report.

The principle for scoring the information report is to compute how much better the in-
formation is compared to what would be obtained by using the geometric mean gm of agents’
prediction reports. For this we use the logarithmic scoring rule to compare:

• the score of the observed frequency of the reported value xi :

C � log freq.xi /
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• the average score of the prediction reports of all agents:

1

n

nX
j D1

�
C � log fj .xi /

�
D C � log gm.xi /

to obtain for the information score:

�info.xi ; : : :/ D log freq.xi /

gm.xi /
:

The resulting mechanism is summarized in Mechanism 4.1.
What is the incentive given by the information score? In a truthful equilibrium, we

can consider the term freq.xi / to be the actual probability that the correct answer is xi , and
log freq.xi / is thus maximized for reporting the most likely value. To normalize the score for
reporting according to prior knowledge to zero, we subtract the average score that would be
obtained by reporting according to the prior, which is gm.xi /. If we take gm.xi / to be the prior
probability P and freq.xi / to be the posterior probability Q, the expected information score
using the original BTS mechanism would be:

EŒ�info� D
X

i

q.xi / log q.xi /

p.xi /
D DKL.QjjP /;

thus the Kullback-Leibler divergence between the prior and posterior distributions.1
The following properties are shown in Prelec [28].

Theorem 4.1 Given a large enough population of agents, the original Bayesian Truth Serum has
cooperative strategy as a strict Bayes-Nash equilibrium.

Thus, in order to achieve truthfulness with BTS, it is important to have a large enough number
of agents. In fact, the lower bound on the number of needed agents depends on agents beliefs.
We will see in the following subsections how to relax the requirement for a large population.

As an additional observation, Prelec [28] notes that when given equal weight, the sum of
all BTS scores adds up to zero; the sum of prediction scores:X

i

�pred.Fi ; : : :/ D
X

i

X
x

freq.x/ � log fi .x/

freq.x/

D
X

x

X
i

num.x/

n
� Œlog fi .x/ � log freq.x/�

D
X

x

num.x/ � log gm.x/ �
X

x

num.x/ � log freq.x/

D
X

i

log gm.xi /

freq.xi /
Ddef �

X
i

�info.xi ; : : :/

1The exact reasoning behind BTS is more complex, but here we give an intuitive analogy to the mechanisms discussed in this
book.
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is just the negative of the sum of information scores.

This zero-sum structure implies the collusive strategies involving all agents are not prof-
itable, since they cannot increase the total revenue that the center pays to all of them. Thus,
we do not have to worry about uninformative equilibria where everyone reports the same value.
On the other hand, this also means that the mechanism does not reward agents for increased
accuracy: the sum of payments remains the same, whether agents work hard or not. In fact, since
the game is a contest among agents, it could be that even agents that put in a lot of effort get
negative rewards.

It would be appropriate for example for assigning quality scores to the information pro-
vided by the agents. Note that we can easily make the expected reward positive by giving the
information report a higher weight relative to the prediction report.

4.2 ROBUSTBAYESIANTRUTHSERUM
A major problem of the BTS mechanism is that the distributions observed on the reported data
can be quite far from the true probability distributions. If there are only n reports in total, the
frequency of any value is a multiple of 1=n, and given the sampling there is a good chance that it
is quite far from the true probability. This can significantly disturb the incentives of the original
BTS mechanism.

Mechanism 4.2 The robust Bayesian truth serum (BTS).

1. Center gives the same task to agents A D fa1; : : : ; akg. Each agent ai reports an
information report xi and a prediction report Fi , where the prediction report is an
estimate of the distribution of answers xi among agents in A.

2. The center picks a random peer agent aj 2 A and computes the reward to agent
ai as

�decomp.xi ; Fi ; xj ; Fj / D
1xi Dxj

fj .xi /„ ƒ‚ …
information score

Cfi .xj / �
1

2

X
z

fi .z/2

„ ƒ‚ …
prediction score

:

Therefore, robust versions of BTS have been developed that work even with a small number
of reports [33, 34]. They keep the decomposable structure of the score into an information score
and a prediction score, where the information score gives an incentive for truthfulness based on
another agent’s prediction report, and the prediction score uses a proper scoring rule against the
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information report. For example [34]:

�decomp.xi ; Fi ; xj ; Fj / D
1xi Dxj

fj .xi /„ ƒ‚ …
information score

Cfi .xj / �
1

2

X
z

fi .z/2

„ ƒ‚ …
prediction score

uses the PTS mechanism to score the information report, which requires the self-predicting
condition to hold, as in the original BTS mechanism.

As an example to illustrate robust decomposable BTS mechanisms, consider eliciting a
variable with 3 values 0; 1 and 2, and the agent prior and posterior beliefs shown in Table 4.1.
Suppose that agent Ai observes the value o D 0 and that its peer agent Aj is honest. The predic-

Table 4.1: Agent prior and posterior beliefs for eliciting a variable with three values

o 0 1 2

p(o) 0.1 0.5 0.4

q0(o) 0.3 0.2 0.2

q1(o) 0.4 0.6 0.3

q2(o) 0.3 0.2 0.5

tion score is computed using the quadratic scoring rule QSR.A; x/ D a.x/ � 1
2

P
z a.z/2. Thus,

the prediction score that Ai expects for its prediction report Fi D q0 is:

E.�pred.Fi ; : : :// D q0.0/ � QSR.Fi ; 0/C

C q0.1/ � QSR.Fi ; 1/C q0.2/ � QSR.Fi ; 2/ D

D 0:3 � 0:13C 0:4 � 0:23C 0:3 � 0:13 D 0:17:

On the other hand, if Ai provided an inaccurate prediction report of Fi D

.fi .0/; fi .1/; fi .2// D .0:5; 0:2; 0:3/, it will believe its prediction score to be lower:

E.�pred.Fi ; : : :// D q0.0/ � QSR.Fi ; 0/C

C q0.1/ � QSR.Fi ; 1/C q0.2/ � QSR.Fi ; 2/ D

D 0:3 � 0:31C 0:4 � 0:01C 0:3 � 0:11 D 0:13:

In general, because of the proper scoring rule, we can show that E.�pred.Fhonest; : : :// >

E.�pred.Fdishonest; : : ://.
Now consider the information score. If Ai honestly reports its observation 0, it will expect

to obtain a score of:

E.�info.xi D 0; : : :// D E

�1xj D0

fj .0/

�
D

q0.0/

fj .0/

D
q0.0/

q0.0/
D 1
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whereas for an incorrect report it expects a lower score, for example when reporting a value of 1

(while having observed 0):

E.�info.xi D 1; : : :// D E

�1xj D1

fj .1/

�
D

q0.1/

fj .1/

D
q0.1/

q1.1/
D 0:67

and, in general, we can show (see above) that E.�info.xhonest; : : :// > E.�info.xdishonest; : : ://.
For robust BTS, we can show the following property [34].

Theorem4.2 Provided that agent belief updates satisfy the self-predicting condition, the robust BTS
mechanism (Mechanism 4.2) has cooperative strategy as a strict Bayes-Nash equilibrium.

Decomposable mechanisms It is interesting to note that both the original BTS score and
RBTS score the information report separately from the prediction report. We call such mecha-
nisms decomposable, as an agent’s information score is independent of its prediction report, while
an agent’s prediction score is independent of its prediction report. Typically, the theoretical anal-
ysis of such mechanisms is relatively simple, while their structure often allows intuitive inter-
pretations of scores (for example, see Radanovic [36]). From the game-theoretic point of view,
however, the class of decomposable mechanisms is not complete in a sense that one cannot
achieve truthful elicitation without assuming additional constraints on a common belief system.
More formally, it is shown in Radanovic and Faltings [34].

Theorem 4.3 There does not exist a decomposable BTS mechanism that has cooperative strategy as a
strict Bayes-Nash equilibrium for a general structure of agents’ beliefs.

As in the case of Theorem 3.3, Theorem 4.3 holds for any agent beliefs that are statisti-
cally relevant, which makes it quite broadly applicable. In order to achieve truthful elicitation
for a general case of an agents’ common belief system, we consider in the next section a non-
decomposable type of BTS mechanism.

4.3 DIVERGENCE-BASEDBTS
The Bayesian Truth Serum, as we have seen above, still has the drawback that it either

requires a large number of agents, or (for the robust versions) requires the self-predicting con-
straint to hold.

We are now going to show an alternative approach where we penalize agents for incon-
sistencies in their reports, developed independently by Radanovic and Faltings [35] and Kong
and Schoenebeck [37]. We will keep the same principle for the prediction score, where we score
the report against a peer report using a proper scoring rule. However, the information score
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Mechanism 4.3 The divergence-based Bayesian truth serum (DBTS).

1. Center gives the same task to agents A D fa1; : : : ; akg. Each agent ai reports an
information report xi and a prediction report Fi , where the prediction report is an
estimate of the distribution of answers xi among agents in A.

2. The center picks a random peer agent aj 2 A and computes the reward to agent
ai as:

pay.xi ; Fi ; xj ; Fj / D �1xi Dxj ^DKL.Fi jjFj />‚„ ƒ‚ …
information score

Cfi .xj / �
1

2

X
z

fi .z/2

„ ƒ‚ …
prediction score

:

will penalize inconsistencies, in particular agents who give the same information reports but
significantly different prediction scores.

We define the divergence-based BTS by the following score functions:

• a prediction score as in RBTS, using the quadratic scoring rule:

paypred.xi ; Fi ; xj ; Fj / D fi .xj / �
1

2

X
z

fi .z/2
I and

• an information score that penalizes absence of a divergence > ‚ for prediction reports of
agents with different information reports:

payinfo.xi ; Fi ; xj ; Fj / D

(
�1 if xi D xj ^D.Fi jjFj / > ‚

0 otherwise

pay.xi ; Fi ; xj ; Fj / D �1xi Dxj ^DKL.Fi jjFj />‚„ ƒ‚ …
information score

Cfi .xj / �
1

2

X
z

fi .z/2

„ ƒ‚ …
prediction score

:

The information score still requires a parameter ‚ that would need to set correctly by the
center. We can eliminate the need for this parameters by comparing divergence with a randomly
selected third agent who reported a different value (and thus should have a different posterior
distribution):

payinfo.: : :/ D

(
�1 if xi D xj ¤ xk ^D.Fi jjFj / > D.Fi jjFk/

0 otherwise:
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Consider the divergence-based BTS mechanism on the same example we used above (see

Table 4.1). The prediction score is the same as for the robust BTS mechanism given above. Con-
sider first the parametric version with ‚ D 0:01, and let agents honestly report their posterior
beliefs as prediction reports. The information score is then:

E.�info.xi D 0; : : :// D �q0.0/ � 1D.q0jjq0/>0:01

D 0:

On the other hand, if it reports incorrectly the value 1, it expects an information score:

E.�info.xi D 0; : : :// D �q0.1/ � 1D.q0jjq1/>‚

D �0:4 � 1.0:2�0:3/2C.0:6�0:4/2C.0:2�0:3/2>0:01 D �0:4

and we can again see that E.�info.xhonest; : : :// > E.�info.xdishonest; : : ://.
Under the assumption of a technical condition on agents’ beliefs that is entailed by either

the conditions of the original BTS or the conditions of the robust BTS mechanism, it is possible
to show [35] the following.

Theorem 4.4 The divergence-based BTS has truthful reporting as a strict Bayes-Nash equilibrium.

A similar divergence-based mechanism is introduced in Kong and Schoenebeck [37], but
still with the assumption of a common prior belief that is not known to the mechanism. In Kong
and Schoenebeck [4], the same authors provide an extended framework for such mechanisms
that include not only divergence but also other types of comparisons applied to prediction re-
ports, in particular mutual information and information gain. Their work pays particular atten-
tion to ruling out equilibria where agents do not provide true information.

Continuous values Thedivergence-based BTSmechanism has some important advantages. It
works even for small populations of agents, and it does not require agents to have identical prior
beliefs. This possibility has also allowed to extend it to reports of continuous values [35] that oc-
cur particularly in sensor data.Wewill now describe a parametric version of the divergence-based
BTS designed for continuous domain, which is transformable to a nonparametric mechanisms
for certain types of agents’ beliefs (see Radanovic and Faltings [35] for more details). Notice that
the parametric mechanism we are about to describe has a very weak requirements on how to se-
lect a proper value of its parameter. Thus, although the mechanism is technically parametric, it
is righteously described in this chapter.

Clearly, the direct application of the divergence BTS mechanism is not possible since the
penalty score is not well defined for continuous values. To define a penalty score that compares
information reports in a more meaningful way, we discretize real domain into intervals of equal
sizes, where the size is chosen randomly, while the starting point of the discretization procedure
is defined by the value of the agent’s information report. Then, the information reports of the
agent and her peer are considered to be similar if they fall into the same interval. This full
transformation of the divergence-based BTS can be described by the following steps.
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1. Each agent i is asked to provide the information report xi and the prediction report Fi ,

as in the divergence-based BTS.

2. For each agent i , the mechanism samples a number ıi from a uniform distribution, i.e.,
ıi D rand..0; 1//.2 The continuous answer space is then uniformly discretized with the
discretization interval of a size ıi and the constraint that value xi is in the middle of the
interval it belongs to. We denote the interval of a value xi by �i

x . The constraint can then
be written as xi D

max �i
x�min �i

x

2
.

3. Finally, an agent i is scored using a modified version of the divergence-based BTS score:3

�1xj 2�i
x^DKL.Fi jjFj />ıi �‚„ ƒ‚ …
information score

C log.fi .xj //„ ƒ‚ …
prediction score

: (4.1)

Notice that the only restriction for the properness of the above mechanism ‚ is large enough.
However, there is a tradeoff between the value of ‚ and the expected value of margin difference
of the information score between truthful and non-truthful reporting. That is, the larger ‚ is, the
smaller the expected punishment is for an agent who deviates from truthful reporting.Moreover,
now the prediction report is a probability density function. In the case of parametric distribution
functions that are often used in practice, reporting predictions comes down to reporting relatively
few small number of real valued parameters.

Under a monotonicity condition about the divergence of prediction reports and informa-
tion reports, it is possible to show (see [35]):

Theorem 4.5 The divergence-based BTS for continuous signals (Mechanism 4.4) has cooperative
strategy as a strict Bayes-Nash equilibrium.

Generality of divergence-based BTS We have seen that the divergence-based BTS elicits
truthful responses under fairly general conditions. For data with continuous values, it is re-
quired that agents share a common belief system. One might wonder if it is possible to relax this
requirement, especially since for discrete values the divergence-based BTS does allow deviation
from this condition. Unfortunately, this is not achievable in the BTS setting [35, 36]. For a very
natural class of belief systems that are based on Gaussian distributions, even small deviations
from the common belief system condition are hard to deal with:

Theorem 4.6 There exists a parametric class of belief systems such that no BTS mechanism simulta-
neously has:
2We take the discretization interval to be of a size 1, but one can make it larger or smaller. Furthermore, ıi can be sampled
from a different type of distribution, as long as it has the full support over the discretization interval.

3For simplicity, we used logarithmic scoring rule for the continuous version of the divergence-based BTS. One can apply the
quadratic scoring rule as well (as in the divergence-based BTS), but applied to elicitation of probability density functions.
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Mechanism 4.4 The divergence-based Bayesian truth serum (DBTS) for continuous
values.

1. Center gives the same task to agents A D fa1; : : : ; akg. Each agent ai reports an
information report xi and a prediction report Fi , where the prediction report is an
estimate of the distribution of answers xi among agents in A.

2. For each agent ai , the center uniformly discretizes the continuous answer space
with the discretization interval of a size ıi and the constraint that value xi is in
the middle of the interval it belongs to.

3. The center picks a random peer agent aj 2 A and computes the reward to agent
ai as:

pay.xi ; Fi ; xj ; Fj / D �1xj 2�i
x^D.Fi jjFj />ıi �‚„ ƒ‚ …

information score

C log.fi .xj //„ ƒ‚ …
prediction score

:

• cooperative strategy as a strict Bayes-Nash equilibrium when all agents have a common belief
system B ; and

• cooperative strategy as a strict Bayes-Nash equilibriumwhen one agent has a belief system OB ¤ B

and all the other agents have a common belief system B .

In a sense, this result implies the generality of the divergence-based BTS in the stan-
dard BTS settings. Furthermore, it demonstrates the difficulty of eliciting continuous private
information in non-parametric class of peer consistency mechanisms.

Practical concerns All of the BTS mechanisms require reporting agents to also form an ex-
plicit opinion about what other agents may report. This data can be significantly more complex
than the information report itself. Furthermore, for the incentive properties to hold, the agent
must not know about the reports that have been received by other agents—otherwise it would
be easy to submit a prediction report that exactly matches this distribution. They are thus un-
suitable for applications such as opinion polls or reputation forums that publish this information
continuously.
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4.4 TWO-STAGEMECHANISMS

Several works in the literature have proposed mechanisms where agents two reports at different
times. They offer interesting advantages if the setting does allow for eliciting information in two
separate stages.

Witkowski and Parkes [38] propose a mechanism where agents first provide a prediction
report before observing the phenomenon, followed by another report after observing the phe-
nomenon. The change in the two reports can be used to derive the actual observation. Zhang
and Chen [39] propose a mechanism where agents first report their information reports, and
then form a prediction report while taking into account the information report given by a peer
agent. They show that this dependency can be exploited to ensure truthfulness for a slightly more
general class of belief structures than the RBTS mechanism described above.

4.5 APPLICATIONS

Due to the complexity of the prediction report, the Bayesian Truth Serum has not been widely
experimented so far. An experiment reported in Prelec and Seung [29] elicited predictions about
the state capitals in the U.S. As these are often not the biggest and best-known cities, there is a
lot of confusion, and in fact it turned out that in their experiment it was often the case that the
majority gave the wrong answer. For example, for the state of Illinois, most students wrongly
believed the capital to be Chicago.

The experiment asked 51 students at MIT and 32 students at Princeton University a set of
50 questions, asking for each state whether the most populous city was the capital of that state.
Thus, for example, it would ask: “Is Chicago the capital of Illinois?”.

Students showed poor knowledge of geography and only answered slightly better than
chance, with the average student getting 29.5 correct answers at MIT and 31 at Princeton.
The majority decisions were slightly better, giving correct answers for 31 questions at MIT and
36 questions (with 4 ties) at Princeton.

The subjects showed a strong correlation between prediction and information reports:
those who believed the answer to a question to be YES believed that on average 70:3% of the
others would also answer YES, while those who answered NO believed on average only 49:8%
would answer YES.

To evaluate the BTS mechanism, the researchers considered a voting scheme where the
answers were weighted by the BTS score computed for the answers of the respondent, and the
chosen answer was the one with the highest sum of BTS scores. They reported a dramatic effect
on the accuracy: in the MIT sample, the number of correct majority decisions rises from 31–41,
and in the Princeton sample, it rises from 36–42 (still with 4 ties).

The experiment also showed a strong correlation between the number of correct answers
and the BTS score obtained by respondents.
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Weaver and Prelec [30] report another study where BTS is shown to provide effective

incentives against the overclaiming effect. In this experiment, human subjects are asked whether
they recognize real and fake brand names. Giving a bonus for every recognized name leads to
overclaiming, which can be measured by the fraction of fake brand names that are supposedly
recognized. The study shows that BTS is effective in countering this bias.

John et al. [31] show a similar effect, where psychologists underclaim their use of ques-
tionable research practices—here underclaiming is caused not by monetary rewards, but by em-
barassment that is countered (but probably not entirely compensated) by BTS.

BTS is also proposed as a scoring scheme for better aggregating information according to
confidence. Prelec et al. [32] report on four different studies, including the one of state capitols
described above, where the BTS score of answers is used as a weighting criterion for aggregating
information, rather than an incentive for obtaining accurate information in the first place.
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C H A P T E R 5

NonparametricMechanisms:
Multiple Tasks

Another strategy for obtaining nonparametric mechanisms is to learn the parameters from the
data submitted by the agents themselves, during some fixed time interval. This works whenever
we have agents providing data about multiple (and ideally many) very similar phenomena within
a short time interval, as shown in Figure 5.1.

Qw(X|Sw)

Worker w

Worker p

Worker q

CenterTasks tw, tp, tq

2

1

3

4

Sw

Sp

Sq

1. Evaluate Task
2. Update Belief
3. Report Answer
4. Reward Worker

Figure 5.1: Scenario for multi-task mechanisms.

5.1 CORRELATEDAGREEMENT
For example, we can observe the frequency of different submitted reports, and use this informa-
tion to make the expected reward of any random reporting strategy equal to zero. Dasgupta and
Ghosh [41] introduced such a mechanism for binary-valued queries. It applies peer consistency
with a constant reward for each value, and subtracts the probability r.x/ that a randomly chosen
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report would also match the same answer a, which is just the probability that a random answer
is equal to x and can be approximated from the observed data. In this way, the expected reward
for reporting randomly according to any distribution (including only reporting a single value) is
exactly equal to zero.

One way to obtain r.x/ would be to just take the frequency of x in the data. However,
the mechanism in Dasgupta and Ghosh [41] choses a more elegant solution. It randomly selects
a report for an unrelated task w, and creates a random variable that is equal to 1 when w D a

and 0 otherwise. The expected value of this proxy variable is just equal to r.a/. The resulting
payment rule is thus:

pay.x; y/ D 1xDy„ƒ‚…
output agreement

� 1xDw„ƒ‚…
proxy for r

;

where w is a random peer answer to a different task.
This mechanism has several very useful properties. First, while it admits uninformative

equilibria, their expected reward is exactly equal to zero, and they are not interesting for agents.
Second, it is very simple to implement, and requires no parameters.

The mechanism incentivizes truthful reporting of an observation x as long as its posterior
probability increases over the prior: q.x/ � p.x/. Thus, it encourages truthful reporting as long
as x only correlates with itself, as all other values will have a negative expected reward. For
two values, this is always the case, and so no further condition is necessary.

However, if we want to generalize this mechanism in the obvious way to more than
two values, we need to ensure that there is no correlation among the values—any value that
is positively correlated with x will also give a positive expected reward.

Can we generalize a mechanism based on output agreement to more than two values
without imposing any stricter conditions?

Consider a value z that is negatively correlated with x. For an agent that observes x, it
would never be profitable to report z, since its posterior probability is lower than the prior and so
it’s expected reward is negative. However, reporting any value that is positively correlated with
x results in a positive expected payment.

The correlated agreement mechanism [42] generalizes this idea to scenarios with more than
two values, under the following assumptions.

• Agents answer multiple tasks and use the same strategy everywhere.

• Agents and center know and agree on sign of correlation among each answer pair for
different agents/same task.

• Nothing else is known about agent beliefs.

• Distinguishing correlated values is not important.
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Mechanism 5.1 The correlated agreement mechanism.

1. Center gives a set of similar tasks T D ft1; : : : ; tmg to agents A D fa1; : : : ; akg

such that every agent ai solves multiple tasks and every task is solved by multiple
agents; ai reports data xi .

2. Center computes the matrix of correlations � on the signal distributions Pr.s/

expected for the tasks such that �.x; y/ D Pr.x; y/ � Pr.x/ Pr.y/. Alternatively,
the correlations can be computed on the collection of answers received from the
agents. It derives the score matrix S.x; y/ where S.x; y/ D 1 if �.x; y/ > 0 and
S.x; y/ D 0 otherwise.

3. To compute the reward to ai for its answer xi to task tm, the center randomly
selects a peer agent aj that has also submitted an answer xj for tm, and let yi and
yj be two answers for other tasks submitted by ai and aj .

4. Center pays agent ai a reward proportional to:

�.xi ; xj ; yi ; yj / D S.xi ; xj / � S.yi ; yj /:

To thwart the incentive to report correlated values, the correlated agreement mechanism
gives a constant reward whenever report xi is positively correlated with a randomly chosen peer’s
answer xj . More specifically, we define the matrix � of value correlations:

�.x; y/ D Pr.x; y/ � Pr.x/ Pr.y/

and define the score for agent report x and peer report y as:

S.x; y/ D

�
1 if �.x; y/ > 0

0 otherwise:

To discourage random reporting, it compares the score S.xi ; xj / for same task t1 with the
score for randomly chosen different tasks using reports yi of agent i for t2 and yj of peer agent
j for t3 to obtain the payment:

�.xi ; xj ; yi ; yj / D S.xi ; xj / � S.yi ; yj /:

We can see that using this mechanism, truthful reporting of the signal is the best strategy
by considering that the expected payment for truthful reporting is the sum of all positive entries
in �:

EŒpay� D
X
i;j

�.xi ; xj /S.xi ; xj / D
X

i;j;�.xi ;xj />0

�.xi ; xj /:
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Non-truthful strategies would sum different elements, and some of them would not be posi-
tive, so it can only achieve a smaller sum. Thus, truthful strategies result in the highest-paying
equilibrium! We note that Kong and Schoenebeck [4] provide an alternative proof using an
information-theoretic framework.

Clearly, the incentives for truthfulness also serve to incentivize the effort required to find
out what the correct observation is. However, as the scheme gives the same payoff for reporting
the true value and any positively correlated value, it cannot distinguish among these values.
On one hand, this can be positive in situtations where there are strongly correlated values and
agent belief updates may not even satisfy the self-predicting condition (Definition 1.4)—the CA
mechanism would not provide incentives to report an incorrect value. On the other hand, when
correlations are weaker, the CA mechanism cannot be used to obtain information with arbitrary
precision.

Consider how this mechanism will work on the example of airline service we introduced
in Chapter 3. Assume the following joint probability distribution for an agent and a randomly
chosen peer:

peer experience
b g

agent b 0:06 0:05

experience g 0:05 0:84

so that probabilities of airline service are (Pr.good/ D 0:89; Pr.bad/ D 0:11). The corresponding
�-matrix is:

� =

b g
b 0:06 � 0:112„ ƒ‚ …

D0:0479

0:05 � 0:11 � 0:89„ ƒ‚ …
D�0:0479

g 0:05 � 0:89 � 0:11„ ƒ‚ …
D�0:0479

0:84 � 0:892„ ƒ‚ …
D0:0479

Consider two example strategies that an agent might adopt over multiple reports: always
report truthfully, or always report good service. They result in different expected scores for un-
related tasks that become the negative term in the payment function:

1. always truthful: probability of matching on unrelated tasks = 0:842 C 0:062 D 0:709; or

2. always report good service: probability of matching on unrelated tasks = 0:84.

Consider now an agent that observed bad service, and adopts Oqb.g/ D 0:45. Depending
on whether it reports “bad” or “good” (first or second strategy), it can expect a reward of:

1 W EŒpay.‘‘bad”/� D 0:55 � Pay.b; b/„ ƒ‚ …
D1

C0:45 � Pay.b; g/„ ƒ‚ …
D0

�0:709 D 0:55 � 0:709 D �0:159

2 W EŒpay.‘‘good”/� D 0:55 � Pay.g; b/„ ƒ‚ …
D0

C0:45 � Pay.g; g/„ ƒ‚ …
D1

�0:84 D 0:45 � 0:84 D �0:39:
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Clearly, the truthful strategy results in a lower loss. Let’s also consider what happens when the
agent observed good service, and adopts Oqb.g/ D 0:94. Its expected payments are:

1 W EŒpay.‘‘good”/� D 0:06 � Pay.g; b/„ ƒ‚ …
D0

C0:94 � Pay.g; g/„ ƒ‚ …
D1

�0:709 D 0:94 � 0:709 D 0:231

2 W EŒpay.‘‘good”/� D 0:06 � Pay.g; b/„ ƒ‚ …
D0

C0:94 � Pay.g; g/„ ƒ‚ …
D1

�0:84 D 0:94 � 0:84 D 0:1:

So that, overall, the expected payoffs for the two strategies are (given that we have 15%
bad and 85% good service:

1 W 0:11 � .�0:159/C 0:89 � 0:231 D 0:1881

2 W 0:11 � .�0:39/C 0:89 � 0:1 D 0:0461:

Thus, the correlated agreementmechanismworks well for this example, and provides quite
an efficient separation between truthful and non-truthful strategies.

For the CA mechanism we presented here, it is possible to show [42]:

Theorem 5.1 The CA mechanism is maximally strong truthful among all multi-task mechanisms
that only use knowledge of the correlation structure of signals.

Here, strong truthfulness refers to a property in which truthfulness (cooperativeness) is a
strict Bayes-Nash equilibrium whose payoff is greater than that of all other strategy profiles. The
mechanism can also attain ex-post subjective equilibrium if the correlation structure of signals
is agent specific, which can be achieved by learning it from elicited data.

An important limitation of the CA algorithm is that the correlations expressed by the �

matrix must be the same for all agents. In reality, each pair of agents could have different correla-
tions, depending on how similar they are in judging their observations. Modeling this situation
completely for n agents would require learning n.n � 1/=2 �-matrices, which in practice is in-
tractable. A solution for this is to cluster the agents into groups that share similar judgement,
either by the �-matrices or by the their confusion matrix according to the model of Dawid and
Skene [5] that we introduced in Section 1.3.

Agarwal et al. [43] show how clusters can be learned from reports submitted by informa-
tion agents without compromising the incentive properties of the CA scheme. The clustering
induces two kinds of errors, a model error �1 for approximating the individual relations by clus-
ters, and a sample error �2 for imperfectly learning the clusters from a finite number of samples.
The algorithm presented in Agarwal et al. [43] results in truthtelling as an �1 C �2 equilibrium,
meaning that truthtelling could be worse than �1 C �2 than truthful reporting but not more, so
that agents who are indifferent to such small advantages would report truthfully. In this way,
the mechanism can learn to tolerate heterogeneous agents with a reasonable amount of sample
data.
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5.2 PEERTRUTHSERUMFORCROWDSOURCING (PTSC)

The peer truth serum presented in Chapter 3 has the distribution R of values as a parameter.
When applied to a multi-task setting, we can learn the distribution R from a batch of submitted
data. Furthermore, as we cannot reveal the distribution to the agents before they report their
data, they cannot design collusive strategies around them. This is the idea underlying the peer
truth serum for crowdsourcing (PTSC) [44], illustrated by Figure 5.2.

Worker

Report y

Report x

Calculate R(x)

Peer Worker

Ref. Workers

Center

Tasks tref

Tasks tw

Payment
Rule

Pay 1/R(x) if x = y
and 0 if x ≠ y

Figure 5.2: Scenario for the peer truth serum for crowdsourcing.

More specifically, in PTSC the distribution R is obtained as the histogram of reports from
a set of many similar tasks, whereas the peer report is chosen from reports for the same task. The
scheme is very intuitive and easy to understand: an agent should believe that his best guess at
the prior distribution of peer reports is to let P ' R (at least in the limit of infinitely many
tasks), and that for its own task, q.x/=R.x/ is maximized for its own observation xi . The result
is Mechanism 5.2.

As an example to illustrate the PTSC mechanism, consider a set of tasks that have four
possible answers a, b, c, and d . Assume that for a batch of ten tasks the center receives the
answers shown in Table 5.1. This results in the overall distribution R of answers across all tasks:
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Mechanism 5.2 The peer truth serum for crowdsourcing (PTSC) mechanism.

1. Center gives a set of similar tasks T D ft1; : : : ; tmg to agents A D fa1; : : : ; akg

such that every task is solved by multiple agents; ai reports data xi .

2. For worker w, calculate the histogram of answers rw.x/ D num.x/P
y num.y/

, where re-
ports by worker w are excluded.

3. For each task tw carried out by worker w, select a peer worker j that has solved
the same task. Reward agent ai with a payment proportional to:

�.xi ; xj / D
1xi Dxj

rw.xi /
� 1:

When rw.x/ D 0, reward the agent with 0 (as there is no matching peer report).

Table 5.1: Answers received for the batch of tasks in the PTSC example

Task Answers g

t1 b , a , a , c a

t2 b , b , b , a b

t3 a , a , b , a a

t4 a , d , a , a a

t5 c , c , a , b c

t6 d , a , d , d d

t7 a , a , c , a a

t8 b , b , a , b b

t9 a , a , a , a a

t10 b , b , a , b b

Answer a b c d

Count 20 12 4 4
R 0.50 0.30 0.1 0.1

Within this batch, consider now an agent ai who solves t7 and has xi D a. Suppose that it
adopts the belief that its prior distribution is equal to R (p.x/ R.x/) and that it updates its
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posterior correctly to reflect the distribution in the batch: q.x/ f req.xja/. This results in the
following expected payoffs for different reporting strategies:

• honest, report a:
EŒpay.a/� D 0:75

0:5
� 1 D 1

2
,

• strategic, report c:
EŒpay.a/� D 0:1

0:1
� 1 D 0,

• random, report according to r :
EŒpay.Œ0:5; 0:3; 0:1; 0:1�/� D 0:5 � 0:75

0:5
C 0:3 � 0:1

0:3
C 0:1 � 0:1

0:1
C 0:1 � 0:05

0:1
� 1 D 0.

In fact, we can see that this is not an accident, but valid for all tasks. When we consider
the probability of different answers across all tasks with the same answer, shown in Table 5.2,
we see that for each task, reporting the correct answer has the highest probability of matching
the peer, and the highest payoff!

Table 5.2: Probability of observing different answers, differentiated by the true answers of each
task

Correct

Answer

Observed Answer

a b c d

a Count (a)

freq (·|a)

15

0.75

2

0.1

2

0.1

1

0.05

b Count (b)

freq (·|b)

3

0.25

9

0.75

0

0

0

0

c Count (c)

freq (·|c)

1

0.25

1

0.25

2

0.5

0

0

d Count (d)

freq (·|d)

1

0.25

0

0

0

0

3

0.75

Count

R

20

0.5

12

0.3

4

0.1

4

0.1

One issue with Mechanism 5.2 is that when some tasks have many more answers than
others, the histogram can end up biased toward those answers. Thus, it may be desirable to
collect the same number of samples from each task.

Given that the mechanism computes the exact distribution of peer answers, an equivalent
incentive can be obtained as the expected value of the payment rather than the random match.
Rather than paying:

�.xi ; xj / D
1xi Dxj

Rw.xi /
� 1
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with a randomly chosen peer report xj , we compute the frequency ftw.xi / and reward with

�.xi / D
ftw.xi /

Rw.xi /
P

x ftw.x/
� 1:

This eliminates the volatility caused by the random selection of a peer, and thus leads to more
stable payments with the same incentives.

It is possible to show [44]:

Theorem 5.2 Given a sufficient number of tasks, the peer truth serum for crowdsourcing (Mecha-
nism 5.2) has cooperative strategy as a strict ex-post subjective Bayes-Nash equilibrium, and the payoff
of this equilibrium is greater than that of all other equilibria.

Furthermore, the peer truth serum for crowdsourcing has several useful properties.

• When truthful information requires costly effort, the rewards can always be scaled so that
workers maximize their reward by investing maximal effort.

• Heuristic reporting, defined as giving answers according to a distribution that is indepen-
dent of an observation, always reduces the expected payoff in comparison with truthful
reporting.

• The larger the batch size, the more tasks are available to learn an accurate distribution R,
and the weaker the self-prediction condition can be, i.e., the self-predictor (Equation 3.2)
can be closer to 1.

However, the incentive-compatibility of PTSC hinges on the condition that agent’s belief
systems must satisfy the self-predicting condition, as defined in Definition 1.4. We now show a
mechanism that does not require this condition.

5.3 LOGARITHMICPEERTRUTHSERUM
The PTSC mechanism requires agents’ beliefs to satisfy the self-predicting condition. How-
ever, the PTSC mechanism can be modified so that the self-predicting condition is no longer
required, but instead truthfulness is achieved by rewarding the information content of reports
according to a logarithmic information score. However, the price to pay is that the mechanism
is guaranteed to be truthful only in the limit of infinitely many agents and reports.

More specifically, the logarithmic peer truth serum [45], shown in Mechanism 5.3, rewards
a report x according to the logarithmic loss function log p.x/. It measures the normalized fre-
quency of the report xi , L.i/ among the population of peers of the reporting agent, and rewards
agents according to log Li .x/. To normalize the reward for random reporting to 0, it also mea-
sures the frequency in the overall population Gi .x/ and subtracts log Gi .x/, so that the final
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Mechanism 5.3 The logarithmic peer truth serum for crowdsourcing (LPTS) mecha-
nism.

1. Center gives a set of similar tasks T D ft1; : : : ; tmg to agents A D fa1; : : : ; akg

such that every task is solved by multiple agents; ai reports data xi .

2. For worker ai and task Tm, calculate

• the local histogram of peer answers Li .x/ D num.x/P
y num.y/

, obtained on the
same task, and

• the global histogram of answers Gi .x/ D num.x/P
y num.y/

,

where in both cases reports by agent ai are excluded.

3. Reward agent ai for answer xi with a payment proportional to:

�.xi / D log Li .xi /

Gi .xi /
:

payment is:

�.xi / D log Li .xi /

Gi .xi /
:

Radanovic and Faltings [45] show that the expected payoff of the logarithmic peer truth serum
can be expressed as the difference of two Kullback-Leibler divergences:

• the divergence between the distribution of the phenomenon given the observed value and
the prior distribution without the report, minus

• the divergence between the distribution of the phenomenon given the reported and the
distribution given the observed values.

The reporting strategy that maximizes the score makes the second divergence equal to zero,
and this is only the case when the distributions are equal, which in turn requires reported and
observed value to be identical.

With truthful reporting, the expected payment is equal to the positive term and a measure
of the information gain by the measurement, so that it can be seen that the logarithmic PTS
incentivizes meaningful measurements. It can be shown [45]:



5.4. OTHERMECHANISMS 81
Theorem 5.3 Given a large enough number of peers, the logarithmic Peer Truth Serum (Mecha-
nism 5.3) has truthful reporting as a strict ex-post subjective Bayes-Nash equilibrium; this equilibrum
has a strictly higher payoff than all other equilibria except permutations of the truthful strategy.

5.4 OTHERMECHANISMS
There are a few other mechanisms that have been proposed recently for a similar framework.
Kong and Schoenebeck [4] also include a setting where agents provide multiple answers, and
show a generalization of the correlated agreement class of mechanisms.

Kamble et al. [46] propose two mechanisms, for homogenous and heterogeneous agent
beliefs. The mechanism for heterogenous beliefs is a variant of the PTSC mechanism with the
same properties and requires the self-predicting condition to hold.

For homogeneous agent beliefs, they propose a truth serum that is truthful no matter how
biased agent observations are, as long as they all share the same confusion matrix between obser-
vation and state of the phenomenon (see Section 1.3 and Figure 1.8 for an example). However,
the mechanism requires that each group of very similar tasks, is evaluated by a large number of
agents.

Mechanism 5.4 shows the mechanism. The clever idea is that the fi reflect the degree
that answers are self-correlated, and is obtained directly from the agents’ answers. This allows
the mechanism to learn the agents’ reporting biases and use them in the incentives to ensure
a truthful equilibrium. However, for this learning mechanism to be applicable, all agents must
share the same reporting bias.

5.5 APPLICATIONS
5.5.1 PEERGRADING: COURSEQUIZZES
Peer grading is a technique for efficiently grading student exercises, in particular in large classes or
online courses. Students grade the homeworks or exams of several classmates. Just as in crowd-
work, there is no reason for students to carry out the task diligently; in fact there are even slight
incentives to provide wrong results on purpose in order to influence the average score of the
class.

In order to apply the PTSC mechanism, one needs to formulate the grading task so that
it has a discrete and comparable answer space. The assignments to be graded were about pro-
gramming and involved two types of questions: to fill in missing lines of code, or to find errors
in a given piece of code. Each assignment could receive one of three grades: correct, and two
different kinds of mistakes, and these were clearly explained to the participants (see Figures 5.3
and 5.4).

The quality of the grading was evaluated by comparing it against that of an expert grader,
who was taken as the ground truth. Besides PTSC, the peer confirmation scheme of Huang and
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Mechanism 5.4 The truth serum from Kamble et al. [46].

1. Center gives a set of similar tasks T D ft1; : : : ; tmg to agents A D fa1; : : : ; akg

such that every task is solved by multiple agents; ai reports data yi;j for task tj .

2. For each each value xi 2 X :

• for each task tj , choose two reports yl;j and yk;j obtained for tj by two
different agents, and compute

f
j

i D 1yl;j Dxi
� 1yk;j Dxi

;

i.e., f
j

i D 1 if both yl;j and yk;j are equal to xi , and 0 otherwise.
• Compute

Nfi D

vuut 1

m

mX
j D1

f
j

i

• Choose a scaling factor K and fix a payment

r.xi / D

(
K
fi

fi 62 f0; 1g

0 fi 2 f0; 1g
:

3. To reward agent ai for answer yi;j on task tj , pick another answer yl;j provided
by a different agent for tj . If the answers match, i.e., yi;j D yl;j , reward ai with
r.yi;j /, otherwise ai gets no reward.

Fu [27] (constant reward if answer match) and a constant reward for every answer were used
as rewarding mechanisms. That is, 48 students were divided into 3 equal groups of 16, where
each group was rewarded by a separate mechanism; two students did not carry out the task. Each
student graded four other quiz questions. Tables 5.3 and 5.4 show the error rates obtained by the
different mechanisms, and the p-values obtained in a t-test comparing the answer distributions.
We see that the PTSC mechanism has a significantly stronger effect than output agreement,
almost halving the error rate.

5.5.2 COMMUNITY SENSING
Incentives per sensor Another evaluation was performed on the community sensing testbed
for the city of Strassbourg that we already used earlier to evaluate the simple PTS mechanism,
only now we discretize measurements to a scale of four values. In this application, using PTSC
not only solves the problem that the mechanism does not know the correct R, but also eliminates
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Figure 5.3: Peer grading experiment: assignment of the first type.

Figure 5.4: Peer grading experiment: assignment of the second type.
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Table 5.3: Average error rates for three different mechanisms

Mechanism Num. Students Error Rate (%)

PTSC 16 6.88

OA 16 10.48

Constant 14 11.98

Table 5.4: p-values obtained by a t-test for the answer distributions obtained by the three dif-
ferent mechanisms

Mechanism PTSC
Peer 

Consistency
Constant

PTSC – 0.0255 0.0497

OA 0.0255 – 0.5566

Constant 0.0497 0.5566 –

the possibility for agents to obtain gain by colluding to always report the value with the highest
payoff.

As in the earlier experiments, the scenario has 113 sensors laid out over the city of Strass-
bourg (see Figure 3.8 for the layout). The continuous value space was discretized into four dif-
ferent values, and we simulated the following agent strategies.

1. Honest: measure accurately and honestly report the observation.

2. Inaccurate reporting: collude on a reduced value space, mapping low and medium to low,
and high and very-high to high. This models agents who spend less effort and thus obtain
an inaccurate measurement.

3. Collude on one value: all agents collude to report the same value.

4. Random: all sensors report randomly.

Figure 5.5 shows the average reward obtained by sensors in each of the four strategies. We
can see confirmation that random or collusive reporting, not using any information about the
measurement, indeed results in an average reward of zero. We can also see that accuracy pays
off, as the strategy the reports with lower resolution also has a significantly lower reward.

However, sensor payoffs differ widely depending on how strongly the pollution levels vary
at the sensor’s location. Figure 5.6 shows the average rewards obtained by each sensor side by
side. The figure shows two strategies: the honest strategy in blue, and the random strategy in red.
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We can see that for each and every sensor, the average payoff of the honest reporting strategy
is significantly higher than that of the random strategy, so that the scheme works not only in
expectation, but in every individual case.

Note also that there are big differences in expected payoff depending on sensor location:
some sensors obtain much higher rewards than others. This is due to the fact that the PTS mech-
anism gives higher rewards for measuring at uncertain locations. It is very useful to incentivize
self-selection so that agents position their sensors where they provide the most new information
to the center.

For comparison, Figure 5.7 shows the distribution of rewards for both strategies for sen-
sors that randomly change locations among the 116 positions; they could be considered mobile
sensors that move around the city. We can see that rewards are more evenly distributed, while
maintaining a very consistent and high advantage for truthful sensors.

As mentioned in the earlier sections, one can relax the requirement for the self-predicting
condition to hold, by using Log-PTS. However, this relaxation comes at a certain cost—the
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Figure 5.5: Average payoffs observed in the Strassbourg simulation for different agent strategies.
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Figure 5.6: Average reward for each of the 116 sensors when they are static.
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Figure 5.7: Average reward for each of the 116 sensors when they are mobile.

new requirement is that the number of peers is large, which in the community sensing sce-
nario implies that each sensor has a larger number of neighbors—this is in contrast to PTSC,
which requires only one peer. In particular, one can show that Log-PTS indeed exhibits similar
incentive properties as PTSC in community sensing, given a large population of peers [45].

It is interesting to compare the performance of the two mechanisms when the population
of sensors decreases, both in the term the total population size and the number of available
peers.1 Figure 5.8 shows the scores produced by PTSC and Log-PTS for different numbers of
sensors and peers and for three different strategies: truthful reporting, colluding on one value
and inaccurate reporting.

As the number of sensors and peers decreases, Log-PTS becomes less robust to unin-
formed and inaccurate reporting, that is, the difference between the average scores for truthful
reporting and the misreporting strategies decreases. Once the total number of sensors is around
40 and the number of peers is around 7, Log-PTS no longer manifests its theoretical proper-
ties. Instead, the highest paying strategy is collusion. In contrast, PTSC preserves its properties
under much greater stability. Therefore, while Log-PTS is applicable to community sensing
scenarios that have a dense network of crowd sensors, PTSC is much more robust to deviations
from this condition, and applies even when the network of crowd-sensors is relatively sparse.

1Both of the mechanisms use all the available peers to calculate the score. In the case of Log-PTS, the reports of peers are
used to calculate quantity Li . In the case of PTSC, we simply average scores across all the peers.
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C H A P T E R 6

PredictionMarkets:
Combining Elicitation and

Aggregation
When multiple agents provide predictions or estimates of a value, we would like to weigh this
information according to the confidence that they attach to it. However, this confidence must
also be elicited in some way—agents may want to have a strong influence and thus overclaim
their influence. The idea of a prediction market is to make agents take risks in proportion to their
confidence, so that having a larger influence on the aggregate information requires taking a larger
risk.

A prediction market is modeled on a financial market, where agents express their pre-
dictions by buying securities that will pay off once the ground truth g becomes known. When
eliciting predictions for a phenomenon X with values x1; : : : ; XN , there will be one security for
each outcome xi that pays off $1 if the ground truth turns out to be equal to xi , and nothing
otherwise.

At every point in time, each security has a market price �.xi /. When agents buy security
xi , the price will rise, and thus the consensus probability will increase. Whenever the agent
believes that �.xi / < q.xi /, it is rational for the agent to buy the security, since the price is
lower than the expected payoff q.xi /. Likewise, when the price is higher than q.xi /, a rational
agent would sell the security. Therefore, the market price is in competitive equilibrium when
�.xi / is a consensus probability estimate for Pr.g D xi /.

The principle here is that a bigger investment buys a bigger influence, but also increased
risk if the result is not as expected. When agents have a limited budget, or are risk-averse, they
will invest their resources where they are the most confident. Thus, a prediction market tends to
give higher weight to more confident agents (Figure 6.1).

An example of a prediction market that has been in operation for many years are the Iowa
Electronic Markets [47]. Figure 6.2 shows an example of the price evolution of the market for
the two candidates in the 2008 U.S. presidential election. In all recent elections, this market was
more accurate than opinion polls.

It is easy to see that there are many other scenarios where such a market could be applied:
predicting when a project will be completed, whether a new product will be a success, or whether
there will be more demand for oil are examples. However, a major problem is that trading secu-
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Figure 6.1: Prediction markets, seen from an agent’s perspective.
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Figure 6.2: Price evoluation for the democratic (blue) and republican (red) candidate in the 2008
U.S. presidential election.
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rities requires many active participants. For a presidential election, there is always much interest
and so anyone willing to buy or sell a security will find someone to trade with in a short time.
However, for more specific questions there may not be many other traders, and thus the market
may be tedious.

For this reason, most predictionmarkets use artificial counterparties called automatedmar-
ket makers. These are agents that are committed to trade at any time and with any counterparty
at some price. In practice, they simply generate or eliminate the securities that they trade. The
main question is what should be the price for selling and buying them?

A clever answer to this question has been found through the use of scoring rules as we
saw them in the previous chapter [52, 53]. The idea is to score the quality of the distribution
expressed by the current market prices by a proper scoring rule, applied against the true outcome
when it will become known. The reward for an agent who moves the price by buying or selling
securities should then be equal to the amount by which she changes this score: if it is improved,
the agent should expect a positive payoff, otherwise a negative one. In this way, the score of
the distribution is distributed in a fair way among the agents that participated in defining that
distribution.

Such a principle can be implemented by choosing the price function based on the scoring
rule. Consider first a simple market with one type of securities that pay 1 if xi occurs, and
0 otherwise. Agents can trade any quantity of this type of security. Let �.n/ be the price for
buying/selling an infinitesimally amount, given that n securities are held by other agents in the
market.

We design a market maker based on the logarithmic scoring rule, which has become very
common for prediction markets. Assume that an agent believes that true probability of outcome
xi is ��.xi / > �.xi /. Therefore, it buys m securities and makes the price increase to some �.nC

m/ D � 0 > �.n/. What should this price be?
Considering the score-sharing principle outlined above, its profit should be determined

by the scoring rule Sr.P r; g/ to be Sr.� 0; 1/ � Sr.�; 1/ if the outcome is indeed xi :

m �

Z nCm

n

�.�/d� D Sr.�.nCm/; 1/ � Sr.�.n/; 1/:

Taking the derivative with respect to m, we obtain:

.1 � �.n// D
dSr.�.n//

dn
D

dSr
d�

d�

dn
:

Using the logarithmic scoring rule, Sr.�/ D b ln � , we obtain the price function

�.n/ D
en=b

en=b C 1
;

where b is a liquidity parameter that determines howmuch each sharemoves the price. If there are
many participants, or they are willing to invest substantial amount of money, then the liquidity
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parameter should be high. On the other hand, if it is too high, then agents cannot move the
prices enough to obtain a reasonable estimate.

Besides the difficulty of setting the right liquidity parameter, an issue with automated
market makers based on the logarithmic scoring rule is that the price of a security can never
reach 1 and reflect a certain outcome: as the price approaches 1, making gains requires buying
huge numbers of securities, and thus taking huge risks! Therefore, such markets are most suitable
for problems with quite uncertain outcomes.

If we consider that agents arrive one by one and each buy or sell shares until the price
matches their own opinion, the market will fluctuate and never actually aggregate information
from multiple participants. However, if traders consider that they have only observed a lim-
ited sample of the phenomenon, they should take the current market price into account when
forming their own opinion.

If they use a Bayesian update as in Equation (1.1), they will form a weighted average of
their own opinion and that of the market. Studies such as that of Abernethy et al. [54] show
that when agents believe the observed samples to be distributed according to an exponential
distribution, and perform frequentist belief updates, themarket will indeed have equilibria where
agents agree on a common average while each having a slightly different opinion based on their
own sample. Under these conditions, the prediction market thus obtains the same outcome as a
center that aggregates honest reports of observations, such as in peer consistency.

Automated market makers can be constructed with any proper scoring rule using the same
principle as shown above. The reason why the logarithmic scoring rule is often used is that it is
the unique proper scoring rule that admits consistent prices for combinatorial predictions. For
example, we could imagine a market that would not only have securities for the presidential elec-
tion, but also for the congressional elections, and for combinations of both election outcomes.
For example, there would be a security for the event “the democratic candidate wins the pres-
idential election but the majority in congress goes to the republican party.” If an agent buys a
security for just the presidential election, this should also influence the price of the combined
securities. The logarithmic scoring rule correctly models this; for more details see Hanson [52].

Prediction platforms We already mentioned the Swissnoise platform in Chapter 3. It was
operated with artificial money as a prediction market with a logarithmic scoring rule market
maker. The artificial money accumulated by each participant was shown in a leaderboard, and
each week the participant with the biggest profit was awarded a small gift certificate.

Questions were limited by the fact that prediction markets require a verifiable outcome,
and so hypothetical questions (“What would happen if…”) could not be asked.

Figure 6.3 shows a screenshot of the interface, with the example question of what team
would win the 2014 FIFA soccer world cup. Only four teams were remaining at the time of this
screen shot, and the graph shows the price evolution in recent days.

To place a bet, a participant would choose one of the available securities. Figure 6.4 shows
this for the example question, where the participant already has shares in the outcome “Ger-
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Figure 6.3: Example question on the Swissnoise prediction market.

many” (who was the eventual winner of the tournament). Once a security is chosen, the par-
ticipant interacts with the market maker who determines the price. This is the part that is the
most abstract, and thus the hardest to understand. To support it, Swissnoise showed an interac-
tive slider where one could see the price evoluation associated with buying a certain number of
securities (see Figure 6.5). By moving the slider, it is possible to see the cost of buying a certain
number of shares of the security, according to the scoring rule used by the market maker.

The design of the Swissnoise platform was deemed quite attractive by users, and resulted
in a steady participation. However, we noted two major difficulties with such prediction markets.
The first is that it is very difficult to fix the right value of the liquidity parameter. If it is set too
small, there are huge price swings and themarket does not estimate anymeaningful probabilities,
and this happens easily for questions gain in popularity and attract more participants that trade.
Garcin and Faltings [55] analyze the optimal liquidity parameter for three different questions
that ran on the platform, and shows that they were vastly different: 25, 480, and 1,250 for the
three different questions. As the parameter has to be kept constant while running the market, it
is very difficult to ensure that it is set to a good value.
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Figure 6.4: Placing a bet on the Swissnoise platform.

The second issue is that once the market reaches a very high probability for a particular
outcome, there is little interest for participants to continue to hold the corresponding security:
selling it at the current price results in almost the same profit as what could be gained by holding
on until the end. On the other hand, the profit that is gained from selling securities early can
be invested on other questions where answers are not as clear yet, and result in much higher
profit. To the market, however, such selling cannot be distinguished from the participant having
changed her mind about the outcome, and this further contributes to price instability.

As a result, Garcin and Faltings [55] observed that prediction markets tended to develop
wild price swings, making the theoretical idea of predicting the probability of different outcomes
almost meaningless. An example is shown in Figure 6.6, which shows the evolution for the
prediction of the referendum on Scottish independence in 2014.

Abernethy and Frongillo [50] show how to use the mechanism of a prediction market
for incentive-compatible collaborative learning, where agents make predictions on different hy-
potheses for the learning outcome and are scored according to how well they predict perfor-
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Figure 6.5: Interaction with the market maker.

Figure 6.6: Price evolution for the question of whether the referendum on Scottish independence
will succeed, using a market maker with a logarithmic scoring rule.

mance on test data. This mechanism incentivizes agents to honestly collaborate to form the best
consensus learning outcome.

Frongillo et al. [51] show how to infer the confidence that an agent has about a predic-
tion from his answer itself. This confidence can then be used to aggregate the answers into a
compromise aggregate that reflects the confidence of each agent.

As a concluding remark, notice that this section provided only a brief overview on pre-
diction markets. In general, there is the vast literature on prediction markets, covering different
aspects of information elicitation using the prediction market framework. This section, never-
theless, provides a basic insight in this framework from, relating it to the problem of aggregating
elicited data.





97

C H A P T E R 7

AgentsMotivated by Influence
An important problem in using contributed data is that some agents may be insensitive to mon-
etary incentives and not adopt the cooperative strategies we expect. This mainly happens in
two cases. The first is faulty agents, who provide incorrect data in spite of their best efforts to
be cooperative. Another case is malicious agents, who want to insert fake data to influence the
aggregate for ulterior motives, for example to hide pollution or to influence a decision that is
taken based on the data. Following the practice widely adopted in fault-tolerant computing, we
consider faulty agents as malicious as well in order to obtain worst-case guarantees.

For malicious agents, the game is different: in addition to the cost for obtaining the data,
agents also care about their influence on the learning outcome obtained by the center. As this
influence is usually much more important than the cost, and to simplify the techniques, we
assume that they only care about the influence on the outcome.

To analyze this influence, the aggregator—more generally, the learning algorithm—used
by the center is crucial. By default, we will consider Bayesian aggregation, which in the case of
a simple data point corresponds to forming an average.

Like in the case of monetary incentives, we distinguish cases where the ground truth
becomes known, and cases where the ground truth is never known.

We first consider the case where the ground truth can be verified or becomes known at
a later time. This comparison with the ground truth can be used to maintain a reputation that
determines the influence that data reported by the agent has on the aggregate result. In this way,
it is possible to bound the influence that an agent can have on the learning outcome, through a
process called the influence limiter.

The case where the ground truth is never known is of course more challenging. In general,
this means that data agregation becomes a kind of negotiation where different data providers
attempt to influence the learning outcome to their most preferred result, and the actual truth
actually does not even matter. This case can be analyzed using techniques for the problem of
social choice, but since it no longer relates to data we do not consider it further here.

For some cases, there are incentive-compatible mechanisms where an agent gets the best
possible influence by reporting the data that would fit his own preferred model. This has inter-
esting applications when agents may each have a different view on the data, and would be best
served if the center adopted a model that is as close as possible to their own. For example, if
agents report on the quality of the food served in a restaurant, they could consider that items
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they do not like will disappear from the menu while those they do like may appear more often.
We will consider this case in a further section.

7.1 INFLUENCELIMITER: USEOFGROUNDTRUTH
While we cannot eliminate the occurence of such agents, we will now show a way that we can
limit their negative influence on the learned model through a reputation system. It is based on an
idea originally developed to combat fraud in recommender systems [56], and we keep the name
Influence Limiter that was introduced there.

Figure 7.1 shows the scenario assumed in the influence limiter. Agents report data sequen-
tially over time, in the order of Agent 1, then 2, then 3. The center uses this data to produce
new aggregate models 1, then 2, then 3, that are based on all data received up to that time. The
models could be averages, or complex models obtained through machine learning algorithms.
They can be used to estimate the value of all variables associated with the phenomenon, possibly
by interpolation.

Agent 1 Agent 2 Agent 3

Update

Report

Evaluate
Reports

2Ref. Agent
Center

Estimate 1 Estimate 2 Estimate 3

2

21 3

1 3

4

Figure 7.1: Data aggregation setting assumed for the Influence Limiter.

Occasionally, the center obtains the ground truth gt .X/ for some observation X of the
phenomenon, for example because a prediction can be verified, or it obtains a trusted measure-
ment. This allows to evaluate the quality of its aggregate models by comparing the estimate it
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provides for this variable. It uses this opportunity to evaluate how much the data received from
agent i actually improved the quality of the aggregate model, and thus to evaluate the quality of
the data itself.

More precisely, suppose that the model before incorporating the data received from agent
i predicted a distribution p.X/ for the observation X , and this changes to q.X/ after incorpo-
rating its data. The center evaluates the improvement in the model using the proper scoring rule
Sr on the reference measurement gt of X :

scoret D Sr.q; gt / � Sr.p; gt / 2 Œ�1;C1�:

Thus, we obtain a similar mechanism as in predictionmarkets, where each agent obtains a reward
proportional to its contribution to the quality of the learned model through the data it provided,
and we could in fact use this as an incentive scheme as well.

However, in the influence limiter, we are interested in using this information to limit the
influence that an agent can have on the learning outcome. We do this by assigning each agent a
reputation, and making its influence on the model depend on this reputation.

We define the influence of an agent as follows.

Definition 7.1 Consider an agent i at time t and let us denote the aggregation output prior
to the agent’s report by o�i;t and the aggregation output posterior to the agent’s report by oi;t .
The influence of agent i is defined as influencei;t D Sr.oi;t ; gt / � Sr.o�i;t ; gt /. The total influence
of an agent is the sum of its influences over different time periods.

Notice that this definition also allows an aggregation mechanism to discard an agent’s
report, in which case the influence of the agent is equal to 0. The aggregation mechanism may
decide whether or not to include an agent’s report stochastically, in which case the influence is
the expected value of the quality change.

Our primary goal is to design an aggregation mechanism that limits the negative influence
of an agent, which by Definition 7.1 means that the total influence of an agent should be lower
bounded. This goal is fairly easy to achieve if we simply discard all of the reports, however,
in doing so, we also loose the information coming from agents that positively influence the
learning procedure. Therefore, we also ensure that the information discarded from agents who
have a positive influence is bounded from above. To quantify the performance of an aggregation
procedure in this context, we introduce the measure of information loss.

Definition 7.2 Consider an agent i who is expected to have a positive influence. The infor-
mation loss of an aggregation mechanism for potentially discarding agent i ’s reports is defined
as EŒscorei;t � influencei;t �. The total information loss associated with agent i is the sum of the
information losses over different time periods.
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Reputation systems Reputation is a well-known factor for preventing misbehavior in human
society. The fact that uncooperative behavior leads to bad reputation and thus will be punished
in the future counteracts the natural temptation for fraud and malicious behavior that is om-
nipresent in many interactions. This reputation effect is also widely exploited in distributed com-
putation to reward cooperative agents.

A general way of using reputation in data aggregation is thresholding: submitting data re-
quires a reputation that exceeds a minimal threshold, and otherwise will just be ignored. The
most common technique used today, the ˇ reputation system [57], computes an agent’s reputa-
tion at time t as the fraction of the “good” interactions ˛t up to time t vs. the “bad” interactions
ˇt :

rept D
˛t

˛t C ˇt

;

where ˛t D ˛0 C
P

s2fscores� >0g jsj and ˇt D ˇ0 C
P

s2fscores� <0g jsj.
However, a malicious agent can easily manipulate this scheme and exert arbitrarily strong influ-
ence on the aggregate model [58], by iterating the following steps:

• provide good data that does not change the model, and thus build up a good reputation
and

• use this reputation to insert bad data that does change the model.

Thus, while such schemes are effective against faulty agents, they do not solve the problem of
malicious agents.

Stochastic influence limiter The attack scheme we just described shows that reputation
should not be based on the quality of the data provided, but on the influence that it has on
the learned model. This is precisely what the scoring scheme we outlined earlier provides.

In the influence limiter, we compute an agent’s reputation through an incremental repu-
tation update based on the score it obtains for the data it contributed:

reptC1 D rept �

�
1C

1

2
� scoret

�
:

Using this update function, the score has a stronger effect than in the ˇ-system that is commonly
used: reputation increases or decreases exponentially fast. Agents start out with a common initial
reputation rep0 which is updated every time they submit data. Note that the update could happen
somewhat later if no observation that allows evaluation of the model quality is available at that
moment.

We also replace the thresholding scheme by a stochastic information fusion: rather than
accepting all data when reputation is above a threshold, we accept data from an agent with
reputation rept stochastically with probability rept

rept C1
.
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Mechanism 7.1 The stochastic influence limiter mechanism.

Initialization: all agents ai have an initial reputation rep0.i/ D �. The center has an
initial model M0 of the phenomenon.

At each time period t , the center receives reports from agents in sequential way and
updates the model as follows:

1. Center initialize model Mt DMt�1.

2. Center receives report xi from agent ai . It constructs a tentative updated model
M i

t by incorporating xi .

3. Center sets M �i
t DMt , and updates Mt DM i

t with probability rept .i/

1Crept .i/
.

4. After a reliable data xg point is received, center evaluates model M i
t and ob-

tains a score S.M i
t ; xg/; it computes the score of agent ai ’s report as scorei D

S.M i
t ; xg/ � S.M �i

t ; xg/.

5. Center updates the reputation rep.i/ as reptC1.i/ D rept .i/.1C
1
2

scorei /.

For the resulting Mechanism 7.1, we can show two important properties [59].

Theorem 7.3 Using the stochastic influence limiter mechanism, the total expected influence that any
agent can have on the aggregate model is lower bounded by �2 � rep0 (the total influence of an agent
is not overly negative). Furthermore, the resulting information loss is upper bounded by a constant
(see [59] for the exact expression).

Thus, the influence of any malicious agent is limited. However, this limitation comes at a
price, since each data item is discarded with a certain probability. Therefore, the second property
is also important.

Reducing the need for reference answers The stochastic influence limiter requires that we
can assess the myopic influence of every data element on the quality of the model. This requires
access to correct reference answers to score the quality of the model. Are there clever techniques
for reducing the amount of reference answers that are used?

In the presented model, any data point that is stochastically relevant to the reported data
can be used as a reference answer, and thus we can reduce the number of different data points as
long as we maintain sufficient coverage of the data that is provided. However, with few reference
answers the stochastic relevance will become weaker and so the evaluations will become more
volatile.
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Another possibility is to apply the reputation scheme only to the subset of the data for

which a relevant reference answer is available, similar to gold tasks in crowdsourcing. Since
agents do not know which data is being scored, they cannot devise a strategy to counter the
scheme, and so we can expect similar guarantees to hold provided we can keep the choice of
evaluations secret.

For crowdsourcing platforms, Shah and Zhou [60] propose a scheme where every cor-
rectly answered gold task doubles the bonus, while even just one wrong answer makes it drop to
zero. This has the added effect to motivate workers to skip a task when they are not sufficiently
confident about the answer. The scheme is very similar to the influence limiter, except that the
evaluation is not based on the influence on the model and it is applied to a finite batch of tasks.
It is shown to be unique in giving the lowest possible payoff to agents that provide only wrong
data. However, it does not give any guarantees on the influence on the model.

In Shah and Zhou [61], the same authors extend this scheme in the following way: work-
ers are confronted with the answer of a peer worker on the same task, and allowed to change their
answer accordingly. They show in a simulation that this points workers to inadvertent mistakes
and thus increases the quality of the result.

Steinhardt et al. [62] derive a scheme that minimizes the number of reference answers
required to isolate the best quality answers in a crowdsourcing setting. This is an alternative
approach to the influence limiter. It provides relative guarantees of identifying the best answers
to some percentile, but no absolute guarantees on the accuracy of either the answers or the
resulting model.

Application in community sensing To evaluate the practical performance of the influence
limiter, Radanovic and Faltings [59] performed a simulation study on the scenario of community
sensing, shown in Figure 7.2.

They compared two reputation systems:

• CSIL—stochastic influence limiter and

• BETA—beta reputation system.

The performance of the community sensing influence limiter was evaluated on the pollution
model of the city of Strassbourg that we already explained in the Section 3 (Figure 3.8).The focus
was put on how to counter malicious agents using the community sensing stochastic influence
limiter (CSIL), in a (simulated) scenario with 40 mobile crowd-sensors, out of which 75% of
them malicious with the following strategies.

1. Vary—initially report truthfully, and then start reporting only low level of pollution.

2. Deceive—report truthfully when the reputation is below a certain threshold, and otherwise
report low level of pollution.

3. Vary and deceive—initially report truthfully, and then start reporting according to deceive.
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Pollution Model M

Pollution
Map P1

Pollution
Map P2

Pollution
Map Pn

Sensor 1 Sensor 2 Sensor n

Trusted Sensor

Report 1 Report 2 Report  n

Update Update Update

Evaluate Contributions

Figure 7.2: Community sensing scenario.

4. Cover—a more sophisticated version of the vary and deceive strategy where malicious sen-
sors only misreport when they measure high enough level of pollution.

For the influence limiter, we used the quadratic scoring rule and compared against the
ˇ-reputation system that is commonly used. Figure 7.3 shows the empirical performance of
the reputation system against these strategies. We see that the ˇ-system is effective to prevent
the vary attack strategy, but not against any of the others. In fact, its empirical performance
is often worse than the theoretical worst-case bound obtained for the influence limiter. On the
other hand, the empirical performance of the influence limiter is often well below the theoretical
bound.

7.2 STRATEGYPROOFMECHANISMSWHENTHE
GROUNDTRUTH ISNOTACCESSIBLE

In this section, we consider the case where the ground truth is not accessible at all. When all
agents are interested in the learning outcome obtained by the center, there is no reason why
the truth should even matter; agents’ reports are opinions rather than data. However, we may
consider truthfulness in the sense that agents truthfully report their most preferred data. For
example, if the center is asking agents how useful the different outcomes of a decision would be
to them, the center may want their answers to truthfully represent these preferences.

Deckel et al. [64], Meir et al. [65], and Meir et al. [66] consider this question for the
case of regression and classification, respectively, and show that for certain cases, incentive-
compatible mechanisms are possible. Notice that these two approaches differ from the approach
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Figure 7.3: Empirical performance of the community sensing influence limiter compared to the
theoretical worst-case bound and the empirical performance of the ˇ-reputation system.

we described in the objective: the focus is put on optimizing the agents’ preferences, which differs
from the goal of eliciting correct data.

For regression, Deckel et al. [64] analyze a scenario where each agent has the desire to
minimize an individual loss function of the model prediction and its own preferred value. The
center is assumed to minimize the average loss of all agents that report data.

For the case where each agent is only interested in a single data point, it turns out that
the setting is incentive-compatible only for the absolute loss function, i.e., where each agent
would like to minimize the absolute difference between its most preferred value and the model
prediction. Note that the model that minimizes the average linear loss is to let the prediction be
the median of the values reported by the agents.

Another variant of this model is to assume that agents are interested in minimizing the
expected loss over a range of points, assuming a uniform distribution. Consider that the loss
function is again linear, and that the model to be learned is a constant function that returns
the same value for every point. Note that with this restriction, there often is no model that
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fits an agents’ preferences exactly. It turns out that agents have an interest to project their most
preferred values onto the allowed model, i.e., report the same value for all data points, and report
those values. To eliminate this incentive, the center can apply this projection for them, and then
calculate the best combined model for all of them. It turns out that this mechanism is incentive-
compatible, and efficient with an approximation ratio of 3, i.e., the solution is never worse than
a factor of 3 from the true optimum.

For classification, Meir et al. [65, 66] analyze a scenario where each agent labels a set
of points with positive and negative labels, and this information is used to learn a classifier
that assigns the same class to all of the points—a similar restriction to the constant function
assumed just above. Note that in this case, each agent prefers the positive class if it labels more
points as positive than negative, and the negative class otherwise. The mechanism they propose
labels the agents accordingly as positive and negative agents, and obtains the common label by
majority vote where positive agents vote for a positive classification for each of their examples,
and likewise for the negative agents.

Meir et al. [65, 66] show that this mechanism is incentive-compatible, i.e., agents will
report their labels truthfully, and that the resulting classifier is a 3-approximation to the best
classifier.The same paper also shows that a randomized algorithm can achieve a 2-approximation
for the same setting.

Finally, we briefly mention the literature that goes in the direction of analyzing infor-
mation aggregation without direct verification. In general, it is inconceivable to have a robust
mechanism that allows arbitrary manipulation strategies of malicious users and outputs accurate
aggregates. In fact, in the most general case, one can only hope for outputting a list of aggregates
containing an accurate aggregate. This paradigm is discussed in more details by Charikar et al.
[68], who provide a clustering based method whose goal is to detect a group of reports that come
from reliable sources. Charikar et al. [68] prove the soundness of this approach and further re-
late it to a setting in which a mechanism designer can use a few reliable reports to differentiate
which of the possible aggregates is correct. One can show that only a bounded number of reliable
ratings are needed in the latter setting to have a provably resistant aggregation method [67]. An
alternative to requiring reliable reports is to restrict the percentage of malicious agents and their
strategy space. For example, Dekel and Shamir [63] present an algorithm based on the sup-
port vector machine framework that can cope with maliciousness when the majority of agents
provides accurate ratings, where accurate reports are described as samples from a common dis-
tribution. Contrary to the influence limiter algorithms, the above approaches do not consider
the role of incentives in information gathering.
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C H A P T E R 8

DecentralizedMachine
Learning

The principles of data elicitation we have seen in the previous chapters need to be integrated in
a complete system for gathering data to learn a model. This involves consideration of how the
information agents are found and how they interact with the center, and how the center aggre-
gates the data it receives into a model. In this chapter, we discuss issues that present themselves
when designing the complete system so that the assumptions of the incentive mechanisms are
satisfied.

We consider in particular the following issues.

• Selection and self-selection of data providers. The incentive techniques we have seen also
drive a self-selection of data providers, since only those that have valid data can expect a net
reward. However, the center will also want to select what data it wants to obtain, to avoid
paying for redundant or uninteresting data. A related issue is ensuring that the community
of reporting agents satisfies the assumptions of the game-theoreticmechanism.Depending
on the domain, there may also be privacy issues for the data providers.

• The incentives derived from the game-theoretic analysis have to be translated into prac-
tical payment schemes. They have to be understandable and predictable to influence their
behavior, and they have to be scaled so that they compensate their cost. Often, it is also
not feasible to collect negative payments.

• Use of the data in machine learning or modeling techniques. Often, the model can be used
to provide more robust incentives, and the incentives can be aligned with the loss function
of the machine learning algorithm.

8.1 MANAGINGTHE INFORMATIONAGENTS
An easy way to ensure the quality of data is to carefully select data providers, ideally to collect all
the data oneself. The techniques we presented in this book enable a different kind of technique,
that of self-selectionwhere data providers volunteer to participate in the mechanism. For this self-
selection to work, it is important that the mechanism should offer no rewards to agents whose
data provides no information, and maximum rewards to those who provide the most valuable
information.
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What we want to eliminate are data that can be derived without observing the phe-

nomenon. This includes random reporting according to a prior distribution, always reporting
the same value, or any scheme where agents coordinate the data they provide based on a signal
that is different from the phenomenon we want to observe. Many of the schemes described in
this book are able to reduce the expected revenue of uninformative strategies to zero, and agents
that intend to follow such strategies have no interest in participating in the platform. However,
this always assumes uncoordinated strategies where each agent chooses its action for a particular
task in isolation.

Group dynamics Most mechanisms assume that the agents play a single and non-repeated
game. When used in a repeated setting, agents may learn to play a coarse correlated equilibrium
that can be very different from the focal equilibria of the incentivemechanism. For example, Gao
et al. [73] report on experiments where peer prediction mechanisms are applied in a repeated
game setting, and agents learn to report according to an uninformative equilibrium.

In a repeated game setting, it may be more suitable to analyze behavior of incentive mech-
anisms in terms of replicator dynamics, where agents learn to choose their strategy according to
the payoff observed during earlier instances of the game. Such an analysis is reported in Shnay-
der et al. [74] and shows that while output agreement and peer prediction are indeed vulnerable
to uninformative equilibria, the collaborative agreement and peer truth serum schemes converge
to the desired truthful equilibrium for a wide range of initial conditions.

Care must be taken to avoid collusive strategies where agents are able to systematically
coordinate with their peer agents. For example, if all reporting agents determined their answers
by applying a hash function to a task description, to the center it would be indistinguishable
from honest reports in spite of providing no information.

One approach to counter coordinated low-quality strategies is to use trusted agents that
provide the correct answers for some randomly selected subset of tasks. In a hybrid mechanism,
agents’ reports will be either compared to other agents, or to such trusted reports [69]. If the
probability of having a trusted agents as a peer is sufficiently high, other low-quality equilibria
can be broken. However, it has recently been shown that if the coordinated low-quality strategy
provides higher payoffs than the cooperative strategy (for example, because it involves no mea-
surement noise), it may be better to use simple truth agreement rather than a combination with
peer consistency mechanisms as a complement to the truthful reports [70].

Self-selection In many scenarios, information agents choose themselves to participate or not
in the mechanism. Therefore, there is a self-selection both of the information agents and of the
data they provide about the phenomenon. Self-selection can be influenced by the incentives
an agent can expected from participating. We would like, in particular, to encourage agents to
provide data where the true value is very different from the prior, and to do so at high precision.
On the other hand, we would like to discourage agents that provide data that is inaccurate or
already known.



8.1. MANAGINGTHE INFORMATIONAGENTS 109
Table 8.1 shows the expected payments for the different mechanisms for an agent that had

a prior expectation P and through measurement has obtained a posterior Q. We can see that the
payment in general increases with the difference between the prior and posterior probabilities,
and thus provides incentives to focus on data at uncertain locations. The only exception are
schemes based on output agreement with a constant reward. However, here such an influence
can be created by the center by making the constant depend on the prior uncertainty of the data.

Table 8.1: Comparison of expected payment from an agent’s perspective for different mecha-
nisms. The formulas are derived in the corresponding chapters. All mechanisms assume scaling
so that answers according to the prior carry no reward. H.P / D �

P
x p.x/ log p.x/ (Shannon

Entropy), �.P / D
P

x p.x/2 (Simpson’s diversity index), and 
.x/ D q.x/=p.x/ � 1 (Confi-
dence).

Mechanism Expected Payment Novelty Precision

Truth Matching (value) 

Truth Matching (log rule) 

Truth Matching (quadratic rule) 

maxxq(x) maxxp(x)

H(P) H(Q)

λ(Q) λ(P)

0 vs. 0

0 vs. 0

0 vs. 0

0.4 vs. 0.4

0.648 vs. 0.728

0.32 vs. 0.28

Output Agreement

Peer Prediction (log rule)

Peer Prediction (quadratic rule)

Peer Truth Serum

Correlated Agreement

PTS for Crowdsourcing

Logarithmic PTS

maxxq(x) maxxp(x)

H(P) H(Q)

λ(Q) λ(P)

maxxγ(x)

maxx[q(x) p(x)]

maxxγ(x)

DKL(Q||P)

0 vs. 0

0 vs. 0

0 vs. 0

0 vs. 7

0 vs. 0.7

0 vs. 7

0 vs. 2.1

0.4 vs. 0.4

0.648 vs. 0.728

0.32 vs. 0.28

1 vs. 1.33

0.4 vs. 0.4

1 vs. 1.33

0.483 vs. 0.492

Bayesian Truth Serum

Divergence-based BTS (log)

Divergence-based BTS (quadratic)

DKL(Q||P)

H(P) H(Q)

λ(Q) λ(P)

0 vs. 2.1

0 vs. 0

0 vs. 0

0.483 vs. 0.492

0.195 vs. 0.221

0.32 vs. 0.28

While all schemes provide an incentive to report uncertain data, they do so to a different
degree, as we will discuss in more detail below. The second goal is to encourage high precision.
Here, the schemes could vary considerably.

To get an idea of how the incentives differ, we consider the following example scenarios.
To evaluate the incentives for novelty—measuring at locations with frequently changing data—
we compare the incentives for two points with three values that do not change to the same setup
where the posterior indicates a different value from the prior and the probability distribution is
permuted:

P1 D .0:1; 0:8; 0:1/; Q1 D P1 vs. P2 D .0:1; 0:8; 0:1/; Q2 D .0:8; 0:1; 0:1/:
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To evaluate incentives for measuring at higher precision, we compare a scenario with lower pre-
cision (three values) to one with higher precision (five values):

P3 D .0:3; 0:4; 0:3/; Q3 D .0:1; 0:8; 0:1/vs.
P4 D .0:1; 0:2; 0:4; 0:2; 0:1/ Q4 D .0:05; 0:1; 0:7; 0:1; 0:05/:

The results are shown in Table 8.1 in the columns labeled Novelty and Precision. We see big
difference between the schemes.

For the novelty scenario, all of the mechanisms have an expected reward of zero when the
value does not change—this is the result of normalization. However, many of the mechanisms
provide no incentive for measuring changing values at all! This is because these mechanisms
compensate for reporting according to the prior through a constant offset that does not depend
on the reported value. Thus, the expected reward only depends on the shape of the distribution,
but not on the actual values. An agent that reports a different value, but with a posterior that
has the same shape as the prior as in the novely scenario, thus gets the same reward as when it
reports according to the prior—nothing.

In contrast, in the PTS, CA, and BTS mechanisms the compensation is dependent on the
reported value, and they can thus distinguish a noisy observation where the value has changed
from one where it has not. Note, however, that when the reported data has a higher certainty
than the prior, all schemes yield a positive expected reward and thus do encourage participation.

For the precision scenario, we find that some mechanisms neither encourage or discourage
improved precision: they are truth matching, output agreement and correlated agreement. All
peer truth serums and all mechanisms based on the logarithmic scoring rule do encourage higher
granularity. However, mechanisms based on the quadratic scoring rule actually discourage it!

These are only example scenarios, and we do not have a general analysis as we do not have
a good way of classifying scenarios. However, we have observed these effects empirically as well.
In the pollution sensing example, Figure 3.10 indeed shows that the Peer Truth Serum has a
stronger tendency to incentivize measurement at uncertain locations than other mechanisms.

Other issues An important issue is whether agents know of each other’s reports. If they do,
it opens up possibilities for collusion, but at the same time it also lets agents have more ho-
mogeneous beliefs that will better fit the mechanism. Some mechanisms, such as BTS, assume
that agents have no knowledge of other reports, while others such as PTS allow publication of
partial results as long as agents have no knowledge of current peer reports. Which situation is
appropriate will generally be dictated by the application.

In sensing applications, such as pollution sensing, there is often a goal of selecting a mini-
mum number of sensors to provide full coverage of the space. However, peer mechanisms require
a certain redundancy in order to validate data, which is often in contradiction with minimality.

An issue related to precision is the risk of agents coordinating on a signal other than
the phenomenon itself, called low-quality signal in Gao et al. [70]. Such signals are typically
less uncertain and might have fewer values than the phenomenon. A mechanism that does not
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sufficiently incentivize precisionmay encourage agents to report such low-quality signals instead,
especially since they are often easier to detect.

Finally, a potential issue is that agents might hold back information in the hope of being
rewarded more by showing it later, a strategy that is called counterspeculation. This can be very
damaging to the actual performance, andmechanisms have to be carefully designed to discourage
such behavior. One way to do this is to give rewards based on myopic impact, i.e., the impact
that a report has on the quality of information held by the center at the precise time the data is
received. Fortunately, such myopic rewards are often also the easiest to implement, but they can
leave open the door to sophisticated manipulations that repeatedly report different data with
the goal of collecting multiple myopic rewards, and that have to be ruled out by restricting the
possibility of the same agent providing multiple reports over time.

8.2 FROM INCENTIVESTOPAYMENTS
The schemes we discussed in this book are designed to ensure that agents adopt cooperative,
truthful strategies. As we discussed in Chapter 2, generally the values given by the incentive
scheme need to be transformed into payments by proper scaling. In fact, any positivelymonotone
transformation is admissible while leaving the incentive properties intact.

The simplest approach is to scale an incentive inc by a linear transformation pay D ˛.incC
ˇ/, where ˛ > 0 is chosen so that the difference between truthful and non-truthful reports covers
the effort of observation, and ˇ ensures that the expected payment for uninformed reporting is
equal to zero.

However, there are two drawbacks:

1. it may require payments that are sometimes negative, and

2. because of measurement noise, the payments can be very volatile.

Figure 8.1 illustrates the volatility of payments for two different scenarios: a simulated crowd-
sourcing scenario (left) and a crowdsensing scenario using the data from Hasenfratz et al. [71].
For the crowdsourcing scenario, we assume the payment scheme of Dasgupta and Ghosh [41],
while the crowdsensing scenario scores against the ground truth using a quadratic scoring rule (as
described in Chapter 2). As we can see, both schemes result in very volatile payments where the
difference between accurate and random reports is much smaller than the payments themselves.

If we wanted to make the expected payment for random reporting equal to zero by sub-
tracting a proper ˇ, payments would very often be negative and appear even more volatile.

When agents are free to continuously revise their decisions on their strategy, it is impor-
tant to make the payments more predictable. When the same agent interacts repeatedly with
the center, this can be achieved by smoothing the payments over multiple interactions, so that
negative and positive payments balance out and we obtain a more stable positive reward.

To implement this idea, we propose a reputation mechanism similar to the influence lim-
iter we presented in Chapter 6. It can use any of the incentive mechanisms we presented in this
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Figure 8.1: Variability of payments for accurate vs. inaccurate answers in crowdsourcing and
community sensing (based on [72]).

book to generate a score that identifies the quality of the data reported by the agent. However,
instead of making this the basis for an immediate payment, we use it to update the reputation
of the agent. The reputation in turn determines the payments that the agent can get on future
tasks.

For the agent, this creates a clear situation where it always knows what payment it will
get for the next data it reports to the center. Thus, the payment an agent will receive is always
completely predictable, and the agent can decide if it is sufficient to compensate the cost of
observing the phenomenon.

Furthermore, the use of reputation acts to smooth the payments. Where the incentive
scheme would prescribe negative payments, we now simply decrease the reputation and thus
future payments.

Different from the influence limiter we presented in Chapter 6, we do not measure the
impact of the report on the quality of the learned model, but score it by agreement with a peer,
for example according to the PTS scheme. The peer can also be the prediction O�F by a model
F on the basis of multiple peer reports. To obtain linearity, here we propose to use the version
derived from the quadratic scoring rule (see Chapter 3):

�t .x/ D 1 O�FDx
� Pr. O�F D x/

scoret .x/ D .1 � ˛/ � �t .x/ � ˛:
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The prior probability P r. O�F D x/ can be estimated using the model and prior data. The pa-
rameter ˛ determines the minimal acceptable quality, i.e., the threshold below which reputation
should decrease.

Based on this score, in the PropeRBoost scheme [72] we maintain the reputation rept of
an agent at each time t using a similar framework as in the influence limiter.

• We scale positive payments by � D
rept

rept C1
, and this scaling factor is communicated to the

agent before its report.

• The agent picks a task, submits the data and gets paid � � � , where � is a payment function.

• The mechanism determines the score scoret of the submitted data, and updates the repu-
tation using the following exponential updating rule:

rept D rept � .1C � � scoret /;

where � 2 .0; 1
2
� is a learning parameter.

PropeRBoost has the following properties [72]:

• The average payments to accurate agents are near maximal.

• The average payments for agents who consistently have low proficiency are near minimal.

• The average payments to agents whose proficiency converges toward levels lower than pl

are near minimal.

Together these properties imply a much less volatile separation between incentives for good and
low-quality work, as we can also observe in empirical evaluations.

Figure 8.2 shows the performance of the scheme in the two simulated scenarios. We can
see that it creates a very strong separation of payments between cooperative and random strate-
gies, as compared with the “raw” incentives shown in Figure 8.1. Also note that there is no need
for negative payments.

Figure 8.3 shows the evolution of the scaling factor � for four different strategies.

1. Random: report randomly according to the prior distribution.

2. Honest: cooperative strategy.

3. Switch: cooperative strategy for the first half, then random.

4. KeepRep: cooperative strategy whenever scale falls below threshold, random reports when
above.

We can see that in both scenarios the reputation system keeps track of the correct reputation
quite accurately: random reports soon obtain no payment at all, while cooperative strategies
converge toward the maximum scale.
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Figure 8.2: Paymenst using the PropeRBoost scheme in crowdsourcing and community sensing
scenarios, for honest and random reporting (based on [72]).
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8.3 INTEGRATIONWITHMACHINELEARNING
ALGORITHMS

An important consideration is how the data will be used. Most often, it will be processed by
some machine learning algorithm to obtain a model, and the real goal is the quality of the model.
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There are many machine learning algorithms and the exact analysis of the impact of information
gathering on the learning outcome will of course depend on the details of the algorithm used.

The techniques we have seen generally apply to elicitation of a value out of a finite set of
possibilities, or classification models. The machine learning algorithm learns a function f .Z/ D

Pr.X jZ/ that gives an estimate of the class X given the features Z.
The agents provide data for different features z, and this data is used by the machine

learning algorithm to compute its model.The data should be chosen to optimize the convergence
of the machine learning algorithm. Among the many possibilities, we consider two ways this
could be done.

• Histogram: The center collects data for the same parameter set z from multiple peer agents,
and the goal is to obtain a hstogram that approximates the true probability distribution of
x for these features as closely as possible. We measure the distance by a logarithmic loss
criterion, in particular the Kullback-Leibler Divergence. This applies very well for example
to product reviews, where different reviewers evaluate exactly the same product.

• Interpolation: The center integrates all received data into its model, and uses the prediction
of the model as the peer estimate. Here the data does not necessarily have the same features
z, but the peer report could be for different features z0 where themodel allows interpolation
between the features.The collected data should support convergence of themodel as well as
possible.Wemeasure the convergence by the Brier score of the model against a peer report.
This applies well, for example, to pollution measurements, where every measurement is
taken at a slighly different point, and the points are interpolated by the model.

• Classification: Recently, incentive schemes have also been shown for scenarios where the
center learns a classifier from labels provided by information agents.

8.3.1 MYOPIC INFLUENCE
We can generalize the idea of incentivizing reports of data that maximally improves a learning
result to other learning algorithms. In the general formulation, we should reward agents for the
immediate influence their data has on the quality of the learned model. We call this their myopic
influence since it only considers the current step. We have used this notion in the chapter on the
stochastic influence limiter.

Formany reward schemes, it is straightforward to relate the reward to themyopic influence
of a report. While such a greedy approach cannot guarantee that data providers provide the
optimal combination of data for the learner, it is the best that can be done when rewarding
individual data items.

In almost all cases, basing rewards on myopic influence has another beneficial effect: since
there tends to be diminishing return of data on the model quality, an agent would not want to
speculate on getting a higher reward by holding back a report of its data until a later time.
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8.3.2 BAYESIANAGGREGATION INTOAHISTOGRAM
First, we consider the simplest case where the data collected are discrete values, and the learning
algorithm aggregates them in a Bayesian way, i.e., using Equation (1.1), to form a histogram that
increasingly approximates the true probability distribution. This covers many of the scenarios
mentioned in the introduction, such as aggregating review scores or pollution measurements.

More precisely, consider that the center updates a normalized histogram Rt D .r t .x1/

; : : : ; r t .xn// at time t . When receiving report of a value xi , it sets:

r tC1.xi / D
t r t .xi /C 1

t C 1

r tC1.xj / D
t

t C 1
r t .xj /:

The most common measure to evaluate the quality of approximating a distribution Q by the
estimate R is the Kullback-Leibler divergence, expressed as:

DKL.RjjQ/ D

nX
iD1

q.xi /.ln q.xi / � ln r.xi // D �H.Q/ �EQŒln r.xi /�:

The divergence is minimized by minimizing the second term, EQŒln r.xi /�. Note that this is
just the expected score for a randomly chosen observation o obtained by the logarithmic scoring
rule, i.e.:

EQŒln r.xi /� D EŒln r.o/� D EŒln r.xp/�;

where the second inequality holds provided that the agent believes peer agents to report truth-
fully. This is exactly the reward scheme that rewards agents according to the logarithmic scoring
rule applied to a randomly chosen peer report, such as the peer prediction method and the peer
truth serum. Thus, as long as agents believe that peer reports are accurate measurements of the
phenomenon, the scheme makes agents report the values that also result in the best convergence
of the results learned by the center!

Helpful reporting in thepeer truth serum We can apply this observation to analyze the prop-
erties obtained by the helpful reporting strategies (Definition 3.7) we discussed for the Peer
Truth Serum in Section 3.3.2. Assuming Bayesian aggregation as detailed above, we can show
that as long as agents adopt helpful strategies, the distribution R will converge to the true dis-
tribution P � [20]. We call this property asymptotically accurate.

Definition8.1 A mechanism for information elicitation is asymptotically accurate if it admits an
equilibrium such that the averaged reports converge to the true distribution of the phenomenon,
for a stationary phenomenon. And we can show the following [20].

Theorem 8.2 The Peer Truth Serum with informed prior beliefs is asymptotically accurate, provided
that agents’ belief updates satisfy the self-predicting condition.
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As the Peer Truth Serum provides rewards according to the logarithmic scoring rule, it

implements the learning algorithm discussed above. We can thus see that untruthful but helpful
reports are actually maximize the speed of convergence of the overall learning system to be faster
than truthful reporing alone!

Similarly, if we wanted to optimize the Brier score of the histogram, i.e., minimize the
mean squared error of R with respect to S , we obtain the analogous result for schemes that use
the quadratic scoring rule.

8.3.3 INTERPOLATIONBYAMODEL
When data is used to learn a model that can be used for interpolation, it is not even necessary
to have an exact peer. Instead, we can evaluate the improvement of the model obtained by the
agent’s report by comparing it to a randomly selected peer report. Letting f�i be the model
without the data from agent i , and f the model that incorporates the data. To compute the
reward for agent i ’s data, we compute the difference in evaluation that the model provides for
the features z0 of a randomly chosen peer report, i.e., SR.f .z0/; xp/ � SR.f�i .z

0/; xp/.
Ideally, we take the same approach as in the derivation of the peer truth serum, i.e., we

approximate the difference by a first-order Taylor expansion around the current model f�i ,
and make the reward proportional to the derivative. However, the difficulty is that we need to
know the derivative of the learning algorithm with respect to the new example, for the features
associated with the peer report. Furthermore, since the peer report is selected randomly, the
mechanism cannot assume a particular set of features z0 for the derivative, but only an expecta-
tion. When the model is an interpolation model, the shadowing functions used in the derivation
of the peer truth serum are reasonable to use in expectation. We show an evaluation of such a
model in the pollution example in Chapter 5.

Another possibility is to let the model interpolate between neighboring peer reports, and
thus to generate an artificial peer report as the model prediction for the feature set z that is
identical to that encountered by agent i . While it would seem that this encourages agents to
report according to the already existing model, it is actually just the converse of the approach in
the previous paragraph: rather than using a Taylor approximation around the features z, we use
an approximation around the set z0, and so the effect can be expected to be the same. However,
it is much easier to implement. We show an evaluation using their approach where we use the
basic PTS for the pollution example, in Chapter 3.

8.3.4 LEARNINGACLASSIFIER
For a setting with binary signals where the center learns a classifier, Liu and Chen [77] show a
learning technique such that peer prediction using the prediction of a learned classifier as peer
report provably has truthful reporting as the highest-paying equilibrium. The main difficulty
with guaranteeing truthfulness is that the data provided by peers may itself be biased, and thus
incentives are given for matching a biased version of the truth.
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To avoid this issue, the bias in the classifier is removed based on the the average classi-

fication error rates, or flipping rates, which are assumed uniform among all workers. They are
characterized by separate success rates pC for positive examples and p� for negative examples.
Provided that the true probability of an example being positive PC is known, they can be found
from the observed probability of positive labels pC and the observed average rate of agreement
of two agents on the same tasks q, by solving the system of equations:

q D PCŒp2
C C .1 � pC/2�C .1 � PC/Œp2

� C .1 � p�/2�

pC
D PCpC C .1 � PC/p�:

As shown in Liu andChen [77], knowing these success rates allows to learn an unbiased classifier
that in turn can be used as a basis for an incentive scheme, and the unbiasing can be integrated
into the payment function. Even if the computation of the pC and p� requires a set of tasks
that are solved by multiple agents in order to determine the agreement rate, this set can be a tiny
fraction and for all other tasks only a single report is required.

The approach is restricted to binary signals and homogeneous agent populations, and it is
difficult to extend to more complex cases while maintaining the possibility to prove its incentive
properties.

8.3.5 PRIVACY PROTECTION
In some cases, information agents may require that the mechanism protects the privacy of their
data. This can be achieved when the data is aggregated into a model, such as using a machine
learning algorithm. Such a scheme is described in Waggoner et al. [75], where rewards are given
for improvement of the performance of the learned model on test data. Ghosh et al. [76] give a
more precise analysis using the framework of differential privacy. The privacy protection given
by these mechanisms depends crucially on the fact that data is aggregated into a model where
individual contributions are consequently hard to determine.

8.3.6 RESTRICTIONSONAGENTBEHAVIOR
In some cases, it may be possible to place additional assumptions on worker behavior, so that
only certain randomized reporting strategies are allowed. For example, Cai et al. [78] consider
a setting where agents observe objective values and their reports are drawn from a distribution
centered around the true value with some Gaussian noise. The only parameter of the reporting
strategy is the amount of effort which is inversely proportional to the noise. Even if this setting
is more restrictive, it can model many real situations, including many sensor networks, although
it is inapplicable to a situation where sensors do not measure at all, or their average measurement
is not equal to the true value.

For this setting, they propose a simplemechanism that pays a report xi of agent i according
to

ci � di .xi �
Of�i /

2;
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where Of�i is the model constructed without the report from agent i . Their result is impressive
in two aspects: first, it applies to a wide range of machine learning models for the model Of ,
including many forms of regression. Second, exerting maximum effort is a dominant strategy,
not just a Nash equilibrium—no matter what the other agents do, exerting maximum effort is
always the best response. The strong assumptions that are required do not make this a generally
applicable solution, but it shows that there may be good possibilities.
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C H A P T E R 9

Conclusions
Information systems are increasingly based on large collections of data, often obtained from
multiple sources outside the direct control of the system designer. Since obtaining accurate data
is costly, data providers need to be compensated for their effort.This requires that we can evaluate
the quality of the data so that only accurate data is paid.

In this book, we presented a variety of game-theoretic mechanisms that incentivize partic-
ipants to provide truthful data, while penalizing those that provide poor data and discouraging
them from participating. This field of research is still in its infancy, and our overview can only
be seen as a snapshot of the state of the art at this time. We hope that it will help to spread un-
derstanding of the techniques that are known today, and foster further development of the field.
We also believe that recent progress has given us mechanisms that allow for the first time to pay
for data according to its quality, an important milestone for the development of data science.

We started by noting that there are three different ways of controlling the quality of data.
The first and most well known one is to filter outliers using statistical techniques. The second
is to learn the average quality of data provided by each agent, and assume that data will be of
the same quality in the future. One of example of such an approach is the influence limiter
reputation scheme we described in Chapter 7.

However, most of this book has been devoted to the third option, which is to provide
incentives that make information agents do a better job at providing relevant and accurate data.
They are a key because they actually increase the amount of high-quality data that is available in
the first place.

9.1 INCENTIVES FORQUALITY
We first started with the incentive mechanism design and described two most important classes
of incentives: those based on a known ground truth, and those that are based on comparison of
reported values, i.e., peer consistency methods.

The main advantage of mechanisms based on the ground truth is that they make coop-
erative strategies not just an equilibrium, but a dominant strategy—it is best independently of
what other information agents do. Thus, whenever the ground truth is available, it is preferable
to take advantage of it to obtain these stronger incentive properties.

However, most contributed data cannot be validated on a ground truth, either because
this is too costly, or because it is subjective. Peer consistency methods therefore make up the
bulk of the techniques in this book.
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When the center has no independent verification of the reported data at all, it is of course

possible for the information agents to fake an entirely different reality to the center, by all agree-
ing to report data that may not even be related to the information that is requested. Clearly, this
possibility can only be ruled out by having some access to ground truth, for example through
spot checks. On the other hand, it is unlikely that such a coordinated deception would not be
detectable by the center through other means.

9.2 CLASSIFYINGPEERCONSISTENCYMECHANISMS
Wehave presented a large variety of peer consistencymechanisms that can be applied to different
scenarios. The characteristics of the application will impose specific requirements that should
guide the choice of the best mechanism. To enable the right selection, we provide a classification
according to five different criteria that determine their fit with an application.

Size of the task space (Figure 9.1) The first criterion has to do with how much data is being
elicited from each information agent. Somemechanisms, such as peer prediction and BTS, apply
even when only a single data item is elicited. Others, such as Log-PTS and PTSC, require that
the agent population answers to a larger number of (a priori) similar elicitation tasks to provide
a stronger mechanism. In between, we have correlated agreement that does require multiple
similar tasks, but can do with a small number as long as the correlations are known beforehand.

In general, the application will dictate what assumption can be made. Opinion polls and
reviews will generally not have multiple similar tasks, while crowdsourcing and peer grading
usually do.

Number of a priori
Similar Tasks

Multiple Tasks
CA

Single Task
Peer prediction,

BTS, PTS

Large Number
of  Tasks

Log-PTS, PTSC

Figure 9.1: Amount of information elicited per task.

Information elicited from each agent (Figure 9.2) Some mechanisms require agents to only
provide the data, while others such as BTS also require additional prediction reports (which may
be more voluminous than the data itself ). Some mechanisms, such as CA, require that agents
submit multiple data items for similar tasks.
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Figure 9.2: Amount of information elicited per task.

Number of peers required (Figure 9.3) Peer consistency relies on comparing reports of peers
on the same (or at least highly similar) tasks. In some applications, such as product reviews, there
are always many peers that answer to exactly the same task, so we can apply mechanisms such
as BTS that require a large population of such peers. On the other hand, in crowdwork having
peers solve the same task is a waste of effort, so we want to minimize it and use mechanisms such
as peer prediction (which could even use peers that solve tasks with only statistically correlated
answers). As a third possibility, we have PTSC, which requires a larger number of agents to
solve many tasks, but only one peer per task.

Number of
Peer Agents

Small Number of
Peer Agents per Task

PTSC

Large Number of
Peer Agents per Task

BTS, Log-PTS

Small Number of
Peer Agents

Peer prediction, PTS,
CA, Div-BTS

Figure 9.3: Number of peers required by the mechanism.

Knowledge of agent beliefs (Figure 9.4) Some mechanisms are tuned closely to agents’ belief
structures, and their design requires to know these beliefs quite precisely. A big requirement for
applying peer prediction mechanisms is to know agents’ posterior beliefs for different observed
signals. PTS, on the other hand, requires knowledge of prior beliefs, which are often easy to
obtain and do not depend on observed signals. The big advantage of BTS mechanisms is that
they obtain knowledge about the beliefs through the additional prediction reports, and thus
require little knowledge by the mechanism designer.
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Knowledge about
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Full
Knowledge

Peer Prediction

Figure 9.4: Information required about agent beliefs.

Strength of incentives (Figure 9.5) All of the mechanisms we have seen have strict equilib-
rium strategies that are truthful and (with the right scaling) cooperative. However, there are
differences in the strength of these equilibria. In peer prediction, the truthful equilibrium usu-
ally does not have the highest expected reward, and it requires specific care in its design to make
the truthful equilibrium focal.

Incentive Property

Informed
Truthful

CA

Incentive Compatible
Peer Prediction, BTS,

Div-BTS, PTS

Strongly
Truthful

Log-PTS, PTSC

Figure 9.5: Relative strength of the incentive.

Most of the multi-task mechanisms, on the other hand, are strongly truthful, meaning
that they guarantee that truthful reporting is not only a strict equilibrium, but also the highest
paying one.

Correlated Agreement also guarantees that truthful reporting results in a greater payoff
than any other uninformed reporting strategy (strategies for which an agent does not make an
observation). However, it provides no incentive for distinguishing correlated values.

We have further seen in Chapter 8 that there are big differences in the expected rewards
of the different schemes, depending on the elicitation scenario. These expected rewards have an
influence on the motivation of information agents to participate in the mechanisms, and thus
the population of information agents that will be formed by self-selection.
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9.3 INFORMATIONAGGREGATION
It would be nice to also incentivize agents to participate in an optimal aggregation of informa-
tion, as here also information agents are likely to have better knowledge than the center. We
discussed two schemes where incentives also involve information aggregation: prediction mar-
kets and reputation systems inspired by the prediction market framework. We addressed two
questions:

• how to elicit agents’ confidence together with the desired information, and

• how to limit the negative impact of the malicious agents on the learned outcome.

The first one can be addressed by a prediction market, designed analogously to stock markets to
implicitly elicit confidence that agents have in their predictions. The second one, the influence
limiter, is designed specifically for online information fusion where information providers have
to be kept from manipulating the aggregated result. Both methods use a verifiable source of
information to determine the quality of agents’ reports.

Other work in a similar direction that we did not discuss include wagering schemes that
make agents reveal their confidence in a prediction, and consensus schemes such as the Delphi
method where agents iteratively refine their report to reach a consensus. We did not discuss
these schemes as they involve more complex strategies than simply reporting true data, which
should not be negotiable.

9.4 FUTUREWORK
There are many directions that one can take in extending the mechanisms presented in this book.
Some open issues that seem important to us are as follows.

• Most work on peer consistency techniques assumes that an agent and its peer observe
the exact same underlying phenomenon. This is often unrealistic: we will not have multi-
ple sensor measurements at the same location, and it is wasteful to give the same task to
multiple crowdworkers. Experimentally, many of the mechanisms we described work well
using signals for highly correlated rather than the same measurements. However, there are
no proofs that these are indeed truthful equilibria.

• When data involves a large range of possible answers, the differentiation between sig-
nal values becomes very small, and incentives thus become increasingly volatile. For the
extreme case of continuous values, we have seen that is possible to extend the divergence-
basedBTSmechanism.We conjecture that it is also possible to extend the PTSmechanism
using a similar construction of randomly chosen intervals, but so far no such extension has
been worked out.

• When information agents are not rational, or even malicious, it is desirable to bound their
influence on the outcome. The influence limiter method we presented achieves this, but
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only when information can be verified. It would be interesting to see under what condition
it is possible to extend the discussed approaches to allow peer consistency based evaluation
where only a fraction of agents can be trusted.

• When agents have the goal of influencing the result of a machine learning algorithm that
will be applied to the data they provide, the learning algorithm will have an influence on
the incentives. The interplay between incentives and specific machine learning algorithms
is complex to analyze because the influence of machine learning algorithms is often highly
nonlinear.
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