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Foreword

This book by Dr. Mauro Conti focuses on the most important security challenges
for WSNs, conducts a vast literature review on security threats and the currently
proposed countermeasures, and proposes several novel mitigation approaches to
each of the considered attacks. Moreover, Dr. Conti provides in-depth theoretical,
analytical, and experimental discussions on each of the attacks and countermea-
sures. In particular, a security threat might result in hazardous situation when it
comes to WSNs; this is because of their inherent hardware and software limitations
in applying traditional security mechanisms, and of their frequent use in countless
vital applications.

Over the years, I have dealt with various aspects of networks security, partic-
ularly in WSNs, together with my research group at the Dipartimento di Informatica
della Sapienza Università di Roma, and with several renowned researchers all over
the world. I believe that one of the main goals of adopting WSNs is to provide
safety and comfort for humans. Therefore, we need to contemplate how this new
technology would guarantee the goals of the designer without threatening the
security and privacy of users.

Dr. Conti provides timely information for scholars and researchers desiring to
design new WSN systems and applications, to be able to tackle the existing security
challenges in these networks. Moreover, this book shines a light for early stage
research on aspects related to key establishment, physical attacks, node capture
attack, node clone attack, as well as security and privacy issues of specific WSNs
services, such as data aggregation. The content of this book is the fruit of
Dr. Conti’s several years of research effort in security and privacy issues in WSNs,
which have also led to numerous papers and patents.
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It was my great pleasure to supervise the early research career of Dr. Conti as a
promising Ph.D. student, to be involved in all the stages of this work, as well as
collaborating with Dr. Conti afterwards. I believe this book by Dr. Conti is a key
reference for WSN security challenges, and I hope you will enjoy reading this book.

Luigi Vincenzo Mancini
Sapienza University of Rome, Italy
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Preface

Recent technology progress, particularly in the areas of computer networks and
hardware miniaturization, allowed the emergence of a set of novel computing and
application scenarios referred in different ways, including “Internet of Things”,
“Mobile Computing”, “Pervasive Computing”, or “Ubiquitous Computing”.
Despite the specific meaning of those terminologies and their peculiarities, all those
concepts involve the presence of small or tiny devices that communicate (possibly
in a wireless way) and collaborate among them to achieve a common goal. In many
of these emerging application scenarios, the security of the service and infras-
tructure, as well as the privacy of the involved parties, is a fundamental feature.

In this book, we focus on a representative technology in this arena: Wireless
sensor networks (WSNs), i.e., networks made of tiny resource-constrained devices
that have sensing and wireless communication capabilities. In particular, we present
a comprehensive approach for building secure WSNs, taking into account different
“levels” of security threats: from the basic need of nodes trusting and confidentiality
between nodes (via means of establishing secret keys), toward physical attacks such
as node capture (physical removal) or node cloning (physically building a new
node, cloning the crypto material from an honest one), up to the security of specific
applications, where we consider in particular data aggregation, which is a key
service in WSNs that can be used to tackle with their energy constraints. Finally, as
a representative case, for the data aggregation service we also look at possible
privacy aspects, e.g., preserving the privacy of nodes participating in the aggre-
gation—which in practical scenarios might be for example users of smart-metering
or other services.

The main contributions of this book can be summarized as follows:

• With respect to the establishment of pair-wise secret keys between nodes, we
present a new probabilistic solution, the enhanced cooperative channel estab-
lishment (ECCE) protocol that overcomes some of the limitations of existing
solutions. In fact, ECCE presents higher probability for any pair of nodes to
establish a secure channel and a higher resilience rate (i.e., the attacker needs a
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bigger effort to corrupt the channel). This contribution has been partially pub-
lished in [46, 47], and is described in Chap. 2.

• With respect to the node capture attack (i.e., physical removal from the net-
work), which is the first step for an attacker to perform several other attacks that
are crucial for WSNs (e.g., clone attack or the confidentiality violation), we
design the first approach to detect the capture of a node leveraging the network
mobility—in order for the nodes to trace the presence of the other nodes. The
results of our study show that the newly proposed solutions can be practically
implemented in sensor networks, and under certain mobility conditions (e.g., a
certain average node speed) they perform better than solutions that do not
leverage the network mobility. This contribution has been partially published in
[45, 49, 53], and is described in Chap. 3.

• With respect to the node cloning attack, we first identify the properties that a
distributed clone detection protocol should possess, then we design a random-
ized, efficient, and distributed (RED) protocol for detection of the node repli-
cation attack. RED shows better properties and performance when compared to
the state of the art. In particular, it is not affected from an important issue that
influenced protocols in the literature, i.e., the predictability of the position of the
witnesses—hence making the process of detection less effective in practical
scenarios. This contribution has been partially published in [50, 52, 54, 55], and
is described in Chap. 4.

• With respect to specific WSN services, we focus on data aggregation security.
The question was to find whether a WSN service can be secure, despite the
possible presence of the adversary. Owing to the constrained resources of
WSNs, nodes cannot send their own sensed data independently to a collecting
point, hence the use of an aggregation protocol is fundamental (and so their
security). In this scenario we design the first secure protocol for secure com-
putation of the median aggregate. This contribution has been partially published
in [190, 192–194], and is described in Chap. 5.

• With respect to data aggregation security, the challenge was to provide pri-
vacy to the single node collaborating in the data aggregation process. In many
sensor network applications, the data sensed by a single node can be related to a
user (or a number of users): Information on patients’ health in a hospital, water
consumption in a city, etc. Then, in order to protect the people’s privacy, the
data aggregation protocol that works in this type of context must protect the
privacy of each single node. In particular, it should not be possible to relate a
given sensed data to a given sensor node. We present the first data aggregation
protocol that guarantees the privacy of a node not only against the other nodes
but also against the Base Station, which is the entity that eventually collects the
aggregated data. This contribution has been partially published in [60, 240], and
is described in Chap. 6.

Mauro Conti
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Chapter 1
Introduction

The evolution of computing devices followed different paths. Despite the famous
misquotation attributed to Thomas J. Watson Sr., then-president of IBM, (“I think
there is a world market for maybe five computers.”), during the 70’s a new paradigm
emerged: The Personal Computer. Computers intended to be used by a single person
became so common that the market of personal computers overcame the one of
Mainframes. With the introduction of computer networks and the miniaturization of
the hardware a totally new paradigm has emerged since the last decade: The so-called
Ubiquitous Computing. In particular, this paradigm aims to make “many computers
available throughout the physical environment, but making them effectively invisible
to the user” [228]. Recent advances in Micro Electro Mechanical Systems (MEMS),
in wireless communications and in digital electronic made it possible the production
of small, cheap and “smart” devices (that comes also with novel security and privacy
issues [5, 6, 12, 17, 58, 151, 164]), such as smart-phones [44, 51, 59, 88, 97, 188,
243], PDAs, Radio Frequency IDentification (RFID) systems [56, 57, 191], Wireless
Sensor Networks (WSNs), and many other technologies.

In this book, we focus on the security issues of the representative technology of
Wireless Sensor Networks, introduced in the following section.

1.1 Wireless Sensor Networks

In this book, a sensor device is a small device that is able to sense environmental data
(sound, light, temperature, etc.) and it is also able to communicate with any other
sensor node in its communication range and compute the sensed/received data. A set
of these sensor devices deployed in a given area constitutes a network with no pre-
established architecture, so called Wireless Sensor Network (WSN). The usefulness
of this type of network does not come from the single node capabilities, which are
instead very limited, but from the collaboration of a large number of nodes. In a
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2 1 Introduction

WSN hundreds or thousands of nodes are usually deployed in a large area where
they can sense the environment, compute and communicate the collected data in a
very efficient and distributed way. Differently from other traditional wireless devices,
sensor nodes do not communicate directly with a Base Station (BS)—a device that
does not have the limitations of a sensor node—but mainly with other sensor nodes.
So, sensed data are locally computed and forwarded to the BS. The lack of a pre-
designed infrastructure implies that each node acts not only as a sensing node but
also as an elaborating node and a routing point.

Current and future WSN applications are in different fields [127]: Supporting
rescue operation, building surveillance, fire prevention, battlefield monitoring, and
so on. Also, as often happens with new technologies, many applications can be
designed and thought as far as the technology will be cheaper and widely available.
A further description of the possible WSN applications is given in Sect. 1.1.1. In
many applications of WSNs, the security of the network is a fundamental issue, as
for: Confidentiality, integrity, authenticity, and availability. As an example assume
a WSN is deployed for the safety of an area—e.g. for the detection of poisonous
gas that could be potentially released during a concert or a big sport event. In this
scenario, if the network is not secure we could have a false perception of safety, that
can be even worse than the awareness that there is no safety at all.

1.1.1 Applications

Here, we recall some of all the possible application areas of the WSNs:

• Environmental applications [3, 33, 86, 226]. Some environmental applications
of sensor networks include tracking the movements of birds, small animals, and
insects; monitoring environmental conditions that affect crops and livestock; irri-
gation; macro-instruments for large-scale Earth monitoring and planetary explo-
ration; chemical/biological detection; precision agriculture; biological, Earth, and
environmental monitoring in marine, soil, and atmospheric contexts; forest fire
detection; meteorological or geophysical research; bio-complexity mapping of
the environment; and pollution study.

• Health applications [62]. Some of the health applications for sensor networks
are providing interfaces for the disabled; integrated patient monitoring; diagnos-
tics; drug administration in hospitals; constant monitoring of human physiological
data; exact micro-drug release and non-invasive surgery; telemonitoring of elderly
people.

• Other commercial applications [3, 86, 182]. Some of the commercial applica-
tions are monitoring material fatigue; building virtual keyboards; managing inven-
tory; monitoring product quality; constructing smart office spaces; environmental
control in office buildings; robot control and guidance in automatic manufactur-
ing environments; interactive toys; interactive museums; factory process control
and automation; monitoring disaster areas; smart structures with sensor nodes
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embedded inside; machine diagnosis; transportation; factory instrumentation;
local control of actuators; detecting and monitoring car thefts; vehicle tracking
and detection.

• Military applications [3]. Since WSNs are fault-tolerant, self-organized, miniatur-
ized, low cost, and can be easily deployed (for instance, spread by a helicopter),
they can be considered as a valuable resource for the military. Some of the mil-
itary applications of sensor networks could be: Monitoring battlefield resources;
battlefield surveillance; nuclear, biological and chemical (NBC) agents detection
and reconnaissance; tactical communications.

1.1.2 Enabling Technologies

In this section we briefly review the main enabling technologies for WSN [174]:

• Sensors Components. A sensor node is made up of four basic components as shown
in Fig. 1.1: A sensing unit, a processing unit, a transceiver unit and a power unit.
They may also have additional application-dependent components such as a loca-
tion finding system, a power generator and a mobilizer. Sensing units are usually
composed of two subunits: Sensors and Analog to Digital Converters (ADCs).
The analog signals produced by the sensors based on the observed phenomenon
are converted into digital signals by the ADC, and then fed into the processing

Sensing Unit

Processing Unit

ADC

Location finder

Storage

Processor

Sensor

Mobilizer

Power Generator

Power Unit

Transceiver

Fig. 1.1 Logical components of a sensor unit
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unit. The processing unit, which is generally associated with a small storage unit,
manages the procedures that make the sensor node collaborate with the other nodes
to carry out the assigned sensing tasks. A transceiver unit connects the node to
the network. One of the most important components of a sensor node is the power
unit. There can be also other subunits, which are application-dependent.
Many of the sensor network routing techniques and sensing tasks require the
knowledge of the location with high accuracy. Thus, in some application a sensor
node can need a location finding system. In some cases it is assumed that each
sensor node (or some of them) will have a Global Positioning System (GPS) unit.
A mobilizer may sometimes be needed to move sensor nodes when it is required to
carry out the assigned tasks. All of these subunits may need to fit into a matchbox-
sized module [113, 125, 173]. Power is also a scarce resource due to the size
limitations. Power units may be supported by a power scavenging unit such as
solar cells, or equipped with the capability of transforming vibration into energy
[39, 189]. For instance, the total stored energy in a smart dust mote is on the order of
1 J [113, 180]. Though the higher computational powers are being made available
in smaller and smaller processors, processing and memory units of sensor nodes
are still scarce resources. For instance, the processing unit of a smart dust mote
prototype is a 4 MHz Atmel AVR8535 micro-controller with 8 KB instruction flash
memory, 512 bytes RAM and 512 bytes EEPROM [113, 173].

• Communication Technology. One of the communication technologies promising
for WSN is the Bluetooth technology. This standard provides ad hoc configuration
of master/slave piconets including eight active units at most. It supports sponta-
neous connections between devices. Bluetooth allows data transfers between units
over distances of nominally up to 10 m. Bluetooth was originally conceived as a
cable replacement technology and may serve well in that application domain. With
data-rates of up to 1 Mbps, Bluetooth also offers more than enough bandwidth for
our purpose. However, scenarios involving a large number of low-power devices
using ad hoc networking still face a number of obstacles when using Bluetooth as
their communication technology [130].
Another technology of interest is the one coming from the ZigBee working group
[120], also known as PURLnet, RF-Lite, Firefly, and HomeRF Lite. It is yet another
initiative to develop a standard for a small range wireless network. Its projected
application areas include computer peripherals, toys, home automation (light, fire
alarms, etc.) and remote controls. Depending on the application area, the nodes
shall operate between a month and two years on AA-batteries. The nodes are aimed
to cost less than 5 USD, operate in the 2.4 GHz ISM band and provide a data rate
between 115 and 10 kbps per node. The maximum number of nodes is 255. A
recent standardization process has been initiated by the IEEE 802.15 working
group [1], which tries to define a Personal Area Network (PAN) standard. Its first
incarnation (802.15.1) is to be based on Bluetooth and should improve and extend
the existing specification. 802.15.3 aims for high data rates of 20 Mbps or more.
Recently ZigBee was standardized as IEEE 802.15.4. The accepted frequency
bands are 868/915 MHz and 2.45 GHz. The communication range is 75 m. The
communication can only be between one master and 250 slaves.
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• Operating System. Operating systems in embedded wireless communication must
increasingly satisfy a tight set of constraints, such as power and real time perfor-
mance, on heterogeneous software and hardware architectures. In this domain, it is
well understood that traditional general-purpose operating systems are not efficient
or in many cases not sufficient. Among the most emerging solutions for sensor
node operating systems we have TinyOS [113]. It is a component-based runtime
environment designed to provide support for deeply embedded systems, which
require concurrency intensive operations while constrained by minimal hardware
resources [113]. The main advantage of the TinyOS is its very small code size,
and thus well suited for sensor nodes equipped with a minimum level of hardware.
The core scheduler of the operating system fits into only 178 bytes of memory,
propagates events in the time it takes to copy 1.25 bytes of memory, context-
switches in the time it takes to copy 6 bytes of memory and supports two-level
scheduling. The network for which it was designed is a multi-hop network made
up of static nodes. It is a centralized system; a base station is conducting the data
acquisition and the communication between the nodes. TinyOS is a power-aware
operating system. Unused clock cycles are spent in the sleep mode. The software
components are written so that they perform their function and go to sleep mode.
If any data arrives, the event is signaled to the appropriate component. Software
components can also ask the task scheduler to perform tasks (blocks of code that
run to completion). It can be the starting point for another more general operating
system that assumes: (i) there is no base station, and (ii) the nodes are mobile.
Other alternative operating system solutions can include: Microsoft Windows CE
[116], a scaled down operating system designed specifically for what Microsoft
terms “information appliances”; Palm OS [117]; and Redhat eCos [118], an open
source, real-time operating system that provides the basic runtime infrastructure
with memory footprints in a limited storage space.

1.1.3 Constraints

A wireless sensor network is a special network which has many constraints compared
to a traditional computer network. Due to these constraints it is difficult to directly
employ the existing security approaches to the area of wireless sensor networks.
Therefore, in order to develop useful security mechanisms while borrowing the ideas
from the current security techniques, it is necessary to know and understand these
constraints first [30].

1.1.3.1 Very Limited Resources

All security approaches require a certain amount of resources for the implementa-
tion, including data memory, code space, and energy to power the sensor. However,
currently these resources are very limited in a tiny wireless sensor:
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• One common sensor type (TelosB) has a 16-bit, 8 MHz RISC CPU with only 10 K
RAM, 48 K program memory, and 1024 K flash storage [119]. With such a limita-
tion, the software built for the sensor must also be quite small. The total code space
of TinyOS, the de-facto standard operating system for wireless sensors, is approx-
imately 4 K [113], and the core scheduler occupies only 178 bytes. Therefore, the
code size for the all security related code must also be small.

• Power Limitation. Energy is the biggest constraint to wireless sensor capabilities.
We assume that once sensor nodes are deployed in a sensor network, they cannot be
easily replaced (high operating cost) or recharged (high cost of sensors). Therefore,
the battery charge taken with them to the field must be conserved to extend the life
of the individual sensor node and the entire sensor network. When implementing a
cryptographic function or protocol within a sensor node, the energy impact of the
added security code must be considered. When adding security to a sensor node,
we are interested in the impact that security has on the lifespan of a sensor (i.e., its
battery life). The extra power consumed by sensor nodes due to security is related to
the processing required for security functions (e.g., encryption, decryption, signing
data, verifying signatures), the energy required to transmit the security-related data
or overhead (e.g., initialization vectors needed for encryption/decryption), and the
energy required to store security parameters in a secure manner (e.g., cryptographic
key storage).

1.1.3.2 Unreliable Communication

Unreliable communication is another threat to sensor security. The security of the
network relies heavily on a defined protocol, which in turn depends on communica-
tion:

• Unreliable Transfer. Normally the packet-based routing of the sensor network is
connectionless and thus inherently unreliable. Packets may get damaged due to
channel errors or dropped at highly congested nodes. The result is lost or missing
packets. Furthermore, the unreliable wireless communication channel also results
in damaged packets. An higher channel error rate also forces the software developer
to devote resources to error handling. More importantly, if the protocol lacks the
appropriate error handling it is possible to lose critical security packets. This may
include, for example, a cryptographic key.

• Conflicts. Even if the channel is reliable, the communication may still be unreliable.
This is due to the broadcast nature of the wireless sensor network. If packets meet
in the middle of transfer, conflicts will occur and the transfer itself will fail. In a
crowded (high density) sensor network, this can be a major problem. More details
about the effect of wireless communication can be found at [3].

• Latency. Multi-hop routing, network congestion, and node processing can lead to
greater latency in the network, thus making it difficult to achieve synchronization
among sensor nodes. The synchronization issues can be critical to sensor security
where the security mechanism relies on critical event reports and cryptographic
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key distribution. Real-time communications issues in wireless sensor networks are
discussed in [208].

1.1.3.3 Unattended Operation

Depending on the function of the particular sensor network, the sensor nodes may be
left unattended for long periods of time. There are three main caveats to unattended
sensor nodes:

• Exposure to Physical Attacks. The sensor may be deployed in an environment
open to adversaries, bad weather, and so on. The likelihood that a sensor suffers a
physical attack in such an environment is therefore much higher than the typical
PCs, which are located in a secure place and mainly face attacks from a network.

• Remote Management. Remote management of a sensor network makes it virtually
impossible to detect physical tampering (i.e., through tamper-proof seals) and
physical maintenance issues (e.g., battery replacement). Perhaps the most extreme
example of this is a sensor node used for remote reconnaissance missions behind
enemy lines. In such a case, the node may not have any physical contact with
friendly forces once deployed.

• No Central Management Point. A sensor network can be a distributed network
without a central management point. This will increase the vitality of the sensor
network. However, if designed incorrectly, it will make the network organization
difficult, inefficient, and fragile.

Perhaps most importantly, the longer a sensor is left unattended the more an
adversary is likely to compromise the node.

1.2 Security Issues in Wireless Sensor Networks

In this section we report an overview of the security issues in Wireless Sensor Net-
works [175, 221]. In particular, Sect. 1.2.1 presents the typical security requirements
under the context of WSNs. Section 1.2.2 describes the main attacks in WSNs while
Sect. 1.2.3 presents some of the main countermeasures. The following chapters of
this book provide a deeper discussion of a subset of the aspects presented in this
section. Chapter 2 presents a new mechanism for the requirements of authentica-
tion and confidentiality. Chapters 3 and 4 address two specific attacks: Node capture
and node cloning, respectively. Finally, Chaps. 5 and 6 address two different security
aspects of data aggregation: Resilience to malicious node presence and node privacy,
respectively.
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1.2.1 Security Requirements and Related Issues

A sensor network is a special type of network. It shares some commonalities with a
typical computer network, but also poses unique requirements of its own as discussed
in Sect. 1.1. Therefore, we can think of the requirements of a wireless sensor network
as encompassing both the typical network demands and the unique necessities suited
solely to wireless sensor networks.

1.2.1.1 Data Confidentiality

Data confidentiality is the most important issue in network security. Every network
with any security focus will typically address this problem first. In sensor networks,
the confidentiality relates to the following [30, 173]:

• A sensor network should not leak sensor readings to its neighbours.
• In many applications nodes communicate highly sensitive data, e.g., key distrib-

ution, therefore it is extremely important to build a secure channel in a wireless
sensor network.

• Public sensor information, such as sensor identities and public keys, should also
be encrypted to some extent to protect against traffic analysis attacks.

The standard approach for keeping sensitive data secret is to encrypt the data with
a secret key that only intended receivers possess, thus achieving confidentiality.

1.2.1.2 Authentication

An adversary is not just limited to modify the data packet. It can change the whole
packet stream by injecting additional packets. So the receiver needs to ensure that
the data used in any decision-making process originates from the correct source. On
the other hand, when constructing the sensor network, authentication is necessary for
many administrative tasks (e.g., network reprogramming or controlling sensor node
duty cycle). From the above, we can see that message authentication is important
for many applications in sensor networks. Informally, data authentication allows
a receiver to verify that the data is really sent by the claimed sender. In the case
of two-party communication, data authentication can be achieved through a purely
symmetric mechanism: The sender and the receiver share a secret key to compute the
Message Authentication Code (MAC) of all communicated data. Adrian Perrig et al.
propose a key-chain distribution system for their µTESLA secure broadcast protocol
[173]. The basic idea of the µTESLA system is to achieve asymmetric cryptography
by delaying the disclosure of the symmetric keys. One limitation of µTESLA is that
some initial information must be unicast to each sensor node before authentication
of broadcast messages can begin. Liu and Ning [143, 145] propose an enhancement
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to the µTESLA system that uses broadcasting of the key chain commitments rather
than µTESLA’s unicasting technique.

1.2.1.3 Data Integrity

With the implementation of confidentiality, an adversary may be unable to steal
information. However, this does not mean the data is safe. The adversary can change
the data, so as to send the sensor network into disarray. For example, a malicious node
may add some fragments or manipulate the data within a packet. This new packet can
then be sent to the original receiver. Data loss or damage can even occur without the
presence of a malicious node due to the harsh communication environment. Thus,
data integrity ensures that any received data has not been altered in transit.

1.2.1.4 Data Freshness

Even if confidentiality and data integrity are assured, we also need to ensure the
freshness of each message. Informally, data freshness suggests that the data is recent,
and it ensures that no old messages have been replayed. This requirement is especially
important when there are shared-key strategies employed in the design. Typically
shared keys need to be changed over time. However, it takes time for new shared
keys to be propagated to the entire network. In this case, it is easy for the adversary
to use a replay attack. Also, it is easy to disrupt the normal work of the sensor, if
the sensor is unaware of the new key change time. To solve this problem a nonce, or
another time-related counter, can be added into the packet to ensure data freshness.

1.2.1.5 Availability

Adjusting the traditional encryption algorithms to fit within the wireless sensor net-
work will introduce some extra costs. Some approaches choose to modify the code
to reuse as much code as possible. Some approaches try to make use of additional
communication to achieve the same goal. What is more, some approaches force strict
limitations on the data access, or propose an unsuitable scheme (such as a central
point scheme) in order to simplify the algorithm. But all these approaches weaken
the availability of a sensor and sensor network for the following reasons:

• Additional computation consumes additional energy. If no more energy exists, the
data will no longer be available.

• Additional communication also consumes more energy. What is more, as commu-
nication increases so it does the chance of incurring a communication conflict.

• A single point of failure will be introduced if using the central point scheme. This
greatly threatens the availability of the network.
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The requirement of security not only affects the operation of the network, but also
is highly important in maintaining the availability of the whole network.

1.2.1.6 Self-Organization

A wireless sensor network is typically an ad hoc network, which requires every
sensor node to be independent and flexible enough to be self-organizing and self-
healing according to different situations. There is no fixed infrastructure available
for the purpose of network management in a sensor network. This inherent feature
brings a great challenge to wireless sensor network security as well. For example, the
dynamics of the whole network inhibits the idea of pre-installation of a shared key
between the base station and all sensors [85]. Several random key pre-distribution
schemes have been proposed in the context of symmetric encryption techniques
[37, 85, 122, 144]. In the context of applying public-key cryptography techniques
in sensor networks, an efficient mechanism for public-key distribution is necessary
as well. In the same way that distributed sensor networks must self-organize to
support multihop routing, they must also self-organize to conduct key management
and building trust relation among sensors. If self-organization is lacking in a sensor
network, the damage resulting from an attack or even the hazardous environment
may be devastating.

1.2.1.7 Time Synchronization

Most sensor network applications rely on some form of time synchronization. In
order to conserve power, an individual sensor’s radio may be turned off for periods
of time. Furthermore, sensors may wish to compute the end-to-end delay of a packet
as it travels between two pairwise sensors. A more collaborative sensor network
may require group synchronization for tracking applications, etc. In [92], the authors
propose a set of secure synchronization protocols for sender-receiver (pairwise),
multihop sender-receiver (for use when the pair of nodes are not within single-hop
range), and group synchronization.

1.2.1.8 Secure Localization

Often, the utility of a sensor network will rely on its ability to accurately and auto-
matically locate each sensor in the network. A sensor network designed to locate
faults will need accurate location information in order to pinpoint the location of a
fault. Unfortunately, an attacker can easily manipulate non-secured location infor-
mation by reporting false signal strengths, replaying signals, etc. A technique called
Verifiable Multilateration (VM) is described in [216]. In multilateration, a device’s
position is accurately computed from a series of known reference points. In [216],
authenticated ranging and distance bounding are used to ensure accurate location of a
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node. Because of distance bounding, an attacking node can only increase its claimed
distance from a reference point. However, to ensure location consistency, an attack-
ing node would also have to prove that its distance from another reference point is
shorter [216]. Since it cannot do this, a node manipulating the localization protocol
can be found. For large sensor networks, the SPINE (Secure Positioning for sensor
NEtworks) algorithm is used. It is a three-phase algorithm based upon verifiable
multilateration [216]. In [139], SeRLoc (Secure Range-Independent Localization)
is described. Its novelty is its decentralized, range-independent nature. SeRLoc uses
locators that transmit beacon information. It is assumed that the locators are trusted
and cannot be compromised. Furthermore, each locator is assumed to know its own
location. A sensor computes its location by listening for the beacon information sent
by each locator. The beacons include the locator’s location. Using all of the beacons
that a sensor node detects, a node computes an approximate location based on the
coordinates of the locators. Using a majority vote scheme, the sensor then computes
an overlapping antenna region. The final computed location is the “center of gravity”
of the overlapping antenna region [139]. All beacons transmitted by the locators are
encrypted with a shared global symmetric key that is pre-loaded to the sensor prior
to deployment. Each sensor also shares a unique symmetric key with each locator.
This key is also pre-loaded on each sensor.

1.2.2 Attacks

Sensor networks are particularly vulnerable to several types of attacks. Attacks can
be performed in a variety of ways ranging from denial of service to traffic analysis,
privacy violation, physical attacks, and so on. In this section, we review some of the
most common and studied type of attacks.

1.2.2.1 Denial of Service Attacks

Wood and Stankovic define the denial of service attack as “any event that diminishes
or eliminates a network’s capacity to perform its expected function” [230]. Denial of
service attacks assume a particular importance in wireless sensor networks, where is
not possible to afford the computational overhead necessary in implementing many
of the typical defensive strategies of traditional computing.

A standard attack on wireless sensor networks is simply to jam a node or set
of nodes. Jamming, in this case, is simply the transmission of a radio signal that
interferes with the radio frequencies being used by the sensor network [230]. The
jamming of a network can come in two forms: Constant jamming and intermittent
jamming. Constant jamming involves the complete jamming of the entire network.
No messages are able to be sent or received. If the jamming is only intermittent, then
nodes are able to exchange messages periodically, but not consistently. This too can
have a detrimental impact on the sensor network as the messages being exchanged
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between nodes may be time sensitive [230].Attacks can also be made on the link
layer itself. One possibility is that an attacker may simply intentionally violate the
communication protocol, e.g., ZigBee [120] or IEEE 801.11b (Wi-Fi) protocol, and
continually transmit messages in an attempt to generate collisions. Such collisions
would require the retransmission of any packet affected by the collision. Using this
technique it would be possible for an attacker to simply deplete a sensor node’s power
supply by forcing too many retransmissions. At the routing layer, a node may take
advantage of a multihop network by simply refusing to route messages. This could
be done intermittently or constantly with the net result being that any neighbour
who routes through the malicious node will be unable to exchange messages with,
at least, part of the network. Extensions to this technique including intentionally
routing messages to incorrect nodes (misdirection) [230]. The transport layer is also
susceptible to attack, as in the case of flooding. Flooding can be as simple as sending
many connection requests to a susceptible node. In this case, resources must be
allocated to handle the connection request. Eventually a node’s resources will be
exhausted, thus rendering the node useless. Finally, a denial of service attack can
be performed against the specific application level protocol. An example can be the
disruption of a data aggregation protocol, avoiding the collector node to collect any
aggregated data. This specific attack, together with a similar one (where the aim
of the attacker is to let the collecting node to accept a false aggregated value), are
addressed in Chap. 5.

1.2.2.2 The Sybil Attack

The sybil attack can be defined as a “malicious device illegitimately taking on mul-
tiple identities” [159]. It was originally described as an attack able to defeat the
redundancy mechanisms of distributed data storage systems in peer-to-peer net-
works [79]. In addition, the sybil attack is also effective against routing algorithms,
data aggregation, voting, fair resource allocation and foiling misbehavior detection.
Regardless of the target (voting, routing, aggregation) all of the attacking techniques
involve the use of multiple identities. For instance, in a voting scheme, the sybil
attack might utilize multiple identities to generate additional “votes”. Similarly, to
attack the routing protocol, the sybil attack would rely on a malicious node taking
on the identity of multiple nodes, and thus routing multiple paths through a single
malicious node.

1.2.2.3 Traffic Analysis Attacks

Wireless sensor networks are typically composed of many low-power sensors com-
municating with a few relatively robust and powerful base stations. It is not unusual,
therefore, for data to be gathered by the individual nodes where it is ultimately routed
to the base station. Often, for an adversary to effectively render the network useless,
the attacker can simply disable the base station. To make matters worse, Deng et al.
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demonstrate two attacks that can identify the base station in a network (with high
probability) without even understanding the contents of the packets (if the packets
are themselves encrypted) [69].

A rate monitoring attack simply makes use of the idea that nodes closest to the base
station tend to forward more packets than those farther away from the base station. An
attacker need only monitor which nodes are sending packets and follow those nodes
that are sending the most packets. In a time correlation attack, an adversary simply
generates events and monitors to whom a node sends its packets. To generate an
event, the adversary could simply generate a physical event that would be monitored
by the sensor(s) in the area (turning on a light, for instance) [69].

1.2.2.4 Node Replication Attacks

A node replication attack is similar to the sybil attack. Instead of having a node using
more identities (as for the sybil attack), the attacker here seeks to add a node to an
existing sensor network by copying (replicating) a node’s memory into the memory
of a newly created node [169]. The power of this attack is that, cloning both the ID
of the original nodes and the cryptographic material used to prove the honesty of
the corresponding ID, it is hard to detect that we are facing with a bogus node. A
node replicated in this fashion can severely disrupt a sensor network’s performance:
Packets can be corrupted or even misrouted. This can result in a disconnected net-
work, false sensor readings, etc. If an attacker can gain physical access to the entire
network it can copy cryptographic keys to the replicated sensor and can also insert
the replicated node into strategic points in the network [169]. As an example, by
inserting the replicated nodes at specific network points, the attacker could easily
manipulate a specific segment of the network.

1.2.2.5 Attacks Against Privacy

Sensor network technology promises a vast increase in automatic data collection
capabilities through efficient deployment of tiny sensor devices. While these tech-
nologies offer great benefits to users, they also exhibit significant potential for abuse.
Particularly relevant concerns are privacy problems, since sensor networks provide
increased data collection capabilities [105]. Adversaries can use even seemingly
innocuous data to derive sensitive information if they know how to correlate mul-
tiple sensor inputs. For example, in the famous “panda-hunter problem” [166], the
hunter can imply the position of pandas by monitoring the traffic. The main privacy
problem, however, is not that sensor networks enable the collection of informa-
tion. In fact, much information from sensor networks could probably be collected
through direct site surveillance. Rather, sensor networks aggravate the privacy prob-
lem because they make large volumes of information easily available through remote
access. Hence, adversaries need not be physically present to maintain surveillance.
They can gather information in a low-risk, anonymous manner. Remote access also
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allows a single adversary to monitor multiple sites simultaneously [35]. Some of the
more common attacks [35, 105] against sensor privacy are:

• Monitor and Eavesdropping. This is the most obvious attack to privacy. By listening
to the data, the adversary could easily discover the communication contents. When
the traffic conveys the control information about the sensor network configuration,
which contains potentially more detailed information than accessible through the
location server, the eavesdropping can act effectively against the privacy protection.

• Traffic Analysis. This typically combines with monitoring and eavesdropping. An
increase in the number of transmitted packets between certain nodes could signal
that a specific sensor has registered activity. Through the analysis on the traffic,
some sensors with special roles or activities can be effectively identified.

• Camouflage Adversaries. They can insert their node or compromise the nodes to
hide in the sensor network. After that these nodes can masquerade as a normal
node to attract the packets, then misroute the packets, e.g. forward the packets to
the nodes conducting the privacy analysis.

It is worth noting that, as pointed out in [171], the understanding of privacy in
wireless sensor networks is not fully mature.

1.2.2.6 Physical Attacks

Sensor networks typically operate in hostile outdoor environments. In such envi-
ronments, the tiny size of the sensors, coupled with the unattended and distributed
nature of their deployment make them highly susceptible to physical attacks, i.e.,
threats due to physical node destruction [225]. Unlike many other attacks mentioned
above, physical attacks destroy sensors permanently, so the losses are irreversible.
For instance, attackers can extract cryptographic secrets, tamper with the associated
circuitry, modify programming in the sensors, or replace them with malicious sensors
under the control of the attacker [106]. Hartung et al. showed that standard sensor
nodes, such as the MICA2 motes, can be compromised in less than one minute [109].
While these results are not surprising given that the MICA2 lacks tamper resistant
hardware protection, they provide a cautionary note about the speed of a well-trained
attacker. If an adversary compromises sensor node, then the code inside the physical
node may be modified.

1.2.3 Defensive Measures

In this section, we describe some of the main security defensive measures ranging
from key establishment, which lays the foundation for different security aspects, to
more specific measures such as those for the routing or defending against attacks on
sensor privacy.
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1.2.3.1 Key Establishment

One security aspect that deserves a great attention in wireless sensor networks is
the area of key management. Wireless sensor networks are unique (among other
embedded wireless networks) in this aspect due to their size, mobility and computa-
tional/power constraints. This, coupled also with the typical operational constraints
of WSNs, makes secure key management an absolute necessity in most wireless
sensor network designs.

In traditional network, key establishment is done using public-key protocols such
as the Diffie–Hellman protocol [77]. Most of the traditional techniques, however,
are unsuitable in low power devices such as wireless sensor networks. The problem
with asymmetric cryptography, in a wireless sensor network, is that it is typically
too computationally intensive for the individual nodes in a sensor network. While
this is true in the general case, different researchers show that it is feasible with the
right selection of algorithms [95, 107, 149, 227]. Two of the major techniques used
to implement public-key cryptosystems are RSA and Elliptic Curve Cryptography
(ECC) [200]. In [227], Watro et al. show that portions of the RSA cryptosystem
can be successfully applied to actual wireless sensors, specifically the UC Berkeley
MICA2 motes [113]. In [149], Malan et al. demonstrate a working implementation of
Diffie–Hellman based on the Elliptic Curve Discrete Logarithm Problem. In [238],
Zanin et al. propose a distributed and efficient signature protocol for ad hoc network
with tight security and architectural constraints, as WSNs are.

Despite the actual possibility of implementation of asymmetric cryptography on
sensor nodes, symmetric cryptography is the typical choice for applications that
cannot afford the computational complexity of asymmetric cryptography. Symmetric
schemes utilize a single shared key known only between the two communicating
hosts. Traditional examples of symmetric cryptographic algorithm are DES (Data
Encryption Standard), 3DES (Triple DES), RC5, and AES [200]. An analysis of
the various ciphers is presented in [136]. One major shortcoming of symmetric
cryptography is the key exchange problem: Two communicating hosts must somehow
know the shared key before they can communicate securely. As extreme cases we
have the following:

• All the nodes shares the same master symmetric key. In this case each pair of nodes
can communicate but if a node is compromised all the communications are also
compromised.

• Each pair of nodes shares a different symmetric key. As a result, each node has to
store a huge amount of keys.

To mitigate the problems related to these extreme cases different variant of random
key pre-distribution schemes have been proposed [37, 85, 122, 144].

Other authentication techniques for WSNs that make no use of pre-established
or pre-certified keys have also been proposed. As an example, in [219] the authors
propose an authentication mechanism based on the concept of integrity regions: The
entity proximity is verified through time-of-arrival ranging techniques.
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The key establishment problem is further discussed in Chap. 2, where a new pair-
wise key establishment scheme, the ECCE Protocol, is also presented.

1.2.3.2 Defending Against DoS Attacks

Since denial of service attacks are common and highly effective in WSN, defenses
must be available to combat them.

One strategy in defending against the classic jamming attack is to identify the
jammed part of the sensor network and effectively route around the unavailable
portion. Wood and Stankovic [230] describe a two-phase approach where the nodes
along the perimeter of the jammed region report their status to their neighbours who
then collaboratively define the jammed region and simply route around it. To handle
jamming at the MAC layer, nodes might utilize a MAC admission control that is rate
limiting. This would allow the network to ignore those requests designed to exhaust
the power reserves of a node. This, however, is not fool-proof as the network must be
able to handle any legitimately large traffic volume. Overcoming rogue sensors that
intentionally misroute messages can be done at the cost of redundancy. In this case,
a sending node can send the message along multiple paths in an effort to increase
the likelihood that the message will ultimately arrive at its destination. This has the
advantage of effectively dealing with nodes that may not be malicious, but rather
may have simply failed as it does not rely on a single node to route its messages.
To overcome the transport layer flooding denial of service attack, Aura et al. [13]
suggest using the client puzzles posed by Juels and Brainard [13] in an effort to
discern a node’s commitment to making the connection by utilizing some of their
own resources. Aura et al. advocate that a server should force a client to commit its
own resources first. Further, they suggest that a server should always force a client
to commit more resources up front than the server. This strategy would likely be
effective as long as the client has computational resources comparable to those of
the server.

1.2.3.3 Secure Broadcasting and Multicasting

In wireless sensor networks, a great deal of the security derives from ensuring that
only members of the broadcast or multicast group possess the required keys in order
to decrypt the broadcast or multicast messages. Because of this, most of the key-
management solutions are applicable. Here we address those schemes that have been
specifically designed to support broadcasting and multicasting in wireless sensor
networks.

In traditional network different key management schemes have been devised:
Centralized group key management protocols, decentralized management protocols,
and distributed management protocols [69]. In order to efficiently distribute keys,
one well known technique is to use a logical key tree. Such a technique falls into the
centralized group key management protocols. This technique has been extended to
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wireless sensor networks in [137, 138, 176]. While centralized solutions are often
not ideal, in the case of wireless sensor networks a centralized solution offers some
utility. Such a technique allows a more powerful base station to offload some of the
computations from the less powerful sensor nodes.

Di Pietro et al. describe a directed diffusion based multicast technique for use in
wireless sensor networks that also takes advantage of a logical key hierarchy [176].
Directed diffusion is a data-centric, energy efficient dissemination technique that has
been designed for use in wireless sensor networks [125]. Using the above mentioned
directed diffusion technique, Di Pietro et al. enhance the logical key hierarchy to
create a directed diffusion based logical key hierarchy.

Kaya et al. discuss the problem of multicast group management in [131]. In this
case, nodes are grouped based on locality and attach to a security tree. However, they
assume that nodes within the mobile network are somewhat more powerful than a
traditional sensor in a wireless sensor network.

Lazos and Poovendran describe a tree based key distribution scheme that is similar
to [176]. They suggest a routing-aware based tree where the leaf nodes are assigned
keys based on all relay nodes above them. They argue that their technique, which
takes advantage of routing information, is more energy efficient than routing schemes
that arbitrarily arrange nodes into the routing tree. They propose a greedy routing-
aware key distribution algorithm [137]. In [138], Lazos and Poovendran use a similar
technique to [137], but instead use geographic location information (e.g., GPS) rather
than routing information. In this case, however, nodes (with the help of the geographic
location system) are grouped into clusters with the observation that nodes within a
cluster will be able to reach one another with a single broadcast. Using the cluster
information, a key hierarchy is constructed as in [137].

1.2.3.4 Defending Against Attacks on Routing Protocols

As for the routing in wireless sensor networks, most current research has focused
primarily on providing the most energy efficient routing. However, there is a great
need for both secure and energy efficient routing protocols in wireless sensor net-
works against attacks such as the sinkhole, wormhole and sybil attacks [121, 128,
159]. A discussion on many of the attacks on routing protocols is given in [128].

In general, packet routing algorithms are used to exchange messages with sensor
nodes that are outside of a particular radio range. This is different than sensors that
are within radio range where packets can be transmitted using a single hop. In such
single hop networks security is still a concern, but is more accurately addressed
through secure broadcasting and multicasting. The first packet routing algorithm is
based on node identifiers similar to traditional routing. In this case, each sensor is
identified by an address and routing to/from the sensor is based on the address. This
is generally considered inefficient in sensor networks, where nodes are expected to
be addressed by their location, rather than their identifier. As a consequence of the
distaste of routing based on node identifiers, geographic routing protocols have been
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introduced [23, 129]. One common routing protocol, GPSR [129] allows nodes to
send a packet to a region, rather than a particular node. Such a routing protocol lends
itself nicely to the concept of data-centric networks. Security specific to this type of
network is discussed in [212].

As for techniques for securing the routing protocols, Deng, Han, and Mishra
describe an intrusion tolerant routing protocol, INSENS, that is designed to limit
the scope of an intruder’s destruction and route despite network intrusion without
having to identify the intruder [70]. Tanachaiwiwat, et al. present a novel technique
named TRANS (Trust Routing for Location Aware Sensor Networks) [212]. The
TRANS routing protocol is designed for use in data centric networks. It also makes
use of a loose-time synchronization asymmetric cryptographic scheme to ensure
message confidentiality. In their implementation,µTESLA is used to ensure message
authentication and confidentiality. Using µTESLA, TRANS is able to ensure that a
message is sent along a path of trusted nodes while also using location aware routing.

One particular challenge to secure routing in wireless sensor networks is that
it is very easy for a single node to disrupt the entire routing protocol by simply
disrupting the route discovery process. Papadimitratos and Haas propose a secure
route discovery protocol that guarantees, subject to several conditions, that correct
topological information will be obtained [167]. The security relies on the MAC and
an accumulation of the node identities along the route traversed by a message. In
so doing, a source can discover the sensor network topology as each node along
the route from source to destination appends its identity to the message. In order to
ensure that the message has not been tampered with, a MAC is constructed and can
be verified both at the destination and the source (for the return message from the
destination). A related problem is the concept of wormholes in a sensor network.
A wormhole attack is one in which a malicious node eavesdrops on a packet or
series of packets, tunnels them through the sensor network to another malicious
node, and then replays the packets. This can be done to misrepresent the distance
between the two colluding nodes. It can also be used to more generally disrupt
the routing protocol by misleading the neighbour discovery process [128]. Often
additional hardware, such as a directional antenna [142], is used to defend against
wormhole attacks. This, however, can be cost-prohibitive when it comes to large-
scale network deployment. Instead, Wang and Bhargava use a visualization approach
to identify wormholes [223]. They first compute a distance estimation between all
neighbour sensors, including possible existing wormholes. Using multi-dimensional
scaling, they then compute a virtual layout of the sensor network. A surface smoothing
strategy is then used to adjust for round-off errors in the multi-dimensional scaling.
Finally, the shape of the resulting virtual network is analyzed. If a wormhole exists
within the network, the shape of the virtual network will bend and curve towards
the offending nodes. Using this strategy the nodes that participate in the wormhole
can be identified and removed from the network. If a network does not contain a
wormhole, the virtual network will appear flat [223].
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1.2.3.5 Defending Against the Sybil Attack

To defend against the sybil attack, the network needs some mechanism to validate that
a particular identity is the only identity being held by a given physical node [159].
Newsome et al. describe two methods to validate identities, direct validation and
indirect validation. In direct validation a trusted node directly tests whether the joining
identity is valid. In indirect validation, another trusted node is allowed to vouch for
(or against) the validity of a joining node [159]. Newsome et al. primarily describe
direct validation techniques, including a radio resource test. In the radio test, a node
assigns each of its neighbours a different channel on which to communicate. The node
then randomly chooses a channel and listens. If the node detects a transmission on
the channel it is assumed that the node transmitting on the channel is a physical node.
Similarly, if the node does not detect a transmission on the specified channel, the node
assumes that the identity assigned to the channel is not a physical identity. Another
technique to defend against the sybil attack is to use random key pre-distribution
techniques. The idea behind this technique is that with a limited number of keys on
a keyring, a node that randomly generates identities will not possess enough keys
to take on multiple identities and thus will be unable to exchange messages on the
network due to the fact that the invalid identity will be unable to encrypt or decrypt
messages.

1.2.3.6 Detecting Node Replication Attacks

The detection of node replication attacks becomes a particular challenge in WSN,
compared to the traditional network. In particular, the detection should be done in
a way as distributed as possible. Researcher only recently started addressing this
problem [199, 245]. In 2005 Parno et al. proposed two algorithms for the distributed
detection of the clone attack [169]. As further discussed in Chap. 4, dedicated to the
clone detection, the Parno et al. solution presents many drawbacks. In Sect. 4.2 we
present an overview of the other proposals for solving this problem. Furthermore, in
the same chapter we present a new efficient and distributed detection protocol, and
we compare it with the other solutions.

1.2.3.7 Defending Against Attacks on Sensor Privacy

Regarding the attacks on privacy mentioned in Sect. 1.2.2, there exist effective tech-
niques to counter many of the attacks levied against a sensor. Here we describe
several common techniques [105].

Location information that is too precise can enable the identification of a user,
or make the continued tracking of movements feasible. This is a threat to privacy.
Anonymity mechanisms depersonalize the data before the data is released, which
present an alternative to privacy policy-based access control. Researchers have dis-
cussed several approaches using anonymity mechanisms, for example, Gruteser and
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Grunwald [103] analyze the feasibility of anonymizing location information for
location-based services in an automotive telematics environment; Beresford and
Stajano [18] independently evaluate anonymity techniques for an indoor location
system based on the Active Bat. Total anonymity is a difficult problem given the lack
of knowledge concerning a node’s location. Therefore, a tradeoff is required between
anonymity and the need for public information when solving the privacy problem.
In [104, 105, 181, 205], four main approaches are proposed:

• Decentralize Sensitive Data. The basic idea of this approach is to distribute the
sensed location data through a spanning tree, so that no single node holds a com-
plete view of the original data.

• Secure Communication Channel. Using secure communication protocols, such as
SPINS [172], the eavesdropping and active attacks can be prevented.

• Change Data Traffic. De-patterning the data transmissions can protect against
traffic analysis. For example, inserting some bogus data can intensively change
the traffic pattern when needed.

• Node Mobility. Making the sensor movable can be effective in defending privacy,
especially the location. For example, the Cricket system [181] is a location-support
system for in-building, mobile, location dependent applications. It allows applica-
tions running on mobile and static nodes to learn their physical location by using
listeners that hear and analyze information from beacons spread throughout the
building. Thus the location sensors can be placed on the mobile device as opposed
to the building infrastructure, and the location information is not disclosed during
the position determination process and the data subject can choose the parties to
which the information should be transmitted.

Policy-based approaches are currently a hot approach to address the privacy prob-
lem. The access control decisions and authentications are made based on the spec-
ifications of the privacy policies. In [155], Molnar and Wagner present the concept
of private authentication, and give a general scheme for building private authenti-
cation with work logarithmic in the number of tags in (but not limited by) RFID
(Radio Frequency IDentification) applications. In the automotive telematics domain,
Duri et al. [82] propose a policy-based framework for protecting sensor informa-
tion, where an in-car computer can act as a trusted agent. Snekkenes [206] presents
advanced concepts for specifying policies in the context of a mobile phone net-
work. These concepts enable access control based on criteria such as time of the
request, location, speed, and identity of the located object. Myles and colleagues
[157] describe an architecture for a centralized location server that controls access
from client applications through a set of validator modules that check XML-encoded
application privacy policies. Hengartner and Steenkiste [152] point out that access
control decisions can be governed by either room or user policies. The room policy
specifies who is permitted to find out about the people currently in a room, while the
user policy states who is allowed to get location information about another user.

Ozturk et al. propose anti-traffic analysis mechanisms to prevent an outside
attacker from tracking the location of a data source, since that information will
release the location of sensed objects [166]. The randomized data routing mechanism
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and phantom traffic generation mechanism are used to disguise the real data traffic,
so that it is difficult for an adversary to track the source of data by analyzing network
traffic.

Similar mechanisms are also used to disguise an adversary from finding the
location of a base station by analyzing network traffic [107]. One key problem for
these anti-traffic analysis mechanisms is the energy cost incurred by anonymization.
Another strategy used to mask location information from eavesdroppers is presented
in [231]. They propose a two way greedy random-walk strategy GROW (Greedy
Random Walk).

Threats to node privacy can also come from specific application protocols such
as the data aggregation protocol. Threat to privacy in data aggregation is discussed
in Chap. 6. In the same chapter a new privacy-preserving aggregation protocol is
presented. To the best of our knowledge this is the first aggregation protocol that
preserves the privacy of the node (i) against other nodes and (ii) against the base
station that collects the aggregated data.

1.2.3.8 Intrusion Detection

We now turn to the area of intrusion detection in wireless sensor networks. It is impor-
tant to note that in this section we cover intrusion detection as it applies to detecting
attacks on the sensor network itself, rather than the popular intrusion detection appli-
cation being researched for such uses as perimeter monitoring, and so forth. With that
in mind, we note that intrusion detection is not necessarily a category into itself, but
rather has its place in nearly every aspect of sensor network security. Many secure
routing schemes attempt to identify network intruders, and key establishment tech-
niques are used in part to prevent intruders from overhearing network data. Despite
the necessity of effective intrusion detection schemes for wireless sensor networks, a
good solution has not yet been devised. Of course, this is due largely to the resource
constraints present in wireless sensor networks. However, resource constraints are
not the only reason. Another problem is that researchers have not yet been able to
develop methods of reliably detecting intruders in sensor networks. As such, it is
difficult to define characteristics (or signatures) that are specific to a network intru-
sion as opposed to the normal network traffic that might occur as the result of normal
network operations or malfunctions resulting from the environment change.

As for intrusion detection, it has traditionally focused on two major categories:
AID (Anomaly based Intrusion Detection), and MID (Misuse Intrusion Detection)
[161]. Anomaly based intrusion detection relies on the assumption that intruders will
demonstrate abnormal behavior relative to the legitimate nodes. Thus, the object of
anomaly based detection is to detect intrusion based on unusual system behavior.
In systems based on misuse intrusion detection, the system maintains a database of
intrusion signatures. Using these signatures, the system can easily detect intrusions
on the network.

http://dx.doi.org/10.1007/978-1-4939-3460-7_6
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Typically a wireless sensor network uses cryptography to secure itself against
unauthorized external nodes gaining entry into the network. But cryptography can
only protect the network against the external nodes and does little to thwart malicious
nodes that already possess one or more keys. Brutch and Ko classify IDS (Intrusion
Detection Systems) into two categories: Host-based and network-based. They fur-
ther classify intrusion detection schemes into those that are signature based, anomaly
based, and specification based [27]. Simply put, a host based IDS system operates
on operating systems audit trails, system call audit trails, logs, and so on. A network
based IDS, on the other hand, operates entirely on packets that have been captured
from the network. A signature based IDS simply monitors the network for specific
pre-determined signatures that are indicative of an intrusion. In an anomaly based
scheme, a standard behavior is defined and any deviation from that behavior triggers
the intrusion detection system. Finally, a specification based scheme defines a set of
constraints that are indicative of a program’s or protocol’s correct operation. Brutch
and Ko describe a series of attacks against several aspects of a wireless sensor net-
work and also introduce three architectures for intrusion detection in wireless sensor
networks. The first is termed the stand-alone architecture. In this case, as its name
implies, each node functions as an independent intrusion detection system and is
responsible for detecting attacks directed toward itself. Nodes do not cooperate in
any way. The second architecture is the distributed and cooperative architecture. In
this case, an intrusion detection agent still resides on each node (as in the case of the
stand-alone architecture) and nodes are still responsible for detecting attacks against
themselves (local attacks), but also cooperate to share information in order to detect
global intrusion attempts. The third technique proposed by Brutch and Ko is called
the hierarchical architecture. These architectures are suitable for multi-layered wire-
less sensor networks. In this case, Brutch and Ko describe a multi-layered network as
one in which the network is divided into clusters with cluster-head nodes responsible
for routing within the cluster. The multi-layered network is used primarily for event
correlation. Albers et al. describe an intrusion detection architecture based on the
implementation of a LIDS (Local Intrusion Detection System) at each node [4]. In
order to extend each node’s “vision” of the network, Albers suggests that the LIDS
existing within the network should collaborate with one another. All LIDS within
the network will exchange two types of data, security data and intrusion alerts. The
security data is simply used to exchange information with other network hosts. The
intrusion alerts, however, are used to inform other LIDS of a locally detected intrusion
[4]. Albers et al. propose to use SNMP auditing as the audit source for each LIDS.
Rather than simply sending the SNMP messages over an unreliable UDP connection,
it is suggested that mobile agents will be responsible for message transporting. In
order to detect an intrusion, Albers suggests using either misuse or anomaly detec-
tion. When a LIDS detects an intrusion, it should communicate this intrusion to other
LIDS on the network. Possible responses include forcing the potential intruder to re-
authenticate, or to simply ignore the suspicious node when performing cooperative
actions [4]. Although this approach can not be applied to wireless sensor network
directly, it is an interesting idea that explores the local information only, which is the
key to any intrusion detection techniques in sensor network [86]. In summary, we
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envision that the intrusion detection in wireless sensors remains an open problem,
and more study is needed. Taking the pre-deployment information, such as sensing
data distribution, into consideration is a possible direction.

1.2.3.9 Secure Data Aggregation

Due to the computational constraints of sensors, a single node is typically responsible
for only a small part of the overall data. Because of this, a query of the wireless
sensor network is likely to return a great deal of raw data, much of which is not of
interest to the individual performing the query. Furthermore, each node sending its
data independently to the collecting node would result in a huge energy consumption.
Thus, it is advantageous for the raw data to first be processed so that more meaningful
data can be gleaned from the network while saving nodes’ energy.

Data aggregation techniques come in help. However, such techniques are par-
ticularly vulnerable to attacks as a single node is used to aggregate multiple data.
Because of this, secure information aggregation techniques are needed in wireless
sensor networks where one or more nodes may be malicious.

Current secure data aggregation protocols are discussed in Chap. 5. In the same
chapter, we propose two new algorithms for secure Median computation.

1.2.3.10 Defending Against Physical Attacks

Physical attacks, as we argued in Sect. 1.2.2, pose a great threat to wireless sensor
networks, because of its unattended feature and limited resources. Sensor nodes may
be equipped with physical hardware to enhance protection against various attacks.
For example, to protect against tampering with the sensors, one defense involves
tamper-proofing the node’s physical package [230]. In [9, 10, 132], the authors focus
on building tamper-resistant hardware in order to make the actual data and memory
contents on the sensor chip inaccessible to attack. Another way is to employ special
software and hardware outside the sensor to detect physical tampering. As the price
of the hardware itself gets cheaper, tamper-resistant hardware may become more
appropriate in a variety of sensor network deployments. One possible approach to
protect the sensors from physical attacks is self-termination. The basic idea is that
the sensor kills itself, including destroy all data and keys, when it senses a possible
attack. This is particularly feasible in the large scale wireless sensor network which
has enough redundancy of information, and the cost of a sensor is much cheaper
than the lost of being broken (attacked). The key of this approach is detecting the
physical attack. A simple solution is periodically conducting neighborhood checking
in static deployment. For mobile sensor networks, this is still an open problem. In
[9, 10, 132], the authors describe techniques for extracting protected software and
data from smart-card processors. This includes manual microprobing, laser cutting,
focused ion-beam manipulation, glitch attacks, and power analysis, most of which
are also possible physical attacks on the sensor. Based on an analysis of these attacks,
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Andersen et al. give examples of low-cost protection countermeasures that make such
attacks considerably more difficult [10].

For the deployment of components outside the sensor Sastry et al. [198] intro-
duce the concept of secure location verification and propose a secure localization
scheme, the ECHO protocol, to make sure the location claims are legitimate. In their
work, the security rests on physical properties of sound and RF signal propagation.
An adversary cannot cheat and claim a shorter distance by starting the ultra-sound
response early, because it will not have the nonce. Hu et al. [142] introduce direc-
tional antennas to defend against wormhole attacks. In [224] the authors study the
modeling and defense of sensor networks against Search-based Physical Attacks.
They define a search-based physical attack model, where the attacker walks through
the sensor network using signal detecting equipment to locate active sensors, and
then destroys them. In a prior work, they have identified and modeled blind physical
attacks [223]. The defense algorithm is executed by individual sensors in two phases:
In the first phase, sensors detect the attacker and send out attack notification messages
to other sensors; in the second phase, the recipient sensors of the notification message
schedule their states to switch. A mechanism named SWATT to verify whether the
memory of a sensor node has been changed [200] is proposed by Seshadri et al.

The physical capture of a node also implies different consequences, e.g. threat-
ening the communication confidentiality or the data survivability [177]. In Chap. 3,
the problem of the physical capture of a node is discussed; A new approach for the
node capture detection exploiting the node mobility is also proposed.

1.2.3.11 Trust Management

Trust is an old but important issue in any networked environment, whether social
networking or computer networking. Trust can solve some problems beyond the
power of the traditional cryptographic security. For example, judging the quality of
the sensor nodes and the quality of their services, and providing the corresponding
access control, e.g., does the data aggregator perform the aggregation correctly? Does
the forwarder send out the packet in a timely fashion? These questions are important,
but difficult, if not impossible, to answer using existing security mechanisms. We
argue that trust management is the key to build trusted, dependable wireless sensor
network applications. The trust issue is emerging as sensor networks thrive. However,
it is not easy to build a good trust model within a sensor network given the resource
limits. Furthermore, in order to keep the sensor nodes independent, we should not
assume there is a trust among sensors in advance.

According to the small world principle in the context of social networks and
peer-to-peer computing [162], one can employ a path-finder to find paths from a
source node to a designated target node efficiently. Based on this observation, Zhu
et al. [246] provide a practical approach to compute trust in wireless networks. They
consider individual mobile devices as a node of a delegation graph G. They map
a delegation path from the source node, S, to the target node, T, into an edge in
the correspondent transitive closure of the graph G, from which the trust value is
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computed. In this approach, an undirected transitive signature scheme is used within
the authenticated transitive graphs. In [233], a trust evaluation based security solution
is proposed to provide effective security decisions on data protection, secure routing,
and other network activities. Logical and computational trust analysis and evaluation
are deployed among network nodes. Each node’s evaluation of trust on other nodes is
based on serious study and inference from trust factors such as experience statistics,
data value, intrusion detection results, and references to other nodes, as well as
a node owner’s preference and policy. Ren et al. describe a technique to establish
sufficient trust relationships in ad hoc networks with minimum local storage capacity
requirements on the mobile nodes [185]. The authors propose a probabilistic solution
based on a distributed trust model. A secret dealer is introduced only in the system
bootstrapping phase to complement the assumption in trust initialization. With the
help of the secret dealer, much shorter and more robust trust chains are able to be
constructed with high probability. A fully self-organized trust establishment approach
is then adopted to conform to the dynamic membership changes. But the shortcoming
of this approach for the common sensor network is that it is not reasonable to introduce
a dealer in a totally decentralized ad hoc environment.

The approaches described above are proposed in the context of ad hoc network.
For the wireless sensor network, they can not be employed directly because of the
capacity of the sensor. Some researchers specifically focus on the sensor networks
that have been proposed recently. Ganeriwal and Srivastava propose a reputation-
based framework for high integrity sensor networks [93]. Within this framework
the authors employ a beta reputation system for reputation representation, updates,
and integration. Tanachaiwiwat et al. [213] propose a mechanism of location-centric
isolation of misbehavior and trust routing in sensor networks. In their trust model, the
trustworthiness value is derived from the capacity of the cryptography, availability
and packet forwarding. If the trust value is below a specific trust threshold, then this
location is considered insecure and is avoided when forwarding packets. Liang and
Shi focus on trust model developing and the analysis of rating aggregation algorithms
in the open untrusted environment [140, 141]. Their findings and observations can
be applied to wireless sensor networks directly, although the work is performed in
the context of peer-to-peer settings. They propose a personalized trust model called
PET in [141], which supports the customization of trustworthiness from the view of
individual sensors. They find that the rating is not always helpful given the limitations
of other factors. In the open environment with high dynamics the rating performance
degrades and can produce negative effects. They observe that the storage space for
saving self-knowledge is a potential bottleneck to the effect of ratings. Their recent
simulation results show that it is better to treat the ratings from different evaluators
equally given the dynamics of the open environment, and simply averaging ratings
is appropriate considering the simplicity of the algorithm design and the low cost
in running the system. They argue that the most important issue for building a trust
model is adjusting parameters according to environment changes. These suggestions
are quite useful for building trust models in the wireless sensor network given their
simplicity and cost savings.



26 1 Introduction

1.3 Book Contributions

The contribution of this book can be summarized in the following main points.

Contribution 1: Pair-wise key. The first research problem addressed is the node pair-
wise authentication and the node pair-wise communication confidentiality. These
are some of the fundamental challenges for this type of network. In fact, the con-
strained resources of a node make it difficult to solve this problem: Well known
solutions adopted for wired networks cannot be used in WSN environment. Fur-
thermore, as also shown later in this book, confidentiality and authentication
are basic building blocks to face different security threats. We explored the var-
ious key distribution schemes proposed in the literature. They can be mainly
classified as deterministic or probabilistic. Once we understood the limitations
of the deterministic approaches we concentrated our efforts on the probabilistic
schemes. Finally, we designed a new probabilistic solution, the Enhanced Coop-
erative Channel Establishment (ECCE) Protocol. We compared the performance
of ECCE with the most known concurrent schemes via both analysis and simula-
tions. The results showed that the ECCE Protocol presents higher probability for
any pair of nodes to establish a secure channel and a higher resilience rate (i.e. the
attacker needs a bigger effort to corrupt the channel). A preliminary version of
the ECCE Protocol has been published in the Second IEEE International Work-
shop on Sensor Networks and Systems for Pervasive Computing (PerSeNS 2006)
[46]. The final version of the protocol has been published in the journal Ad Hoc
Networks (Elsevier) [47]. This contribution is described in Chap. 2.

Contribution 2: Capture Detection Protocols. Once studied the problem of authenti-
cation and communication confidentiality between nodes on the base of node’s
pre-deployed secret material, the next step has been to face the following sce-
nario. The attacker physically captures a sensor node and tampers with it to read
the keys it stores in its memory. In this way the attacker is able to know some
keys that can be used to secure the communications in the network. This implies a
threat to the authentication and the communication confidentiality. Furthermore,
once captured a node, an attacker can perform other types of attacks. An example
is the clone attack. That is, the attacker physically captures a network node and
makes several clones of the honest node. Eventually, the attacker can maliciously
reprogram the cloned nodes while keeping the pre-deployed secret material that
the nodes can use to prove that their identities are “honest”. So, the attacker can
use the cloned nodes to perform malicious activities.
The node capture is the first step for an attacker to perform several other attacks
that are crucial for WSNs. If we were able to detect the physical capture of a node
we would be also able to avoid any subsequent attack such as the clone attack
or the confidentiality violation. So, being able to deal with the capture detection
means early detection and prevention of many important attacks.
Given the importance of this problem we focused our attention over the detec-
tion of the physical capture of a node. The literature did non present any work in
the context of sensor networks. Our approach has been to leverage the network
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mobility in order for the nodes to trace the presence of the other nodes. The seminal
idea has been published in the First ACM Conference on Wireless Network Secu-
rity (WiSec 2008) [53]. In this framework we further proposed two protocols. We
analysed the protocols and performed an extensive set of simulations, comparing
the proposed protocols with a naïve solution that does not leverage the network
mobility (i.e. it just exploits the classic message exchange). The results showed
that the newly proposed solutions can be practically implemented in sensor net-
works and under certain mobility conditions (e.g. a certain average node speed)
they perform better than solutions that do not leverage the network mobility. The
resulting work can be found in [49]. This contribution is described in Chap. 3.

Contribution 3: Clone Detection Protocols. The proposed protocols for the capture
attack detection present an increasing energy overhead while we require a perfor-
mance improvement (i.e. early detection). If a node capture is not detected there
can be several outcomes. In particular, we concentrated on the node cloning attack
that seemed to be a new investigation area. In fact, when we started working on
this problem there was just one theoretical solution [169]. We started studying this
solution that actually resulted to be non practical for WSNs, as we investigated
in our first work on this topic [52]. Following the stated properties that a distrib-
uted clone detection protocol should possess [52] we designed a Randomized,
Efficient and Distributed (RED) protocol for the detection of the node replication
attack. The work has been published at the Eighth ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc 2007) [48]. A detailed
analysis of the RED Protocol can be found in [55]. Finally, we also proposed a
clone detection protocol that is particularly suitable for networks where a key pre-
distribution mechanism is already implemented. This protocol has been published
in the journal Information Fusion (Elsevier) [54]. This contribution is described
in Chap. 4.

Contribution 4: Secure Aggregation. All the protocols previously discussed present
a trade-off between effectiveness and efficiency. As an example, an early detection
of a capture detection or a clone detection attack means a higher cost of the pro-
tocol in terms of energy consumptions. Because of the constrained resources of a
WSN, the protocol energy consumption becomes prohibitive when it is required
to reach given performances. That is, after this threshold (corresponding to some
protocol’s parameters setting) the attacker has some possibilities to succeed. This
makes worth investigating the consequences of the attacker presence from a dif-
ferent point of view. The question becomes: Can a WSN service be resilient to a
possible presence of an attacker? We tried to answer this question in the context
of a typical service of WSN: Data aggregation. Assume a WSN is deployed to
sense some environmental data (temperature, sound, etc.). Due to the constrained
resources of WSNs we cannot imagine that each node sends its own sensed data
to a collecting point, e.g. the Base Station (BS). To avoid this waste of energy the
data aggregation comes in our help: Data are aggregated along the path to the BS,
accordingly to the query. As an example, imagine the BS asks for the maximum
value of temperature sensed within the network. Using a data aggregation protocol
only the maximum value encountered during the aggregation will be forwarded.
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The security problems of data aggregation mechanisms have been studied during
the period the candidate spent as a Visiting Researcher at the Center for Secure
Information Systems (CSIS) at George Mason University. In particular, the first
problem addressed has been the secure computation of the Median aggregate.
The result of this work has been published at the Fourh International Conference
on Security and Privacy in Communication Networks (SecureComm 2008) [190].
This contribution is described in Chap. 4.

Contribution 5: Privacy in Data Aggregation. Another contribution on data aggrega-
tion in sensor networks, also given during the period at CSIS at George Mason
University, is related to the privacy of a single node during the data aggregation. In
many sensor network applications the data sensed by a single node can be related
to a user (or a number of users): Information on patients health in hospital, water
consumption in a city, etc. Then, in order to protect the people’s privacy the data
aggregation protocol that works in this type of context must protect the privacy of
each single node. In particular, it should not be possible to relate a given sensed
data to a given sensor node. We presented the first data aggregation protocol that
guarantees the privacy of a node not only against the other nodes but also against
the Base Station, which is the entity that eventually collects the aggregated data.
Results are summarized in [60]. This contribution is described in Chap. 5.

1.4 Book Overview

In this book we discuss five fundamental mechanisms to build secure WSN. In
particular, we start from the security issues related to a single node, that is (i) we deal
with the authentication and communication confidentiality with other nodes. Then,
we focus on network security, providing solutions for (ii) the node capture attack and
(iii) the clone attack. Finally, we address security for a common WSN service: The
data aggregation, providing solutions that (iv) are resilient to the attacker presence;
and, (v) protect the privacy of the nodes.

The rest of this book is organized as follows.
Chapter 2 presents the ECCE Protocol: A new cooperative pair-wise key-

establishment protocol for WSNs. Analysis and extensive simulations show that
the proposed protocol presents an higher probability for two nodes to build a secure
channel, i.e. the capability for these nodes to exchange data in a confidential way.
Furthermore, the proposed protocol is shown to be more resilient to attacks: An
attacker has to capture an higher number of nodes, when compared to competing
protocols, in order to be able to threat the security of a given channel.

Chapter 3 introduces a new framework for the detection of a node physical capture
in a WSN. In particular, we present a new approach for the detection of the capture
attack considering a mobile WSN. The new approach is completely distributed and it
is based on nodes mobility and nodes cooperation. The study of this approach shows
that it is feasible for WSNs. Furthermore, we show that the proposed approach
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performs better compared to a classical approach, that we consider as a benchmark,
based just on multi-hop message exchange between network nodes.

Chapter 4 studies a further security level assuming the attacker managed to phys-
ically capture a network node without being detected. In this chapter we focus on
the detection of a clone attack: i.e. the attacker, after capturing a node, makes clones
out of the honest node and uses the clones, re-inserted in the network, to perform
malicious activities.

Chapter 5 investigates the security of data aggregation—a typical WSN service.
In particular, we present a secure protocol for the computation of the Median of all
of the nodes’ sensed values. To the best of our knowledge this is the first secure
protocol for the Median computation in WSNs.

Chapter 6 proposes a privacy-preserving aggregation protocol. Here we assume
the attacker’s aim is to violate the privacy of the data sensed by a single node (i.e.
the attacker wants to correlate a data to a given node). To the best of our knowledge
this is the first privacy-preserving data aggregation protocol that guarantees the node
privacy not only against other nodes but also against the Base Station that wants to
collect the aggregated data.

Chapter 7 concludes the book and outlines some directions that can be followed
to continue researching the exposed problems.
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Chapter 2
Pair-Wise Key Establishment

In this chapter we start addressing the security ofWireless Sensor Networks (WSNs)
from the point of view which is closest to the single node: We consider the authenti-
cation and the confidentiality of the communications with other nodes. In particular,
this chapter presents the ECCE Protocol, a new distributed, probabilistic, cooper-
ative protocol to establish a secure pair-wise communication channel between any
pair of sensors in a WSN. The main contribution of the ECCE Protocol is: To allow
the set up of a secure channel between two sensors (principals) that do not share
any pre-deployed key. This feature is obtained involving a set of sensors (cooper-
ators) in the channel establishment protocol to provide probabilistic authentication
of the principals as well as the cooperators. In particular, the probability for the
attacker to break authentication check decreases exponentially with the number of
cooperators involved. We provide analytical analysis and extensive simulations of
the ECCE, which show that the proposed solution increases both the probability of a
secure channel set up and the probability of channel resilience with respect to other
protocols.

2.1 Introduction

WSNs are expected to be the basic building block of pervasive computing environ-
ments, hence establishing secure pair-wise communications could be useful formany
applications. In particular, it is a pre-requisite for the implementation of secure rout-
ing, and can be useful for secure group communications. Further, pair-wise secure
communication allow in-network processing [247], or facilitate the establishment
of a cluster key, hence enabling passive participation, in which a sensor node can
take certain actions based on overheard messages. It was pointed out in [3, 36, 173],
that asymmetric cryptography such as RSA or Elliptic Curve Cryptography (ECC)
is unsuitable for most sensor architectures due to high energy consumption and
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increased code storage requirements. However, it is worth noticing that evolution in
technology allows to sparingly use asymmetric cryptography for a certain class of
WSN [222]. For instance, in [169] the authors devise a protocol that, with the seldom
use of ECC, thwarts the replication attack [79, 159]. However, it seems reasonable
that there will be always some classes of WSNs in which asymmetric cryptography
would rise an unfeasible cost due to either energy consumption or memory con-
straints. Indeed, as for energy consumption, in a mobile WSN if we have a secure
key establishment protocol based on ECC whenever two sensors want to agree on a
shared key for the first time, this would put high requirements on battery consump-
tion. As for memory, it seems unfeasible that any node could host the public keys of
all the other nodes in the network (for instance, theMicamote is equippedwith a 8 bit
4 MHz processor and has 4 KB of RAM and 128 KB of flash RAM only). Note that
the constraint on memory stands even in a static WSN. Hence, while solutions that
intend to address specific problems can directly benefit of the sparingly use of ECC
[169], building communication channel based on symmetric algorithms, which are
three order of magnitude more efficient then ECC [222], is still an attractive research
field [36, 197].

This chapter presents the ECCEProtocol, a new protocol to establish a secure pair-
wise communication channel between any pair of sensors in the WSN. The ECCE
Protocol can be classified as probabilistic and cooperative. Unlike other protocols for
channel establishment, ECCE allows to establish a secure channel between sensors
that do not share any key, involving a set of cooperating sensors (cooperators) which
are not required to share a key with both principals. The same feature is not present in
actual protocols such asMultipathKeyReinforcement [37] andCooperative [75]. The
overhead required is limited and it is sustained just once during the sensor life-time.
ECCE shows better performance in channel existence and channel resilience than
existing protocols. The Protocol also guarantees implicit and probabilistic mutual
authentication of principals and cooperators without any additional overhead and
without the presence of a base station. Further, the proposed protocol could be used
also between sensor that already share some secret keys to increase the resilience of
these shared keys. The proposed protocol is also adaptive to the required security
level: To achieve an higher level of security, it suffices to involve an higher number
of cooperators in the channel set-up. Finally, the protocol allows to trade off the
memory required to store pre-deployed keys with cooperators. In particular, it is
possible to set the number of cooperators in order to have a reduced key ring that
provides the same level of security and the same probability of channel existence of
solutions that involve no cooperators but a large key ring size. For example, choosing
a pool of size 1,000, a key ring of size 12, and involving 8 cooperators, provides the
same probability of channel existence of a scenario in which every sensor has 20
pre-deployed keys but there are no cooperators. As for resiliency, with a pool of size
10,000, a key ring of size 100 and 8 cooperating sensors, the attacker is required to
capture 110 sensors to corrupt a channel, while with the same parameters, but with
no cooperators, the attacker has to corrupt only 75 sensors to corrupt the channel.
Note that reducing the key ring size provides the possibility for sensors to store
the cooperative keys set-up with the ECCE Protocol. Compared to several recently
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proposed approaches such as [11, 66, 196] which fall in different categories of key
establishment schemes, our analytical and experimental results show that the ECCE
Protocol has better performance than the other protocols as for channel existence
and channel resiliency to the attacker.

Organization

The remainder of this chapter is organized as follows. In Sect. 2.2, we review the
current contributions in the field. In Sect. 2.3, we report some preliminaries and
define our system assumptions. In Sect. 2.4, we describe the ECCE Protocol, while
in Sect. 2.5, we analyze the probability to establish a secure channel and the resilience
of the established channel.

2.2 Related Work

Some research focus on key establishment protocol for WSN based on centralized
solution. Examples of centralized protocols include [73, 143, 173]. Centralized pro-
tocols assume the presence of a Base Station (BS), which takes part in the process of
establishing a pair-wise key between pairs of sensors. This kind of solution has some
drawbacks, for instance the energy consumption experienced by the nodes close to
the BS, and the presence of a single point of failure. Other research focus on distrib-
uted solution for pair-wise keys establishment. To better refine this classification, we
can distinguish between deterministic and probabilistic solutions. As for determin-
istic solutions one can see [36, 144, 197]. However, each of these solutions suffer
of a specific type of problem. In [144], the attacker only needs to corrupt a constant
number of nodes to disrupt the confidentiality of the whole network. In [197], the
authors recognise that given a fixed key-ring size, this limits the number of sensors in
the network. Finally, in [36], each sensor is required to store O(

√
N) keys; moreover,

the number of sensors that belong to the same WSN (that is N) must be known at
design time. As for probabilistic solutions, the idea of probabilistic key sharing for
WSN was firstly introduced in [85]. In the proposed solution, each of the N sensors
of the WSN is assigned K symmetric encryption keys randomly selected without
replacement from a common Pool of P keys (key pre-deployment phase). When two
sensors need to communicate securely, they must first find out which keys (if any)
of the Pool they share (shared-key discovery phase). Then, they compute a common
key as a function of the shared keys (pairwise-key establishment phase). This latter
key is used to secure the channel by using a symmetric key encryption algorithm.
Some solutions based on pseudo-random key assignment are presented in [37, 74,
75, 80, 144, 249]. However, these solutions show limited resiliency to tampering, as
highlighted in [74, 75], or just require cooperating nodes to share a key with both
principals. For the shared-key discovery phase different mechanisms have been pro-
posed. In [85], the challenge-response and key index notification are proposed. With
K keys stored in each sensor, the challenge-response requires sending and receiving
K messages, to perform K encryption and, in the worst case, K2 decryption. With the
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pseudo-random key index transformation proposed in [249], no message exchange
are needed between sensors that want to establish a secure channel. Moreover, the
attacker can compute the IDs of the keys stored by each sensor just acquiring the
sensor ID; this solution shows a weakness similar to that in [85] and above exposed.
The problem related to the information leakage of the keys’ ID is solved in [74, 75].
Here the authors introduce amechanism (ESP) that requires nomessage exchange for
the shared-key discovery phase and reveals to the attacker no information about the
keys it does not hold yet. Further, ESP provides probabilistic node authentication: A
sensor can prove its identity by proving knowledge of the keys it is supposed to hold.
The Efficient and Secure Pre-deployment (ESP) scheme works as follows. Consider
a sensor a. For every key kP

i of the pool, compute z = fy(a ‖ kP
i ), where fy is a

pseudo-random function, that is an efficient (deterministic) algorithm which given
an h-bit seed, y, and an h-bit argument, x, returns an h-bit string, denoted fy(x), so
that it is infeasible to distinguish the responses of fy, for a uniformly chosen y, from
the responses of a truly random function. Then, put kP

i into the key ring of a, if and
only if z ≡ 0 mod (|P|/K). ESP supports a very efficient key discovery procedure.
Consider a sensor b that is willing to know which keys it shares with sensor a. For
every key kb

j in the key ring of b sensor b computes z = fy(a ‖ kb
j ). Then, by testing

z ≡ 0 mod (|P|/K), b discovers whether sensor a also has key kb
j or not. Indeed,

whoever already knows key kP
i is the only one who can know whether kP

i is in the
key ring of a or not. This is computationally impossible for all other entities, since
fy, being a pseudo-random function, is also one-way and thus hard to invert [99].For
this reason, from the ID of a node an attacker cannot acquire neither the keys stored
by this node, nor the corresponding key indexes: fy(x) is applied to the actual value
of the key, not to the corresponding key index. This kind of ID-based security could
be thwarted only with the random capture of a large number of nodes (as shown later
in this chapter) or via a node replication attack [52]. Finally, it is important to note
that another property a WSN is required to enforce is connectivity. The connectivity
problem was initially addressed in [85]; however, Ganeriwal et al. [76] revised and
extended the model of connectivity in WSN.

2.3 Preliminaries and Assumptions

This section reports the notation and the assumptions that will be used in the follow-
ing. For clarity, in Table2.1 we list the symbols used in the chapter.

2.3.1 Security Requirements and Threat Model

We assume the following working hypothesis:

• Communication infrastructure:We assume an underlying routingmechanism such
that any node can send a message (leveraging multi-hop) to any other node in the
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Table 2.1 Pair-wise key
establishment: Notations

Symbol Meaning

N Number of sensors in the WSN

P Size of the pool from which the keys
are drawn

K Number of keys assigned to each
sensor (key-ring size)

C Set of cooperating sensors

a, b Principals

ci ith cooperating sensor, where
1 ≤ i ≤ |C |

w Number of corrupted sensor in the
WSN

ka
i ith key assigned to sensor a, where

1 < i < k

kh,l Key between sensors h and l

Kh,l Key computed with Direct Protocol
[75], if possible, string of 0s otherwise

KC
h,l Key computed with Cooperative

protocol [75]

K̄C
h,l Key computed with ECCE Protocol

Ek(x) Encryption of string x with key k

Dk(x) = E−1
k (x) Decryption of string x with key k

H(x) Hash function

DH(x) Hash function doublehash,
DH(x) : {0, 1}|x| → {0, 1}2|x|

LS(x) Less significant bits of string x, where
|LS(x)| = |x|

2

MS(x) Most significant bits of string x, where
|MS(x)| = |x|

2

network. An example of such a globally addressable communications infrastruc-
ture is in [31];

• Sensors are randomly scattered in an unattended and often adversarial environ-
ments. To preserve their low cost, as well as to save power [9], they are not tamper
proof [247]. Hence, we can assume that sensors can be physically captured and
the attacker can acquire all the information stored within captured sensors;

• Good security engineering practice [8]: The algorithms, protocols andmechanisms
that are employed to secure the WSN are publicly known. Only the keys in the
sensors’ key rings and in the Pool are initially secret. Moreover, the cryptographic
primitives that are employed are at least computationally secure;

• Attacker model: We assume the strong node-compromise attacker model adopted
in [36]. Specifically, we assume that the attacker is capable of compromising
a fraction of the total number of nodes in the network and exposing the secret
information contained within them. There can be two forms of node compromise.
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In passive node compromise we assume that after node compromise, the attacker
can only launch passive attacks such as eavesdropping. In active node compromise
we assume that the attacker is also able to perform active attacks such as providing
false routing metrics through the compromised node. We assume that the goal of
the adversary is the exposure of the keys stored by the sensors, including those
established with the ECCE Protocol.

• Channel establishment: The ECCE Protocol requires three phases, that is, key pre-
distribution, shared-key discovery and channel establishment.We assume keys are
assigned to sensors according to the ESP procedure [74], hence the first two phases
are carried out as described in Sect. 2.2.
As for channel establishment, we will cope with this issue exploiting cooperating
sensors, as described in Sect. 2.4. In the remainder of this chapter we assume that
two sensors sharing one or more pre-deployed keys can compute a shared key
via the Direct Protocol [75], that is the channel is built combining the keys the
two principals share. The existence of a key established via the Direct Protocol
translates into the existence of a Direct channel (that is a link) between the two
sensors. Finally, we will use the term corrupted channel to refer either the fact that
the keys the channel is built with are known to the attacker, or that the channel
does not exist (that is the sensors do not share any key).

2.4 The ECCE Protocol

The ECCE Protocol involves, beyond the principals, other sensors (cooperating sen-
sors). It is based on the fact that each distinguished cooperating sensor ci can effi-
ciently compute the keys it shares with each other cooperator. This can be efficiently
done assuming that the key pre-deployment procedure is carried out according to
ESP scheme, detailed in Sect. 2.2. Based on the keys cooperating sensor ci shares
with each other cooperator, ci can compute (s1, . . . , si−1, si+1, . . . , s|C |−1). These
shared information are further combined to compute two values (v1, v2). Each value
is then sent to the two principals a and b. Each principal, upon receiving all the values
provided by each cooperator, computes the key K̄C

a,b that will be employed to secure
communication between the two principals. The details of the protocol follow.

If sensor a wants to establish a secure channel with sensor b, a chooses a set
C = {c1, . . . , cm} of cooperating sensors such that a, b /∈ C and m ≥ 1. Then, a
sends a request of cooperation to ci, for each ci ∈ C . If a Direct key Ka,ci between a
and ci exists, the request of cooperation is sent encrypted with Ka,ci , else the request
is sent not encrypted. The request carries the ID of b and the IDs of the sensors in C .

Each sensor computes two different values (v1, v2), v1 to be sent to the sensor a
and v2 to be sent to the sensor b. In particular, every cooperating sensor ci computes
the value v1 to be sent to sensor a as follows. The key Kci,b is computed and then
hashed with the ID of a (IDa): H(IDa, Kci,b). The keys shared with all other coop-
erating sensors are computed via the ESP protocol. For each cooperating sensor cj

where IDci < IDcj , the hash H(IDa ⊕ IDb, LS(DH(Kci,cj ))) is computed; for each
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cooperating sensor cj, where IDci > IDcj , the hash H(IDa ⊕ IDb, MS(DH(Kci,cj )))

is computed. The XOR of all the computed hash is executed and the resulting string
v1 is sent to a encrypted with Direct key Kci,a. Note that, as exposed in Table2.1, we
have assumed that the Direct key procedure always returns a key. This key is Kci,a if
it exists, or an appropriate string of 0s -a publicly known key- otherwise.

Every cooperating sensor ci computes the value v2 to be sent to sensor b as fol-
lows. Key Kci,a is computed and then hashed with the ID of b: H(IDb, Kci,a). The
keys shared with all other cooperating sensors are computed and for each cooper-
ating sensor cj satisfying IDci < IDcj the hash H(IDa ⊕ IDb, MS(DH(Kci,cj ))) is
computed. For all cooperating sensors cj, with IDci > IDcj , the hash H(IDa ⊕ IDb,

LS(DH(Kci,cj ))) is computed. The XOR of all the computed hash are executed and
the resulting value v2 is sent to b encrypted with Direct key Kci,b.

For every cooperating sensor ci from which sensor a receives a reply message
v1 before time-out expires (let Cr the set of replying cooperating sensors), sensor a
computes the hash H(IDb, Ka,ci) and then gi = v1 ⊕ H(IDb, Ka,ci). When a either
receives all the reply messages from the cooperating sensors, or the last time-out
expires, a computes the ECCE key as follows: K̄C

a,b = Ka,b
⊕|Cr |

i=1 gi. The ECCE

key K̄C
a,b is finally hashed and sent to b. The hashed ECCE key, when received by b

could be used by b to check whether the locally computed ECCE key matches the
ECCE key computed by a. Sensor b can set a time-out to limit the delay of expected
messages. When the time out expires, b computes the ECCE key in a way similar to
a, and will finally check whether the hash of the ECCE key received by a matches
with the hash of the ECCE key locally computed.

Algorithm 1 shows the detailed pseudo-code of the ECCE Protocol. Algorithms
2 and 3 illustrate the functions ComputeMsgForSource and ComputeMsg-
ForDestination used by every cooperating sensor to compute the message to be
sent to a and b respectively. The H function used in the Protocol is employed to pro-
duce a non-invertible image of the keys, to avoid information leakage [37, 75].The
algorithm SelectRandom selects the cooperating sensors in a pseudo random fash-
ion among all the possible sensors in the network. However, note that this choice
of cooperators could be unsatisfactory. For instance, the number of cooperators that
share a key with the principals or with other cooperators might be small. This could
affect the channel resilience, as we will see in Sect. 2.5.2. To cope with this problem,
we could select cooperators according to some other policy. For instance, we could
accept a selected cooperator only if it shares a Direct key with both principals. Note
that it is not required that the key shared with principal a is the same key shared with
principal b.

Involving cooperators allow the ECCEProtocol to be adaptive to different security
requirements: If it is required to increase the channel resilience, than this objective
can be achieved involving more cooperating sensors. The use of cooperators in the
ECCE Protocol further allows to balance the burden of protocol execution among all
the cooperators and the principals. Indeed, each cooperator computes |C |+1 Direct
keys and hash, while sending only 2messages. If principal awants to set up an ECCE
key with principal b, a has to forward |C |+1 messages and to receive |C |messages.
Sensor b only needs to collect the |C |messages sent to it by the cooperating sensors.
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If a cooperating sensor in C is not available (for instance, due to a node fail-
ure), using the time-out the protocol will not fail or deadlock, granting sensor failure
resilience. Observe also that if there is not a Direct key between some of the coop-
erators involved in the protocol, this does not imply the failure of the protocol.

Input : b : ID of the receiving sensor.
Output: K̄C

a,b

1 begin
2 C = SelectRandom(NeededCooperators) ;
3 Set time-out Δ ;
4 K̄C

a,b = 0s ;
5 forall the ci ∈ C do
6 Ka,ci = Direct_ Protocol(ci) ;
7 a → ci :< a, ci, EKa,ci

(req_coop ‖ C ‖ b) > ;
8 end
9 C ′ = C ;

10 while C ′ �= ∅ and ( not elapsed(Δ)) do
11 a ← ci :< ci, a, EKa,ci

(
b,ComputeMsgForSource(a, b, ci, C)

)
> ;

12 b ← ci :< ci, b, EKci ,b

(
a,ComputeMsgForDestination(a, b, ci, C)

)
> ;

13 s = E−1
Ka,ci

(
EKa,ci

(
ComputeMsgForSource(a, b, ci, Ci′ )

))
;

14 C ′ = C ′ − {ci} ;
15 K̄C

a,b = K̄C
a,b ⊕ s ⊕ H

(
IDb, Ka,cj

)
;

16 end
17 K̄C

a,b = Ka,b ⊕ K̄C
a,b ;

18 a → b :< a, b, H
(

EK̄C
a,b

)
> ;

19 end

Algorithm 1: ECCE Protocol

Input : a : ID of the sensor (cooperator). b : ID of the source. ci : ID of the receiving
sensor. C : Set of IDs of the others cooperating sensors.

Output: Compute the message that the cooperator send to source sensor
1 begin
2 Msg = H

(
IDa, Kci,b

)
;

3 forall the cj ∈ Ci′ (i �= j) do
4 if

(
IDci < IDcj

)
then

5 Msg = Msg ⊕ H
(
IDa ⊕ IDb, LS

(
DH

(
Kci,cj

)))
;

6 end
7 if

(
IDci > IDcj

)
then

8 Msg = Msg ⊕ H
(
IDa ⊕ IDb, MS

(
DH

(
Kci,cj

)))
;

9 end
10 end
11 end

Algorithm 2: ComputeMsgForSource
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Input : a : ID of the sensor (cooperator). b : ID of the source. ci : ID of the receiving
sensor. C : Set of IDs of the others cooperating sensors.

Output: Compute the message that the cooperator send to receiving sensor
1 begin
2 Msg = H

(
IDb, Kci,a

)
;

3 forall the cj ∈ Ci′ (i �= j) do
4 if

(
IDci < IDcj

)
then

5 Msg = Msg ⊕ H
(
IDa ⊕ IDb, MS

(
DH

(
Kci,cj

)))
;

6 end
7 if

(
IDci > IDcj

)
then

8 Msg = Msg ⊕ H
(
IDa ⊕ IDb, LS

(
DH

(
Kci,cj

)))
;

9 end
10 end
11 end

Algorithm 3: ComputeMsgForDestination

Sending the list of all cooperators to each ci ∈ C can help the attacker: It will be
sufficient to corrupt a channel between the sender and one of the cooperators, and
the set of cooperators would be disclosed. However, employing the ESP mechanism,
the attacker cannot know the set of keys the cooperators hold, other than the subset
of keys it already knows. Hence, the attacker is still forced to corrupt cooperating
nodes if it wants to reduce its efforts [75]. Further, to decrease the possibility for
the attacker to acquire the list of all the cooperators, the set C of cooperators could
be partitioned in subset C1, . . . ,Cq: Corrupting a channel or a cooperator within a
specific subsetCi does not reveal any information about the cooperators belonging to
other subsets. This countermeasure has been implemented in a version of the ECCE
Protocol that we will refer to as Partitioned ECCE.

2.5 Security Analysis

The condition that must be verified to guarantee the confidentiality of keys set-up
using the ECCE Protocol, is the existence of a non corrupted path between the
principals a and b (a − b), where each link of this path is built with a Direct key and
the intermediate nodes between a and b are the cooperating sensors. As an example,
in Fig. 2.1 the sensors a and b use the ECCE Protocol to build a confidential key.
In Fig. 2.1 the path composed of continuous lines signals a Direct key unknown to
the attacker, while the dashed line signals a corrupted link or a non existing channel.
In this example, the confidentiality of the established key K̄C

a,b is guaranteed by the
existence of the path (a, c1, c2, c3, b). If the attacker does not hold the Direct keys
used to secure the links (a, c1), (c1, c2), (c2, c3), and (c3, b) there is no way to build
the ECCE key.
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Fig. 2.1 Example of ECCE
channel not corrupted:
Existence of path (a, c1, c2,
c3, b)

2.5.1 Channel Existence

In this section we analyze the probability that a pair of sensors succeeds to establish
a confidential key using the ECCE Protocol. This probability depends on the proba-
bility of existence of Direct keys shared between all the possible pairs of sensors in
C ∪ {a} ∪ {b}. The probability to establish a Direct key is given by the probability
that two sensors share at least one of the assigned keys of the Pool. From [85], it
follows that:

Pr [link exists] = 1 −
(P−K

K

)

(P
K

) = 1 − K !(P − K)!(P − K)!
P!K !(P − 2K)! (2.1)

In the following to ease exposition, we assume that the existence of each link is
independent from each other [37, 85]. We indicate with p the probability of exis-
tence of a single link. Further, pathECCE(|C |) represents the event of a path between
principals (that can be established also via a direct link between principals), while
pathECCE(|C |, nodir) accounts for the event of a path between principals but note
that this path can be formed only through cooperating sensors (it is assumed that the
direct link between principals does not exist). Then, we have:

Pr
[
pathECCE(|C |)] = p + (1 − p)Pr

[
pathECCE(|C |, nodir)

]
(2.2)

The existence of a not corrupted direct link between the principals implies the exis-
tence of a non corrupted ECCE channel. Should this direct link do not exist, then
the existence probability of a not corrupted channel is equal to the probability that
at least one non corrupted path involving cooperating sensors do exists.
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To compute this probability, take into consideration all the possible links of type
(a, ci) (grouped in the set lsrc) and (ci, b) (grouped in the set ldst). Hence:

Pr
[
pathECCE(|C |, nodir)

]

=
|C |∑

A=0

|C |∑

B=0

Pr [|lsrc| = A] Pr [|ldst| = B]

· (
Pr

[
pathECCE(|C |, nodir) | |lsrc| = A, |ldst | = B

])

=
|C |∑

A=0

|C |∑

B=0

pA(1 − p)|C|−ApB(1 − p)|C|−B

· (
Pr

[
pathECCE(|C |, nodir) | |lsrc| = A, |ldst | = B

])
(2.3)

We remark that when A = 0 we have a null probability of having a path between
a and the set of cooperators; if B = 0 then there are no paths between b and the
sensors in C . Let C(lsrc) and C(ldst) be the sets of cooperating sensors in C that
share a key with sensor a and b respectively. A path between the principals exists
with probability 1 if C(lsrc) ∩ C(ldst) �= ∅. Fixing |lsrc| = A and |ldst | = B we have
that:

Pr[C(lsrc) ∩ C(ldst) �= ∅] = 1 −
(|C |−A

B

)

(|C |
B

)

Equation. 2.3 can then be expressed as:

|C |∑

A=0

|C |∑

B=0

pA(1 − p)|C|−ApB(1 − p)|C|−B ·
((

1 −
(|C |−A

B

)

(|C |
B

)

)

+ Pr[pathECCE(|C |, nodir) | C(lsrc) ∩ C(ldst) = ∅, |lsrc| = A, |ldst | = B]
)

(2.4)

We must now calculate the existence probability of the paths (a − b) that use
more than one cooperating sensor; see for instance Fig. 2.1. In order not to incur in
problems of dependency when dealing with probability, we will consider a modified
scheme of the ECCE Protocol. This scheme helps the attacker because it excludes
some cases in which the path would exist, hence this analysis will provide a lower
bound to the security provided. In particular, we will only use the paths that join
cooperating sensors in C(lsrc) (called s) to cooperating sensors in C(ldst) (called d),
of length 1 or 2. As an example, Figs. 2.2 and 2.3 show the paths (s − d) of length
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Fig. 2.2 Paths (s − d) of length 1

Fig. 2.3 Paths (s − d) of length 2

1 and 2 respectively, for one particular choice of C , lsrc and ldst . Finally, Eq. 2.2 can
be expressed as:

Pr
[
pathECCE(|C |)] = p + (1 − p)

·
⎛

⎝
|C |∑

A=0

|C |∑

B=0

pA(1 − p)|C|−ApB(1 − p)|C|−B·
((

1 −
(|C |−A

B

)

(|C |
B

)

)

+
(

1 −
(

(1 − p)AB
(
1 − p2

)(|C|−A−B)·min{A,B})) ((|C |−A
B

)

(|C |
B

)

)))

(2.5)

These analytical results will be compared with simulation results in Sect. 2.6. The
simulations performed support the behaviour predicted by the analytical model.
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2.5.2 Channel Resilience

In this section we analyze the probability that the key established by the principals,
using the ECCE Protocol, is not corrupted, that is not computable by the attacker
through the information it holds. As discussed for the channel existence probability,
also the resilience probability depends on the probability of resilience of the single
Direct keys used in the construction of ECCE key. The probability that a Direct key
is corrupted depends on the probability that a single key ki of the Pool is corrupted.
Considering w compromised sensors:

Pr
[
key ki is corrupted

] = 1 −
(

1 − K

P

)w

(2.6)

If one knows the probability that a key is corrupt, then it could be possible to calculate
the probability that an existing link is corrupted.

Pr
[
link is corrupted | link exists

] = Pr
[
link is corrupted ∩ link exists

]

Pr [link exists]

=
∑K

i=1

(
Pr

[
key is corrupted

])i Pr
[
i shared keys

]

Pr [link exists]

=
∑K

i=1

(
1 − (

1 − K
P

)w
)i (K

i )(
P−K
K−i )

(P
K)

1 − (P−K
K )

(P
K)

(2.7)

Replacing the probability given by Eq.2.7 in Eq.2.5 (Eq.2.7 gives the value
for probability p), it is possible to obtain the probability that an ECCE channel is
corrupted, assuming that all the pairs of cooperators share a Direct key. In a similar
way, to assess the probability that an ECCE channel exists and is not corrupted, it is
sufficient to replace the parameter p in Eq.2.5 with the following formula:

Pr [link exists] · Pr [link not corrupted | link exists
]

= Pr [link exists] · (
1 − Pr

[
link corrupted | link exists

])

Again, in Sect. 2.6 we will show that simulation results support the derived analytical
model.

2.5.3 Probabilistic Authentication

Another important issue of WSN security is node authentication. For instance, any
scheme for the revocation of misbehaving nodes has its basis on the certainty of
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the nodes identities. Authentication can mitigate many dangerous attacks, like the
replication ofmalicious sensors [79, 159]. In the followingwe discuss how the ECCE
Protocol provides probabilistic authentication.

Based on the ECCE Protocol, every cooperating sensor ci generates the messages
to send byXORing the strings derived from the keys sharedwith the other cooperating
sensors and the strings:

• H(IDa, Kci,b), for the message destined to the sender sensor;
• H(IDb, Ka,ci ), for the message destined to the receiving sensor.

Note that all cooperating sensors implicitly verify that both the principals have
the keys that the principals should possess. This verification is possible due to the
ESP mechanism. If a principal declares a false ID, cooperating sensors will use the
keys that they should share with the sensor identified by ID. If just one of these
keys is not possessed by the malicious principal that provided the fake ID the ECCE
key cannot be established [74]. However, if the malicious principal possesses all the
keys shared by the cooperators with the sensor identified by ID, the authentication
process succeeds. For this reason the authentication is only probabilistic. Observe
that, with respect to the Direct channel in which only one principal verifies the
identity of the other party, in ECCE all the cooperating sensors verify the same
identity with possibly different key-rings, hence the probability that a malicious
sensor is not detected is smaller than in the Direct channel. In particular, since the
authentication check performed by cooperators is carried out independently from
each other, the probability that a fake principal succeeds in the authentication process,
decreases exponentially with the number of cooperators involved. Further, note that
the same mechanism supports authentication among the cooperating sensors as well.
We remark that this authentication mechanism does not involve messages overhead
other than the (limited) overhead required for the creation of the confidential channel.

2.6 Simulations and Discussion

In order to supply an experimental support to the analytical results developed in the
previous section, we have performed extensive simulations. In particular, the ECCE
Protocol has been compared with the following protocols:

• Direct [74];
• Cooperative [74];
• Extended Cooperative;
• MKR (Multipath Key Reinforcement) [37];
• Extended MKR;
• Partitioned ECCE (we have divided the set C in independent subsets of size 2, 3
and 4).

We assume that in all the considered protocols the ESP mechanism [74] is used
in the shared-key discovery phase. We introduce the Extended version of both the
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Cooperative and the MKR protocol, in which we assume that the existence of the
Direct channel between the principals is not necessary. This optimization is based
on the observation that, in the Cooperative and the MKR channel construction, the
existence of the direct link between principals is only used to send some information
to the receiving sensor; however, this information can be sent via a threshold scheme
(t, c) [201] through the cooperating sensors.

We remark that a channel built according to the Cooperative Protocol, which
requires that there is at least one shared key between sender and receiver, has the
same existence probability of a channel established with the Direct Protocol. In fact,
in both the Direct and the Cooperative Protocol, the necessary condition for the
channel existence is the existence of the Direct link between the principals. Hence,
the use of cooperating sensors in the Cooperative Protocol is only useful to increase
confidentiality resiliency against the attacker, while the existence probability does
not increase. This observation holds for the MKR Protocol as well.

The Extended Cooperative needs only a direct link or a 2-hop path between princi-
pals realized through the cooperators in C for the channel to exist. The behaviour of
the Extended Multipath Key Reinforcement (MKR) [37], assuming a 2− hop MKR
scheme as in [37], provides the same probability of channel existence and channel
resiliency as the Cooperative. In both ECCE and Extended MKR the necessary con-
dition for channel existence is the existence of a direct link between the principals or a
path through the cooperators in C . Hence, we can state that the existence probability
of ECCE and the ExtendedMKR is roughly the same but, as discussed in Sect. 2.5.2,
this equivalence does not hold as for the resilience, where ECCE performs better.

Figure2.4 compares the analytical and experimental results as for channel exis-
tence.We have fixedP = 100,K = 5,while |C | ranges from0 to 12.As expected, the
assumption of independence among the links, used to ease the analysis in Sect. 2.5,
implies an upper bound on the estimation of channel existence, as simulation results
show (an. res. refers to the analytical results of Sect. 2.5 while sim. refer to simulation
results). However, the simplified model used to analytically study the behaviour of
the ECCE Protocol did not take into consideration some cases in which a channel
between cooperators could exist. For this reason, when more than 9 cooperating
sensors are involved in the channel establishment, the analytical results for ECCE
are superseded by the simulation results. However, note that the difference between
the simulation and the analytical results between the two slopes is tiny for the whole
range of cooperating sensors considered. Observe that using no cooperating sensors,
the behaviour of the ECCE, the Cooperative and MKR Protocol is similar to that
of the Direct Protocol, while increasing the number of cooperators, the existence
probability of the cooperative protocols (Cooperative, MKR and ECCE) increases as
well. In particular, the ECCE Protocol provides better channel existence probability,
and this probability improves with the number of cooperators.

Figures2.5, 2.6, and 2.7 plot the existence probability of a secure channel estab-
lished with the ECCE protocol, together with the same probability for the other
protocols. These figures show the results obtained varying the number of cooperat-
ing sensors for P = 1000 and K = 12, 15 and 20 respectively. From these three
figures it is possible to notice that increasing the key-ring size, the channel exis-
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tence probability increases as well. Hence, it is possible to obtain the same existence
probability with different key-ring size, varying the number of involved cooperating
sensors. The better performance of the ECCE Protocol, compared to the Cooperative
one is due to the greater number of possible paths between a and b generated by
the ECCE protocol. Indeed, the higher the number of possible paths, the higher the
probability of channel existence, as analytically exposed in Sect. 2.5. For instance, in
Fig. 2.1, the principals cannot set-up a secure channel via the Cooperative Protocol,
while this is possible adopting the ECCE Protocol.

Figure2.8 shows the existence probability of a channel for the different compared
protocols, when P = 10,000 and K = 50, while |C | ranges from 0 to 20. We can
notice that the curves behaviour is similar to that obtained in Fig. 2.6. This is because,
as noticed in Sect. 2.5, the overall channel probability existence strictly depends on
the existence probability of a single link.

Furthermore, we inquired the resilience of the established channels. In particular,
we have performed our analysis assuming the existence between the two principals
of at least the Direct channel, while the cooperating sensors are randomly selected.
In Figs. 2.9, 2.10, 2.11, and 2.12 we report on the x axis the key ring size, while on
the y axis the number of sensors to corrupt to compromise a channel, considering
P = 10,000 and 4 and 16 cooperating sensors, respectively.

From Fig. 2.9, with 150 keys stored per sensor, the attacker has to capture about
82 sensors to corrupt a Direct channel; if 4 cooperating sensors are involved, the
attacker has to corrupt about 113 sensors to corrupt a Cooperative channel, a little
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more to corrupt the MKR channel, while 120 sensors are required to corrupt an
ECCE channel. Increasing the number of cooperating sensors also improves the
resilience of these protocols. Indeed, in Fig. 2.12, with 16 cooperating sensors, for
a key-ring size of 150, the attacker needs to corrupt about 138 sensors to corrupt
the Cooperative, a little more to corrupt the MKR channel, while the attacker is
required to compromise about 159 sensors to corrupt an ECCE channel. It is worth
noticing that for all the simulated scenarios, the ECCE protocol performs better
than the Cooperative protocol. In Figs. 2.9, 2.10, 2.11, and 2.12 the behaviour of the
Direct Protocol is the same: The resilience of the Direct channel is not influenced by
the number of cooperating sensors. From these figures we can also notice that the
resilience to corruption of these protocol increases as the key ring size increases up to
a certain value, after that value, the resiliency to corruption decreases. As observed
in [85], this is due to the number of keys that the attacker can acquire tampering with
a sensor.

Table2.2 outlines the features of the ECCE Protocol, compared with the others
protocols reported in Sect. 2.2. As can be seen, the ECCE Protocol benefits from all
the features introduced by the use of cooperation among sensors. This explains why
the ECCE Protocol performs better than the other protocols, as shown in the previous
figures.

Table 2.2 Features comparison of different protocols

Features

Protocol Involve
cooperating
sensors

Principals
mutual
authentication

Usable in the
case of no
secret shared
between
principals

Authentication
between
cooperating
sensors

Cooperating
sensors that do
not share keys
with
principals
helps channel
establishment

Direct [74] No – – – –

Multipath key
reinforcement
[37]

Yes No No No Yes

Cooperative
[74]

Yes Yes No No No

Extended
cooperative
(this chapter)

Yes Yes Yes No No

ECCE (this
chapter)

Yes Yes Yes Yes Yes
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2.7 Concluding Remarks

In this chapter we presented ECCE, a new cooperative protocol to establish a secure
pair-wise communication channel between any pair of sensors in a WSN. The con-
tributions are the following: This protocol does not require cooperating sensors to
share a key with both principals for the channel between principals to be established.
Also cooperating sensors that do not share any key with any of the two principals
can help in the set up of the secure channel; cooperating sensors implement a proba-
bilistic authentication of both principals as well as other cooperators. The probability
that a fake principal or a fake cooperator could escape the authentication procedure
decreases exponentially with the number of cooperators involved in the protocol; it
is possible to trade-off key ring size with the number of cooperating sensors while
preserving the same level of security. Note that this feature gives the possibility to
have somememory available to store the ECCE keys, that could be used later for fur-
ther use, hence amortizing the (limited) overhead incurred in the ECCE key set-up;
the security provided by the protocol is adaptive with the level of threat in the WSN,
on one hand, the higher the security threat, the more cooperators can be involved
to enhance the resiliency of the channel; on the other hand a required downgrade
on the required level of security can be implemented involving less cooperators,
hence improving performances. Finally, in comparison with other protocols, ECCE
shows better performances in channel existence and channel resilience even when
the number of involved cooperators is small.

While the aim of this chapter is to propose an efficient way to involve cooperating
nodes in the pair-wise key establishment, we note that it is also interesting to study
how the network density influences the availability of neighbour nodes; a further
detailed study on the energy consumed by the protocol would be of interest as well.
As for comparing the proposed protocol with the current solutions in the literature,
we only considered other probabilistic algorithms: we did not consider deterministic
solutions because of the drawbacks described in Sect. 2.2. A broader comparison
(e.g. for the channel resilience) of the proposed solution against the deterministic
solutions like the one in [22] would also be of interest. We leave these points as
future works.

As discussed in Sect. 2.5.2, themain threat to the protocol presented in this chapter
comes from the fact that the attacker can capture nodes—acquiring the secretmaterial
stored in their memory. If the network were able to know the ID of the captured node
it could react somehow. As an example, the pre-deployed keys associated with the
captured ID could be revoked—not considered secure anymore. Nodes that do not
share anymore a secure channelwould stop communicating orwill just use amultihop
path to communicate or to share a new secret key. Next chapter provides amechanism
to deal with the detection of the node capture.



Chapter 3
Capture Detection

The previous chapter looked at the security of WSNs from the single node
perspective. We proposed a new probabilistic protocol for the node authentication
and the communication confidentiality. Given that in our solution a secret key can
be shared between more than two nodes, the attacker that physically captures a node
is potentially able to compromise the confidentiality of a fraction of network com-
munications. Actually, one of the most vexing problems for WSNs security is the
node capture attack: An adversary can capture a node from the network eventually
acquiring all the cryptographic material stored in it. Further, the captured node can
also be reprogrammed by the adversary and re-deployed in the network in order to
perform malicious activities.

This chapter addresses the node capture attack in mobile WSNs. In particular,
we start from the intuition that mobility, in conjunction with a reduced amount of
local cooperation, helps to compute, effectively and with a limited resource usage,
the global security properties of the network. Then, we develop this intuition and
use it to design a protocol that the network nodes can use to detect the node capture
attack. We support our proposal with a wide set of experiments, showing that mobile
networks can leverage mobility to compute global security properties, like node
capture detection, with a small overhead.

3.1 Introduction

Ad hoc network can be deployed in harsh environments to fulfill law enforcement,
search-and-rescue, disaster recovery, and other civil applications. Due to their nature,
WSNs are often unattended, hence prone to different kinds of novel attacks. For
instance, an adversary could eavesdrop all the network communications. Further,
the adversary might capture (i.e., remove) nodes from the network. These nodes
can then be re-programmed and deployed within the network area, for instance, to
subvert the data aggregation or the decisionmaking process in the network [37]. Also,
the adversary could perform a sybil attack [159], where a single node illegitimately
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claims multiple identities also stolen from previously captured nodes. Another type
of attack is the clone attack, where the node is first captured, then tampered with,
re-programmed, and finally replicated in the network. The former attack can be
efficiently addressed with a mechanism based on RSSI [68] or with authentication
based on the knowledge of a fixed key set [75], while other solutions have been
proposed also for the detection of the clone attack [48, 169, 232].

To think of a foreseeable application for node capture detection, note that, the U.S.
Defense Advanced Research Projects Agency (DARPA) initiated a new research
program to develop so-called LANdroids [124]: Smart robotic radio relay nodes
for battlefield deployment. LANdroid mobile nodes are supposed to be deployed
in hostile environment, establish an ad-hoc network, and provide connectivity as
well as valuable information for soldiers that would later approach the deployment
area. LANdroids might retain valuable information for a long time, until soldiers
move close to the network. In the interim, the adversary might attempt to capture
one of these nodes. We are not interested in the goals of the capture (that could be,
for instance, to re-program the node to infiltrate the network, or simply extracting
the information stored in it); but on the open problem of how to detect the node
capture that represents, as shown by the above cited examples, a possible first step to
jeopardize aWSN. Indeed, an adversary has often to capture a node to tamper with—
that is, to compromise its key set, or to reprogram it with malicious code—before
being able to launch other more vicious, and may be still unknown, attacks. Node
capture is one of the most vexing problems in sensor network security [171]. In fact,
it is a very powerful attack and very hard to detect. We believe that any solution to
this problem has to meet the following requirements: (i) to detect the node capture
as early as possible; (ii) to have a low rate of false positives—nodes that are believed
to be captured and thus subject to a revocation process, but that were not actually
taken by the adversary; (iii) to introduce a small overhead.

The solutions proposed so far are a long way from being efficient [171]. Also,
while naïve centralized solutions can be applied to generic ad-hoc networks, they
present drawbacks like single point of failure and non uniform energy consumption.
These drawbacks do not make them appealing for sensor networks. Moreover, these
networks often operateswithout the support of a base station. Efficient and distributed
solutions to the node capture attack are of particular interest in this context.

To the best of our knowledge, there are no distributed solutions for the problem
of detecting the node capture attack in WSN. Following a new interesting research
thread that focuses on leveraging mobility to enforce security properties for wireless
sensor networks [178, 218], we propose a capture detection framework exploiting
node mobility.We show that this approach can provide better performance compared
to traditional solutions. Also, we show that using node cooperation in conjunction
with node mobility can still improve the capture detection performance within spe-
cific network requirements.

The contribution of this chapter is to provide a proof of concept: It is possible to
leverage the emergent properties of mobile sensor networks via node mobility and
node cooperation to design a node capture detection protocol. To this aim, we use
the RandomWaypoint Mobility Model (RWM) [25], an ideal mobility model that is
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simple and general enough (at least for some application scenarios) to explore our
ideas. Furthermore, the result on any particular mobility model should depend not
only from the model but also from the network setting, as pointed out in [203] for
the delay-capacity trade-off. Indeed, providing specific settings and evaluations for
other models is out of the scope of this work.

Our solutions are based on the simple observation that if node a will not re-meet
node b within a period λ, than it is possible that node b has been captured. We will
build upon this intuition to provide a protocol that makes use of local cooperation
and mobility to locally decide, with a certain probability, whether a node has been
captured or not. Our proposed solutions do not rely on any specific routing protocol:
We resort to one-hop communications and to a sparing use of amessage broadcasting
primitive. This distinguished feature helps keep our protocol simple, efficient, and
practically deployable, avoiding the use of sophisticated routing that can introduce
complexity and overhead in themobile setting. Furthermore, our experimental results
demonstrate the effectiveness and the efficiency of our proposal. For instance, for
a given energy budget, while the benchmark requires about 4,000s to detect node
capture, our proposal requires less than 2,000s. Moreover, our later work on node
capture attack is presented in [45].

Organization

The chapter is organized as follows. Section3.2 presents the related work in this area.
Section3.3 introduces the motivation and the framework of our proposal based on
simple sensor network capabilities like nodemobility andmessage broadcasting. Our
specific proposal, the CMC Protocol, is then presented in Sect. 3.4, while in Sect. 3.5
we discuss the simulation results that give a qualitative idea of how mobility and
node cooperation can be exploited in order to decrease the node capture detection
time. Finally, Sect. 3.6 reports some concluding remarks.

3.2 Related Work and Background

Mobility as a mean to enforce security in mobile networks has been considered in
[218]. Further, mobility has been considered in the context of routing [102] and of
network property optimization [147]. In particular, [102] exploits node mobility in
order to disseminate information about destination location without incurring any
communication overhead. In [147] the sink mobility is leveraged to optimize the
energy consumption of the whole network. A mobility-based solution for detecting
the sybil attack has been presented in [178]. Finally, note that a few solutions exist
for node failure detection in ad hoc networks [110, 114, 115, 184]. However, such
solutions assume a static network, missing a fundamental component of our scenario,
as shown in the following.

In this chapter we use node mobility to cope with the node capture attack. As
described in the following section, we specifically rely on the meeting frequencies



56 3 Capture Detection

between honest nodes to gather information about the absence of captured nodes. A
property similar to that of node “re-meeting” has been already considered in [64].
However, in [64], the authors investigate the time needed for a node to meet (for the
first time) a fixed number of other nodes. This analysis is then used together with
node mobility to achieve non-interactive recovery of missed messages. To the best of
our knowledge no distributed solution exploiting node mobility has been proposed
to detect the node capture attack in mobile ad-hoc and sensor networks.

We published [53] a short contribution on the possibility to leverage network
mobility for node capture detection. In particular, in [53] we presented the main
intuition and a first basic solution in order to understand rationales of this type of
approach. However, while the results given in [53] are encouraging, the specific
solution proposed requires an high overhead to bound the number of false positive
(wrongly revoked nodes). Note that, without this bounding mechanism the number
of false positive would be unacceptable. Furthermore, in [53] we did not study the
feasibility of the new approach compared with other ones. In the present work, we
leverage the intuition proposed in [53], that is the “re-meeting” time between nodes,
to design two brand new efficient protocols. In particular, we introduce a presence-
proving mechanism used by allegedly captured nodes to show their actual presence
in the network (that is, bounding the number of false positive). Further, we introduce
a benchmark solution in order to quantify the quality of the proposed solutions.
The proposed solutions are compared between them and with the benchmark. In
particular, to have a fair comparison we observed the detection time provided by the
different protocols using the same energy budget. The result of our study confirms the
feasibility of the approach sketched in [53]. Furthermore, it proves that, within certain
scenarios of node mobility, the proposed solutions provide a sensitive improvement
over other possible approaches, such as the one based on the classical message
exchange.

Node mobility and node cooperation in a mobile ad hoc setting has been consid-
ered already in Disruption Tolerant Networks (DTNs) [65, 209]. However, such a
message passing paradigm has not been used, so far, to support security. We leverage
the concept introduced with DTN to cooperatively control the presence of a network
node. In this chapter we use one of the most common mobility patterns in the liter-
ature, the Random Waypoint Mobility Model [25]. In this model, it is assumed that
each node in the network acts independently: It selects a geographic destination in the
deployment area (the way-point), it selects a speed uniformly at random in a given
interval [smin, smax], where smin and smax stand for minimum and maximum speed
respectively.Then it moves towards the destination on a straight route at the selected
speed. When at the way-point, it waits for some time, again selected uniformly at
random from a given interval, and then the node repeats the process by choosing the
next way-point. Some researchers have shown some problems related to this mobility
model. One of the problems is that the average speed of the network tends to decrease
during the life of the network itself and, if the minimum speed that can be selected
by the nodes is zero, then average speed of the system converges to zero [237]. In
the same paper it is suggested to set the minimum speed to a value strictly greater
than zero. In this case, the average speed of the system continue decreasing, but it



3.2 Related Work and Background 57

converges to a non-zero asymptotic value. Other problems related to spatial node
distribution have been considered by different authors [123, 237]. In the analysis
presented in [102] “human speeds” are claimed to be a reasonable practical choice
for mobile nodes.

Note that the RWM might not be the best model to capture a “realistic” mobility
scenario, as highlighted in [203]; however, the results achieved in this chapter are
meaningful as they are a proof of concept that mobility can be leveraged to enforce
security properties and also as the provided protocols could be used in, and adapted
to, more realisticmobilitymodels. In our proposed approach every nodemaintains its
own clock. However, we require that clocks among nodes are loosely synchronized.
Note that there are a few solutions proposed in the literature to provide loose time
synchronization, like [211] for wireless sensor networks; therefore in the following
we will assume that skew and drift errors are negligible.

The problem addressed in this chapter can be seen as a topology control problem,
where locations, and ranges of nodes need to be securely obtained prior to make any
statements about nodes’ presence in the network. An overview of the issues related
to the communication versus physical neighbourhood can be found in [168], while
an example of the use of distance-bounding for topology control can be found in
[215]. We observe that the solution presented in this chapter can be further extended
using these approaches.

In our proposal we also need to take into consideration the cost of broadcasting
a message to all the nodes in the network. In [229] a classification of the different
solutions for broadcasting scheme is provided: (i) Simple Flooding; (ii) probabilistic-
based schemes; (iii) area based schemes that assumes location awareness; (iv) neigh-
bour knowledge schemes that assumes knowledge of two hop neighbourhood.

Analyzing or comparing broadcasting cost is out of the scope of this chapter.
However, for a better comparison of the solutions proposed in this chapter, we need
to fix a broadcast cost that will be expressed in terms of unicast messages. In fact,
the overhead associated to the broadcasting varies with different network parameters
(for instance, node density and communication radius). A deeper analysis on the
overhead generated for different broadcasting protocols is presented in [163]. Also,
note that probabilistic-based and neighbour-based protocols require a big overhead
for a mobile network in order to know the network topology and neighbourhood
respectively. Furthermore, the same argument can be considered for the localization
protocol that is used in the area-based schemes. In the following, to embrace the
more general case, we assume that nodes are not equipped with localization devices,
like GPS.

Finally, note that amessage could be receivedmore than once, for instance because
the receiver is in the transmission range of different relay nodes. However, in the
following we assume that a broadcasted message is received (then counted) only
once for each node. This reflect the usual practice to switch off the radio transceiver
as soon as a node is aware it is receiving a copy of the samemessage just broadcasted.
Indeed, the node will then go to sleep over the rest of the message transmission, thus
consumingnegligible power. Therefore,we can consider negligible the overall energy
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consumption associated to this operation. A similar assumption is used for example
in [163].

3.3 Node Capture Detection Through Mobility
and Cooperation

The aim of a capture detection protocol is to detect as soon as possible that a node
has been removed from the network. In the following we also refer to this event as a
node capture. The protocol should be able to identify which is the captured node, so
that its ID can be revoked from the network. Revocation is a fundamental feature—if
the adversary reintroduces the captured (and possibly reprogrammed) node in the
network, the node should not be able to take part to the network operations.

In the followingwe first describe a simple distributed solution that does not exploit
neithermobility nor cooperation among nodes;we use this solution as a benchmark to
compare with our proposal. Then, we introduce the rationals we leverage to develop
our protocol for node capture detection, detailed in next section.

3.3.1 Benchmark Solution

To the best of our knowledge, no efficient and distributed solution exploitingmobility
was proposed so far to cope with the node capture detection problem in Mobile Ad
Hoc Network. However a naïve solution exploiting node communication capabilities
can be easily figured out. We first describe this solution assuming the presence of a
base station (BS); then, we will show how to relax this assumption. In the BS-based
solution, each node periodically sends a message to the BS carrying some evidence
of its own presence. In this way the base station can witness for the presence of the
claiming nodes. If a node does not send the claim of its presence to the BS within
a given time range, the base station will revoke the corresponding node ID from the
network (for instance, flooding the network with a revocation message). To remove
the centralization point given by the presence of the BS, we require each node to
notify its presence to any other node in the network. To achieve this goal, every t
seconds a node sends a claim message advertising of its presence all the network
nodes through a broadcasted message. A node receiving this claim would restart a
time-out set to t + σ where σ accounts for network propagation delay. Should the
presence claim not be received before the time-out elapses, the revocation procedure
would be triggered. However, note that if a node is required to store the ID of any
other node aswell as the receiving time of the received claimmessage,O(N)memory
locations would be needed in every node, where N is the number of nodes in the
WSN. To reduce the memory requirement on node, it is possible to assume that the
presence in the network of each node is tracked by a small subset of the nodes of the
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network. Hence, if a node is absent from the network for more than t seconds, its
absence can still be detected by a set of nodes.

3.3.2 Our Approach

Our approach is based on the intuition that leveraging node mobility and cooperation
helps node capture detection. We start from the following observation: If node a has
listened to a transmission originated by node b, at time t, we will say that a meeting
occurred. Now, nodes a and b are mobile, so they will leave the communication
range of each other after some time. However, we expect these two nodes to re-
meet again within a certain interval of time, or at least within a certain time interval
with a certain probability. The solution can also be thought of an exploitation of the
opportunistic communication concept [209], like contact-based message delivery, to
wireless sensor network security. In [53] the authors investigated how mobility can
be exploited for detecting a node capture and investigated the feasibility of mobility
based solutions. As a starting point, we analysed the re-meeting probability through
network simulation: The results comply with previous studies on delay in mobile ad
hoc networks [203]. In Fig. 3.1 we report on the simulation results on the probability
that two nodes that had a meeting, would not have a meeting again after x seconds.
This probability has been evaluated for different values of the communication radius.
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In particular, we assume that the nodes are randomly deployed in a square area of
1,000m× 1,000m and that they move according to the random way-point mobility
model. While the x-axis indicates the time after the last meeting, the y-axis indicates
the probability that the two nodes have not re-met yet. For example, assume that
node a meets node b at time t, then the probability that these two nodes have not met
again after 5,000s is very close to 0 (for a sensing radius r = 30).

In the following section we propose a protocol that leverages node mobility to
enhance node capture detection probability.

3.3.3 Assumptions and Notation

In the remaining of the chapter we assume a “smart” attacker model: It knows the
detection protocol implemented in the network. This implies, for the Benchmark
solution, that a node a is captured just after node a has broadcasted its presence
claim message. The assumption at the base of our protocol is that if a node has
been absent from the network for a given interval time (that is no one can prove its
presence in that interval) the node has been captured. Indeed, we could incur inwrong
revocation if the node is actually not captured but, for example, only disconnected for
that considered time interval. It is worth noticing that, also if a node is temporarily
disconnected, aDTN-like routingmechanism [28] can be used to deliver amessage to
that node with some delay. For the aim of our protocol, we do not explicitly consider
that interval time. We assume that it is comprised within the interval time a node has
to prove its presence, once accused to be captured.

In the following we define a false positive alarm as an alarm raised for a node
that is actually present. One or more false positive alarms can imply a false positive
detection, that corresponds to the revocation of a not captured node. Further, we
refer to a false negative detection as a captured node not actually revoked. Note that
a node that is temporarily disconnected, but not captured, could be revoked from
the network as well. Another issue is Denial of Service (DoS). Indeed, since alarm
are flooded in the network (as it will be clear in the following), it could be possible
for a corrupted node to trigger false alarms so as to generate a DoS. This issue is
out of the scope of this chapter, however, for the sake of completeness, we sketch
in the following a possible solution. The impact of false positives can be mitigated
noting that it could be possible, once the recovery mechanism detects a false alarm,
to associate a failure tally to the node that raised the false alarm. If the tally exceeds
a certain threshold, the appropriate action to isolate the misbehaving node could be
take.

Further, we assume the existence of a failure-free node broadcasting mechanism
[146]; and, finally, we point out that addressing node-to-node secure communica-
tions, addressing confidentiality, integrity, privacy, and authentication are out of the
scope of this chapter. However, note that a few solutions explicitly addressing these
points can be found in literature [75, 183, 210].

Table 3.1 resumes the intervals time notation used in this chapter.
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Table 3.1 Time-related
notation

Symbol Meaning

σ Message propagation delay

λ Alarm time used in CMC (our proposal)

δ Time available to the allegedly captured node to
prove its presence

3.4 The Protocol

In this section we describe our proposal for a node Capture detection protocol that
leveragesMobility and Cooperation (CMC Protocol). Basically, each node a is given
the task of witnessing for the presence of a specific set Ta of other nodes (we will say
thata is trackingnodes inTa). For eachnodeb ∈ Ta thatagets into the communication
range of, a sets the corresponding meeting time to the value of its internal clock and
starts the corresponding time-out, that would expire after λ seconds. The meeting
nodes can also cooperate, exchanging information on the meeting time of nodes of
interests—that is, nodes that are tracked by both a and b. Note that node cooperation
is an option that can be enabled or disabled in our protocol. If the time-out expires
(that is, a and b did not re-meet within λ seconds), the network is flooded with an
alarm triggered by node a. If node b does not prove its presence within δ seconds
after the broadcasted alarm is flooded, every node in the network will revoke node
b. The detailed description of the CMC protocol follows.

3.4.1 Protocol Description

The CMC protocol is event based; in particular it is executed when:

• Node a meets node b: This event triggers node a and node b to execute
CMC_Meeting (IDb, false,−) and CMC_Meeting (IDa, false,−) respec-
tively, if the cooperation parameter is set to false. Otherwise, node a exe-
cutes CMC_Meeting (IDb, true,−) and node b executes CMC_Meeting (IDa,

true,−). The function CMC_Meeting is also used in the cooperative scenario as
a virtual meeting in order to update node presence information.

• The time-out related to node IDx expires on node a: Procedure CMC_TimeOut
(IDx) is executed by node a.

• Node a eavesdrops a message m: Node a executes the procedure
CMC_Receive(m).

Algorithms 4, 5, and 6 show the corresponding pseudo-code.
The procedure CMC_Meeting, shown in Algorithm 4, is executed by both nodes

involved in a meeting. In the case of a real meeting the time is not specified, then the
current node time ta is used. However, when the procedure is invoked as a virtual
meeting a reference time (tx) is also considered (lines 2, 3 and 4).When node a meets
node b, node a checks if it is supposed to trace node b (that is if b ∈ Ta). This is done



62 3 Capture Detection

by invoking the function Trace (line 5). This function takes in input two node IDs,

and provides a result pseudo-uniformly distributed in
[
1..

⌈
N
|T |

⌉]
; where N is the

size of the wireless sensor network and |T | is the number of nodes tracked by each
node. Node b is to be tracked if and only if the result is one. A simple and efficient
implementation of the function Trace can be found in [74], where it has been used
in the context of pairwise key establishment. Assume now that b ∈ Ta, then a further
check on node b is performed (line 6). Indeed, node b could be already revoked.
Hence, each node stores a Revocation Table (RTa) that lists the revoked nodes. If
both previous tests (line 5 and line 6) succeed, then a calls the function Update that
updates the information about the last meeting with node b (line 7). For example, if
node a meets b at a given time ta, the function Update sets the information 〈IDb, ta〉
in the CTa (a Check Table stored in node a memory). Node a uses a Time-out Table
TTa to store and signal the following time-outs:

• ALARM time-out, that is triggered after λ seconds are elapsed without re-meeting
node b.

• REVOKE time-out, that is triggered after δ seconds are elapsed from receiv-
ing/triggering a node revocation for node b—assuming that in these δ seconds
no presence claim from b are received.

Then, for each meeting with not-revoked nodes in Ta, node a removes any previous
time-out for the met node and sets a new ALARM time-out for that node (line 8).
Note that, both the update functions (lines 7 and 8) do not perform any operation
if the time argument tx is lower than the currently stored meeting time for the node
IDx: This could happen in the case of a virtual meeting.

If the cooperation option is set (COOP_opt = true in line 11) also the following
steps are performed. For each not revoked node x traced by both node a and b (lines
12, 13, and 14), node a sends a CLAIM message to b carrying the meeting time
between a and x. Each CLAIM message has the following format: 〈IDa, CLAIM,

IDx, elapsed time〉, where IDa is the sender of the claim message, CLAIM is the
message type, IDx is the ID of node x the claim is related to, and the last parameter
indicates the meeting time between a and x. Another message type is ALARM,
described in the following.

CMC_TimeOut (Algorithm 5) is triggered when a time-out expires. If on node
a an ALARM time-out expires for node IDb, this means that node a did not meet
node IDb for a time λ. Then node a floods the network with an alarm (Algorithm
5, line 3) and a new REVOKE time-out for node b is set. Each ALARM message
has the following format: 〈IDa, ALARM, IDb〉, where IDa is the sender of the claim
message, ALARM notifies the message type, and IDb is the ID of node b the alarm
is related to. When a REVOKE time out expires this means that, after δ seconds
elapsed from the alarm triggering, no evidence of the presence in the network of the
suspected captured node appeared. In this latter case a node revocation procedure
for node b is invoked by node a.

CMC_Receive (Algorithm 6) is invoked when a message MSG is received. The
fields of the message are assigned to local variables (line 2) and the type of the
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Input : IDa : ID of the executing node. IDb : ID of the met node. ta : Current time of node
a. CTa : Check Table stored in node a memory. RTa : Revoked nodes table stored in
node a memory. TTa : Time out table stored in node a memory. λ : Alarm time. δ :
Time for the accused node to prove its presence. COOP_opt : Boolean variable for
cooperation option.

1 begin
2 if NotSpecified(tx) then
3 tx = ta;
4 end
5 if Trace(IDa,IDb)=1 then
6 if IsNotRevoked(RTa,IDb) then
7 Update(CTa,〈IDb, tx〉) ;
8 UpdateTimeOut(TTa,

〈IDb, tx + λ, ALARM〉) ;
9 end

10 end
11 if COOP_opt = true then
12 foreach 〈IDx, tx〉 ∈ CTa do
13 if IsNotRevoked(RTa,IDb) then
14 if Trace(IDb, IDx)=1 then
15 〈told〉 ←LookUp(CTa, IDx) ;
16 〈IDa, CLAIM, IDx, told〉 → b ;
17 end
18 end
19 end
20 end
21 end

Algorithm 4: CMC_Meeting(IDx, COOP_opt, tx).

Input : IDa : ID of the executing node. IDb : ID of the node which time-out is expired. ta :
Current time of node a. RTa : Revoked nodes table stored in node a memory. TTa :
Time out table stored in node a memory. δ : Time for the accused node to prove its
presence.

1 begin
2 if TimeOutKind(ALARM) then
3 Flooding(〈IDa, ALARM, IDb〉) ;
4 UpdateTimeOut(TTa,

〈IDb, ta + δ, REVOKE〉) ;
5 else
6 RevokeNode(RTa,IDx)
7 end
8 end

Algorithm 5: CMC_TimeOut(IDx).
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message is checked (line 3). Assume the message is of type ALARM: The executing
node checks if the alarm is related to itself (line 4).
If the latter test fails, a further check is performed: The node checks whether the
node IDx is not already revoked (line 5). If the check succeeds, a REVOKE time-
out is set through an UpdateTimeOut procedure. Note that, should a REVOKE
time-out for node b already be in place, this procedure does not override the existing
REVOKE time-out and simply returns. If theALARMis related to the executing node
itself (test performed at line 4 fails) node a will flood the network with a presence
CLAIM message (line 9). This measure prevents false positive detection—that is,
the revocation of nodes that are active in the network.

If the received message is of type CLAIM, this means that a node that was the
target of an ALARMmessage is proving its presence; this message triggers a virtual
meeting between a and the wrongly accused nodes (line 13). The overall result is that
node a disables the REVOKE time-out for that node while restarting the ALARM
time-out for the same node. These activities are also triggered when the COOP_opt
is set (in fact, a CLAIM message is also sent in line 16, Algorithm 4). The objective
of this invocation is to update the information on traced nodes via an information
exchange with the met nodes.

Finally, when a receives a message issued by node b that is not originated within
the protocol (for instance, it can be originated by the application layer), this message
can be interpreted by the protocol as an evidence of the presence of node b. Therefore,
this can be interpreted as a special case of a nodemeeting, and the appropriate actions
are triggered (line 15).

3.5 Simulations and Discussion

We performed simulations using a self-developed discrete event simulator. As for
the energy model, we adopted the one proposed in [222]. To plot each point in the
following graphs (as well as for Fig. 3.1), we performed a set of experiments and
reported the averaged results; the number of experiments has been set to achieve a
confidence interval of 98%.
The comparison on the detection time between our protocol and the benchmark has
been performed considering the energy cost. In particular, the energy cost has been
expressed as a frequency of network flooding, as explained later.

3.5.1 Node Re-Meeting

In order to better understand how mobility and cooperation can speed up the cap-
ture detection process we performed a first set of simulations to assess the fre-
quency of node-to-node meetings. We considered a network of N = 100 nodes
randomly deployed over a square area of 1,000m × 1,000m. We used the random
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Input : IDa : ID of the executing node. ta : Current time of node a. MSG : Received
message. RTa : Revocation Table stored in node a memory. δ : Time for the accused
node to prove its presence.

1 begin
2 〈IDb, msgtype, IDx, tx〉 ← MSG ;
3 if (msgtype = ALARM) then
4 if (IDx �= IDa) then
5 if IsNotRevoked(RTa,IDx) then
6 UpdateTimeOut(TTa,

〈IDb, ta + δ, REVOKE〉) ;
7 end
8 else
9 Flooding(〈IDa, CLAIM,−,−〉) ;

10 end
11 end
12 if (msgtype = CLAIM) then
13 CMC_Meeting(IDx, false, tx) ;
14 end
15 CMC_Meeting(IDb, false,−) ;
16 end

Algorithm 6: CMC_Receive(MSG).

waypoint mobility model as the node mobility pattern. In particular, in our simula-
tions we set the value for the minimum node speed greater than zero—this is a way to
solve the decreasing average node speed problem of the random waypoint mobility
model [237].
The experiment was set in this way: We choose two nodes a and b, when they meet,
we set time at t = 0 and continued following these nodes thorough their network
evolution to experimentally determine how long it takes for these two nodes to meet
again, in both the non-cooperative and in the cooperative case.
Crucially, in the cooperative scenario, if node c meets node a and sends to it all the
information c received during its last meeting with node b, this is also a meeting
between a and b.

We performed the simulation for different values of sensing radius and average
node speed both for the non-cooperative and the cooperative scenario. The results are
shown in Figs. 3.2 and 3.3. The experiments support the following, simple intuitions:
Node cooperation increases the meeting probability; the higher is the sensing radius,
the higher is the meeting probability; the higher is the average node speed, the higher
is the meeting probability.

We used these results also to propose a reasonable value for the variable λ to
be used in the implementation of our proposal, for both the cooperative and non-
cooperative case.



66 3 Capture Detection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000

Pr
ob

ab
ilit

y

Elapsed time after last meeting(sec.)

r = 10 m
r = 20 m
r = 30 m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000

Pr
ob

ab
ilit

y

Elapsed time after last meeting(sec.)

r = 10 m
r = 20 m
r = 30 m

(a)

(b)

Fig. 3.2 Probability for two nodes not to re-meet: N = 100, savg = 5 m/s a Without node
cooperation, savg = 5m/s. b With node cooperation, savg = 5m/s
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Fig. 3.3 Probability for two nodes not to re-meet: N = 100, savg = 20m/s a Without node
cooperation, savg = 20m/s. b With node cooperation, savg = 20m/s
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3.5.2 Experimental Results

Energy-driven comparison

One of the key issues in sensor network is the energy consumption. Hence, we com-
pared our proposal with the benchmark focusing on energy consumption. To provide
an evaluation of our protocols in a manner that is device-independent, we chose to
express the energy consumption in terms of generated messages. As for the energy
devoted to computation, we considered that cost negligible, as in [222].
The main communication cost of both our protocol and the benchmark are the flood-
ings.Thebenchmarkuses theflooding as apresence claimmessagewhile our protocol
uses the flooding for both alarm broadcast and alarm-triggered presence notification;
the latter flooding occurs when a node that has been erroneously advertised as pos-
sibly compromised, sends (floods) a claim of its actual presence. To simplify our
discussion, we assume that a network flooding corresponds to send and to receive
a message by each network node. This is not always the case; actually, the load for
broadcasting varies with different network parameters and the specific broadcast-
ing protocol used [163]. However, this approximation is good enough to achieve our
goal, that is to show the qualitative improvement of our solution over the benchmark.
To better appreciate the comparison with the benchmark—where a flooding occurs
every time interval—in the following graphs we report on the x-axis the time interval
between two subsequent flooding, instead of the flooding frequency. Note that once
the flooding interval is fixed, also the amount of available energy (messages) is fixed,
and we can plot the performance of our protocol when using the same amount of
energy (that is, the same amount of messages).
In our simulation, we analyze how increasing the energy overhead affects the detec-
tion time. In other words, we fix the energy overhead at the same level for both
protocols under evaluation, and measure which protocol achieves the best detection
time.

Performance

To compare the performance of the proposed solution with the benchmark presented
inSect. 3.3.1,we implementedour protocol. In the followingwefixa sensing radius of
r = 20m. Since sensor nodes have often strict memory constraints (as for example in
sensor network), in our simulations we assume that each node traces a small number
of other nodes. In fact, as a result of the pseudo-random function Trace (Algorithm
4, line 2) each node traces exactly 5 other network nodes. For the cooperative scenario
when two nodes a and b meet, they exchange the information concerning the nodes
tracked by both a and b; we assume that this information can be contained in one
message. Indeed, the number of shared traced nodes can be up to 5 (number of nodes
traced by each node), but in practice it turns out to be much smaller, on average
(0.25 in our setting). We simulated our protocol with and without node cooperation,
varying the alarm time from 250 to 8000s and the average node speed from 5 to
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20m/s. Figures3.4a, b show the results of the simulation of our protocol without
and with cooperation, respectively.

Figure3.4a shows the results when cooperation is switched off, for the two proto-
cols and different speeds.On the x-axis,wefix the flooding interval for the benchmark
protocol. In this way, the detection time is also fixed for the benchmark and it does
not change when changing the speed. The quality of the detection for the benchmark
is just linear: By doubling the flooding interval also the detection time doubles, while
the energy cost halves. Figure3.4a confirms our intuition: Mobility with local coop-
eration can help computing global properties cheaply.
In this simulation scenario, for a reasonable speed of nodes, our protocol outperforms
the benchmark. Take, as an example, a flooding interval of 50 s. From Figure3.4a,
we can see that the detection time of the benchmark protocol is 5,000s. The perfor-
mance of our protocol depends on the average speed of the system. If the average
speed of the system is slow, for example 5m/s, then the detection time is more than
6,000s. However, if the network nodes move faster, than our solution improves over
the benchmark. For instance, when the average speed is 20m/s, the detection time
is as low as 1,600s, much faster than the benchmark. From this experiment, it is
also clear that the performance of our protocol depends on the average speed in the
network: The faster the better. While the benchmark is an excellent solution for slow
networks, for example where nodes are carried by humans walking, our solution is
the best for faster networks, and it is always the best when the energy overhead must
be low. Now, we will switch cooperation on, and see that the performance of our
protocol increases considerably, even though with some drawbacks when the energy
budget is small.

Figure3.4b describes the performance of our protocol when using cooperation.
When the network flooding frequency is high, that is, network flooding interval is
small, cooperation is very effective. Further, with cooperation the performance of
our protocol improves as the average speed of the nodes increases. In this case, our
protocol is better than the benchmark even when starting from very high flooding
frequency—that is, starting from systems that are very fast in detecting the node
capture attack and that, consequently, have very high energy requirements. What
is less intuitive, is that cooperation is not useful when we move to more energy-
saving systems. Take, as an example, a network where the average speed is 15m/s.
Our protocol is better than the benchmark whenever the design goal is to have a
network with more energy available and to achieve a small detection time, that is,
in Fig. 3.4b, whenever the flooding interval is smaller than 38s. However, when
considering a network with more stringent energy requirements, for example when
the flooding interval is 50 s, than it is simply not possible to reach such low energy
costs by using cooperation. Cooperation has a cost, that is higher when the network
is faster—indeed, in a faster network the nodes meet more frequently, and thus
cooperation is higher. In this case, the correct design guideline is to use our protocol
with cooperation, if the objective is to have a system that is fast in detecting the
node capture attack, though using more energy—in particular, in our example until
a flooding interval of 38 s—and then to switch cooperation off, to get a cheaper
protocol, that can be used when the flooding interval can be larger.
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Fig. 3.4 CMC detection time: N = 100, r = 20m a Without node cooperation. b Using node
cooperation
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As described by Fig. 3.4b, the limits of cooperation appear sooner in faster net-
works. This is intuitive, cooperation is more costly when nodes meet more often, and
so the trade-off moves towards non-cooperation earlier. The implications of using
mobility and local communications to compute global properties are not trivial. If
the network is fast enough, it is always better to use protocols like the one we propose
rather than using static approaches like the benchmark. However, node cooperation
flavoured techniques, that appears to be effective in any case, have the result of
making the information in the network spread faster, but at a cost.

3.5.3 Massive Attacks

In order to investigate the behavior of our protocol under a massive attack we sim-
ulated the capture of 10% of the network nodes (10 out of 100) at the same time.
We fixed the average speed at 15m/s. Simulation results are shown in Figs. 3.5a, b
for the non cooperative and cooperative scenario, respectively. For both cases the
figures show the result for one captured node and 10 captured nodes in a network of
100 nodes. From both figures we can see that all the protocols, both the benchmark
and our solution, with or without cooperation, are robust against massive attacks.
Indeed, the small differences in performance do not justify a change in the defense
strategy but for small intervals.

3.5.4 Other Mobility Patterns

We stress once again that the aim of this chapter is to give a proof of concept that
both nodemobility and node cooperation can help thwarting the node capture. Hence,
to abstract from mobility details we choose to use the Random Waypoint Mobility
Model.Mobilitymodels based on randomlymoving nodesmay, for example, provide
useful analytical approximations to the motion of vehicles that operate in dispatch
mode or delivery mode [14]. It is important to note that the results obtained in this
chapter are not directly applicable to others scenario-inspired mobility models [203];
for instance, while inter-meeting time follows an exponential distribution under the
RWM, inter-meeting time is shown to be better approximated by a power-law dis-
tribution in some scenarios [34, 203]. However, it is also interesting to note that our
solution allows the network to let autonomously emerge the sub-groups of nodes that
meet with higher frequency (communities). In fact, this can be done leveraging the
false positive alarm: If node a sends a high number of false alarms (further revoked
by the accused node) related to node b this implies that a actually does not meet with
b with “high” frequency. This information can be interpreted as if a and b do not
belong to the same community.
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3.6 Concluding Remarks

In this chapter we have proposed, to the best of our knowledge, the first distributed
solution to a major security threat in mobile WSN: The node capture attack. Our
solution is based on the intuition that node mobility, together with local node coop-
eration, can be exploited to design security protocols that are extremely effective and
energy-efficient. These protocols make use, in a non trivial way, of the information
flow guaranteed by node mobility. We have also developed a technique that, increas-
ing the level of cooperation among nodes, makes global information flow faster in
the network, even if at a cost in terms of energy. The experiments clearly show that
these ideas deliver effective and efficient protocols, and that it is possible to find
the critical speed that is necessary to induce enough information flow to make these
new protocols outperform traditional ones, designed for static networks. We observe
that, while the solution provided in this paper has been presented in the context
of WSNs, it can be actually extended for a more general type of mobile network:
Mobile Ad Hoc Network (MANET). Furthermore, we observe that the approach
proposed in this chapter could be improved discovering more stringent conditions to
detect an attack; for instance, taking defensive measure for a potential node capture
attack subsequently to the detection of a network intrusion would reduce the cost
of the defensive mechanism. This solution would apply to the defensive mechanism
described in this chapter too. Finally, we believe that the ideas and protocols intro-
duced in this chapter, even if specifically suited to address a major security threat,
could be also adopted in other scenario to support other emergent properties as well.

As observed in this chapter, an early capture detection means an higher energy
consumption. As a result, because of the energy constraints of WSNs, the detection
time cannot be decreased under a given threshold. This make it worth facing the
threats coming from a node capture that is not detected. Next chapter specifically
addresses one of this threats: The clone attack.



Chapter 4
Clone Detection

The previous chapter considered the node capture problem. The capture of a node
affects all the network: All the nodes should be aware that the corresponding node’s
ID is untrusted from the moment of the capture. We proposed a new approach for
the node capture detection. However, the capture detection comes with a cost (in
terms of energy consumption) that is inversely proportional to the detection time and
should not be prohibitive for the network. As a result, the detection time cannot be
decreased under a given threshold. If the node capture is undetected, the adversary
can first re-program the captured node and then clone it in a large number of clones,
easily taking over the network. Then, the detection of node clone attacks in a wireless
sensor network is also a fundamental problem. A few distributed solutions to this
problem have been recently proposed in literature. However, these solutions are not
satisfactory. First, they are energy and memory demanding: A serious drawback for
any protocol to be used in a resource constrained environment like a sensor network.
Further, they are vulnerable to specific adversary models introduced in this chapter.

The contributions of this chapter are threefold. First, we analyze the desirable
properties of a distributed mechanism for the detection of node clone attacks. Sec-
ond, we show that the known solutions for this problem do not completely meet our
requirements. Third, we propose a new self-healing, randomized, efficient, and dis-
tributed protocol (RED) for the network autonomous detection of node clone attacks
andwe show that it is completely satisfactorywith respect to the requirements. Exten-
sive simulations also show that our protocol is highly efficient in communication,
memory, and computation, that it sets out an improved attack detection probability
on the best solutions in the literature, and that it is resistant to the new kind of attacks
we introduce in this chapter, while other solutions are not.
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4.1 Introduction

Due to the operating nature of WSNs, they are often unattended, hence prone to
different kinds of novel attacks. An adversary could capture nodes acquiring all
the information stored therein—sensors are commonly assumed to be not tamper
proof. Therefore, an adversary may clone captured sensors and deploy them in the
network to launch a variety of malicious activities. This attack is referred to as
the clone attack [41, 90, 247]. Since a clone has legitimate information (code and
cryptographic material), it may participate in the network operations in the sameway
as a non-compromised node; hence cloned nodes can launch a variety of attacks. A
few have been described in the literature [16, 217]. For instance, a clone could create
a black hole, initiate a wormhole attack [121] with a collaborating adversary, or inject
false data or aggregate data in such a way to bias the final result [235]. Further, clones
can leak data.

The threat of a clone attack can be characterized by two main points:

• A clone is considered as a totally honest node from its neighbourhood. In fact,
without global countermeasures, a honest node cannot be aware of the fact that it
has a clone among its neighbours;

• to have a large amount of compromised nodes, the adversary does not need to
compromise a high number of nodes. Indeed, once a single node has been captured
and compromised, the main cost of the attack has been sustained. Making further
clones of the same node can be considered cheap.

While centralized detection protocols have a single point of failure and high com-
munication cost, local protocols do not detect cloned nodes that are distributed in
different area of the network. In this chapter we look for a network self-healingmech-
anism, where nodes autonomously identify the presence of clones and exclude them
from any further network activity. In particular, this mechanism is designed to iter-
ate as a “routine” event: It is designed for continuous iteration without significantly
affect the network performances, while achieving high clone detection rate.

In this chapter we analyze the desirable properties of distributed mechanisms for
detection of node clone attack [52]. We also analyze the first protocol for distributed
detection, proposed in [169], and show that this protocol is not completely satisfactory
with respect to the above properties. Lastly, we propose a randomized, efficient, and
distributed (RED) protocol for the detection of node clone attacks and we prove that
our protocol meets all the above cited requirements. We further provide analytical
results when RED and its competitor [169] face an adversary that selectively drops
messages that could lead to clone detection. Finally, extensive simulations of RED
show that it is highly efficient as for communications, memory, and computations
required and shows improved attack detection probability (evenwhen the adversary is
allowed to selectively drop messages) when compared to other distributed protocols.
We also propose some other distributed protocols for detection of clone attacks in
[50, 54].
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Organization

The remainder of this chapter is organized as follows: Next section reviews related
work; Sect. 4.3 shows the threat model assumed in this chapter; Sect. 4.4 introduces
the requirements a distributed protocol for the detection of the clone attack in wire-
less sensor networks should meet; in Sect. 4.5 we describe our randomized, efficient,
and distributed solution; in Sect. 4.6 we show some experimental results on RED
and compare them with the results obtained in [169]. These results confirm that
RED matches the requirements in Sect. 4.4, that RED is more energy, memory, and
computationally efficient, and that it detects node clone attacks with higher proba-
bility. In Sect. 4.7 we analyze how malicious nodes can affect the detection protocol
performances. Finally, Sect. 4.8 presents some concluding remarks.

4.2 Related Work

One of the first solutions for the detection of clone attacks relies on a centralized
base station [85]. In this solution, each node sends a list of its neighbours and their
claimed locations (that is the geographical coordinates of each node) to aBase Station
(BS). The same entry in two lists sent by nodes that are not “close” to each other
will result in a clone detection. Then, the BS revokes the clones. This solution has
several drawbacks, such as the presence of a single point of failure (the BS), and
high communication cost due to the large number of messages. Further, nodes close
to the BS will be required to route much more messages than other nodes, hence
shortening their operational life.

Another centralized clone detection protocol has been proposed in [26]. This
solution assumes that a random key pre-distribution security scheme is implemented
in the sensor network. That is, each node is assigned a set of k symmetric keys,
randomly selected from a larger pool of keys [85]. For the detection, each node
constructs a counting Bloom filter from the keys it uses for communication. Then,
each node sends its own filter to the BS. From all the reports, the BS counts the
number of times each key is used in the network. The keys used too often (above a
threshold) are considered cloned and a corresponding revocation procedure is raised.

Other solutions rely on local detection. For example, in [37, 79, 85, 159] a voting
mechanism is usedwithin a neighbourhood to agree on the legitimacy of a given node.
However, this kind of amethod, applied to the problem of clone attack detection, fails
to detect clones that are not within the same neighbourhood. As described in [169],
a naïve distributed solution for the detection of the node clone attack is Node-To-
Network Broadcasting. In this solution each node floods the network with a message
containing its location information and compares the received location information
with that of its neighbours. If a neighbour sw of node sa receives a location claim that
the same node sa is in a position not coherent with the originally detected position
of sa, this will result in a clone detection. However, this method is very energy
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consuming since it requires N flooding per iteration, where N is the number of nodes
in the WSN.

In the sybil attack [79, 159], a node claims multiple existing identities stolen from
corrupted nodes. Note that both the sybil and the clone attacks are based on identity
theft, however the two attacks are independent. The sybil attack can be efficiently
addressed with mechanism based on RSSI [68] or with authentication based on the
knowledge of a fixed key set [37, 46, 47, 75, 76].

Recent research threads cope with the more general problem of node compro-
mise [53, 207, 241]. However, detecting node “misbehaviour” via an approach that
is rooted on Intrusion Detection Systems theory [72] seems to require an higher over-
head compared to clone detection. Indeed, in current solutions detecting a misbehav-
ing node implies observing, storing, and processing a large amount of information.
Some other recent studies on distributed detection of clone attack such as [199, 232,
245].

To the best of our knowledge the first not naïve, globally-aware, and distributed
node-clone detection solution appeared in [169]. In particular, two distributed detec-
tion protocols leveraging emergent properties [98] have been proposed. The first one,
the RandomizedMulticast (RM), distributes node location information to randomly-
selected nodes. The second one, the Line-SelectedMulticast (LSM), uses the routing
topology of the network to detect clones. In RM, when a node announces (locally
broadcasts) its location, each of its neighbours sends (with probability p) a digitally
signed copy of the location claim to a set of randomly selected nodes. Assuming
that there is a cloned node, if every neighbour randomly selects O(

√
N) destinations,

with a not negligible probability at least one node will receive a pair of not coherent
location claims. We will call witness the node that detects the existence of a node
in two different locations within the same protocol run. The RM protocol implies a
high communication costs: Each neighbour has to send O(

√
N) messages. To solve

this problem the authors propose the LSM Protocol.
The LSM Protocol is similar to RM but it introduces a remarkable improvement

in terms of detection probability. In LSM, when a node announces its location, every
neighbour first locally checks the signature of the claim and then, with probability p,
forwards it to g ≥ 1 randomly selected destination nodes. As an example, in Fig. 4.1
the node a announces its location and one of its neighbours, node b, forwards the

Fig. 4.1 Example of LSM
Protocol iteration

A A’

z

B C

E
F
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claim to node f . A location claim, when traveling from source to destination, has to
pass through several intermediate nodes that form the so-called claim message path.
Moreover, every node that routes this claim message has to check the signature, to
store the message, and to check the coherence with the other location claims received
within the same run of the detection protocol.

Node cloning is detected by the node (the witness, if present) on the intersection
of two paths generated by two different node claims carrying the same id and coming
from two different nodes. In the example shown in Fig. 4.1, node a′ is a clone of node
a (has the same id of node a). The claim of a′ is forwarded by the node c to the node
e. Node z will then results in the intersection of two paths carrying the claim of id a
coming from different locations. Node z, the witness, will then trigger a revocation
procedure.

In [244], the authors propose two different protocols with the aim of increasing
the detection probability provided by LSM. The basic idea is to logically divide the
network into cells and to consider all the nodes within a cell as possible witnesses.
In the first proposed protocol, Single Deterministic Cell, each node id is associated
to a single cell within the network. When the protocol runs, the neighbours of a
node a probabilistically send the a’s presence claim to the single pre-determined
witness cell for a. Once the first node within that cell receives the claim message,
it is flooded to all the other nodes within that cell. In the second proposal, Parallel
Multiple Probabilistic Cells, the neighbours of a node a probabilistically send a’s
claim to a subset of the pre-defined witness cells for the ida. The proposed solutions
show an higher detection probability compared to LSM. However, the same pre-
dictable mechanism used to increase the detection probability can be exploited by
the adversary for an attack—compromising the witnesses in order to go undetected.
In fact, this predictability restricts the number of nodes (and their geographic areas)
that can act as witnesses.

Another interesting distributed protocol for cloned node detection is the SET
protocol [41]. SET leverages the knowledge of a random value broadcast by a BS
to further perform a detection phase. In particular, the shared random value is first
used to generate independent clusters and corresponding clusters heads. The specific
clustering protocol used assures that the clusters are in fact Exclusive SubsetMaximal
Independent Set (ESMIS)—cluster heads are called Subset Leader (SLDRs). Further,
within the same protocol iteration used to generate clusters and SLDRs, one or more
trees are defined over the network graph. The nodes of the tree correspond to the
SLDRs. Then, a bottom up aggregation protocol is run to aggregate the list of nodes
belonging to the ESMIS. If a node id is present in two different independent subsets,
than the node corresponding to that node id has been cloned.

Themechanism used by the protocol prevents a node to escape detection by claim-
ing to be managed from a non existing SLDR—hence escaping the tree aggregation
protocol. Note that defining such aggregating trees for each protocol iteration comes
with a non-negligible cost in terms of messages. However, the main problem of this
protocol is that the detection protocol itself is flawed—it can bemaliciously exploited
by the adversary to revoke honest nodes (that is, nodes that are not cloned). Indeed,
a malicious node acting as a SLDR could declare in its ESMIS the presence of a
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honest node, say a, that eventually exists in some other part of the network (that is,
belonging to a different ESMIS). This malicious behavior will lead the network to
the “detection”, and possibly to the revocation, of honest node a. Due to the possi-
bility of this attack, in the following we do not consider SET as a benchmark for our
protocol.

In [52] the desirable properties a clone detection protocol should meet has been
pointed out.As shown in [52], theLSMProtocol [169] does notmeet these properties.
In particular, for LSM, some nodes have an higher probability to act as witnesses,
then weakening the detection itself: The attacker can further take control of the
node that will act as witness. Furthermore, the protocol’s overhead is not evenly
distributed among the network nodes. In [48] a randomized, efficient and distributed
clone detection protocol has been proposed. The simulation results reported in [48]
show that the proposed RED Protocol meets the desirable properties presented in
[52].

In this chapter we review the contribution of [48] and further thoroughly investi-
gate the feasibility of theREDProtocol. The analysis and the further set of simulations
presented show that the RED Protocol can be actually implemented in sensor net-
work. Also, it can be continuously iterated over the same network, as a self-healing
mechanism, without significantly affecting the network performance (nodes energy
and memory) and the detection protocol itself. Furthermore, we investigate the influ-
ence of an attacker intervening on message routing both for RED and its competing
LSM Protocol.

4.3 The Threat Model

We define a simple yet powerful adversary: It can compromise a certain fixed amount
of nodes and clone one or more into multiple copies (the clones). In general, to cope
with this threat it could be possible to assume that nodes are tamper-proof. How-
ever, tamper proof hardware is expensive and energy demanding [3, 9]. Therefore,
consistently with a large part of the literature, we will assume that the nodes do not
have tamper proof components. The adversary goal is to prevent clones from being
detected by the detection protocol used in the network. Hence, we assume that the
adversary, to reach its goal, also tries to subvert the nodes that will possibly act as
witnesses.

To formalize the adversary model, we introduce the following definition.

Definition 4.1 Assume that the adversary goal is to subvert the distributed detection
protocol by compromising a possibly small subset T of the nodes. The adversary
has already compromised a set of nodes W , while N is the initial set of nodes
in the network. For every node s, the node appeal S(s) returns the probability that
s ∈ N \W is a witness for the next run of the protocol.

We characterize the adversary through two different points of view: “where” and
“how” it operates. As for “where”, the adversary can be:
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1. localized: The adversary chooses a convex sub-area of the network and compro-
mises sensors from that area only.

2. ubiquitous: The adversary compromises sensors choosing from the whole net-
work.

Intuitively, with the localized adversary we describe an adversary that needs some
time to move from one point to another of the network area, while the ubiquitous
adversary, during the same time interval, can capture nodes regardless of their posi-
tion.

As for the sequence of node capture (that is, “how”), the adversary can be:

1. oblivious: At each step of the attack sequence, the next node to be tampered with
is chosen randomly among the ones that are yet to be compromised;

2. smart: At each step of the attack sequence, the next node to tamper with is node
s, where s maximizes S(s), s ∈ N \W .

Intuitively, the oblivious adversary does not take advantage of any information
about the detection protocol implemented. Conversely, the smart adversary greedily
chooses to compromise the node that maximizes its appeal in order to maximize the
chance for its clones to go undetected.

4.4 Requirements for the Distributed Detection Protocol

In this section we present and justify the requirements a protocol for clone detection
should meet.

4.4.1 Witness Distribution

A major issue in designing a protocol to detect clone attacks is the selection of
witnesses. If the adversary knew the future witnesses before the detection protocol
executes, the adversary could subvert these nodes for the attack to go undetected.

The adversary can in principle use any information on the network to foresee
probability S(s) for a generic node s. Here, we have identified the following two
kinds of predictions:

• id-based prediction;
• location-based prediction.

We will say that a protocol for clone detection is id oblivious if the protocol does
not provide any information on the id of the sensors that will be the witnesses of
the clone attack during the next protocol run. Similarly, a protocol is area oblivious
if probability S(s), for every s ∈ N , does not depend on the geographical position
of node s in the network. Clearly, when a protocol is neither id-oblivious nor area-
oblivious, then a smart adversary can have good chances of succeeding, since it is
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able to use this information to subvert the nodes that, most probably, will be the
witnesses. Furthermore, when a protocol is not area oblivious, then even a localized
oblivious adversary (that, at a first glance, seems to be the weakest) can enhance
its chances of succeeding if it concentrates node compromising activities in an area
with a high density of witnesses.

4.4.2 Overhead

Designing protocols for wireless sensor networks is a challenging task due to the
resource constraints typical of these networks. Any protocol is required to generate
little overhead. However, this requirement alone is not enough. Indeed, even if a
protocol shows a reasonably small overhead on the average, it is still possible that a
small subset of the nodes experiences a much higher overhead. This is bad—these
nodes exhaust their batteries very quickly, with serious consequences on the network
functionality. Moreover, the problem can be even more subtle when we consider
memory. If a high memory overhead concentrates on a small number of nodes, then
these nodes can overflow. During an overflow, the node could stop the protocol, or
drop packets to free memory. It is very important to understand what kind of impact
this scenario can have on the detection capability of the protocol itself.

We can summarize the above considerations with the general requirement that
the overhead generated by the protocol should be small, that is sustainable by the
network as a whole, and (almost) evenly distributed among the nodes. To make a real
example, in LSM every node that relays a position claim must perform a signature
verification and store the claim. As analyzed in [169], every line-segment includes
O(

√
N) nodes and every node stores O(

√
N) location claims. Note that this memory

requirement could be impractical in real networks with thousands of nodes.
Table4.1 shows—first row—the asymptotic overhead for one protocol run (also

referred to as round in the following) of LSM. The second row reports on the aver-
age overhead generated by one round of LSM for a network of 1,000 nodes with
31 neighbours per node (on the average). Finally, the third row shows the maximum
overhead experienced by a node, that turns out to be much higher than the aver-
age. Detailed discussion on the generated overhead and compliance with the above
described requirements are presented in Sect. 4.6.

Table 4.1 LSM overheads: N = 1000, r = 0.1, and g = 1

Memory
occupancy

Sent messages Received
messages

Signature check

Asymptotic O(g · p · d · √
N) O(g · p · d · √

N) O(g · p · d · √
N) O(g · p · d · √

N)

Average (p = 0.1) 20.33 22.08 49.84 21.08

Max (p = 0.1) 197 216 252 223

Average (p = 0.05) 9.98 10.98 38.60 10.17

Max (p = 0.05) 59 56 92 60
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4.5 The RED Protocol

In this section we propose RED (Randomized, Efficient, and Distributed), a new
protocol for the detection of clone attacks.

As in LSM, we assume that the nodes in the network are relatively stationary;
that each node knows its own location (for instance, using a GPS or the protocols
in [19, 31, 160]); and that all the nodes use a id-based public-key crypto system [42,
202]. We also assume that the network is loosely time synchronized. Observe that
loose time synchronization can be achieved both in a centralized and in a distributed
way [83, 84, 169].

RED executes routinely, at fixed intervals of time. Every run of the protocol
consists of two steps.

In the first step a random value, rand, is shared among all the nodes. This random
value can be broadcast with centralized mechanism (for example, from a satellite or
a UAV [133], or other kinds of ground-based central stations), or with in-network
distributed mechanisms. For instance, a non-subvertible, verifiable leader election
mechanism [40, 71, 214] can be used to elect a leader among the nodes; this leader
will later choose and broadcast the random value.

In the second step, each node digitally signs and locally broadcasts its claim—id
and geographic location (Procedure Broadcast_Claim shown in Algorithm 7). In
the sequel of this chapter, without losing of generality and to ease exposition, we
will rely on a centralized solution for the broadcast of the random value.

1 begin
2 claim ← 〈ida, is_claim, location(), time()〉 ;
3 signed_claim ← 〈claim, Kpriv

a (claim)〉 ;
4 a → neighbours(): 〈ida, neighbours(), signed_claim〉 ;
5 end

Algorithm 7: Broadcast_Claim.

When the neighbours receive the local broadcast, they execute the Procedure
Receive_Message (shown in Algorithm 8). Each of the neighbours sends (with
probability p) the claim to a set of g ≥ 1 pseudo-randomly selected network loca-
tions (rows 14–21 in Protocol 8). RED does not send the claim to a specific node id
because this kind of a solution does not scale well: A claim sent to a node id that is
no more present in the network would be lost; nodes deployed after the first network
deployment could not be used as witnesses without updating all the nodes. However,
RED can easily be adapted to work when a specific node is used as the message
destination. Finally, in the following we consider the same geographic routing pro-
tocol used in [169] for a fair comparison. Though, RED is actually independent of
the routing protocol used in the network.
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1 begin
2 if IsClaim(M) then
3 〈−,−, signed_claim〉 ← M ;
4 〈claim, signature〉 ← signed_claim ;
5 if BadSignature(claim, signature) then
6 discard M ;
7 else
8 if IncoherentLocation(claim) then
9 〈idx,−,−,−〉 ← claim ;

10 trigger revocation procedure for idx ;
11 return ;
12 end
13 end
14 if with probability p then
15 〈claim, signature〉 ← signed_claim ;
16 〈idx,−, locx, timex〉 ← claim ;
17 locations ← PseudoRand(rand, idx, g) ;
18 forall the l ∈ locations do
19 a → l: 〈ida, l, is_fwd_claim, signed_claim〉 ;
20 end
21 end
22 else
23 if IsFwdClaim(M) then
24 〈−,−,−, signed_claim〉 ← M ;
25 〈claim, signature〉 ← signed_claim ;
26 if BadSignature(signed_claim) or Replayed(claim) then
27 discard M ;
28 else
29 〈idx,−, locx, timex〉 ← claim ;
30 if detect_clone(memory, 〈idx, locx, timex〉) then
31 trigger revocation procedure for idx ;
32 else
33 store fwd_claim in memory ;
34 end
35 end
36 end
37 end
38 end

Algorithm 8: Receive_Message(M).

We assume that the routing delivers a message sent to a network location to
the node closest to this location [31, 129]; that the routing protocol does not fail (as
done in [169]); and that message forwarding is not affected by dropping or wormhole
attacks (for these kinds of attacks a few solutions can be found in [67, 94, 128]). Later,
in Sect. 4.7, we will see how the protocol performs when malicious nodes can drop
packets. To test the protocol, we assume that the adversary has introduced two nodes
with the same id in the network. Clearly, if the adversary introduces more clones of
the same node, then the task of detecting the attack is only easier. Within this ideal
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framework, the probability that the clone attack is detected is equal to the probability
that at least one neighbour of each clone sends the claim to the same witnesses.
Consideringd neighbours, the probability that fromaneighbourhooda claimmessage
is sent is 1 − (1 − p)d ; therefore, the detection probability is (1 − (1 − p)d)2. For
example, with p = 0.1 and d = 35 we have a detection probability of 0.95 in a single
run of the protocol. Detection probability will be further discussed in a more realistic
framework in Sect. 4.6.

The set of witnesses is selected using a pseudo-random function (line 17 of Pro-
tocol 8). This function takes in input the id of the node, that is the first argument of
the claim message, the current rand value, and the number g of locations that have
to be generated. Using a pseudo-random function guarantees that, given a claim, the
witnesses for this claim are unambiguously determined in the network, for a given
protocol iteration. Time synchronization is used by the nodes to discern between
different iterations.

Every node signs its claim message with its private key before broadcasting it
(line 3 of Protocol 7). The nodes that forward the signed claim towards destination
are not required to add any signature or to store any message. For every received
claim, the potential witness node:

• Verifies the received signature (line 26);
• Checks for the freshness of message (line 26). This is important to prevent replay
of old messages. This check is performed verifying the coherence between the
time inserted in the message by the claiming node and the current time.

For every genuine message that passes the previous checks the witness node extracts
the information (id and location). If this is the first claim carrying this id, then the
node simply stores the message (line 33). If another claim from the same id has
been received, the node checks if the new claim is coherent with the claim stored in
memory for this id (line 30). If it is not, the witness triggers a revocation procedure
for the id (line 31)—the two incoherent signed claims are the proof of cloning.

Here is an example of a run of the protocol. Assume that the adversary clones
identity ida and assigns this identity to nodes a′ and a′′. These two nodes are placed
in two different network locations: l1 and l2 respectively. During a RED iteration,
the nodes a′ and a′′ have to broadcast the same id, but different location claims (l1
and l2). Indeed, if l1 ∼ l2, then either the neighbours of a′ or the neighbours of a′′
will raise an exception (line 10 of Protocol 8).

Let b′ and b′′ be neighbours of a′ and a′′, respectively. Using the pseudo-random
function both b′ and b′′ will select the same set of witness nodes, containing at least a
node w. In this way, w will receive two incoherent location claims for identity ida—
l1 and l2. This results in clone detection. Hence, w can start a revocation procedure
for node ida. Revocation can be performed by flooding the network with the two
incoherent claims received by w. Remember that every claim message of a node is
signed with the private key of the same node. Therefore, the two claims are a proof
that ida has been cloned.

The protocol shows one caveat: After the rand value is shared, RED allows the
adversary to know the witness set for any given id. However, note that the witnesses
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of a node could be anywhere in the network and that witnesses change at every
protocol iteration in a unpredictable way. This means that the adversary, in order
to prevent RED from detecting the clones, is required to be extremely fast and
to capture all the witnesses of the clones within a window period that can be at
most comprised between the disclosure of rand and the end of the protocol round.
Considering realistic network sizes and the possible adversary speed, there are few
chances for the adversary to perform this attack.

4.6 Simulations

In this section we show that RED meets the requirements described in Sect. 4.4:
Area-obliviousness; id-obliviousness; low overhead; overhead balancing; and high
clone attacks detection probability. We further compare RED with LSM and show
that RED outperforms LSM in several ways.

In the following simulations we consider a unit square deployment area [20, 21,
76].WefixedN = 1,000 nodes in the network and r = 0.1 communication radius.We
also set g = 1 and p = 0.1 for both protocols. This means that the two protocols send
the same number of location claims per node (on the average). Further, we assume
that the nodes are distributed in the network area uniformly at random. We simulate
the same geographic routing protocol used in [169]—the relay node is the neighbour
closest to destination. The routing stopswhen no node is closer to destination than the
current node: This node will be a witness. Note that this simple version of geographic
routing, especially when used in networks that are sparse or deployed in an area that
is not convex, has the problem of “dead ends”—places where the message cannot
proceed because there is no node closer to destination, while the destination is still
far. There are a few solutions to this issue [31, 81] that can be used in both protocols
to guarantee that the claim reaches the node closest to destination.

The resources required by RED are shown in Table4.2, for the same parameters
used for LSM in Table4.1. More details are given in the following sections.

Table 4.2 RED Overhead: N = 1000, r = 0.1, g = 1

Memory
occupancy

Sent messages Received
messages

Signature check

Asymptotic O(g · p · d·) O(g · p · d · √
N) O(g · p · d · √

N) O(g · p · d·)
Average (p = 0.1) 0.93 22.08 49.85 2.87

Max (p = 0.1) 15 220 250 48

Average (p = 0.05) 0.75 11.36 39.80 1.48

Max (p = 0.05) 6 67 98 11
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4.6.1 Witness Distribution

Due to randomization, it is straightforward to verify that both LSM and RED are
id-oblivious. In both protocols the ids of the witnesses are randomly selected among
all the nodes in the network. To assess area-obliviousness, we study the witness
distribution as follows: We select increasing sub-areas of the network, and for each
sub-area we count the number of witnesses present in the area after a run of the
detection protocol. Each sub-area from the center of the unit-square towards the
external border provides an increment of 5% of the total area. Hence, 20 sub-areas
are considered, as shown in Fig. 4.2.

In Fig. 4.3, we show an example of one iteration of LSM and RED. The black
filled large circles indicate two clones of the same node, the gray filled small circles
indicate nodes that route a claim from the clones, and finally the large not filled
circle indicates the witness. This example suggests that LSM uses a higher number
of routing nodes, compared to RED. Also, the witness nodes (large not filled circles)
are located differently—near the center of the unit square for LSM while near the
border for RED. In the following we will see through extensive simulations that this
phenomenon is not episodical and we will analyze how it affects the performances
of the protocol.

Figure4.4 reports, for the two protocols, on the percentage of witnesses present
in the incremental sub-areas. We simulate 10,000 different network deployments.
For each deployment we randomly select two nodes, assign to them the same id,
and execute a single LSM iteration and a single RED iteration. After each of these
iterations we localize the witness nodes for the two different protocols. Finally, for

Fig. 4.2 Example of node
deployment with 5%
incremental sub-areas
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(a)

(b)

Fig. 4.3 Examples of protocols iteration. N = 1000, r = 0.1, g = 1, p = 0.1. a LSM Protocol.
b RED Protocol
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Fig. 4.4 Witness density. N = 1000, r = 0.1, g = 1, p = 0.1

each of the 20 incremental sub-areas we compute the percentage of witnesses with
respect to the total number of witnesses. After collecting the outcome of 10,000
experiments, we plot the average. The x-axis of Fig. 4.4 indicates the percentage of
the network area considered while the y-axis the corresponding percentage of all the
witnesses in that area.

In Fig. 4.4we can see that the central area, corresponding to 20%of all the network
area, collects more than 50% of all the witnesses of LSM, while the most external
area, corresponding to the 20% of the network area, contains only 1.75% of all
the witnesses. Therefore, LSM is not area-oblivious, since S(si) > S(sj) for an si

selected from the central area and an sj selected from the most external area. Due to
the pseudo-random choice of witness nodes in the REDProtocol, it is straightforward
to prove that RED has a uniform witnesses distribution. In fact, Fig. 4.4 also shows
how the behavior of RED corresponds to that of an ideal protocol: The witnesses are
equally distributed in all the network areas. In other words, RED is area-oblivious.

4.6.2 Storage Overhead

Figure4.5 reports the number of messages that the nodes are required to store for
LSM and RED. For a fixed x-value of messages in memory, we show the percentage
of the nodes that need to store that number of messages. The values were obtained
averaging the result of 10,000 simulations.
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Fig. 4.5 Used memory for both RED and LSM. N = 1000, r = 0.1, g = 1, p = 0.1

Note that for LSM some nodes could require to store as many as 200 messages.
Our experiments show that LSM requires some 1.9% of the nodes to store more than
60 messages, some 7.6% of nodes to store a number of messages between 40 and
59, and some 27.5% of nodes to store a number of messages between 20 and 39.
Just some 63% of the nodes are required to store less than 20 messages.

As for RED, only a negligible percentage of nodes (0.001%) require to store
more than 10 messages. Moreover, some 0.3% of the nodes need to store more than
5 messages and less than 10% of nodes to store a number of messages between 3
and 5. It is interesting to note that 47.7% of nodes need to store only one or two
messages while 42.9% of nodes do not require to store any message at all. Finally,
observe that for LSM 0.2% only of the nodes do not require to store any message.
Figure4.5 show memory requirements for the two protocols.

4.6.3 Energy Overhead

To assess the energy overhead of the two protocols we consider both communication
and computation intensive operations (that is, public key cryptography: Signature
generation and signature verification). In particular, we use the energy model pro-
posed in [222]: A node battery of 324,000 mJ; 15.104 mJ for sending a packet and
7.168 mJ for receiving a packet (assuming packet length of 32 byte, 0.059 mJ for bit
sending and 0.028 mJ for bit receiving); and 45.0 mJ for both signature generation
and signature verification.
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The operating life of a node depends on its battery. Different energy overheads
for the two protocols will result in a different pattern of node exhaustion. Figure4.6a
shows this phenomenon. After 100 protocol run executed with the same network
topology, some 20% of the nodes are exhausted for LSM, while for RED all the
nodes are alive. After 150 iterations, LSM shows 40% of exhausted nodes, while
REDonly 5%. Finally, after 200 run, LSMshows that half of the nodes of the network
are exhausted (further, with such a number of exhausted nodes, the efficiency of LSM
as for clone detection drops dramatically), while for RED this percentage is less than
15% and the detection capabilities are still remarkable. It is also interesting to look at
the different nodes exhaustion distribution in the network area. Figure4.6b shows the
distribution after 200 protocol iterations. The x-axis indicates the network sub-areas
(as plotted in Fig. 4.2), numbered sequentially from the center (numbered 1) to the
external one (numbered 20). The y-axis indicates the percentage of exhausted nodes
in these areas. For both protocols most of the exhausted nodes are in the center. This
phenomenon is known in the literature [135, 152] and it is due to the fact that most of
the shortest paths generated by a uniform traffic traverse the center of the network.
In the case of LSM, almost all the nodes in the center are exhausted (except a few
isolated ones), and the overhead is transferred to the semi-central areas, leading to
the shape in Fig. 4.6b.

Different distribution of node exhaustion also implies different clone attack detec-
tion probability, as shown in Fig. 4.7. This figure shows the detection probability (y-
axis) at different protocol iterations (x-axis). In particular, we plotted the detection
probability for the first 200 run. Plotted values were computed averaging the results
obtained for 10,000 network deployments. Each single deployment was evaluated
for both the LSM and the RED protocol. For all the considered iterations the RED
Protocol shows a better detection probability compared to that of the LSM. From the
1st to the 50th iteration, LSM shows a probability detection of about 35% while this
probability is more than 80% for the RED Protocol. It is interesting to note the tight
relationship between the percentage of exhausted nodes (Fig. 4.6a) and the detec-
tion probability (Fig. 4.7). For LSM, nodes start exhausting after some 50 iterations;
at the same iteration number, the detection probability starts decreasing. A similar
behavior could be observed for RED as well. It is also possible to note that different
slopes of the curves representing node exhaustion correspond to different slopes in
curves representing detection probability.

Finally, we simulated the protocol behavior under a coordinated attack: The adver-
sary clones a node into two copies and, in the same period of time, compromises a
subset w of the other remaining nodes. In this setting, we assume that a compromised
node forwardsmessages like a honest one: If not, this behavior could be detected, like
in [67, 94, 128]. However, when a compromised node is a witness, we assume that
it would not trigger any alarm, and the clones would go undetected for this specific
protocol iteration. We investigated how the detection probability is affected under
the above scenario, assuming that the adversary “smartly” compromises nodes from
a so-called compromising area, which is a squared central area of the network—of
increasing size.
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When no nodes are compromised, for the first 50 protocol run, the detection
probability is 87% for RED and 33.8% for LSM, as shown in Fig. 4.7. When taking
into account node compromising, the results of our simulations for LSM and RED
are shown in Fig. 4.8a and b respectively. On the x-axis we indicate the number of
compromised nodes while on the y-axis the percentage of the total network, starting
from the inner area.We can notice that for LSM the detection probability is influenced
by both the number of compromised nodes and the size of the compromising area
(Fig. 4.8a). As for RED, the detection probability is influenced only by the number
of compromised nodes (Fig. 4.8b). This is due to the following fact: As observed
in Fig. 4.4, LSM shows an higher witness density in the most internal areas. For
instance, capturing 150 nodes in the 20%central area implies a reduction of detection
probability of 25.4% for LSM (from 33.8 to 25.2%), while the performance of RED
is reduced by 14% only (from 87 to 74.8%).

We can also note that, when the same number of nodes are compromised in all
the network areas, the relative resilience of LSM is a little bit higher than RED. For
example, with 150 compromised nodes all over the network area, LSM decreases
its detection probability by 8.5% only, while it is about 14% for RED. This is due
to the particular behavior of LSM: More that one node can witness a clone attack;
compromising a witness node does not implies that a clone attack will go undetected
for the LSM, while this can be true for RED. However, note that RED could be set
to generate more than one witness. We decided to use the simplest version of RED
to test RED under a constrained, very energy efficient scenario, since its detection
performance is excellent even in this case.
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a LSM Protocol. b RED Protocol

4.7 Detection Probability with Malicious Nodes

In this section we investigate the clone detection probability during a sequence of
iterations. We assume that the adversary has cloned a node, that it is also controlling
a subset of w randomly selected other nodes, and that no mechanism for preventing
packet dropping is implemented, so that malicious nodes can stop claim forwarding.
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We assume that a node (say a) is cloned and one of its clone (say a′) is randomly
deployed within the network area.We further assume no routing failure and that from
each neighbourhood exactly one claimmessage is sent (we do not explicitly consider
d, p and g values). Assume both claims are sent through path of length � = c

√
N

nodes (with constant network density, the average path length isΘ(
√

N)). The nodes
on the two paths (the first one departing from the honest node, a, the second one from
the clone, a′) are those involved in the detection process by the two protocols.

In RED, if just one of these 2� nodes in the two paths is malicious, detection can
fail. In fact, note that the corrupted forwarding node can simply drop the received
location claim. The probability that at least one malicious node is present in the two
paths is:

1 −
(N−w

2�

)

(N
2�

) (4.1)

The probability that the attack is not detected using the RED Protocol, for a single
protocol iteration, is exactly that of Eq. 4.1. To analyze a sequence of iterations, we
assume that every iteration is probabilistically independent. Therefore, the probabil-
ity that the attack is not detected after i RED Protocol iterations is:

(

1 −
(N−w

2�

)

(N
2�

)

)i

. (4.2)

The analysis is different for LSM. In fact, even if all the nodes are honest the attack
is detected only with a given probability—the probability that two paths starting at
a and a′ intersect on a network node. Following the analysis proposed in [169], this
probability is:

1

3

(

1 − 35

12π2

)

. (4.3)

However, note that the probability in Eq.4.3 refers to geometric line intersection.
Then, it is in fact an optimistic upper bound (also still assuming no failure in the
routing). In fact, two intersecting paths (geometrically) do not necessarily have a
node in common—an example of this case is shown in Fig. 4.9.

Despite this fact, in the following we optimistically consider Eq.4.3 as the prob-
ability that the clone is detected when no malicious nodes are present.

Let U be the event that the attack is undetected for a single protocol iteration. For
LSM we have to consider the following two disjoint events. Here, the idea is that
malicious nodes can prevent clone detection only if they are in the path before the
witness. Let us define:

• event Eh: All of the forwarding nodes before the (possibly present) witness are
honest;

• event Em: There is at least one malicious forwarding node before the (possibly
present) witness.
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Fig. 4.9 Example of
LSM-intersecting paths
without intersection node

a a’

Note that Eh and Em form a partition of the probability space, hence

Pr [U] = Pr [U|Eh]Pr [Eh] + Pr [U|Em]Pr [Em] . (4.4)

Pr [U|Eh] is the probability that the attack is undetected when there are no malicious
nodes in the paths. According to [169], this is equal to

1 − 1

3

(

1 − 35

12π2

)

= 1

3

(

2 + 35

12π2

)

. (4.5)

We can assume that Pr [U|Em] = 1, since the malicious node before the witness can
discard the claim and stop the detection. Pr [Em] = 1− Pr [Eh] is similar to Eq.4.1,
taking into account that the malicious nodes should appear before the witness. On
the average, the witness is in the middle of the paths, therefore we can estimate this
probability as follows:

Pr [Em] = 1 −
(N−w

�

)

(N
�

) .

Putting it altogether, we can compute P (U) as follows:

Pr [U] = 1 +
(N−w

�

)

(N
�

)

(
35

36π2 − 1

3

)

.

Therefore, the probability that the attack is not detected after i LSM Protocol itera-
tions is:

[

1 +
(N−w

�

)

(N
�

)

(
35

36π2 − 1

3

)]i

. (4.6)

Figure4.10 shows the analytical results for RED and LSM on non-detection prob-
ability. Remind that, while the analysis for RED is essentially tight, the one for LSM
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Fig. 4.10 Non-detection probability (N = 1000, r = 0.5)

is optimistic, since it depends on the assumption that paths that geometrically inter-
sect have a node in common. This is not true, especially when the network is dense.
The actual detection rate depends on several factors like node density, for example.
Nonetheless, RED outperforms LSM even in the presence of malicious nodes that
can stop the protocol. Figures4.11 and 4.12 shows the analytical results for several
values of c (c controls the length of the average random path in the network, being
� = c

√
N) of the non-detection probability. We considered subsequent protocol

iterations (x-axis). We plotted the result for c = 0.1, 0.2, . . . , 1.
It is interesting to note how w and c influence the detection probability. Larger c

means longer paths and thus higher probability that one of the malicious nodes can
stop clone detection. Largerwmeans that the adversary can often thwart the protocols
and influence detection probability considerably, especially when c is large. In all
cases, it is clear thatREDcanconverge toveryhighdetectionprobability veryquickly.
Note that RED is more influenced than LSM by path lengths, since a malicious node
can stop the protocol wherever it appears in the paths. However, experiments show
that, for a network of 1000 nodes and communication range 0.1 in a network area
of side 1, c is about 0.35. Therefore, we can conclude that RED has better detection
probability and converges faster than LSM for all practical values of the network
parameters.
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Fig. 4.11 Non-detection probability for LSM. a w = 5, b w = 10, c w = 20
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4.8 Concluding Remarks

In this chapter we presented and justified a few basic requirements an ideal pro-
tocol for distributed detection of cloned nodes should have. In particular, we have
introduced the preliminary notion of id-obliviousness and area-obliviousness that
convey a measure of the quality of the clone attack detection protocol; that is, its
resilience to a smart adversary. Moreover, we have indicated that the overhead of
such a protocol should be not only small, but also evenly distributed among the
nodes, both in computation and memory. Further, we have introduced new adversary
threat models. However, a major contribution of this chapter is the proposal of a
randomized, efficient, and distributed protocol (RED) to detect node clone attacks.
We analytically compared the RED Protocol with the state of the art solution (LSM)
and proved that the overhead introduced by RED is low and almost evenly bal-
anced among the nodes; RED is both id-oblivious and area-oblivious; furthermore,
RED efficiency and effectiveness outperforms LSM. Extensive simulations confirm
these results. Finally, also when coping with an adversary that uses compromised
nodes—affecting routing—to stay undetected, RED is more resilient in its detection
capabilities than LSM. We leave as a future work the implementation of both RED
and LSM on sensor networking platform for further evaluation and comparisons.

This chapter addressed a general type of attack that can affect different WSN ser-
vices (communication services, votingmechanisms, data collection, data processing,
etc.). The next chapter deals with an attacker that wants to exploit a specific WSN
service, the data collection.



Chapter 5
Secure Data Aggregation

Chapter4 considered a general WSN security problem. In this chapter we want to
focus on a specific WSN service: The data collection. If each single node sends its
own data to the collecting point in an independent way this will result in a huge waste
of energy. To meet the severe energy constraints in WSNs, some researchers have
proposed to use the in-network data aggregation technique (i.e., combining partial
results at intermediate nodes during message routing), which significantly reduces
the communication overhead. Some researchers also proposed algorithms to securely
compute a fewaggregates, such asSum(the sumof the sensedvalues),Count (number
of nodes) and Average. However, to the best of our knowledge, there is no prior work
which securely computes the Median, although the Median is considered to be an
important aggregate. The contribution of this chapter is twofold. We first propose a
protocol to compute an approximate Median and verify if it has been falsified by an
adversary. Then, we design an attack-resilient algorithm to compute theMedian even
in the presence of a few compromised nodes. We evaluate the performance and cost
of our approach via both analysis and simulation. Our results show that our approach
is scalable and efficient.

5.1 Introduction

The simplest way to collect the sensed data in a WSN is to let each sensor node
deliver its reading to the base station (BS). This approach, however, is wasteful since
it results in excessive communication. A typical sensor node is severely constrained
in communication bandwidth and energy reserve. Hence, sensor network designers
have advocated alternative approaches for data collection.

An in-network aggregation algorithm combines partial results at intermediate
nodes during message routing, which significantly reduces the amount of commu-
nication and hence the energy consumed. A typical data acquisition system [91,
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148] constructs a spanning tree rooted at the BS and then performs in-network
aggregation along the tree. Partial results propagate level by level up the tree, with
each node awaiting messages from all of its children before sending a new partial
result to its parent. Researchers [91, 148] have designed several energy-efficient
algorithms to compute aggregates such as Count, Sum, Average, etc. However, an
in-network aggregation algorithm cannot cheaply compute the exact Median, where
the worst case communication overhead per node is Ω(N ), where N is the number
of nodes in the network [148]. As a result, researchers have advocated computa-
tion of an approximate Median. In-network aggregation algorithms to compute an
approximate Median are proposed in [101, 204].

Unfortunately, none of the above algorithms include any provisions for security,
and hence, they cannot be used in security-sensitive applications. Given the lack of
tamper-resistance and the unattended nature of many networks, we must consider
the possibility that a few sensor nodes in the network might become compromised.

A compromised node in the aggregation hierarchy may attempt to change the
aggregate value computed at the BS by relaying a false sub-aggregate value to its
parent. This attack can be launched onmost of the in-network aggregation algorithms.
For example, inGreenwald et al.’s approximateMedian computation algorithm [101],
a compromised node in the aggregation hierarchy can corrupt the quantile summary
to make the BS accept a false Median which might contain a large amount of error.

A technique to compute and verify Sum and Count aggregates has been proposed
by Chan et al. [38].Their scheme [38] can also verify if a given value is the true
Median, but they have not proposed any solution to compute that value in the first
place. To the best of our knowledge, there is no prior work which securely computes
the Median using an in-network algorithm.

One might suggest an approach which runs Greenwald et al.’s algorithm [101]
to compute an approximate Median and then employs Chan et al.’s verification
protocol [38] to verify if the computed value is indeed a valid estimate. We refer
this approach as GC in the rest of the chapter. The communication cost per node in

this approach is O(
log2N

ε
), where ε is the approximation error bound.

In this chapter, we propose an alternative approach to compute and verify
an approximate Median, which proves to be more efficient compared to the GC
approach. Our approach is based on sampling—an uniform sample of sensed val-
ues is collected from the network to make a preliminary estimate of the Median,
which is verified and refined later. The communication cost of our basic algorithm
is O( 1

ε
Δ log N ), where ε is the error bound and Δ is the maximum degree of the

aggregation tree used by the algorithm.
Like the GC approach, our basic algorithm guarantees that an attacker cannot

cause the BS to accept a Median estimate which contains an error more than the
user-specified bound, ε. However, neither of the above approaches can guarantee the
successful computation of the Median in the presence of an attacker. To address this
problem, we extend the basic approach so that we can compute the Median even
in the presence of a few compromised nodes. The analysis and simulation results
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Table 5.1 Median computation protocols: Comparing the performance and the security features

Node congestion Latency (epochs) Verification Attack-resilient
computation

Greenwald et al.’s
protocol [101]

O((log2N )/ε) 2 No No

GC approach
(Sect. 5.4.1)

O((log2N )/ε) 6 Yes No

Our basic
protocol
(Sect. 5.4.3)

O((1/ε)ΔlogN ) 6 w.h.p. Yes No

Our extended
protocol
(Sect. 5.6)

O((1/ε)ΔlogN ) 6 w.h.p. Yes Yes

show that our algorithms are effective and efficient. Further, our algorithms can be
extended to compute other quantiles.

Table5.1 compares our approach with other solutions on the basis of a few perfor-
mance and securitymetrics.We reportnode congestion as ametric for communication
complexity, which represents the worst case overhead on a single node. We measure
the latency of the protocols in epochs. Similarly to the prior work [148], an epoch
represents the amount of time a message takes to traverse the distance between the
BS and the farthest node on the aggregation hierarchy. We observe that the latency of
our protocol might increase in extreme cases; here we report the latency which our
protocol incurs in most cases (i.e., with high probability (w.h.p.)). To measure the
security of the protocols, we consider the following properties. We say that a pro-
tocol has verification property if the protocol enables the BS to verify whether the
computed Median is false or not. Observe that this property does not guarantee the
computation of the Median in the presence of an attack. Finally, an attack-resilient
protocol is so if it guarantees the computation of the Median in the presence of a few
malicious nodes. We further investigated data aggregation security considering the
attacker’s impact in our recent works [193, 194].

Organization

The rest of the chapter is organized as follows. In Sect. 5.2, we review the related
work present in the literature. Section5.3 describes the problem and the assumptions
taken in this chapter. In Sect. 5.4, we present our basic protocol, whose security and
performance analysis is given in Sect. 5.5. Section5.6 describes our attack-resilient
protocol. We present our simulation results in Sect. 5.7, and finally, we conclude the
chapter in Sect. 5.8.
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5.2 Related Work

Several researchers [91, 148] have proposed in-network aggregation algorithms
which fuse the sensed information en route to the BS to reduce the communication
overhead. In particular, these algorithms are designed to compute algebraic aggre-
gates, such as Sum, Count, and Average. However, Madden et al. [148] showed
that in-network aggregation does not save any communication overhead in case of
computing holistic aggregates, such as the Median.

To limit the communication complexity, researchers have advocated computing
an approximate estimate instead of the exactMedian [101, 204]. In particular, Green-
wald et al. [101] proposed a quantile summary computation algorithm that exploits
a concept of delayed aggregation so that no summary contains error more than ε

bound. Also, Srivastava et al. [204] presented another data summarization technique
called quantile digest to compute an approximate Median, where the main idea is to
compute an equi-depth histogram through in-network aggregation. There also exists
a body of data stream algorithms in the literature which computes approximate quan-
tiles [61, 100, 150]. In fact, Greenwald et al.’s algorithm [101] is an extension of
[100].

OurMedian computation algorithm has a sampling phase and a histogram compu-
tation phase. Sampling techniques have been previously employed for data reduction
in databases [15, 179]; in particular, [15] uses a sample of a large database to obtain
an approximate answer. Another work, from Munro and Paterson [156], analyzed
the lower bound on storage space and number of passes of a Median computation
algorithm. Jain et al. [126] proposed a centralized algorithm to compute quantiles and
histograms with limited storage space. Patt-Shamir [170] designed an approximate
Median computation algorithm using the synopsis diffusion framework [43, 158],
which uses a multipath routing algorithm to enhance robustness against communi-
cation loss. We note that none of the above algorithms were designed with security
in mind, and an attacker can inject an arbitrary amount of error in the final estimate.

Recently, researchers have considered security issues in aggregation algorithms.
Boubiche et al. proposed SDAW [24], an energy efficient secure data aggregation
approach based on watermarking. In [186], Rezvani et al. focused on iterative fil-
tering algorithms for data aggregation and proposed a collusion-resistant approach
by providing an initial approximation of the trustworthiness of the nodes. Wag-
ner [220] addressed the problem of resilient data aggregation in the presence of
malicious nodes and provided guidelines for selecting aggregation functions in a
sensor network. Yang et al. [235] proposed SDAP, a secure hop-by-hop data aggre-
gation protocol using a tree-based topology to compute the Average in the presence
of a few compromised nodes. SDAP divides the network into multiple groups and
employs an outlier detection algorithm to detect the corrupted groups. In our extended
approach, we also use a grouping technique but without any outlier detection algo-
rithm that would otherwise require the assumption that groups have similar data dis-
tribution. Another approach for the securely computing Count and Sum, proposed by
Roy et al. [195], is designed for the synopsis diffusion framework [43, 158].
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Chan et al. [38] designed a verification algorithm by which the BS could detect
if the computed aggregate was falsified. However, the authors did not propose any
algorithm to compute the Median. Their verification algorithm is based on a novel
method of distributing the verification responsibility onto the individual sensor nodes.
An improvement on the communication complexity of the above algorithm has been
proposed by Frikken et al. [89].

In this chapterweoften refer toGreenwald et al.’sApproximateMedianAlgorithm
[101] and to the Chan et al.’s Verification Algorithm [38]. To help the reader, we
briefly present these algorithms in the following part of this section.

5.2.1 Greenwald et al.’s Approximate Median Algorithm

This algorithm [101] is based on a summarization technique which represents a set
of sensor readings by a quantile summary. From a ε-approximate quantile summary,
we can derive an arbitrary quantile of the data set satisfying ε-approximation error
bound. In particular, an ε-approximate quantile summary for a data set A is an ordered
set Q = {α1, α2, . . . , αl} such that (i) α1 ≤ α2 . . . ≤ αl and αi ∈ A for 1 ≤ i ≤ l,
and (ii) rank (αi + 1) − rank (αi ) < 2 · ε · |A|.

Also, given two quantile summaries, Q1 and Q2, which represent two disjoint
sets of sensed values, A1 and A2, respectively, we can aggregate them into a single
quantile summary Q which represents all the values in A = A1 ∪ A2. To aggregate
two quantile summaries, we need two operations: combine operation and prune
operation. The output of the combine operation from the quantile summaries Q1
and Q2 is a sorted list, Q′, which is the union of Q1 and Q2. As a result, the size of
Q′ is the sum of the sizes of the original summaries Q1 and Q2. To keep the size of
the quantile summary within limits, we apply the prune operation on Q′ to determine
a quantile summary Q of a constant size, say z. The prune operation introduces an
additional error to that contained in the original summary. In particular, if ε′ is the
error in Q′, then the error in Q will be ε′ + 1

2z .
The aggregation of individual quantile summaries is performed over a tree struc-

ture with the BS as the root, which is formed in the query broadcast phase. A leaf
node sends its quantile summary, which is simply its sensed value, to its parent.
Each non-leaf node X first aggregates the quantile summaries it receives from its
child nodes using the combine operation, and finally X applies one prune operation
to keep the size of the summary constant. Due to the error introduced by the prune
operation, the algorithm uses a concept of delayed aggregation, where the number of
prune operations is kept within limit to satisfy the error bound ε in the final quantile
summary. The authors design the protocol in such a way that a single sensed value
experiences at most log N number of prune operations on its way to the BS. If we
set the quantile size z = log N

ε
, then the final error is bound to be ε and the worst case

node congestion is O(
log2 N

ε
).
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5.2.2 Chan et al.’s Verification Algorithm

This scheme [38] is designed to compute and verify the Sum aggregate. The main
idea behind this scheme is to move the verification responsibility from the BS to
individual nodes that participated in the aggregation. Each node verifies if its own
value is accounted for in thefinal aggregate. The algorithmconsists of four operations,
each of which takes one epoch to complete: (i) query dissemination, (ii) aggregation-
commit, (iii) commitment-dissemination, and (iv) result-checking.

In the first epoch, the BS broadcasts an aggregation request. As the query message
propagates through the network, an aggregation tree with the BS at the root is formed
like in TAG algorithm [148].

During the aggregation-commit epoch, while the Sum is computed over an aggre-
gation tree, nodes also construct a commitment structure similar to a Merkle hash
tree [153] to enable the verification in the next phase. While a leaf node’s message to
its parent node contains its sensed value, each internal node sends the sub-aggregate
it computed using the values received from its child nodes. In addition, each internal
node, X , creates a commitment (a hash value) of the messages received from its child
nodes. Both the sub-aggregate and the commitment are then passed to X ’s parent,
which acts as a summaryof X ’s sub-tree. Thefields in X ’smessage are< β, v, v̄, h >,
where β is the number of nodes in X ’s sub-tree, v is the local sum, v̄ is the comple-
ment of the local sum (considering an upper bound vbound for a sensed value), and h
is an authentication field. In particular, a leaf node X sets the fields in its message as
follows: β = 1, v = vX , v̄ = vbound − vX , and h = X . If an internal node X receives
messages u1, u2, . . . , ut from its t child nodes, where ui =< βi , vi , v̄i , hi >, then
X ’s message,< β, v, v̄, h >, is generated as follows: β = ∑

βi +1, v = ∑
vi +vX ,

v = ∑
v̄i + (vbound − vX ), and h = H [β||v||v̄||u1||u2|| . . . ||ut ], where H is a hash

function. Once the BS receives the final commitment, it verifies the coherence of the
final v, v̄with N number of nodes in the network, and the upper bound of sensed value,
vbound . In particular, the BS performs the following sanity check: v+ v̄ = vbound ×N .
If this check succeeds, the base station initiates the next phase.

In the commitment-dissemination epoch, the final commitment C is broadcast
by the BS to the network. This message is authenticated using the μT esla protocol
[172]. The aim of the commitment dissemination phase is to let each single node
know that its ownvalue has been considered in the final aggregate. To do so, each node
X should receive all of the off-path values up to the root node relative to X ’s position
on the commitment tree. These values, together with the X ’s local commitment,
allows X to compute a final commitment C ′. Finally, node X checks if C ′ = C . If
the check succeeds, it means that X ’s local value, vX , has been included in the final
Sum received by the BS.

In the last epoch, each node X that succeeded in the previous check sends an
authentication code (MAC) up the aggregation tree toward the BS. These MACs
are aggregated along the way with the XOR function to reduce the communication
overhead. When the BS receives the XOR of all of the MACs, it can verify if all
nodes confirmed that their values have been considered in the final aggregate.
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The main cost of this protocol is due to the dissemination of the off-path values to
individual nodes. The authors observed that this overhead is minimized if the com-
mitment structure is balanced. They proposed to decouple the commitment structure
from the physical aggregation tree, which enables the building of a balanced com-
mitment forest as an overlay on an unbalanced aggregation tree. That results in the
worst case node congestion in the protocol being O(Δ log2 N ). To further reduce
this overhead, Frikken et al. [89] modified the commitment structure, which results
in a total cost of O(Δ log N ).

Finally, the authors show how the Sum computation protocol can be extended to
compute the cardinality of a subset of nodes (Count) in the network. In particular,
to count the elements in a given subset, we require each node to contribute 1 to the
Sum aggregate if it belongs to the subset and to contribute 0 otherwise.

5.3 Assumptions and Problem Description

The goal of this chapter is to securely compute an approximate Median of the sensor
readings in a network where a few nodes might be compromised. Given a specified
error bound, we return an approximateMedian which is sufficiently close to the exact
Median. This section describes our system model and design goals.

Network Assumptions. We assume a general multihop network with a set of N
sensor nodes and a single BS. The BS knows the IDs of the sensor nodes present
in the network. The network user controls the BS, initiates the query and specifies
the error bound ε. In the rest of the chapter, we consider the user and the BS as a
single entity. We also consider that sensor nodes are similar to the current generation
of sensor nodes (e.g., Berkeley MICA2 motes [119]) in their computational and
communication capabilities and power resources, while the BS is a laptop-class
device supplied with long-lasting power.

We assume that the in-network aggregation is performed over an aggregation tree
which is constructed during the query broadcast, similarly as in the TAG algorithm
[148]. However, our approach does not rely on a specific tree construction algorithm.
The approximation error ε in the estimated Median m̂ is determined by how many
position m̂ is away from the exact Median m in the sorted list of all the sensed values.
For ease of exposition, without loss of generality we assume that all the sensed values
are distinct. Note that we could relax this assumption by defining an order on the
nodes’ ID that have same sensed value. Also, for the ease of exposition, we assume
that there is an odd number of sensed values in total so that theMedian is one element
of the population.

Security Model. We assume that the BS cannot be compromised. The BS uses a
protocol such as μT esla [172] to authenticate broadcast messages. We also assume
that each node X shares a pairwise key, K X with the BS, which is used to authenticate
the messages it sends to BS.
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In this chapter, we do not address outsider attacks—we can easily prevent unau-
thorized nodes from launching attacks by augmenting the aggregation framework
with authentication and encryption protocols [172, 248].

We consider that the adversary can compromise a few sensor nodes (i.e., insiders)
without being detected. If a node is compromised, all the information it holds will
also be compromised.We use a Byzantine fault model, where the adversary can inject
malicious messages into the network through the compromised nodes. We observe
that a compromised nodemight launchmultiple potential attacks against a tree-based
aggregation protocol, such as corrupting the underlying routing protocol, selective
dropping, or a Denial of Service attack to prevent other nodes from receiving the
messages from the BS. However, in this chapter we address only false data injection
attacks where the goal of the attacker is to cause the BS to accept a false aggregate.
To achieve this goal in an in-network Median computation algorithm (e.g., [101]),
a compromised node X could either attempt to falsify its own sensed value, vX ,
or the sub-aggregate X is supposed to forward to its parent. We note that as we
are computing Median, by falsifying the local value a compromised node can only
deviate the final estimate by one position, i.e., the impact of the falsified local value
attack is very limited. Moreover, it is impossible to detect the falsified local value
attack without domain knowledge about what is an anomalous sensor reading. On the
other hand, the falsified sub-aggregate attack, in which a node X does not correctly
aggregate the values received from X ’s child nodes, poses a large threat to an in-
network Median computation algorithm; a compromised node X forwards to its
parent a corrupted aggregate which falsely summarizes X ’s descendants’ sensed
values. We observe that by launching this attack, a single compromised node, which
is placed near the root on the aggregation hierarchy, can deviate the final estimate of
the Median by a large amount (e.g., in [101]).

Problem Description. We aim to compute an approximate Median against the fal-
sified sub-aggregate attack. In particular, our goal is to design the following two
algorithms.

• Median computation and verification algorithm: This algorithm either outputs a
valid approximate Median or it detects the presence of an attack. A value, m̂, is
considered to be a valid approximate Median if it is close to the exact Median,
m, within the bound specified by the user. In particular, if the user-specified rela-
tive error bound is ε, the BS accepts an estimate m̂ which satisfies the following
constraint:

|rank (m̂) − N + 1

2
| ≤ εN (5.1)

where rank (x) denotes the position of the value x in the sorted list of all the sensed
values (the population elements), and N is the size of the population.

• Attack-resilient Median computation algorithm: If the above verification fails, our
further aim is to compute an approximate Median in the presence of the attack.

We finally note that by launching a falsified local value attack, w compromised
nodes can deviate rank (m̂) in constraint (1) above by w positions, which makes the
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Table 5.2 Secure Median computation: Notations

Symbol Meaning

N Total number of nodes (or total number of sensed values)

S Sample size

Ei Value of i th item in the sorted sample

K X Symmetric key shared between node X and the BS

ε Error bound for the approximate Median

qi Bucket boundary in histogram

Bi ≡ [qi , qi+1] i th bucket of the histogram

ci Count of i th bucket

vX Sensed value of node X

MAC(K X , M) Message authentication code of message M computed using key K X

VX =(X, vX , MAC(K X , vX ))

X → Y X sends a message to Y

X → ∗ X broadcasts a message

X =⇒ Y X sends a message to Y via multiple paths

a1 || a2 Concatenation of string a1 and a2
Δ The maximum degree of the aggregation tree

g Number of groups in the attack-resilient algorithms

w Number of compromised nodes

error bound of the final estimate of the Median to be (ε + w/N ). However, given
an upper bound on w, the user could adjust his input ε to finally meet the required
bound.

Notation. A list of notations used in this chapter is given in Table5.2.

5.4 Computing and Verifying an Approximate Median

The key elements of our approach are to compute a histogram of the sensor readings
and then derive an approximate Median from the histogram. We collect a sample
of sensed values from the network which is used to construct the histogram bucket
boundaries. Before we present our scheme, we first discuss an approach to securely
compute an approximation Median whose performance will be later compared with
that of our scheme. Then, we present a histogram verification algorithm and finally
describe our basic scheme.

5.4.1 GC Approach

One can suggest a scheme to securely compute an approximateMedian using Green-
wald et al.’s Median computation algorithm [101] in conjunction with Chan et al.’s
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verification algorithm [38].A brief description of these algorithms can also be found
in Sects. 5.2.1 and 5.2.2. In the first phase of GC approach, given the approximation
error bound ε, we can run Greenwald et al.’s algorithm to compute a quantile sum-
mary. From the quantile summary we can derive an approximate Median m̂ which
is supposed to satisfy ε error bound. In the next phase, we can verify the actual
error present in the estimate, m̂, which might have been falsified by an attacker in
the previous phase. To verify the error, Chan et al.’s verification algorithm can be
applied to count the number of nodes in the network whose value is no more than m̂.

The communication cost per node in this approach comes from the original

protocols: That is O(
log2N

ε
) for Greenwald et al.’s Median computation algorithm

and O(Δ log N ) for Chan et al.’s verification scheme (considering Frikken et al.’s
improvement [89]), where N is the number of nodes in the network, ε is the approx-
imation error bound and Δ is the number of neighbours of a node.

5.4.2 A Histogram Verification Algorithm

We now present an algorithm for computing and verifying a histogram of sensed
values, which is adapted from Chan et al.’s scheme [38] to compute and verify Sum
aggregate.

Formally speaking, a histogram is a list of ordered values, {q0, q1, . . . , qi , . . .},
where each pair of consecutive values (qi , qi+1) is associated with a count ci which
represents the number of population elements, v j , such that qi < v j ≤ qi+1. We
refer such an interval, (qi , qi+1) as bucket Bi with boundaries qi and qi+1.

As noted in [38], the Sum scheme can be adapted to count the cardinality of a
subset of nodes. Here, we apply Sum aggregate to count how many sensor readings
belong to each histogram bucket. To do so, we require each node X to contribute
1 to the count of its corresponding bucket (the bucket X’s sensed value, vX , lies
within) in the histogramwhile we compute the total count for each bucket. Like Chan
et el.’s scheme, the histogram verification scheme takes four epochs to complete:
Query dissemination, aggregation-commit, commitment-dissemination, and result-
checking.

After an aggregation tree is constructed in the query broadcast epoch, each node
X ’s message in the aggregation-commit epoch looks like < β, c1, c2, . . . , cb, h >,
where β is the number of nodes in X ’s subtree, b is the number of buckets in the
histogram, each ci represents the count for the bucket Bi , i.e., β = ∑

i ci , and h
is an authentication field. Note that for each bucket count c j all of the other bucket
counts together act as a complement, i.e., c j + ∑

i 
= j ci = β. A leaf node X whose
sensed value, vX , lies within the bucket B j sets the fields in its message as follows:
β = 1, c j = 1, ci = 0 for all i 
= j , and h = X . If an internal node X whose value
vX lies within the bucket B j receives messages u1, u2, . . . , ut from its t child nodes,
where uk =< βk, ck

1, ck
2, . . . , ck

b, hk >, then X ’s message < β, c1, c2, . . . , cb, h >
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Fig. 5.1 The
aggregation-commit phase in
histogram verification: In
this example, vX lies in
bucket B2, vY lies in bucket
B1, and vZ lies in the last
bucket Bb

is generated as follows: β = ∑
βk + 1, c1 = ∑

ck
1, c2 = ∑

ck
2, . . . , c j = ∑

ck
j +

1, . . . , cb = ∑
ck

b, and h = H [β||c1||c2|| . . . ||cb||u1||u2|| . . . ||ut ], where H is
a hash function. The above messages along the aggregation hierarchy logically build
a commitment treewhich enables the authentication operation in the next phase.Once
the base station receives the final commitment, it verifies the coherence of the final
counts, c1, c2, . . . , cb, with the number of nodes in the network, N . In particular,
the BS performs the following sanity check:

∑
ci = N . A simplified version of

the aggregation-commit phase is illustrated in Fig. 5.1 with an example of a small
network.

Both the commitment-dissemination epoch and the result-checking epoch are
straightforward extensions of those inChanet al.’s Sumscheme.During commitment-
dissemination epoch, the final commitment is broadcast by the BS to the network.
In addition, each node X receives from its parent node all of the off-path values
up to the root relative to X ’s position on the commitment tree. The aim of the com-
mitment dissemination phase is to let each single node know that its own value has
been considered in the final histogram. The message containing the off-path values
received by a node is bigger compared to that in the Sum scheme because each off-
path value contains b counts when a histogram with b buckets is computed. In the
result-checking epoch, the BS receives a compressed authentication code from all
of the nodes which enables to verify if each node confirmed that its value has been
considered in the final histogram.

As in Chan et al.’s Sum scheme, themain cost of this protocol is due to the dissem-
ination of the off-path values to individual nodes. To reduce this overhead, following
the improvement proposed by Frikken et al. [89], we use a balanced commitment
tree as an overlay on the physical aggregation tree. Due to space constraint, we do
not discuss the details in this chapter. If a histogram with b buckets is considered,
each off-path message is b times bigger than that in the Sum scheme, which makes
the worst case node congestion in this protocol to be O(bΔ log N ).
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5.4.3 Our Basic Protocol

We now describe our basic protocol to compute and verify an approximate Median.
The basic protocol has two phases: Sampling phase, and histogram computation and
verification phase. Below we discuss these phases in detail.

While collecting a sample of population values is highly energy-efficient com-
pared to collecting all the values, we will later show that a sample can act as a good
representative of the whole population. Also, we will show that only the sample
size determines the performance of our algorithm, irrespective of the size of the
population.

5.4.3.1 Sampling

In this phase, the BS collects a uniform sample of the sensed values from the network.
To do so, the BS broadcasts the following message:

BS → ∗ : 〈SAMPLE, seed〉.

The sample request coming from the BS is broadcast in a hop-by-hop fashion
and the nodes arrange themselves in a ring topology; nodes at the first hop from the
BS belong to the first ring and so on. A node X considers the previous hop nodes
as parents from which X has received the query message. Note that in the sampling
phase, we do not use a tree topology, which is, however, used in the histogram
computation and verification phase. We assume that there is a public hash function
F : {I D, seed} → {0, 1, . . . , t − 1}, where I D represents the node id, seed is the
nonce broadcast during the query, and t is a positive integer which acts as a design
parameter as discussed later. Each node, say X , hearing the query message applies
the hash function F(X, seed). If the resulting value is 0, then its sensed value, vX , is
considered to be one element in the sample. In that case, X computes MAC(K X , vX )

and sends the message VX = (X, vX , MAC(K X , vX )) to its parents. In addition to
that, if X has child nodes, X also forwards the sample values and corresponding
MACs received from the child nodes, say VZ1 , . . . , VZc . The whole message from
X looks as follows:

X → Parents (X) : 〈VX , VZ1 , . . . , VZc 〉.

When the BS receives all these messages, it verifies the corresponding MACs and
outputs the list of values that are legal items of the sample. Note that the seed is used
in order to have different samples in different runs. Basically, the hash function is
used to uniformly divide all of the nodes among t groups; the nodes belonging to
the first group (i.e., output of the hash function is 0) are considered to constitute the
sample. If the required sample size is S, one might set t = N/S. It is expected that
this hash function uniformly maps N elements into t groups. To increase the chance
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that finally a sample of size no less than S will be collected, we could increase the
number of groups from t to kt , and output the sample from more than k groups (e.g.,
k + 1 groups).

5.4.3.2 Histogram Computation and Verification

Once the BS obtains the sample, it sorts the items in ascending order. Then, the
following steps are performed: (i) computing histogram boundaries, (ii) computing
and verifying the buckets’ count, and (iii) estimating the Median.

(i) Computing Histogram Boundaries.
We consider the number of buckets, b, as a parameter. In Sect. 5.5.2 we discuss

how to choose this parameter. In this step, we equally divide the sample items into b
buckets. We denote the buckets as Bi = [qi , qi+1], 0 ≤ i ≤ b − 1, where q0 = −∞,
qi = E� S

b �i and qb = +∞, as shown in Fig. 5.2. E j represents the value of j-th item
in the sample sorted according to the value, with j varying from 1 to S.

(ii) Computing and verifying the buckets’ counts.
To compute the bucket counts, the BS and the sensor nodes run the histogram

verification protocol described in Sect. 5.4.2. If there is no attack present in the
network, at the end of this step the BS knows the number of nodes that belong to
each bucket in the histogram. However, an attacker node can cause this verification to
fail, and in that case, the protocol terminates returning a message, “attack detected”.
We discuss an attack-resilient solution in Sect. 5.6.

(iii) Estimating the Median.
Assuming that the verification in the previous step succeeds, we have the bucket

counts c0, . . . , cb−1 for the corresponding buckets. Our aim is now to find the bucket
which contains the Median. In particular, we find j such that the following three
constraints are satisfied:

el + c0 + c1 + · · · + c j−1 < (N + 1)/2 (5.2)

c0 + c1 + · · · + c j ≥ (N + 1)/2 (5.3)

c j ≤ 2εN (5.4)

where el is equal to 0 in the first iteration and updated as follows in other cases. We
first find j such that the first two in-equalities are satisfied. Then, we check if the
above j also satisfies in-equality (5.4). Note that if in-equality (5.4) is satisfied, then

Fig. 5.2 Computing
histogram boundaries: The
histogram boundaries are
computed using the sample
collected in the previous
phase
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Fig. 5.3 Splitting the
bucket: If the bucket j ,
which contains the Median
has more than 2εN elements,
the bucket is split in order to
meet ε approximation error
bound

it is guaranteed that either q j or q j+1 is εN away from the exact Median, which is
reported as our final estimate. If the in-equality (5.4) is not satisfied, we further split
j-th bucket equally into b sub-buckets. The new boundaries are updated as follows:
q ′
0 = q0, q

′
1 = q j , . . . , q

′
b−1 = q j+1, and q ′

b = qb. Bucket splitting is illustrated in

Fig. 5.3. The variable el is updated as el = el +∑ j−1
i=0 ci . We iterate steps (ii) and (iii)

until the in-equality (5.4) is satisfied. During the above iteration, if we reach a point
where bucket j does not contain any sample items to split further, we stop returning
a message, “more sample items to be collected”. We note that modifying the above
inequalities any other quantiles can be computed.

5.5 Security and Performance Analysis of Our Basic
Protocol

5.5.1 Security Analysis

A node X which is selected in the sample sends an authentication code,
MAC(K X , vX ), to the BS so that the BS can authenticate the sensed value vX , where
K X is the pairwise key of X shared with the BS. An attacker node that is not legally
selected by the hash function cannot inject a false value in the sample without being
detected.

Moreover, because multipath routing scheme is used in the sampling phase, it is
highly likely that we will be able to collect a sample, even if a few compromised
nodes do not forward any messages. To establish the above observation, we consider
a simplistic scenario. Let us assume that there are w compromised nodes in total
and they are randomly distributed in the network. So, the probability of a randomly
selected node to be compromised is w/N , where N is the total number of nodes.
We also assume that each node has at least θ number of parents and the farthest
node is d hops away from the BS. We assume that unless all of the parents of a
node X are not compromised, X ’s message will reach the next hop—the probability
that this happens is (1 − (w/N )θ ). So, in the presence of the dropping attack by the
compromised nodes, the probability that a sample item finally reaches the BS is at
least (1− (w/N )θ )d . As an example, with N = 1,000s, w = 50, θ = 3, and d = 15,
this probability is 0.998.
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Like Chan et al’s scheme, our histogram computation protocol is able to detect the
falsified sub-aggregate attack, i.e., the attacker cannotmodify the count of any bucket
in the histogram without being detected. So, given that the verification succeeds, it
is guaranteed that the final estimate is an ε-approximate Median.

5.5.2 Performance Analysis

In this section, we analyze the communication complexity of our basic protocol. In
the first phase (i.e., during the sampling phase), theworst case node congestion occurs
when a node (e.g., a node close to the BS) is required to forward all of the S samples
coming from the network. So, the maximum node congestion in the sampling phase
is O(S). The cost of the second phase, which computes and verifies the histogram is
O(bΔlogN ), where b is the number of buckets, Δ is the degree of the aggregation
tree, and N is number of nodes in the network. Note that our protocol iterates the
second phase until the required approximation error bound is met. Our goal is to
minimize the total cost of all iterations.

The second phase goes to the next iteration if the bucket b j in which the Median
lies contains more than 2εN population elements. We then further divide j-th bucket
into b sub-buckets. We observe that further division is not possible if bucket j no
longer contains a sample item, which is bound to happen within at most logb S
iterations. If bucket j still contains more than 2εN population elements, we cannot
do anything further but collect more sample items.

To make an estimate of the sample size, S, so that we do not need to perform an
extra sampling phase in most of the cases, we present the following lemma.

Lemma 5.1 The probability that more than pN population elements lie between
two consecutive items of a sorted uniform sample of size S is φ(S, p) = (1− p)S−1,
where N is the population size.

Proof Let A and B be two consecutive items in the sample after the sample items
are sorted (as shown in Fig. 5.4). What we want to compute is the probability to
have more than pN population elements between A and B. Once the sample item,
A, is chosen, we have other S − 1 population elements remain to be chosen for the
sample. To obtain the above probability, none of these S − 1 sample items should
be chosen from the population interval which starts from A and is of length pN

Fig. 5.4 How far apart are
two consecutive elements in
the sample?
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(i.e., the interval includes pN population elements). For each of these S − 1 sample
items, the probability to be chosen not from that interval is (1− p). So, the probability
that none of the S − 1 items will be there is (1 − p)S−1. ♦

As an example, fromLemma 5.1, we see thatφ(S, 2ε) < 2.95×10−5 for S ≥ 100
and ε ≥ 0.05. This implies that if the user requires ε ≥ 0.05 and we use b = 10
buckets with S = 100, we require atmost logb(S) = 2 iterations to report theMedian
with probability (1− 2.95× 10−5) ≈ 1. It is interesting to note that this result does
not depend on the population size, N .

Now, to measure the trade-off between the number of buckets, b, and the number
of iterations, which together determine the total cost of the algorithm, we present the
following lemma.

Lemma 5.2 The probability that more than γ pN (γ > 1, 0 < p < 1, γ p < 1)
population elements lie between the minimum and the maximum of pS consecutive
sample items of a sorted sample of size S is

ξ(S, p, γ ) =
pS∑

i=0

(
S − 1

i

)

(γ p)i (1 − γ p)S−1−i (5.5)

where N is the population size.

Proof Let A and B be the maximum and the minimum item among a subset of
pS consecutive items in the sample while the sample items are sorted, as shown in
Fig. 5.5. So, the expected number of population elements lying between A and B is
pN . We would like to compute the probability to have more than γ pN population
elements lying between A and B, where γ > 1. Once the sample item, A is chosen,
we have other S − 1 population elements remain to be chosen for the sample. To
obtain the above probability, not more than pS items of these S − 1 sample items
should be chosen from the population interval which starts from A and is of length
γ pN (i.e., the interval includes γ pN population elements). For each of these S − 1
sample items, the probability to be chosen from that interval is γ p. So, the probability
that not more than pS items among the S − 1 items will be there is

pS∑

i=0

(
S − 1

i

)

(γ p)i (1 − γ p)S−1−i .

♦

Fig. 5.5 What is the chance
that γ pN elements will fall
within pS sample items,
where γ > 1 and
0 < p < 1?
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5.5.2.1 Number of Buckets Versus Number of Iterations

If we use b = γ
2ε buckets, which is of O( 1

ε
), where γ is a constant greater than 1 and

ε is the required error bound, then each bucket contains 2ε
γ

S sample items during
the first iteration. So, the expected number of population elements in one bucket is
2ε
γ

N . In Lemma 5.2, putting p = 2ε
γ
, we can compute the probability that more than

γ · 2ε
γ

· N = 2εN population elements fall in a bucket. As Expression (5.5) is a
decreasing function of γ , by choosing the appropriate γ , we can make the above
probability close to zero. As an example, for γ = 2, we observe that with sample
size S such that εS ≥ 5, (i.e., each bucket contains no less than 5 sample items in
the first iteration) the above probability is less than 0.02 for all ε. That means, in this
setting, our protocol ends in one iteration in 98% cases. Finally, considering the cost
of the histogram verification scheme, we see that the total cost of all iterations per
node, when b = O( 1

ε
), is O( 1

ε
Δ log N ), where Δ is the degree of the aggregation

tree.
On the other hand, if we use b = O(1) buckets and equally divide the sample

items in b buckets in each iteration, then, after logb (
γ
2ε ) iterations, each bucket will

contain no more than 2ε
γ

S sample items. So, as shown above, with the appropriate γ

chosen, it is almost certain that our algorithmwill end at this point. Thus, considering
the cost to compute and verify the histogram in each iteration, the total cost of all
iterations, when b = O(1), is O(logb

1
ε

· b · Δ log N ), where Δ is the degree of the
aggregation tree.

5.6 Attack-Resilient Median Computation

Although our basic protocol, discussed in Sect. 5.4.3, detects falsified sub-aggregate
attack, it fails to output an estimate of the Median in the presence of the attack. To
address this problem, here we propose an extended approach so that we can compute
an approximate Median even in the presence of a few compromised nodes.

We design the new approach based on the divide and conquer principle. We
divide the network into several groups of nodes, which introduces resilience against
the above attack.We run the verification algorithm individually for each group,which
we call intra-group verification. Basically, we localize the attacker nodes to specific
groups, i.e., we detect which groups are corrupted and which are not. Even if a few
groups are corrupted, we still compute an estimate of the Median considering the
valid groups. We do not assume that the groups have similar data distribution, which
is the assumption exploited in other existing approaches such as SDAP [235] or
RANBAR [29].

We may employ different grouping techniques based on node’s geographic loca-
tion or node IDs. We may also use grouping technique which is based on the nodes’
positions on the aggregation tree. Once the group aggregate is computed, the group
leader send it directly to the BS; to avoid having any node in the middle to drop



118 5 Secure Data Aggregation

group aggregates, we use a multipath routing mechanism. Due to space constraint,
only geographical grouping technique is discussed here.

Also, we may exploit the robustness property of theMedian computation to deter-
mine the maximum amount of error that can be injected by a given number of cor-
rupted nodes, even if we do not perform the intra-group verification. In [195] we
estimate this error while we leave it to the network user to fix the tradeoff between
the error bound and the overhead due to intra-group verification.

5.6.1 Geographical Grouping

We assume that the BS has knowledge of the location of the nodes and each node
knows its own location. The network is divided into several rectangular regions,
where each region is identified by a pair of geographical points. The number of
regions, g, and the location of the regions are selected considering a few factors. As
one criterion, the regions might be chosen in such a way that an equal number of
nodes belong to each group—if a region has lower node density, it is likely that it will
be of larger geographical size. In addition, if the BS expects that a part of the network
is more likely to be under attack, it may prefer to form smaller regions in that area
to better localize the attacker. Finally, The g rectangular regions are specified by g
pairs of diametrically opposite points, (x1i , y1i ), (x2i , y2i ), where 1 ≤ i ≤ g. For
each group i , BS also selects a node to be the group leader, GLi . An example of this
grouping is shown in Fig. 5.6.

Once the histogram boundaries are computed using the collected sample (as in
our basic protocol), the BS initiates the histogram verification procedure. The BS
sends a request to the corresponding group leaders with the necessary information
to identify the regions. Receiving the request, a local aggregation tree is constructed
which comprises of all of the nodes in the region with GLi as the root. Then, the
group histogram is computed locally and sent to the BS. If compromised nodes are

Fig. 5.6 Geographical
grouping: In each region the
group leader, GLi , sends the
region aggregate to the BS
by multiple paths
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present in a few groups, the BS will be able to identify the corrupted groups. The
BS accepts aggregates from only those regions, which passed the verification. The
BS may further split the region which contains an attacker node and run the protocol
again in the sub-regions. Eventually, this splitting can be iterated until the attacker
node is identified or the percentage of verified values satisfies the BS (e.g., when
the verified groups correspond to the 95% of the nodes). Below we discuss the
attack-resilient histogram computation and verification algorithm.

5.6.1.1 Algorithm Description

The nodes in each region locally perform the histogram computation and verification
protocol described in Sect. 5.4.2 with the group leader acting as an agent of the BS in
the corresponding group. To make the group leader GLi an eligible agent of BS for
group i , we need a few additional communication between GLi and the BS. Below
we focus on these additional messages skipping the detailed description of rest of
the protocol, which can be found in Sect. 5.4.2. The messages exchanged between
GLi and the BS are authenticated using their pairwise key. To improve readability,
we do not show these authentication fields in the messages below.

Query Dissemination

BS initiates the query by sending to each group leader GLi via multiple paths the
following message which contains the coordinates of the corresponding region:

BS =⇒ GLi : 〈(x1i , y1i ), (x2i , y2i ), GLi 〉.

In each region, the group leader,GLi , broadcasts the received query message to its
neighbour nodes, which again broadcast the same message, and so on. It is a scoped
broadcast, i.e., if a node whose coordinate is outside of the corresponding region
receives the message, it simply drops the message. During the query broadcast, a
regional aggregation tree is formedwithGLi as the root, similarly as in the TAG [148]
algorithm. The query message also contains required μT E SL A information (not
shown above) so that each node in the region can authenticate the query.

After the query is disseminated, the nodes in each region locally perform the
histogram computation and verification protocol described in Sect. 5.4.2.

Aggregation-Commit Phase

After the group leader GLi receives the aggregated value from the nodes in group i ,
it forwards the following message to the BS:

GLi =⇒ BS : 〈GLi , aggi , commiti 〉,

where aggi represents the computed histogram of group i , and commiti is the root
of the commitment tree of region i .
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Commitment-Dissemination Phase

The BS checks if the number of nodes in the computed histogram of the group is
same as the total number of nodes in that group. If yes, it sends to GLi the μTESLA
authentication information, μT (commiti ). So, when GLi broadcasts commiti in
group i , each node can authenticate the message:

BS =⇒ GLi : 〈GLi , μT (commiti )〉.

Result-Checking Phase

Each node checks if its value is incorporated in the computed histogram. If yes, node
X sends a MAC over an “OK” message, MAC(K X , O K ), which gets XOR-ed with
other nodes’ similar messages on their way to the group leader. Once GLi receives
the compressed OK message, say O Ki , from the nodes in its group, it forwards this
message to the BS via multiple paths:

GLi =⇒ BS : 〈GLi , O Ki 〉.

As the BS knows which nodes belong to which group, it can verify O Ki messages
and hence can identify valid group aggregates.

5.6.1.2 Security Analysis

We recall from section that the histogram computation and verification protocol,
when executed on thewhole network, can detect if there is any falsified sub-aggregate
attack. That means, if a malicious node X fabricates the histogram of its sub-tree
or if X simply does not participate in the protocol, the BS can detect the attack and
flags that the computed histogram is corrupted. Our intra-group verification protocol
is different from the basic one only in the following aspects: (i) the histogram of
the whole network is considered as the aggregate of the group histograms and each
group histogram is computed and verified individually, (ii) the group leader, GLi

exchanges a few messages with the BS, discussed in Sect. 5.6.1.1, which enable GLi

to play the role of BS in group i .
The messages exchanged between GLi and the BS are routed via multi-paths so

that they reach the destination even if an attacker node in the middle drops these
messages. The communication between GLi and the BS is also authenticated with
their pairwise key. Moreover, GLi receives from the BS the μT esla authentication
information for the messages which are to be broadcast in the group, e.g., the query
message and the commiti message. So, assuming a node X knows its location, X
can securely determine to which group it belongs and the ID of the group leader, and
X can also authenticate the query and the commiti message endorsed by the BS.

After the BS receives the group histogram from group i , (i.e., the aggi message)
the BS verifies if the number of nodes reflected in the group histogram is same as the
number of nodes in the group. Also, after receiving the O Ki message from group
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i , the BS verifies if this message correctly represents, in compressed form, the O K
message of all the nodes in group i . The above two checks enable the BS to correctly
identify the corrupted groups, if any.

5.6.1.3 Performance Analysis

On average, the number of nodes in one group is N ′ = N
g , where the network

is divided into g groups. So, the worst case node congestion inside one group for
running the histogram verification algorithm is O(b · Δ · log N ′), where b is the
number of buckets in the histogram and Δ is the number of neighbours of a node on
the aggregation tree. Considering the analysis given in Sect. 5.5.2.1, with b = O( 1

ε
),

the worst case communication overhead per node is O( 1
ε

· Δ · log N ′). In addition,
a node needs to forward the messages exchanged between the group leaders and the
BS, which is of O(g) communication overhead in the worst case.

5.7 Simulation Results

In this section, we report on a simulation study that examined the performance of
our basic protocol discussed in Sect. 5.4. Recall that, in the first phase, we collect a
sample of sensed values from the network, and the performance of the rest of the
protocol depends on the quality of this sample. The goal of the simulation experiments
reported below is to study the impact of the sample on the overall performance of
theMedian computation protocol. In particular, we verify the results we obtained via
analysis, in Sect. 5.5.2, about the inter-relationship among parameters, such as error
bound ε, sample size S, and the number of buckets b in the histogram.

Through simulation we do not evaluate the overhead of in-network communica-
tions in our protocol. The analytical results on the communication overhead of the
sampling phase and the histogram computation and verification phase are discussed
in Sect. 5.5.2.

5.7.1 Simulation Environment

In our basic setup, the network size is 1,000 nodes. We also vary the network size to
show that it does not have a significant impact on our sampling-based approach. In
our simulation, the typical value we take for the ε error bound varies from 5 to 15%.
Each node has one sensed value,while our goal is to compute an approximateMedian.
We use the method of independent replications as our simulation methodology. Each
simulation experiment was repeated no less than 1,000 times with different seeds.
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5.7.2 Results and Discussion

Here, we discuss the results obtained in our simulations. We observe that 95%
confidence interval of all the quantities on the following plots are within 5% of
the reported value.

What is the chance that one sampling phase is not enough? In Lemma 5.1,
we analytically computes this probability which we evaluate via simulation here.
For each pair (S, ε), we collect a sample of size S and we compute the number
of time, τ there are more than 2εN elements between the two consecutive sample
items containing the Median. The total number of runs performed is 1,000,000. The
resulting φ′(S, 2ε), which is the observed approximation of φ(S, 2ε), is plotted in
Fig. 5.7. It is worth noticing that the value of φ′(S, 2ε) is less than 4 × 10−5 for
ε > 0.05 when the sample size S is more than 95. In fact, as expected, for a given
ε, an increase of the value of S decreases φ′(S, 2ε). Finally, we verify that φ′(S, 2ε)
does not change significantly (not shown in the figure) even if the population size,
N , is bigger.

Number of buckets versus Number of iterations. In Sect. 5.5.2, we analyzed
the dependence of the number of iterations of our algorithm on the number of buck-
ets chosen, which we validate here via simulations. First, we estimate the number
of buckets required to end our protocol in one iteration in most cases. Figure5.8a
illustrates the % of cases our protocol ends in the first iteration. The figure confirms
our analysis that, for considering γ = 2, if we use more than 1

ε
buckets (i.e., 20,

10, 7 buckets for ε = 0.05, 0.10, 0.15, respectively), it is highly likely that we need
just one iteration. Finally, Fig. 5.8b shows the average number of iterations required

0
0.002
0.004
0.006
0.008
0.01
0.012
0.014

 40
 50

 60
 70

 80
 90

 100

 0.06
 0.08  0.1  0.12  0.14

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014

φ’(S,2ε)

S

ε

Fig. 5.7 Computing the chance that we need to collect more sample items: Given an ε, we choose
a sample size so that the probability that we need to redo the sampling is close to zero
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Fig. 5.8 The number of
iterations versus the number
of buckets: If the number of
buckets is O( 1

ε
), it is highly

likely that our algorithm
ends in one iteration. a %
times ending in one iteration.
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using different number of buckets, where ε = 0.05 and S = 100. This validates
our analysis that the average number of iterations is O(logb(

1
ε
)) when b buckets

are used.

5.8 Concluding Remarks

While researchers already addressed the problem of securely computing aggregates
such as Sum, Count, and Average, to the best of our knowledge, there is no prior
work on secure computation of theMedian. However, it is widely considered that the
Median is an important aggregate. In this chapter, we proposed a protocol to compute
an approximate Median and verify if it is falsified by an attack. Once the protocol
is executed, the base station either possesses a valid approximate Median or it has
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detected an attack. Further, we proposed an attack-resilient algorithm to compute the
Median even in the presence of a few compromised nodes. The evaluation via both
analysis and simulation shows that our approach is efficient and secure.

This chapter dealt with an attack on the data aggregation protocol: We considered
an attacker that aims to exploit the aggregation protocol to let the collecting node
accept a false aggregate. The next chapter dealswith another security aspect related to
data aggregation: The privacy of the nodes participating in the aggregation procedure.



Chapter 6
Privacy in Data Aggregation

We started addressing the security of in-network data aggregation in the previous
chapter, where we addressed the problem of the Median computation where attacker
nodes can be present. In this chapter we address another security problem related to
the data aggregation: The node’s privacy. In fact, in the data aggregation technique,
some sensor nodes need to send their individual sensed values to an aggregator node,
empowered with the capability to decrypt the received data to perform a partial
aggregation. This scenario raises privacy concerns in applications like personal health
care and the military surveillance.

The contributions of this chapter are two-fold: first, we design a private data
aggregation protocol that does not leak individual sensed values during the data
aggregation process. In particular, neither the base station nor the other nodes are
able to compromise the privacy of an individual node’s sensed value. Second, the
proposed protocol is robust to data-loss; if there is a node-failure or communication
failure, the protocol is still able to compute the aggregate and to report to the base
station the number of nodes that participated in the aggregation. To the best of our
knowledge, our scheme is the first one that efficiently addresses the above issues all
at once.

6.1 Introduction

Inspired by the low-cost, flexibility andubiquitousness of this technology, researchers
[111] are envisioning sophisticated applications of WSNs including sensors being
installed in personal environment, such as houses, and human body. However, one
issue raised by this range of applications is the privacy of the data being collected.
In [111], a future application is cited, which involves sensing power or water usage
of private households to compute the average trend of a region. People might not

© Springer Science+Business Media New York 2016
M. Conti, Secure Wireless Sensor Networks, Advances in Information Security 65,
DOI 10.1007/978-1-4939-3460-7_6

125



126 6 Privacy in Data Aggregation

agree to allow these applications to intrude their personal world if the privacy of
the collected information is not protected. The goal of this chapter is to design a
scalable, efficient, data-loss resilient, privacy-preserving data aggregation algorithm
for WSNs.

To achieve this goal, one might suggest to adapt the existing privacy-preserving
algorithms designed for data mining applications [2,87], but, unfortunately, these
algorithms are too computational expensive to meet the severe resource constraint
of sensor nodes. Exploring alternative paths, researchers [32, 96, 111, 134, 154,
165, 239, 242] have presented some proposals to solve the privacy problem in data
aggregation. The goal of this chapter is to consider the following three requirements
at the same time:

1. To prevent the sensed value of an individual node from being disclosed to other
nodes during the aggregation process.

2. To prevent the sensed value of an individual node from being disclosed to the BS,
i.e., the BS will have access only to the data aggregate.

3. The possibility of a node becoming off-line during the aggregation process, or a
message being lost before reaching the BS, should not affect the correctness of
the aggregate computed based on the nodes that participated in the aggregation.

The main idea behind the design of our algorithm is as follows. The nodes in the
network divide themselves into clusters. The aggregate of the nodes within a cluster
is computed in such a way that no individual sensor reading is leaked during this
process. To obfuscate the individual sensor readings,wemake use of twin-keys shared
by node pairs within a cluster, which are established in an onetime set-up phase. After
the cluster aggregates are computed, they are sent in clear text to be further aggregated
to compute the final aggregate—usually via a tree-based aggregation algorithm.

Thework presented in this chapter is the first one, to the best of our knowledge, that
achieves both the following properties: First, it provides a mechanism that preserves
the privacy of the data contributed by a sensor to the aggregate value. That is, the
individual values aswell as the identity of the contributing nodes cannot be derived by
any node in the network, as well as by the BS. Second, the protocol is robust against
communication and node failures. In Table6.2 we summarize the features of our
proposed protocol compared with other protocols in literature. Moreover, our recent
work on external and internal threats is presented in [240], and further investigation
on privacy-preserving data-collection for smart metering can be found in [7].

Organization

The rest of the chapter is organized as follows. We present the related work in
Sect. 6.2. Section6.3 presents the assumptions and the threat model considered in
this chapter. In Sect. 6.4 we give the overview of our proposed solution, while a
detailed presentation is discussed in Sects. 6.5 and 6.6. In Sect. 6.7, we present the
security and performance analysis of our protocol. We finally conclude in Sect. 6.8.
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6.2 Related Work

Researchers [91, 148] proposed in-network aggregation algorithms which fuse the
sensed information en route to theBS to reduce the communication overhead. Several
algorithms are designed to compute aggregates such as Count, Sum, and Average.

The research community also examined a few security issues related to aggrega-
tion algorithms. Wagner [220] addressed the problem of resilient data aggregation
in the presence of false data injection attack by a few malicious nodes, and provided
guidelines for selecting appropriate aggregation functions in a sensor network. Yang
et al. [235] proposed SDAP, a secure hop-by-hop data aggregation protocol using a
tree-based topology to compute the correct Average in the presence of a few com-
promised nodes. Chan et al. [38] designed a novel verification algorithm by which
the BS could detect if the computed aggregate was falsified. Another approach for
computing Count and Sum, even if a few compromised nodes inject false values,
was proposed by Roy et al. [195]. However, none of the above algorithms address
the privacy issues of data aggregation.

There exists a body of work that addresses privacy issues in data mining appli-
cations. In [2, 87], the authors proposed data perturbation techniques to protect the
private values, whereas a few securemulti-party computation schemeswere designed
in [63, 108, 236]. However, these privacy-preserving algorithms are too much com-
putation expensive to be applicable for the low-end nodes in a sensor network.

Privacy Homomorphism (PH) proposed by Rivest et al [187] allows to aggregate
encrypted data. PH is an encryption transformation that enjoys the following prop-
erty, related to an operation “◦”. Given an encryption function, E : S×R1 → R2, and
a decryption function,D : S×R2 → R1, whereR1,R2 are rings and S is the key-space,
for a, b ∈ R1 and s ∈ S, the following equation holds: a ◦ b = Ds(Es(a) ◦ Es(b)).
Domingo-Ferrer [78] proposed a PH that preserves both addition and multiplica-
tion (“◦” is “+” and “·”, respectively). The proposal has been proven to be secure
against known-cleartext attack (as long as the ciphertext space is much larger than
the cleartext space).

In Girao et al.’s work [96], the PH is used to allow the aggregator node to compute
the correct encrypted aggregate from the encrypted values coming from sensor nodes.
This allows the protocol to guarantee the privacy of the sensor nodes against a passive
eavesdropper. However, as all of the nodes share the same encryption key with the
base station, the protocol does not guarantee the privacy of individual sensed data
against other nodes or the BS.

In [32], the authors propose a solution for data aggregation that protects the privacy
against other nodes. The authors assume that each node ni shares a key ki with the BS.
Basically, each node ni adds a random number to its sensed value where the random
number is determined by ki. After receiving the encrypted aggregate, the BS filters
out the correct aggregate by subtracting all the random numbers added by the nodes.
We observe that this scheme does not protect privacy of individual sensed values if
the BS eavesdrops over the network. Moreover, this scheme is critically vulnerable
to message loss, which is very common in a WSN. If just one message is lost, the
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BS obtains a bogus aggregate, without suspecting any problem. The author propose
how to cope with this last issue, adding the list of contributing nodes or the list of
nodes that did not contribute (whichever is the shorter one). However, note that this
solution does not prevent this list from being O(N) in length, where N is the number
of sensors in the network.

In [111], the authors propose two different solutions: CPDA and SMART. The
former gives a solution for data aggregation preserving node-privacy against other
nodes. We observe that CPDA can be extended to provide privacy against BS and
furnish a solution against data-loss as well. However, as stated by the authors, the
overhead of this protocol is high. Indeed, they use the anonymization sets, where
each node out of the C nodes within a cluster has to send (and receive) C − 1
messages, resulting in O(C2) sent (and received) messages within each cluster, for
each aggregation phase. Furthermore, each single node has to encrypt and decrypt
O(C) messages, and the cluster head has to compute the inverse of a C × C matrix,
for each aggregation phase. The latter proposal, SMART, is more efficient than the
first proposal. However, it does not protect privacy against the BS, and suffers from
the same problem of message-loss as in [32].

Researchers also looked into source privacy issues in sensor network. In [234],
Yang et al. prevent a global adversary from identifying a node as the event source.

6.3 Network Assumptions and Threat Model

In this section, we describe the network assumptions and the threat model considered
in the rest of this chapter. We consider a static multihop WSN of N sensor nodes
and a single base station (BS). We consider sensor nodes similar to the current
generation of sensors (e.g., Berkeley MICA2 Motes [119]) in their computational
and communication capabilities and power resources, while the BS is a laptop-class
device supplied with long-lasting power.

A pair-wise key mechanism, like the ones in [47, 75, 85, 144], is used to enable
secure communications among the network nodes.Our protocol is independent from
the particular mechanism used. We further assume that a set of K keys (key-ring),
is pre-loaded in each node, using the set-up procedure of Eschenauer and Gligor’s
protocol [85]: the K keys are randomly chosen from a larger key-pool of size P.
BS does not know any information about this pool. Note that this set of keys is
not related to the pair-wise key establishment while it is exclusively used in our
“twin-key” establishment protocol.

In our proposal, we use a clustering mechanism to group the nodes in several
clusters. It is out of the scope of this chapter to give a detailed description of the
cluster formation algorithm. Our protocol makes use of a cluster formation algorithm
such as the one in [41]. The basic building block for cluster formation in [41] is
as follows: each node applies an hash function, H : (seed|x) → y ∈ [1..deg],
where deg is the average degree of a node and x is a node ID. The node having the
largest result among neighbors (ymax) becomes the leader and announces its status.
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Table 6.1 Privacy in data aggregation: Notations

Symbol Meaning

P Key Pool;

K Size of the node key-ring;

KID Key-ring set of the node ID;

e Indicates the id of the executing node in the procedures;

ki ith key in the key pool for twin-key;

C Number of nodes in each cluster;

A The number of twin-keys each node needs to establish;

V The number of alive twin-keys required for active participation;

R The size of message in terms of declared keys;

r The number of twin-keys each node can initiate in each round;

H A hash function;

dID Sensed (private) value of the node ID;

Nodes with value smaller than ymax wait to hear from a leader to set that node as the
cluster head. Special cases, conflict resolution and the security of this protocol are
discussed in [41].

In this chapter, we focus on in-network computation of the Sum aggregate. Note
that it is possible to extend the Sum aggregate to implement other aggregation func-
tion as well, such as Count and Average.

We assume that the aim of the adversary is to compromise the privacy of a node.
In particular, it will not drop or modify messages if this does not help him to violate
the privacy of a node. We consider the adversary to be able to:

1. Eavesdrop all of the network communications;
2. Control a fraction of nodes;
3. Obtain any information from the BS.

Table6.1 summarizes the notation used in this chapter.

6.4 Protocol Overview

The key elements of our protocol are the following: first, we establish twin-keys for
different pairs of nodes in the network. We require the twin-key establishment to
be anonymous—each node in a pair cannot derive the identity of the other node
(twin-node) it is sharing a twin-key with. Second, for each aggregation phase, we use
an anonymous liveness announcement protocol to declare the liveness of each twin-
key—each node becomes aware of whether a twin-key it possesses will be used by
the anonymous twin-node. Finally, during the aggregation phase, each node encrypts
its own value by adding shadow values computed from the alive twin-keys it holds.
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As a result, the contribution of the shadow values for each twin-key will cancel out
each other.

Our protocol consists of three major steps as follows:

1. Local cluster formation: In this step, we require the network nodes to group
themselves into clusters. In literature, there are different solutions for the cluster
formation. The description of a detailed cluster formation algorithm is out of the
scope of this chapter. In the following, we assume that a cluster algorithm such
as the one proposed in [41] is used. For ease of exposition, from now on we also
assume that each cluster has a fixed number of nodes, C. In the following steps of
the protocol, we further require each cluster to form different logical Hamiltonian
circuits. Note that an extension of the cluster formation in [41] can be used for
the Hamiltonian circuit formation. As an example, each node, say ni, can start
setting a new circuit by randomly choosing one cluster node, say nj, as its right
neighbor in a circuit. Node ni communicates its choice to node nj. The selected
node, nj, will choose its own right neighbor within the nodes in the same cluster,
that are not yet selected. Eventually, the last node will select node ni as its right
neighbor, to complete the Hamiltonian circuit. We require for each pair of nodes
that are neighbors in the circuit to share a pair-wise key.

2. Twin-key establishment: This step is performed independently within each local
cluster. We recall that we assume that each node contains a pre-deployed key-ring
of K symmetric keys, randomly chosen from a larger common key-pool of size
P. In this step, each node ni anonymously checks which ones of its K keys are
also shared with other nodes in the same cluster. In particular, a node is required
to have at least A out if its K keys shared within its local cluster. This step will be
further discussed in Sect. 6.5.

3. Data aggregation: This is the actual aggregation step of our protocol. Note that,
other than this step, all the previous steps are performed only once during the
set-up phase. The data aggregation step can be further divided into two main
parts:

3.1. First, each cluster computes the aggregated value of its nodes, together with
a twin-key liveness announcement procedure. During this phase an aggre-
gate is routed twice along the Hamiltonian circuit. Each node adds to the
aggregate its own sensed value. At the same time, for each alive twin-key
it adds (or removes, in accordance with the liveness announcement) a cor-
responding shadow value. As a result, the cluster head obtains the correct
aggregate for the cluster.
The liveness announcement guarantees that any shadow value, computed
from a twin-key, that is added in the aggregation by one node, will be
removed by another node that shares the same twin-key.

3.2. At the end of step 3.1, there will be several nodes in the network that acted
as cluster heads. These nodes own the corresponding cluster aggregates.
Now, we want to further aggregate all of these values and to pass the final
aggregate to the BS. In this step, we use a tree-aggregation hierarchical
structure, commonly discussed in literature. In particular, we assume to use
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Fig. 6.1 Aggregating the
individual cluster aggregates:
A tree aggregation protocol
is used to compute the final
aggregate

the TAG algorithm [148] with the following modification. The cluster head
nodes will contribute to the aggregate with the cluster aggregate computed
in step 3.1. All of the other nodes do not contribute to the aggregate while
they forward the aggregate computed from the received sub-aggregates. As
a result, the BS will receive the sum of the values owned by all of the cluster
heads.
Figure6.1 illustrates this procedure with an example. The cluster heads n1,
n8, n11 and n14 possess the corresponding cluster aggregates 10, 13, 8 and
9, respectively. All of the other nodes contribute to the final aggregate with
value 0. Finally, the BS will obtain the aggregate result 40.

We discuss the step 3.1 in Sect. 6.6, while we refer to [148] for the TAG tree-
aggregation of the step 3.2.

6.5 Twin-Key Agreement

In this section we describe the set-up phase. The aim of this step is, for each node,
to establish a number of twin-keys with other nodes. In particular, we say that node
ni established a twin-key with another node (twin-node) in the cluster if ni is aware
of the fact that there is a node in the cluster sharing a key with it. Note that ni does
not know the identity of its twin-node. The requirements of a twin-key establishment
are:

• The twin-keys are only known to the owners. They cannot be eavesdropped by
other nodes or by the outside attackers.

• The twin-nodes (nodes that agree on a twin-key) cannot determine each other’s
identity, i.e., the twin key is established anonymously.

Furthermore, to improve on the level of anonymity, we require each node to
establish at least a given number, A, of twin-keys.

The twin-key agreement is a relay-based protocol. The twin-keys are initiated by
nodes, passed through the circuit of the local cluster, and accepted by other nodes.
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Our protocol assumes that a key-ring of symmetric keys are pre-deployed in each
node using the same approach as in Eschenauer et al.’s scheme [85]. For each sensor
node, the manufacturer stores in the node’s memory K keys randomly selected from
a pool of P � K symmetric keys. As a result, two nodes in the same cluster will
share a given key with a probability depending on K and P as studied in [76].

6.5.1 Twin-Key Agreement: Protocol Description

At the beginning of the twin-key agreement protocol, each node runs Prepare pro-
cedure (Algorithm 9). Variable a is used to keep track of the number of twin-keys
that the node still needs to establish. List is a list of < seed, key > pairs used to
keep track of the twin-keys waiting to be agreed by other nodes, where each key is
identified by a seed which is a random number. TKList is a list of already established
twin-keys.K ′ is the list of keys not yet used for twin-key agreement. Finally, Valid
indicates whether the executing node will participate in the subsequent aggregation
procedure.

1 begin
2 a = A //Number of Twin-key needs to be agreed ;
3 List = empty //Seed-Key pairs sent out ;
4 TKList = empty //Agreed Twin-keys ;
5 K ′ = Ke //Twin-keys can be initiated ;
6 Valid = true //Will participate in aggregation ;
7 end

Algorithm 9: Prepare

Prepare procedure is executed by each single node. After this procedure is car-
ried out, each cluster head executes procedure InitiateAgreement (Algorithm 10).
First, the CH creates a message M with R empty seed-key pairs (line 2), where R
is a design parameter. The message format is: 〈S, 〈s1, h1〉, . . . , 〈sR, hR〉〉, where S is
the total number of twin-keys to be established, and 〈si, hi〉, 1 ≤ i ≤ R, denote the
twin-keys declared in the message waiting to be agreed on. The cluster head initial-
izes the message by setting S = A · C. This is used to meet the requirement that each
of the C nodes in the cluster shares at least A twin-keys.

After generating M, CH randomly selects r positions out of the R ones in M
(line 3) and randomly selects and remove r keys from K ′ (line 4). Then, for each
selected key, it generates the pair < si, H(ki) > (line 5), where H(ki) is the hash
of ki and si is a random number associated with ki. These pairs are copied in the r
selected positions of M. Note that the r positions are randomly selected (line 3) in
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order to prevent the attacker to associate a node identity with a given position in M.
Finally, CH sends M to one of its neighbor. This implicitly determines the direction
of the message in the circuit.

1 begin
2 M ← 〈C × A, 〈0, _, 〉1, . . . , 〈0, _〉R〉 ;
3 randomly select i1, . . . , ir from {1, 2, . . . R} ;
4 randomly select and remove k1, . . . , kr from K ′ ;
5 randomly select key seeds (random number) s1, . . . , sr ;
6 List = List ∪ {〈s1, k1〉, . . . , 〈sr , kr〉} ;
7 replace 〈0, _〉i1 , . . . , 〈0, _〉ir with 〈s1, H(k1)〉i1 , . . . , 〈sr , H(kr)〉ir in M ;
8 send M to the next node //encrypted with pair-wise key ;
9 end

Algorithm 10: InitiateAgreement

Each node that receives the twin-key agreement message executes procedure
ReceiveMessage(M) (Algorithm11). This procedure consists of the followingmain
steps performed by each node ni:

(i) ni checks the newly agreed keys which it had proposed before (lines from 3
to 16). That is, for each key declared in the previous round (line 4), ni checks
whether the key has been accepted. In particular, if the declaration of the key
is still in the message M (line 6) it means that no other node agreed for that
key. Otherwise, the key will be considered shared with someone (line 9). If the
executing node has not yet established enough twin-keys (i.e. a < A), the newly
agreed keys will be counted in the node’s number of agreed keys, a, and the
cluster’s number of agreed keys, S. We recall that the declaration of a key is
a pair < si, H(ki) >, where si is a random number used to keep track of the
particular instance of the key held by the node that declare that key. This is used
in order to avoid confusion if the same key is proposed by more than two nodes
in the cluster. As a result, if a node ni declares key k1 in M and k1 is removed
by nj, a third node nz re-declaring the same key, k1, will use a different seed.
If the message goes back to ni, it can indeed understand that its key has been
accepted and that the one declared in the message is just another instance of k1
declared by some other node.

(ii) ni checks for twin-keys proposed by other nodes that it can agree on (line from
17 to 29). For all keys’ hashes inM (line 17), it checks if it has the corresponding
key (line 18). If ni never agreed on that key (line 19) it agrees on this key (line 20
and 21). Also, the corresponding counter is updated, if necessary (lines from 22
to 25). In any condition, when the key is agreed, the corresponding declaration
is removed from the message M.

(iii) ni proposes new keys to be agreed on (lines from 30 to 42). If the number of
twin-keys established by ni are not yet enough (line 30), it checks if it still has
some keys to propose for agreement (line 31). If this condition is not satisfied,



134 6 Privacy in Data Aggregation

then the node will not participate in the aggregation phase (lines 32), because its
privacy is not protected enough. In this case, the node also updates the variable
S, in order to allow the CH to end the protocol without its own participation
(line 33). If the node has other keys it did not try to share yet (i.e. condition
in line 31 does not hold) it selects available keys from K ′ and declares these
keys in the message M. The number of keys that can be declared in M will be
bounded by t = min{t, r, |K ′|}—t is the number of free positions in M (line
35), and r is the maximum number of keys declared in each round.

(iv) ni sends the message or concludes the protocol (lines from 43 to 51). In partic-
ular, the only node that can end the protocol is the CH. The cluster head can
terminate the protocol only if each node in the cluster either agreed on A keys
(lines 11–12 and 23–24) or refused to participate in the aggregation (line 33).
In all of the other cases, that is if S �= 0 or the executing node is not the CH, it
just sends the message to its neighbor.

An example of twin-keys agreement is shown in Fig. 6.2. In this example, the CH
(node n1) initiates the protocol by sendingmessage 1, where it proposes two keys (k1,
k3) for the agreement. When the announcement of k1, that is < s1, H(k1) >, reaches
n4, it agrees on this key and removes the announcement from themessage. Eventually,
when n1 receives message 6, it knows that k1 has been agreed with someone.

Fig. 6.2 Twin-key agreement example
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1 begin
2 〈S, 〈s1, h1〉1, . . . , 〈sR, hR〉R〉 ← M ;
3 if !Empty(List) then
4 for all 〈s′, key′〉 ∈ List do
5 remove 〈s′, key′〉 from List ;
6 if ∃si = s′ then
7 replace 〈si, hi〉i with 〈0, _〉i in M ;
8 else
9 TKList = TKList ∪ {key′} ;

10 if a > 0 then
11 a = a − 1 ;
12 replace S with S − 1 in M ;
13 end
14 end
15 end
16 end
17 for all i, i = 1 . . . R, si �= 0 do
18 if ∃key′ ∈ Ke, H(key′) = hi then
19 if key′ ∈ K ′ then
20 TKList = TKList ∪ {key′} ;
21 remove key′ from K ′ ;
22 if a > 0 then
23 a = a − 1 ;
24 replace S with S − 1 in M ;
25 end
26 replace 〈si, hi〉i with 〈0, _〉i in M ;
27 end
28 end
29 end
30 if a > 0 then
31 if K ′ = φ then
32 Valid = false ;
33 replace S with S − a in M ;
34 else
35 t = number of si = 0 in M ;
36 t = min{t, r, |K ′|}; randomly select and remove i1, . . . , it from {1, 2, . . . R} ;
37 randomly remove k1, . . . , kt from K ′ ;
38 randomly select key seeds (random number) s1, . . . , st ;
39 List = List ∪ {〈s1, k1〉, . . . , 〈st, kt〉} ;
40 replace 〈0, _〉i1 , . . . , 〈0, _〉it with 〈s1, H(k1)〉, . . . , 〈st, H(kt)〉it in M ;
41 end
42 end
43 if executing is CH then
44 if S = 0 then
45 broadcast twin-key agreement over ;
46 else
47 send M to the next node //encrypted with pair-wise key ;
48 end
49 else
50 send M to the next node; //encrypted with pair-wise key ;
51 end
52 end

Algorithm 11: ReceiveMessage(M)
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6.6 Data Aggregation

In this section we explain the data aggregation phase. In particular, for ease of expo-
sition, we describe it in two consecutive steps:

(i) Twin-keys liveness announcement;
(ii) Data aggregation with shadow values.

Despite we present them separately, these two procedures can run together as dis-
cussed at the end of this section.

In the liveness announcement procedure, all of the nodes anonymously declare
the liveness of the twin-key they posses. Each node will check whether the number
of currently alive twin-keys is enough to protect the privacy of the sensed value.
With V ≤ A we indicate the number of twin-keys that a node requires to be used
during the aggregation in order to reach a satisfactory level of privacy. Assume that
at least V of the node’s twin-key are announced alive. Then, in the aggregation phase
a node will add to the aggregate value computed so far its private value and the sum
of the shadow values computed based on its alive twin-keys. However, if less than
V twin-keys are announced as alive by the corresponding twin nodes, the node will
add to the aggregate only the shadow values without its own private value.

In Sect. 6.6.3, we show how to combine the twin-key liveness announcement and
the aggregation together.

6.6.1 Twin-Key Liveness Announcement: Protocol Description

In the twin-key liveness announcement, each node first executes the procedure
AnnouncePrepare (Algorithm 12). ATKList+ and ATKList− are used to record
the alive twin-keys. Twin-keys in ATKList+ will be used to compute positive shadow
values and twin-keys in ATKList− will be used to compute negative shadow val-
ues. The data-type of ATKList+ and ATKList− are Set and Bag respectively: A key
appears at most once in ATKList+ but could appears more than once in ATKList−.
Finally, Avalid is used to record whether the executing node will participate in the
data aggregation.

1 begin
2 ATKList+ = φ ;
3 ATKList− = φ ;
4 TempATKList+ = φ ;
5 Avalid = true ;
6 end

Algorithm 12: AnnouncePrepare
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After the AnnouncePrepare procedure has been executed by all of the nodes,
CH initiates the twin-key liveness announcement, i.e. executes the procedure
CH_Announce (Algorithm 13). It initializes the number of participating node,
T = 0 (line 2). Then, it will consider A of its twin-keys (line 3). For each key, ki, it
will generate a random seed, si (line 4), and it will write all the pairs < si, H(ki) >

in the message it sends to its neighbor (line 7).

1 begin
2 T = 0 ;
3 Select A twin-keys from TKList: k1, . . . , kA ;
4 Select A random numbers: s1, . . . , sA ;
5 TempATKList = {(s1, k1), . . . , (sA, kA)} ;
6 List = {(s1, H(k1)), . . . , (sA, H(kA))} ;
7 send (T , List) to the next node //encrypted with pair-wise key ;
8 end

Algorithm 13: CH_Announce

Each node, except the CH, receiving the liveness announcement message for
the first time executes the procedure FirstRound (Algorithm 14). The CH never
executes this procedure. In particular, for each hi in the List within the message M
(line 4) it checks if it has a twin-key, k, such that H(k) = hi (line 5). If this is the
case it adds the key, k, in its list ATKList− (line 6) and removes the corresponding
key announcement from the message (line 7). Furthermore, the node declares the
liveness of all its A′ other keys not yet known as alive, where A′ = A − |ATKList−|
(line 10). To do so, as for the Procedure CH_Announce, it selects a random seeds si

for each key ki in TKList \ ATKList− and adds the corresponding pair < si, H(ki) >

in the List in M. Finally, it sends the updated message M to its neighbour node.

1 begin
2 (T , List) ← M ;
3 (s1, h1), . . . , (sR, hR) ← List ;
4 for hi, (1 ≤ i ≤ R) do
5 if ∃k ∈ TKList, H(k) = hi then
6 ATKList− = ATKList− ∪ {k} ;
7 Remove (si, hi) from List ;
8 end
9 end

10 A′ = A − |ATKList−| ;
11 Select A′ twin-keys from TKList \ ATKList−: k1, . . . , kA′ ;
12 Select A′ random numbers: s′

1, . . . , s′
A′ ;

13 TempATKList = {(s′
1, k1), . . . , (s′

A′ , kA′ )} ;
14 List = List ∪ {(s′

1, H(k1)), . . . , (s′
A′ , H(kA′ ))} ;

15 send (T , List) to the next node // (T , List) encrypted with pair-wise key ;
16 end

Algorithm 14: FirstRound
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Each node, except the CH, executes the procedure SecondRound (Algorithm
15) when it receives a liveness announcement message for the second time. The CH
executes this procedure when it receives the message for the first time. For each key
that the executing node announced in the previous round of the message (line 4), it
checks if the corresponding declaration is still in the message M it just received (line
5). If it is so, this means that no other node has removed the declaration from M.
The node will then remove the non-alive key from the message. Otherwise, i.e. the
key is alive (someone stored the key in its ATKList−), the executing node puts the
corresponding key in its list ATKList+. Furthermore, for each declaration in M (line
11), the node checks if it is storing a key (in TKList), not yet announced by itself (not
in ATKList+), that some other node is asking for liveness (line 12). Note that at this
point the node has removed its own declared keys from the List inM: the only keys in
M are declared by other nodes, indeed. If the node has such a key k, it adds the key to
its ATKList− (line 13) and removes the corresponding declaration from the List (line
14). The node then checks the number of twin-keys it is using in this aggregation (line
17). If this number is smaller than V , the required number of keys deemed necessary
to satisfy the node privacy, it will participate in the aggregation only with the shadow
values but not with its own private value (line 19). Otherwise, it will participate
also with its private value, and increases the number T of participating nodes (line
21). Finally, the executing node sends the message M to its next neighbour. Note
that, when the CH receives the message for the second time, the cluster aggregation
process terminates. Then, the tree aggregation is performed as described in point 3.2
of Sect. 6.4.

Figure6.3 illustrates an example of the result of the procedures shown in this
section applied to the same setting used in Fig. 6.2. Keys in bold font are the alive

Fig. 6.3 Twin-key liveness announcement example. A = 3, V = 2
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keys while non-bold fonts indicates non-alive key. For example, node CH does not
consider alive the key k1, actually shared with node n4 that is currently off-line.

6.6.2 Data Aggregation with Shadow Values: Protocol
Description

Here we describe the aggregation phase, while each node executes the procedure
NodeAggregation (Algorithm 16).In particular, if a node does not have enough
alive twin-keys to protect its own private value (line 3), it just does not participate in
the aggregation. That is, it does not include its own value in the aggregate (line 3).
Otherwise, it initializes the variable x with its own private value d (line 6). Then, for
each key in ATKList+ (line 8), it adds H(Seed, k) to x (line 9). Similarly, for each
key in ATKList− (line 11) it removes H(Seed, k) from x (line 12). Finally, the value
x + y is sent to the node’s next neighbour. Note that Seed is unique for each different
data aggregation. For example, it can be a random number broadcast from the BS
together with the aggregation request. Also, it could be a time sequence number
when the data aggregation is executed, if executed at given interval of time without
any request from the BS.

1 begin
2 (T , List) ← M ;
3 (s1, h1), . . . , (sR, hR) ← List ;
4 for (s, k) ∈ TempATKList do
5 if ∃(si, hi), s = si ∧ H(k) = hi then
6 Remove (si, hi) from List ;
7 else
8 ATKList+ = ATKList+ ∪ {k} ;
9 end

10 end
11 for (si, hi) ∈ List do
12 if ∃k ∈ TKList \ ATKList+, H(k) = hi then
13 ATKList− = ATKList− ∪ {k} ;
14 Remove (si, hi) from List ;
15 end
16 end
17 Numk = |ATKList+ ∪ BagToSet(ATKList−)| ;
18 if Num < V then
19 Avalid = false ;
20 else
21 T = T + 1 ;
22 end
23 send (T , List) to the next node //encrypted with pair-wise key ;
24 end

Algorithm 15: SecondRound
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1 begin
2 (y) ← M ;
3 if Avalid = false then
4 x = 0 ;
5 else
6 x = d ;
7 end
8 for k ∈ ATKList+ do
9 x = x + H(Seed, k) ;

10 end
11 for k ∈ ATKList− do
12 x = x − H(Seed, k) ;
13 end
14 send (x + y) to the next node //encrypted with pair-wise key ;
15 end

Algorithm 16: NodeAggregation

Figure6.4 illustrates an example of data aggregation on the same setting con-
sidered in Fig. 6.2, with the alive twin-keys shown in Fig. 6.3. In this example,
the CH node adds its own values d1, H(Seed, k7), and H(Seed, k8) (it has both
k7 and k8 in its ATKList+). The following node (n2) adds its own value d2, adds
H(Seed, k4), and subtracts H(Seed, k7) (k4 and k7 are in ATKList+ and ATKList−
respectively). The resultingmessage sent by node n2 has a value that now corresponds
to d1 + H(Seed, k4) + d2 + H(Seed, k8). When the message reaches CH again, it
will contain the exact sum of the private values of all the participating nodes.

Fig. 6.4 Data aggregation with shadow values. A = 3, V = 2
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6.6.3 A Complete Protocol Run

Here, we show how to integrate the alive announcement round and the aggregation
round together to have a more efficient solution: The two phases can run together
using one single message containing both liveness announces and aggregated value.
Note that the twin-key liveness announcement requires the message M to be relayed
two times along the circuit. Also, note that the second time each node receives
the message knows exactly which of the possessed twin-keys it should use in the
aggregation. Then, we can think that in the same message relayed in this second
round the aggregated value is also routed and updated according to Algorithm 16.

6.7 Security and Complexity Analysis

In this section, we present a thorough analysis of our protocol. In next subsection we
study the problem’s parameters; in Sect. 6.7.2 we discuss the security features of our
proposed protocol; finally, in Sect. 6.7.3, performance analysis is shown. Finally, in
Sect. 6.7.4 we compare our protocol with other solutions in literature.

6.7.1 Parameter Study

In this section we provide guidelines for selecting the values to assign to the para-
meters of our protocol, that is P, K , C, and A. We start reminding that the necessary
condition for a node to participate in a cluster-based aggregation is to share A keys
with other nodes in the same cluster. Note that, if the above condition does not hold
for a node, this node can attempt to join another (neighbouring) cluster it shares
enough keys with. In practice, we expect that for a given set of nodes in a cluster
there is a reasonably high probability, ps, that all these nodes share A keys. Set the
desired probability ps, assignment for P, C, A, K satisfying ps should be found.

For example, we can set ps = 0.99. Then, we can choose the key-pool size
P = 10, 000, the cluster size C = 20, and require that each node shares A = 5 keys
with the other C − 1 nodes in the same cluster. Then, the only other parameters we
can tune to satisfy ps is the variable K . To simplify the analysis, without making it
less rigorous, we state the following assumptions:

• The K keys assigned to each node are chosen from P with replacement.
• The probability of sharing any of the A keys is independent for the nodes in the
cluster. Note that, as observed in [76], this is a feasible approximation.

Using the previous assumptions, the probability for a given node to share at least A
keys with the others C − 1 nodes is equal to:
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Fig. 6.5 Probability for a node to share at lest A twin-keys in the cluster, varying the key-ring size,
K . P = 10, 000, C = 20, A = 5
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In Fig. 6.5 we plot the analytical result (Eq. 6.1) and the simulation result for P =
10, 000, C = 20 and A = 5. From this graph we can observe that ps > 0.99 is
achieved for any K ≥ 65. Note that, once the required ps is guaranteed, choosing a
smaller K increases security. Indeed, an adversary capturing a node will acquire a
smaller number of pool’s keys.

Then, to satisfy ps > 0.99 for the selected P = 10, 000, C = 20, and A = 5, we
chose K = 65. This choice of parameters will be used for the following sections.

To show how this parameters choice affects the number of nodes participating
in the aggregation phase, in Fig. 6.6 we simulate the protocol, reporting (y-axis)
the number of nodes actively participating in the aggregation, while increasing the
number of the off-line nodes (x-axis). A non-off-line node actively participates in
the aggregation adding its own value and the hashes of its alive twin-keys, if the
number of these hashes are at least V . Otherwise, it passively participates adding
only the hashes of its alive twin-keys. In Fig. 6.6 we consider different number of
agreed twin-keys, A = 5, 6, 7. For each of these, we also consider different number
of alive twin-keys required for the node active participation (V = 3, 4, 5). Note
that, for A = 5, V = 5, the number of off-line nodes significantly affects the active
participation of the other nodes.We expect that a similar behaviour could be observed
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Fig. 6.6 On-line nodes actively participating in the aggregation, while increasing the number of
the off-line nodes. P = 10, 000, C = 20, K = 65

when A = V . However, if we set A to be greater than V , such negative effects are
seriously reduced. For example, for C = 20, A = 5, V = 3, if 7 nodes are off-line,
on average 10 out of the 13 on-line nodes can actively participate in the aggregation.

6.7.2 Security Analysis

In this section, we analyze the security of our protocol based on the threat model
discussed in Sect. 6.3. That is, the aimof the attacker is just to compromise the privacy
of the nodes. To reach this goal, We assume that an attacker can: (1) eavesdrop all
of the communications in the network, (2) steal information from the BS, and (3)
compromise a fraction of the network nodes.

For ease of exposition, we explain the security features of our protocol considering
an increasingly powerful attacker. First, we assume that the attacker can just eaves-
drop the exchange of messages. Due to the pair-wise encryption between nodes, the
attacker cannot obtain any useful information to compromise a single node’s privacy.

Then, we consider that the attacker can also steal information from the BS. In
this case, we observe that in our protocol, the BS only acts as a receiver of the
final aggregation result. There is no other information that can be gathered when
compromising the BS. Therefore, the attacker obtains no useful information from
the BS to compromise a single node’s privacy.

A major threat appears when we assume that the attacker can also capture some
nodes. In fact, all of the information stored in the captured nodes become known to
the attacker, including pre-distributed keys and the agreed twin-keys. While it is not
possible to protect the privacy of the captured nodes, our aim is to protect the privacy
of the non-captured nodes. Therefore, we are interested in assessing the probability
that the attacker can compromise the privacy of a non-captured node leveraging the
information acquired having captured a certain number of nodes.

We assess this probability in two scenarios, hypothesising two different adversary
behaviors: the passive and active one, described below.
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6.7.2.1 Passive Attack

In this scenario, we assume that the attacker can only elaborate on the information
extracted from the captured nodes (i.e. from the memory) and the received messages.

Each node value is protected by one or more shadow values. The secrecy of the
shadow value, in turn, is protected by the secrecy of the twin-keys. To compromise
the privacy of non-captured node, ni, the attacker has to obtain the keys used to
generate the shadow values that ni uses to protect its own privacy. For a node ni, it
will send out a value computed by the following expression (see Algorithm 16):

di +
∑

k∈ATKList+i

H(k, Seed) −
∑

k∈ATKList−i

H(k, Seed) (6.2)

We refer to this value as the coated value of the node ni. We recall that Seed is a
one-time-use number broadcasted by the BS together with the aggregation request.

Before starting our analysis we use an example to illustrate how the privacy of
non-captured nodes is protected, even after the attacker compromised a significant
number of other nodes. Figure6.7 shows an example with A = 3 and V = 3. The
attacker controls half of the nodes in the cluster: n1, n4 and n5. The following twin-
keys are then known to the attacker: k1, k2, k5, k6, k7, k8 (indicated with non-bold
font in Fig. 6.7). Besides, k3 and k4 remain unknown to the attacker. Also, in the
aggregation phase, the attacker is able to obtain the content of the messages received
or sent by controlled nodes. In this example, from these messages, the attacker can
derive the following equations containing the private values of non-captured nodes:

Observed_v1 = d6 − H(K3, Seed) − H(K4, Seed) (6.3)

Fig. 6.7 Attack example: Not compromised twin-key. A = 3, V = 3
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Observed_v2 = d2 + d3 + H(K3, Seed) + H(K4, Seed) (6.4)

In particular, Observed_v1 is computed as the difference of the content of the
messages sent and received by node n6; Observed_v2 is computed as the difference
between the message sent by n3 and the one received by n2. With five unknown
variables, this system of equations cannot be solved by the attacker. The privacy of
the non-captured nodes: n2, n3, n6, is still protected against the attacker.

In general, the following lemma holds.

Lemma 6.1 By executing the algorithm described in Sect. 6.6, each private value
counted in the aggregation is protected by at least V keys, where V ≤ A and A is the
number of twin-keys possessed by each node.

Proof By construction, each node executing the protocol in Sect. 6.6 will participate
in the aggregation phase, Algorithm 16, if and only if it finds out at least V alive
twin-key it shares with other nodes, Algorithm 15, line 18. �

Next, we give a formal analysis for the probability that the privacy of a non-
captured node can be compromised by the attacker. In order to compromise the
private value di of node ni, the attacker has to obtain both the coated value and the
sum of the shadow values, that is:

∑

k∈ATKList+i

H(k, Seed) −
∑

k∈ATKList−i

H(k, Seed). (6.5)

For the coated value we have the following lemma.

Lemma 6.2 The attacker can compromise the coated value of a node, ni, if and only
if it compromises the two neighbours of ni in the circuit used during the aggregation
(Algorithm 16).

Proof (⇒) First of all, notice that if the attacker compromises the two neighbours
of ni in the circuit, it can observe the content of the following messages: (i) the
aggregation message received by ni, and (ii) the message sent out from ni. The
difference between the values in these messages corresponds to the coated value of
node ni.

(⇐) Assume only one of the neighbours of ni is compromised. Also, assume
the worst scenario where all of the other nodes in the cluster are compromised but
node ni and one of its neighbour, ni+1. Without loss of generality we can assume
that ni appears before ni+1 in the circuit. In this case, the attacker would be able to
observe: (i) the message received by ni, and (ii) the messages sent out by ni+1. By
the difference of the values in the messages (i) and (ii) the attacker can observe the
result of the following expression:

di +
∑

k∈ATKList+i

H(k, Seed) −
∑

k∈ATKList−i

H(k, Seed)+
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di+1 +
∑

k∈ATKList+i+1

H(k, Seed) −
∑

k∈ATKList−i+1

H(k, Seed). (6.6)

Once the aggregated value is sent out in the message (ii) by node ni, neither the value
di nor di+1 will be removed by other nodes. Hence, the attacker cannot obtain the
value of any expression that contains only one of di or di+1. �

Assume the attacker obtained the coated value of a node, ni, by controlling its
two neighbours. Next step is to obtain the ni’s shadow value. There are two kinds of
useful information for the attacker to reconstruct the shadow value:

• Type 1 knowledge. Twin-keys obtained from the captured nodes.
• Type 2 knowledge. Sum of set of shadow values H(k, Seed), for a key k. The
attacker can obtain these values by capturing the neighbours of a node that par-
ticipate in the aggregation without contributing its own value. Recall that a node,
ni, under the condition that less than V of its twin-keys are alive in the current
aggregation phase (Algorithm 15, lines 18–19 and Algorithm 6.6, lines 3–6.), will
add to the aggregate just the shadow values computed from its alive twin-keys
(without its own value di).

For these two types of knowledge the following two observations hold.

Observation 6.1 For a node ni, Type 2 knowledge is a subset of Type 1 knowledge.
On one hand, if the attacker knows all the keys of a node (Type 1 knowledge), it

can compute any possible subset of shadow values, including Type 2 knowledge. On
the other hand, Type 2 knowledge does not reveal the secret twin-keys.

Observation 6.2 Given the attacker can compromise w ≥ 2 nodes, its best attack
strategy for compromising the privacy of node ni is the following: (1) By Proposition
6.2, the attacker has to compromise the two neighbours of the target node; (2) The
attacker captures the remaining (w−2) nodes selecting every other nodes, in a circuit,
following one of the ni’s neighbours.

In fact, by capturing nodes in this way, the attacker will have Type 1 knowledge
over the w captured nodes and will also have the chance to obtain Type 2 knowledge
from the (w − 2) nodes between two close captured nodes.

For example, to compromise node n1 in Fig. 6.8, the best strategy for an attacker
that can capture w = 4 nodes is: (1) to capture the two neighbours n2, nc; (2) to
capture the nodes n4 and n6 as above described. In this way, the attacker will have
Type 1 knowledge over nc, n2, n4 and n5. Also, it will have Type 2 knowledge for n1,
n3 and n5.

Let us assume thatw ≥ 2 nodes are compromised using the strategy inObservation
6.2 Based on Observations 6.1 we can consider an upper bound on the attacker’s
knowledge as has captured also all of the nodes, ni+1, between two consecutive
compromised nodes, ni and ni+2. (except the privacy attack target node). In the
above example, when the attacker captures nodes n2 and n4, we assume that the node
n3 has also been captured. That is, we bound the Type 2 knowledge of the attacker
by the Type 1 knowledge.
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Fig. 6.8 Best attack strategy

In conclusion, if the attacker controlsw nodes, we assume it has Type 1 knowledge
over 2+2(w−2) nodes. Referring to the Example in Fig. 6.8, we assume the attacker
has Type 1 knowledge of the nodes nc, n2, n3, n4, n5 and n6.

To ease exposition, in the following analysis, we assume that each twin-key is
shared by only two nodes in a cluster. In Fig. 6.9 we report the simulation results
for the probability, pi(k); that is, the probability that the same symmetric key k is
considered as twin-key by i nodes in the cluster, assuming the parameters identified
in Sect. 6.7.1. From this figure, we can notice that the probability that a key is actually
shared between more than two nodes is quite small, i.e. less than 4% in this example.

Furthermore, we assume that the attacker controls w nodes. From the previous
upper bound on the attacker knowledge, the adversary has Type 1 knowledge for
2 + 2(w − 2) = 2w − 2 nodes; the probability that the adversary has knowledge of
a single key of ni is

(
2w−2
C−1

)
. Then, the upper bound probability that the adversary

Fig. 6.9 Probability, pi(k),
that a twin-key k is shared
among i nodes in the cluster
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Fig. 6.10 Probability of privacy compromising, varying the number of nodes captured by the
attacker. P = 10, 000, C = 20, A = 5. a Analysis result. b Simulation result

knows all the V keys a node uses in a data aggregation is:

(
2w − 2

C − 1

)V

(6.7)

Figure6.10a shows the above probability for the attacker to compromise the pri-
vacy of a node by capturing w nodes (x-axis). As an example, for w = 5 (the attacker
has knowledge of the key ring of 2 + 2(w − 2) = 8 nodes, each one composed
of K = 65 symmetric keys) we have that the attack’s success probability is some
0.01, 0.03, and 0.07 for V = 5, 4, and 3 respectively. The analytical result shown
in Fig. 6.10a is confirmed by the simulation result shown in Fig. 6.10b. Note that the
simulation is done without the assumption of any constraint on the number of nodes
sharing a twin-key.

6.7.2.2 Active Attack

In the following we analyze an active attacker, that is an attacker that leverages the
w controlled nodes to push forward the privacy compromising of a node ni.

A necessary condition to compromise the privacy of ni is to control the neighbours
of ni, as previously discussed. Assume the attacker actively controls these nodes
during the twin-key liveness announcement phase (described in Sect. 6.6.1). Then, it
can be able to enforce ni not to participate in the aggregation (described Sect. 6.6.2).
In fact, using the neighbour of ni, the attacker can let ni believe that all of the twin-
keys it agreed on in the twin-key agreement (described in Sect. 6.5), are not alive
during the current aggregation phase.We observe that this does not imply any privacy
violation of node ni.

However, if the attacker controls the neighbors of ni during the twin-key agree-
ment (note that the set-up phase is performed only once) it can do something more.
Actually, controlling ni’s neighbours the attacker can try to let ni agree on twin-keys
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only with the ni’s neighbours (nodes controlled by the attacker). If the attacker does
not have enough keys (V ), ni will simply not participate in the aggregation for this
cluster. However, if the attacker has enough keys to let ni agree on V keys known
by the attacker, this can pose a serious threat to the protocol: the privacy of the node
could be violated. To solve this problem, and also to increase the resilience of our
protocol against other kind of attacks, we propose an extension of our protocol by
using multiple logical circuits.

6.7.2.3 Using Multiple Logical Circuit to Improve the Protocol Resilience

To address the problem exposed in the previous section, we extend our protocol using
multiple logical circuits in the twin-key agreement phase, as shown in Fig. 6.11. Then,
when a node initiates a twin-key agreement, it randomly selects one of the available
circuits. This requires the attacker to control an higher number of nodes to achieve
the same goal as in the single circuit scenario. In general, to compromise the privacy
of a given node ni, the attacker must capture all the other C − 1 nodes, if C!

2 logical
circuit are used.

6.7.2.4 Managing Off-Line Nodes and Message Loss

In Sect. 6.6.1 we described the twin-key liveness announcement mechanism that
allows our protocol to be resilient to a node failure. In fact, a correct aggregate can
be computed also if some nodes are off-line. For easy of exposition, in Sect. 6.6.1
we described our solution considering only the alive nodes. However, a technique
for traversing a circuit with off-line nodes must be used. Here, we briefly explain a
simple solution to achieve this goal. We can assume that each node broadcasts the
ids of its right and left neighbour, for each logical circuit built. In this way, each node
can autonomously know the sequence of nodes for each circuit. Then, after sending
a message to its neighbour, the sender node waits for an acknowledge message, ack.
If the ack is not received, the sender sends the message to the next node in the circuit.
For example, in Fig. 6.12 node n4 sends a message to n5 and waits for an ack. If the

Fig. 6.11 Using multiple
circuits
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Fig. 6.12 Managing off line
nodes

ack is not received within an expected time interval, n4 sends the message to the next
node in the circuit, n6.

In a similar way, if the CH does not start the protocol within a given time interval,
the next node (n2 in Fig. 6.12) can assume the role of CH sending the first message.
Note that message loss problem can be treated in the same way. If the message or
the corresponding ack is lost, the destination node is regarded as off line.

6.7.3 Complexity Analysis

In this section, we analyze the complexity of our proposed algorithm from both the
communication and the computation point of view.

First, we analyze the complexity of the algorithm in the data aggregation phase
(described in Sect. 6.6). Note that this is the major part of the overhead. In fact,
such complexity is associated to each single aggregation. Finally, we discuss the
complexity of the set-up phase (described in Sect. 6.5) that, instead, is performed
only once.

6.7.3.1 Complexity in Data Aggregation Phase

First, we analyze the computation complexity of the data aggregation. We consider
the per node worst case overhead. For each agreed twin-key, k, each node has to
compute two hash values. One hash is computed for the verification of the liveness
announcement of k. The other hash is executed to compute the k’s corresponding
shadow value added in the aggregated value. Furthermore, each node has to compute
two symmetric key encryption and two symmetric key decryption to receive and to
send out the required message. Therefore, the computation of each node in the worst
case is 2A hash computations, 2 symmetric key encryption and 2 symmetric key
decryption, considering A agreed twin-keys. The overall computational complexity
is in general O(1), with respect to the size of the cluster, C, as reported in Table6.2

From the communication complexity point of view, each node only needs to
receive and to send out two messages. That is, the number of messages is O(1).
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However, we should also considered the size of these messages. Each node has to
send out the hash values corresponding to its twin-keys that have not yet been declared
alive by other nodes (Algorithm 14, lines 10–15). For example, consider the message
received by n2, in Fig. 6.3, during the twin-key liveness announcement. CH sent a
message announcing k1, k7 and k8. Now, the set of twin-key for n2 contains k4, k7,
and k9, therefore it will remove k7 from the message and will add all of its twin-keys
not yet declared alive, k4 and k9. Consider each node established A twin-keys. In the
worst case, AC/2 different twin-keys have to be declared in the twin-key liveness
announcement message. We recall that we considered a declared (or established)
twin-key as the symmetric key shared between a pair of alive nodes. For example,
if the same symmetric key, k, is used in two different pairs of nodes it is considered
as two different established twin-keys. Then, the worst case message size is AC/2.
That is, the size of message is O(C). Considering the O(1) number of messages, the
overall communication overhead is O(C), as reported in Table6.2

Next, we estimate the averagemessage sizeMavg-size. LetLk be the average number
of messages each alive twin-key, k, appears in. Assuming each node is alive, the
liveness of all the twin-keys is checked when the message comes back to CH for the
first time (when CH receives the liveness message in Algorithm 15 the List structure
is empty). Each twin-key k, out of the AC/2 twin-keys, will be in Lk messages out
of the C messages sent in the circuit. Then, we have that:

Mavg-size =
AC
2 Lk

C
= ALk

2
. (6.8)

Furthermore, given a twin-key k, we define the function m(k) as the number of
nodes in the cluster that use the symmetric key k as a twin-key. Then, we have that
Lk = C/m(k). We define pi(k) as the probability that m(k) = i, where i ∈ [2 . . . C].
Equation6.8 can be rewritten as:

Mavg-size = A

2

C∑

i=2

pi(k)
C

i
. (6.9)

Finally, rewriting pi(k) in terms of pool size, P, and key-ring size, K , we have:

Mavg-size =
A
∑C

i=2

(C
i

)(
K
P

)i
(

P−K
p

)c−i(
C
i

)

2
∑C

i=2

(C
i

)(
K
P

)i
(

P−K
p

)c−i . (6.10)

Assuming each twin-key shared by exactly two nodes, a more tight average mes-
sage size applies: AC/4—that is, O(C) if A is a constant.



6.7 Security and Complexity Analysis 153

6.7.3.2 Complexity in Set-Up Phase

We consider first the communication complexity. Each node has to test, in the worst
case, each of its pre-distributed keys to find out the required A twin-keys shared
with other nodes. Therefore, up to CK keys will be declared in the message passing
through the circuit, where K is the number of the pre-distributed keys in each node
and C is the cluster size. Remember that our protocol binds to r the number of keys
that a node can declare each time it has the declaration message (Algorithm 10, lines
3–4 and Algorithm 11, lines 37–38). As an upper bound, we can also assume that R
is the overall maximum message size. Then, the upper bound for the total number of
messages transferred by each node is CK/R.

Finally, we consider the computation complexity under the same assumptions.
Each node, in the worst case, has to compute the hash for each of its pre-distributed
keys and to encrypt each message it sends out. Altogether, we have K hash compu-
tations and CK/R encryptions.

6.7.4 Comparison

In Table6.2 we summarize the features of our proposal compared with other relevant
algorithms present in the literature. The feature aggregation type indicates who is
responsible for the aggregation: hop-by-hop means that each node adds its own
value to the aggregate while CH means that the local aggregation is performed by
the cluster head. The column encryption type indicates who are the peers of the
encryption considered in the protocol. As an example, node-to-BS means that each
node encrypts some data that cannot be decrypted until it reaches the BS. Table6.2
also indicates if the protocol protects privacy against outside eavesdropper, other
network nodes or the BS, in columns 3, 4, and 5 respectively. The last two columns
denote the per node computational and communication complexity. By data-loss
resilience we refer whether the BS fails to compute the correct aggregate if a few
nodes do not participate in the protocol or if a message is lost. Note that in this
chapter, we consider that the aggregation protocol cannot send neither the list of
the nodes participating in the current aggregation, nor the list of those who do not
participate. We renounced to formulate such an assumption since it can be well
the case where such lists are O(n), hence vanishing the savings that an aggregation
protocol is supposed to deliver.

6.8 Concluding Remarks

In-network data aggregation is commonly used in sensor network for efficiency
reason. However, in privacy sensitive applications, a single node can be interested in
contributing its sensed value to compute an aggregate, but it would like to have neither
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other nodes nor the BS to know the value it contributed. Further, data aggregation
has to be resilient to data loss. In this work, we proposed an efficient solution for
data aggregation that protect the node privacy, according to the above requirement,
against a powerful attacker. In particular, the attacker can eavesdrop the exchanged
messages, control a fraction of the network nodes, and also acquire some information
from the base station.

Our analysis supports the feasibility of our private aggregation protocol, showing
that it is secure, scalable, resilient to data loss, and efficient. To the best of our
knowledge, our scheme is the first one that provides the above properties all at once.



Chapter 7
Conclusions and Future Works

The number of areas and problems to which Wireless Sensor Networks are applied
continuously growwhile known and unknown threats affect this technology.Researc-
hers are called to address the design of efficient protocols that are secure against
possible attacks. This book provides several contributions in this direction over the
previous state of the art:

• As for the pair-wise key establishment, we designed a new probabilistic solution,
theEnhancedCooperativeChannel Establishment (ECCE)Protocol.We compared
the performance of ECCE with the most known concurrent schemes via both
analysis and simulations. The results showed that the ECCE Protocol presents
higher probability for any pair of nodes to establish a secure channel and a higher
resilience rate (i.e., the attacker needs a bigger effort to corrupt the channel).

• Weproposed a new capture detection approach that leverages the networkmobility
in order for the nodes to trace the presence of the other nodes. In this framework
we further proposed two protocols. The results of an extensive set of simulations
show that the newly proposed solutions can be practically implemented in sensor
networks and under certainmobility conditions (e.g., a certain average node speed)
they perform better than solutions that do not leverage network mobility.

• As for the problem of the clone attack, we observed that the state of the art solution
was not practical for WSNs. Then, we proposed a new efficient and distributed
protocol for the capture attack detection. We showed that our protocol can be
practically implemented in WSN and outperforms the previous state of the art
protocol in terms of both efficiency (i.e., energy consumption) and performances
(i.e., detection rate).

• We proposed the first solution that can compute the Median of the nodes values
and verify if the computed value has been falsified by compromised nodes. Fur-
thermore, we proposed an attack resilient Median computation protocol: The sink
node is able not only to verify if the aggregated value has been compromised but
also to compute the correct aggregated value (not considering the values of the
nodes that do not comply to the protocol).

© Springer Science+Business Media New York 2016
M. Conti, Secure Wireless Sensor Networks, Advances in Information Security 65,
DOI 10.1007/978-1-4939-3460-7_7
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• Another contribution on data aggregation is related to the privacy of a single
node during data aggregation. In this case we proposed the first data aggregation
protocol that guarantees the privacy of a node not only against the other nodes but
also against the sink node.

While efforts in securing wireless sensor network have already produced good
results, many open problems are still there.We aim to concentrate our future research
efforts on the following open research issues:

• The solution for the detection of the node capture can be further improved. The
candidate ongoingwork is dedicated to investigate how the approachworks in other
mobility models, rather than only in the considered Random Waypoint Mobility
model, and experimentally evaluate the solution on realistic mobility patterns.

• The approach we proposed for the detection of the node capture can be generalized
in order to compute other properties that involve all the network. The absence of
a node from the network might be seen as a special case of these types global
properties.

• In our clone detection solution the presence of a centralized authorities that broad-
cast a random values is required. We want to extend our solution using distributed
mechanisms that allow the nodes to agree an a random value. Furthermore, this
mechanism should be resilient to the attacker activities. We observe that such a
distributed and efficient mechanism would be useful to all the security protocol
that requires the use of a random value shared between the network nodes.

• The clone detection solution proposed is designed for static sensor network. Since
it seems to be not trivial to extend the provided solution to a mobile environment
we aim to investigate such a possibility.

• We aim to design a reference security architecture forWSNs, with a set of coherent
and complete assumptions.

• Another aspect of interest for WSNs is the security and efficiency in actuators-
sensors interaction.

• Finally, we aim to investigate specific security problems in underwater WSNs.
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92. Ganeriwal, S., Pöpper, C., Čapkun, S., Srivastava,M.B.: Secure time synchronization in sensor
networks. ACM Trans. Inf. Syst. Secur. 11(4), 1–35 (2008)

93. Ganeriwal, S., Sribastava, M.B.: Reputation-based framework for highly integrity sensor
networks. In: Proceedings of ACM Workshop on Security of Sensor and Adhoc Networks
(SASN’04) (2004)

94. Ganesan,D.,Govindan,R., Shenker, S., Estrin,D.:Highly-resilient, energy-efficientmultipath
routing in wireless sensor networks. SIGMOBILEMob. Comput. Commun. Rev. 5(4), 11–25
(2001). http://doi.acm.org/10.1145/509506.509514

95. Gaubatz, G., Kaps, J.P., Sunar, B.: Public key cryptography in sensor networks—revisited.
In: Security in Ad-hoc and Sensor Networks, pp. 2–18. Springer (2005)

96. Girao, J., Westhoff, D., Schneider, M.: CDA: concealed data aggregation for reverse multicast
traffic in wireless sensor networks. In: 2005 IEEE International Conference on Communica-
tions (ICC 2005), pp. 3044–3049 (2005)

97. Giuffrida, C., Majdanik, K., Conti, M., Bos, H.: I sensed it was you: authenticating mobile
users with sensor-enhanced keystroke dynamics. In: Detection of Intrusions and Malware,
and Vulnerability Assessment, pp. 92–111. Springer, New York (2014)

98. Gligor, V.D.: Emergent properties in ad-hoc networks: a security perspective. In: Proceedings
of the 4th ACMWorkshop on Wireless Security (WiSe’05), p. 55 (2005)

99. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, Cam-
bridge (2001). http://www.wisdom.weizmann.ac.il/oded/foc-book.html

100. Greenwald, M., Khanna, S.: Space-efficient online computation of quantile summaries. In:
Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data
(SIGMOD’01), pp. 58–66 (2001)

101. Greenwald, M.B., Khanna, S.: Power-conserving computation of order-statistics over sensor
networks. In: Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS’04), pp. 275–285 (2004)

102. Grossglauser, M., Vetterli, M.: Locating nodes with EASE: last encounter routing in ad hoc
networks through mobility diffusion. In: Proceedings of the 22nd Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM’03), pp. 1954–1964 (2003)

103. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and
temporal cloaking. In: Proceedings of the 1st International Conference on Mobile Systems,
Applications and Services (MobiSys’03), pp. 31–42 (2003)

104. Gruteser, M., Grunwald, D.: A methodological assessment of location privacy risks in wire-
less hotspot networks. In: Proceedings of the First International Conference on Security in
Pervasive Computing, pp. 10–24 (2004)

105. Gruteser, M., Schelle, G., Jain, A., Han, R., Grunwald, D.: Privacy-aware location sensor
networks. In: Proceedings of the 9th Conference on Hot Topics in Operating Systems (HO-
TOS’03), pp. 28–28 (2003)

106. Gu,W., Wang, X., Chellappan, S., Xuan, D., Lai, T.: Defending against search-based physical
attacks in sensor networks. In: IEEE International Conference on Mobile Adhoc and Sensor
Systems Conference (MASS’05), p. 527 (2005)

107. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve cryptogra-
phy and RSA on 8-bit CPUs. Cryptographic Hardware and Embedded Systems pp. 119–132
(2004)

http://doi.acm.org/10.1145/509506.509514
http://www.wisdom.weizmann.ac.il/oded/foc-book.html


References 163

108. Halpern, J., Teague, V.: Rational secret sharing and multiparty computation: extended ab-
stract. In: Proceedings of the Thirty-Sixth Annual ACMSymposium on Theory of Computing
(STOC’04), pp. 623–632 (2004)

109. Hartung, C., Balasalle, J., Han, R.: Node compromise in sensor networks: the need for secure
systems. Technical Report CUCS-990-05 (2005)

110. Hayashibara, N., Cherif, A., Katayama, T.: Failure detectors for large-scale distributed
systems. In: Proceedings of the 21st IEEE Symposium on Reliable Distributed Systems
(SRDS’02), pp. 404–409 (2002)

111. He, W., Liu, X., Nguyen, H., Nahrstedt, K., Abdelzaher, T.: Pda: Privacy-preserving data
aggregation in wireless sensor networks. In: 26th Annual IEEE Conference on Computer
Communications (INFOCOM 2007), pp. 2045–2053 (2007)

112. Hengartner, U., Steenkiste, P.: Protecting access to people location information. In: Proceed-
ings of the First International Conference on Security in Pervasive Computing (SPC’03), pp.
25–38 (2003)

113. Hill, J., Szewczyk, R.,Woo,A., Hollar, S., Culler, D., Pister, K.: System architecture directions
for networked sensors. ACM SIGOPS Oper. Syst. Rev. 34(5), 93–104 (2000)

114. Hsin, C., Liu, M.: A distributed monitoring mechanism for wireless sensor networks. In:
Proceedings of the 1st ACMWorkshop on Wireless Security (WiSe’02), pp. 57–66 (2002)

115. Hsin, C., Liu, M.: Self-monitoring of wireless sensor networks. Comput. Commun. (Elsevier)
29(4), 462–476 (2006)

116. Microsoft: Microsoft Windows CE. http://www.microsoft.com/windows/embedded/ce/
(2008)

117. PalmOS: The PalmOS Platform. http://www.palmos.com/platform/architecture.html (2008)
118. eCos: The eCos Operating System. http://www.redhat.com/ecos (2008)
119. Crossbow Technology Inc. http://www.xbow.com (2008)
120. ZigBee Working Group. http://www.zigbee.org (2008)
121. Hu, Y.C., Perrig, A., Johnson, D.B.: Packet leashes: a defense against wormhole attacks in

wireless networks. In: Proceedings of the 22ndAnnual JointConference of the IEEEComputer
and Communications Societies (INFOCOM’03), pp. 1976–1986 (2003)

122. Hwang, J., Kim, Y.: Revisiting random key pre-distribution schemes for wireless sensor
networks. In: Proceedings of the 2nd ACM Workshop on Security of Ad Hoc and Sensor
Networks (SASN’04), pp. 43–52 (2004)

123. Hyytiä, E., Lassila, P., Virtamo, J.: Spatial node distribution of the random waypoint mobility
model with applications. IEEE Trans. Mob. Comput. 5(6), 680–694 (2006)

124. Information Processing Technology Office (IPTO) Defense Advanced Research Projects
Agency (DARPA): BAA 07-46 LANdroids Broad Agency Announcement (2007)

125. Intanagonwiwat, C., Govindan, R., Deborah, E.: Directed diffusion: a scalable and robust
communication paradigm for sensor networks. In: Proceedings of the 6thAnnual International
Conference on Mobile Computing and Networking (MobiCom’00), pp. 56–67 (2000)

126. Jain, R., Chlamtac, I.: The P2 algorithm for dynamic calculation of quantiles and histograms
without storing observations. Commun. ACM 28(10), 1076–1085 (1985)

127. Kahn, J.M., Katz, R.H., Pister, K.J.: Next century challenges: mobile networking for “smart
dust”. In: Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom’99), pp. 271–278 (1999)

128. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: attacks and countermea-
sures. In: Proceedings of the First IEEE InternationalWorkshop on Sensor Network Protocols
and Applications, pp. 113–127 (2003)

129. Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless networks. In:
Proceedings of the 6th Annual ACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom’00), pp. 243–254 (2000)

130. Kasten, O., Langheinrich, M.: First experiences with bluetooth in the smart-its distributed
sensor network. In: Workshop on Ubiquitous Computing and Communications, PACT (2001)

131. Kaya, T., Lin, G., Noubir, G., Yilmaz, A.: Secure multicast groups on ad hoc networks.
In: Proceedings of the 1st ACM Workshop on Security of Ad Hoc and Sensor Networks
(SASN’03), pp. 94–102 (2003)

http://www.microsoft.com/windows/embedded/ce/
http://www.palmos.com/platform/architecture.html
http://www.redhat.com/ecos
http://www.xbow.com
http://www.zigbee.org


164 References

132. Kömmerling, O., Kuhn, M.G.: Design principles for tamper-resistant smartcard processors.
In: Proceedings of the USENIXWorkshop on Smartcard Technology on USENIXWorkshop
on Smartcard Technology (WOST’99), pp. 2–2 (1999)

133. Kong, J., Luo, H., Xu, K., Gu, D.L., Gerla, M., Lu, S.: Adaptive Security for Multi-layer Ad
Hoc Networks. Special Issue of Wireless Communications and Mobile Computing. Wiley
Interscience Press, New York (2002)

134. Kumar, V., Madria, S.: Pip: Privacy and integrity preserving data aggregation in wireless
sensor networks. In: Proceeding of the 32nd International Symposium on Reliable Distributed
Systems (SRDS’13), pp. 10–19. IEEE (2013)

135. Kwon, S., Shroff, N.B.: Paradox of shortest path routing for largemulti-hopwireless networks.
In: Proceeding of the 24th Annual Joint Conference of the IEEE Computer and Communica-
tions Societies (INFOCOM’07), pp. 1001–1009 (2007)

136. Law, Y.W., Doumen, J., Hartel, P.: Survey and benchmark of block ciphers for wireless sensor
networks. ACMTrans. Sens. Netw. 2(1), 65–93 (2006). http://doi.acm.org/10.1145/1138127.
1138130

137. Lazos, L., Poovendran, R.: Secure broadcast in energy-aware wireless sensor networks. In:
Proceedings of IEEE International Symposium on Advances in Wireless Communications
(ISWC’02) (2002)

138. Lazos, L., Poovendran, R.: Energy-aware secure multicast communication in ad-hoc net-
works using geographic location information. In: Proceedings of the 2003 IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP’03) 4 (2003)

139. Lazos, L., Poovendran, R.: Serloc: robust localization for wireless sensor networks. ACM
Trans. Sens. Netw. 1(1), 73–100 (2005). http://doi.acm.org/10.1145/1077391.1077395

140. Liang, Z., Shi, W.: Enforcing cooperative resource sharing in untrusted P2P computing en-
vironments. Mob. Netw. Appl. 10(6), 971–983 (2005). http://doi.acm.org/10.1145/1160125.
1160140

141. Liang, Z., Shi, W.: Pet: A personalized trust model with reputation and risk evaluation for
P2P resource sharing. In: Proceedings of the 38th Annual Hawaii International Conference
on System Sciences (HICSS’05), pp. 201–202 (2005)

142. Lingxuan Hu, D.E.: Using directional antennas to prevent wormhole attacks. In: Proceedings
of the 11th Annual Network and Distributed System Security Symposium (NDSS’03) (2003)

143. Liu, D., Ning, P.: Efficient distribution of key chain commitments for broadcast authentication
in distributed sensor networks. In: Proceedings of the 10th Network and Distributed System
Security Symposium (NDSS’03), pp. 263–276 (2003)

144. Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor networks. In: Proceedings of
the 10th ACM Conference on Computer and Communications Security (CCS’03), pp. 52–61
(2003)

145. Liu, D., Ning, P.: Multilevel µtesla: broadcast authentication for distributed sensor net-
works. ACMTrans. Embed. Comput. Syst. 3(4), 800–836 (2004). http://doi.acm.org/10.1145/
1027794.1027800

146. Liu, H., Wan, P.J., Liu, X., Yao, F.: A distributed and efficient flooding scheme using 1-hop
information in mobile ad hoc networks. IEEE Trans. Parallel Distrib. Syst. 18(5), 658–671
(2007)

147. Luo, J., Hubaux, J.P.: Joint mobility and routing for lifetime elongation in wireless sensor
networks. In: 24th Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM’05) (2005)

148. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a tiny aggregation service for
ad-hoc sensor networks. In: Proceedings of the 5th Symposium on Operating Systems Design
and Implementation (OSDI’02), pp. 131–146 (2002)

149. Malan, D.J., Welsh, M., Smith., M.D.: A public-key infrastructure for key distribution in
tinyos based on elliptic curve cryptography. In: Proceedings of the 1st IEEE International
Conference on Sensor and Ad Hoc Communications and Networks (SECON’04), pp. 71–80
(2005)

http://doi.acm.org/10.1145/1138127.1138130
http://doi.acm.org/10.1145/1138127.1138130
http://doi.acm.org/10.1145/1077391.1077395
http://doi.acm.org/10.1145/1160125.1160140
http://doi.acm.org/10.1145/1160125.1160140
http://doi.acm.org/10.1145/1027794.1027800
http://doi.acm.org/10.1145/1027794.1027800


References 165

150. Manku, G.S., Rajagopalan, S., Lindsay, B.G.: Approximate medians and other quantiles in
one pass and with limited memory. SIGMOD Rec. 27(2), 426–435 (1998)

151. Marconi, L., Di Pietro, R., Crispo, B., Conti, M.: Time warp: how time affects privacy in lbss.
In: Proceedings of the Information and Communications Security, pp. 325–339. Springer,
Berlin (2010)

152. Mei, A., Stefa, J.: Routing in outer space: fair traffic load in multi-hop wireless networks.
In: Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc’08) (2008)

153. Merkle, R.C.: A digital signature based on a conventional encryption function. In: Proceeding
of the Conference on the Theory and Applications of Cryptographic Techniques on Advances
in Cryptology (CRYPTO’87), pp. 369–378 (1988)

154. Mlaih, E., Aly, S.: Secure hop-by-hop aggregation of end-to-end concealed data in wireless
sensor networks. In: Proceedings of the 27th IEEEConference on Computer Communications
(INFOCOM 2008) pp. 1–6 (2008)

155. Molnar, D., Wagner, D.: Privacy and security in library RFID: issues, practices, and archi-
tectures. In: Proceedings of the 11th ACM Conference on Computer and Communications
Security (CCS’04), pp. 210–219 (2004)

156. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theor. Comput. Sci.
12, 315–323 (1980)

157. Myles, G., Friday, A., Davies, N.: Preserving privacy in environments with location-based
applications. IEEE Pervasive Comput. 2(1), 56–64 (2003). http://dx.doi.org/10.1109/MPRV.
2003.1186726

158. Nath, S., Gibbons, P.B., Seshan, S., Anderson, Z.R.: Synopsis diffusion for robust aggrega-
tion in sensor networks. In: Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems (SenSys’04), pp. 250–262 (2004)

159. Newsome, J., Shi, E., Song, D., Perrig, A.: The sybil attack in sensor networks: analysis
and defenses. In: Proceedings of the 3rd ACM International Symposium on Information
Processing in Sensor Networks (IPSN’04), pp. 259–268 (2004)

160. Newsome, J., Song, D.X.: Gem: graph embedding for routing and data-centric storage in
sensor networks without geographic information. In: Proceedings of the 1st International
Conference on Embedded Networked Sensor Systems (SenSys’03), pp. 76–88 (2003)

161. Okazaki, Y., Sato, I., Goto, S.: A new intrusion detection method based on process profiling.
In: Proceedings of the 2002 Symposium on Applications and the Internet (SAINT’02), pp.
82–91 (2002)

162. Oram, A. (ed.): Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly and
Associates Inc., Sebastopol (2001)

163. Orecchia, L., Panconesi, A., Petrioli, C., Vitaletti, A.: Localized techniques for broadcasting in
wireless sensor networks. In: Proceedings of the 2004 ACM Joint Workshop on Foundations
of Mobile Computing (DIALM-POMC’04) (2004)

164. Ortolani, S., Conti, M., Crispo, B., Pietro, R.D.: Events privacy in WSNs: A new model and
its application. In: Proceedings of the 2011 IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–9. IEEE (2011)

165. Ozdemir, S., Peng, M., Xiao, Y.: Prda: polynomial regression-based privacy-preserving data
aggregation for wireless sensor networks. Wirel. Commun. Mob. Comput. 15(4), 615–628
(2015)

166. Ozturk, C., Zhang, Y., Trappe, W.: Source-location privacy in energy-constrained sensor
network routing. In: Proceedings of the 2nd ACM Workshop on Security of Ad Hoc and
Sensor Networks (SASN’04), pp. 88–93 (2004)

167. Papadimitratos, P., Haas, Z.: Secure routing for mobile ad hoc networks. In: Proceedings
of the SCS Communication Networks and Distributed Systems Modeling and Simulation
Conference, pp. 27–31 (2002)

168. Papadimitratos, P., Poturalski, M., Schaller, P.D., Basin, P.L., Čapkun, S., Hubaux, J.P.: Se-
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