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Foreword

Portfolio optimization in general, and asset portfolio optimization in partic-
ular, are concerned with an optimization of the capital proportion of the
assets held that results in the largest return possible with the lowest risk
encountered. The concepts of portfolio optimization have played significant
role in the development and understanding of various facets of investment
decision-making. The major breakthrough in the field came in 1952 when
Harry Markowitz published his modern portfolio theory commonly known as
mean-variance portfolio theory being widely used by investors to construct
portfolios that are based on the trade-off between risk and return under
various economic conditions. The mean-variance framework considers that
returns on assets follow a normal distribution whereas risk is articulated
with the use of standard deviation. To alleviate the limitations of the mean-
variance framework, various alternative risk measures have been proposed in
the literature along with consideration of criteria other than risk and return.
Modern optimization techniques have been instrumental in solving large scale
portfolio optimization problems in an efficient manner.

The environment in which the investment decisions are made is inherently
uncertain. Furthermore such decisions are human-centric and dwell upon in-
voking and processing linguistic information. Moreover, keeping pace with the
emerging discourse on corporate conduct, functioning of the financial mar-
kets and economic development, the portfolio optimization approaches have
also been extended by engaging with and effectively quantifying psychological
preferences and the biases of the investor to generate more balanced portfo-
lios that are based on trade-off between financial criteria and non-financial
criteria.

This research monograph authored by the leaders in the area, Professors
Pankaj Gupta, Mukesh Kumar Mehlawat, Masahiro Inuiguchi, and Suresh
Chandra offers a well-structured, comprehensive, fully updated, and lucidly
written treatise on various optimization techniques used in the investment
decision-making. The book covers a broad spectrum of vital problems of
portfolio analysis. It starts with a focused introduction to the fundamental
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problem and then elaborates on the advanced optimization techniques which
help the investors in obtaining well-diversified portfolios engaging both finan-
cial and non-financial criteria. Chapter after chapter, the authors navigate
the reader through a vast and exciting teritory of advanced decision-making
in portfolio optimization.

One of the indisputable features of the monograph is a well-delineated
linkage between the concepts, theory, algorithms, and practice. The carefully
selected numeric studies help establish and highlight these crucial relation-
ships.

Considering the rapidly growing complexity of real-world problems, the
portfolio optimization models have to become reflective of this by embracing
more advanced methodology and invoking more elaborate algorithmic means.
As a matter of fact, the book is a tangible testiomony to this visible trend.
Fuzzy sets come as a conceptual vehicle - they are capable of capturing the
granular nature of the problems. Uncertainty conveyed by linguistic terms
is conveniently formalized in the language of fuzzy sets and possibility the-
ory. The pertinent optimization framework embraces a variety of tools origi-
nating from possibilistic programming, credibility theory, fuzzy multicriteria
optimization, evolutionary optimization and support vector machines.

In summary, the book is a must for everyone interested in pursuing ad-
vanced research and/or engaged in practical issues of portfolio optimization.

Witold Pedrycz
University of Alberta
Edmonton, Canada



Preface

“A good portfolio is more than a long list of good stocks and bonds. It is a
balanced whole, providing the investor with protections and opportunities with
respect to a wide range of contingencies.”

Harry Markowitz (1959)

Portfolio optimization has certainly come of the age of the twin parameters
of risk and return in view of heterogeneity of investor characteristics and
expectations as well as sheer variety of financial products. Moreover, asset
return and risk themselves defy precise measurement on account of both the
ambiguity of their expressions as well as the uncertainties of the environ-
ment in which they occur. Additionally, the growing instances of corporate
scams and scandals have made it incumbent upon the investors to consider
the psychological preferences, the quality of governance of corporations and
ethicality of their conduct. This monograph is written to provide a systematic
framework to understand portfolio optimization problem from the real-world
perspective using multiple criteria decision making models.

How does one account for the myriad of variables that come into inter-
play for portfolio optimization: the subjective preferences of the investor,
demographic, sociological and psychological determinants of the subjective
preferences, estimates of the asset returns, risk, liquidity from past data,
expert-advice, asset fundamentals such as company earnings, management
and governance and so on? How does one account for ambiguities, uncertain-
ties and vagueness associated with operational definitions of many of these
variables?

The objective of this monograph is to traverse the transition of portfolio
optimization right from the evolution of the research area and basic models
to its extension into the domain of fuzzy set theory, multiple criteria decision
making and hybrid approaches. Our main emphasis in this monograph is to
provide an overview of the discipline of portfolio optimization from return-
risk-liquidity perspectives. Real-world uncertainties of portfolio optimization
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are best described in fuzzy terms. It is, therefore, natural to elaborate portfo-
lio optimization under fuzziness. Although, portfolio optimization considers
return and risk as the two fundamental criteria, it is true that all the rel-
evant information for portfolio optimization can not be captured in terms
of return and risk only. The other criteria might be of equal, if not greater,
importance for portfolio optimization. For example, in the recent past, the
investors are becoming conscious of the desirability of ethical evaluation of
the assets and the consideration of the psychological preferences and the bi-
ases as well. Hence, the research in the area must take cognizance of these
developments to construct models that accord due consideration to ethical
and suitability criteria besides the financial criteria. This monograph presents
a comprehensive discussion of the hybrid multi-criteria framework for portfo-
lio optimization in fuzzy environment. In addition, this monograph includes a
new frame work for behavioral models of portfolio optimization by discussing
suitability and ethicality considerations along with financial optimality.

The monograph is structured as follows. A brief overview of portfolio op-
timization is presented in Chapter 1 in which we discuss the classical mean-
variance model of portfolio optimization developed by Markowitz and various
extensions of the mean-variance model by considering alternative measures
of risk. The main emphasis in Chapters 2-5 is to introduce various impor-
tant concepts used in real-world applications of portfolio optimization such
as interval numbers, fuzzy decision theory, possibility theory and credibil-
ity theory. The portfolio optimization models using these concepts have also
been discussed in detail. In Chapter 2, we first review interval numbers and
interval arithmetic and then, portfolio optimization models using interval co-
efficients in respect of model parameters are presented. Chapter 3 serves as
the foundation of the fuzzy portfolio optimization models presented in this
monograph. It contains a brief overview of fuzzy decision theory and presents
a fuzzy framework of the mean-variance portfolio optimization model using
max-min approach. Chapter 4 is devoted to a thorough study of the foun-
dations of possibility theory and the portfolio optimization problem with
fuzzy coefficients. Chapter 5 contains a detailed discussion of the credibility
theory and a credibilistic framework for the portfolio optimization problem.
Chapters 6-9 are mainly focused on introducing behavioral considerations
in multi-criteria portfolio selection and also presents systematic framework
to incorporate the subjective preferences of the investor. In Chapter 6, we
discuss portfolio optimization models that incorporate individual investor
attitudes towards portfolio risk, namely, aggressive (weak risk aversion at-
titude) and conservative (strong risk aversion attitude). Chapter 7 contains
a fuzzy framework of portfolio selection by simultaneous consideration of
suitability and optimality. Our focus is to attain the convergence of suitabil-
ity and optimality in portfolio selection by evolving a typology of investors,
categorizing the financial assets into different clusters and by performing suit-
ability evaluation of the assets based on investor preferences. In Chapter 8,
we continue the study of suitability and optimality in portfolio selection by



Preface XI

applications of advanced multi-criteria approaches. Chapter 9 concerns the
discussion of another important issue in portfolio selection that is based on
socially responsible investment. The portfolio optimization framework pre-
sented in this chapter involves ethical and financial evaluation of the assets
using investor preferences. The concluding chapter of this monograph is on
application of support vector machines and real-coded genetic algorithms in
portfolio optimization. The portfolio optimization models presented in each
chapter are validated using real data set extracted from National Stock Ex-
change, Mumbai, India.

The potential readers of this monograph include academicians, researchers
and practitioners in the realms of portfolio optimization. This monograph is
most suitable to those who are presently working in the area of portfolio
optimization or wish to understand the basics of portfolio optimization to do
research in this area. Further, it is suitable as a text book to several graduate
and masters programs that have specialized course on portfolio optimization.
Although, authors have put their best to make the presentation error free,
some errors may still remain and we hold ourself responsible for that and
request that the errors, if any, be intimated by emailing at pgupta@or.du.ac.in
(e-mail address of Pankaj Gupta).

We would first and foremost like to thank Professor Janusz Kacprzyk for
accepting our proposal to publish the monograph in the Springer series on
Studies in Fuzziness and Soft Computing. We would like to thank the edi-
tors and publishers of the journals ‘Information Sciences’, ‘Fuzzy Sets and
Systems’, ‘Knowledge-Based Systems’ ‘Expert Systems with Applications’,
‘Journal of Global Optimization’ and ‘International Journal of Information
Technology and Decision Making’ for publishing our research work in the area
of fuzzy portfolio optimization which constitute the core of this monograph.

We express our sincere gratitude to Professor Witold Pedrycz, University
of Alberta, Edmonton, Canada for writing foreword of the monograph.

We are thankful to Professor Dinesh Singh, Vice Chancellor, University of
Delhi, Delhi, India for his keen interest and encouragement.

We are also thankful to Professor Ajay Kumar, Dean Research (PS &
MS), University of Delhi, Delhi, India for his support. During the work
on this monograph, it was a pleasure to discuss on the topic with Profes-
sor Juan Enrique Martinez Legaz, Professor C. R. Bector, Professor Ric-
cardo Cambini, Professor Sy-Ming Guu, Professor S. S. Appaddo, Professor
Baoding Liu, Professor Radko Mesiar, Professor Milan Vlach, Professor Wei
Chen, Professor Yong Shi, Professor Xioxia Huang, Professor Takashi Hausike
and Dr. Anand Saxena. We also highly appreciate assistance provided by
Dr. Garima Mittal in the form of proof reading and text corrections.
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The first and second authors acknowledge deep gratitude to Professor R.
N. Kaul, (Late) Professor M. C. Puri and Professor Davinder Bhatia for
their encouragement in the pursuit of knowledge. The second author also
acknowledges continuous support provided by Smt. Sushma Berlia, President,
Apeejay Education Society, New Delhi, India. The third author acknowledges
the Grant-in-Aid for Scientific Research (C), No. 23510169.

We would also like to acknowledge the support of Dr. Leontina Di Cecco,
Editor Engineering/Applied Sciences, Springer Verlag GmbH, Dr. Holger
Schäpe, Editorial Assistant, Applied Sciences and Engineering, Springer Ver-
lag GmbH and Mr. V. Vinothkumar, STUDFUZZ Data Processing Team in
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Chapter 1

Portfolio Optimization: An Overview

Abstract. In this chapter, we present a brief overview of portfolio optimiza-
tion. First, we discuss the classical mean-variance model of portfolio opti-
mization developed by Markowitz. We then discuss the various extensions of
the Markowitz’s model by considering alternative measures of risk, namely,
semivariance, absolute deviation and semi-absolute deviation.

1.1 Mean-Variance Model

‘Do not put all your eggs in one basket’ is an age old wisdom capturing the
fundamental idea underlying portfolio optimization. The ‘wisdom’ essentially
lies in the return-risk characteristics of the various assets. Clearly, ‘more’
assets may not necessarily be ‘good’ if all the assets exhibit the same return-
risk characteristics. A ‘good’ portfolio is the one that gives higher return for
a given level of risk or the one that gives lower risk for a given level of return.
Thus, a ‘good’ portfolio would comprise assets that are different rather than
similar in terms of these characteristics. Operationalization of the age old
wisdom necessitated mathematical modeling for portfolio optimization. The
mathematical problem of portfolio optimization can be formulated in many
ways but the principal problems can be summarized as follows:

(i) Minimize risk for a specified expected return
(ii) Maximize the expected return for a specified risk
(iii) Minimize the risk and maximize the expected return using a specified

risk aversion factor
(iv) Minimize the risk regardless of the expected return
(v) Maximize the expected return regardless of the risk

The solutions of the first three problems are called mean-variance efficient
solutions. The fourth problem gives minimum variance solutions which are
desirable for conservative investors. It is also used for comparison and bench-
marking of other portfolios. The fifth problem gives the upper bound of the
expected return which can be attained; this is also useful for comparisons.

P. Gupta et al., Fuzzy Portfolio Optimization, 1
Studies in Fuzziness and Soft Computing 316,
DOI: 10.1007/978-3-642-54652-5_1, © Springer-Verlag Berlin Heidelberg 2014
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Harry Markowitz made the major breakthrough in 1952 with the publi-
cation on portfolio selection theory [90]. The Markowitz’s theory, popularly
referred to as modern portfolio theory, provided an answer to the funda-
mental question: How should an investor allocate capital among the possible
investment choices? Markowitz suggested that it is impossible to derive all
possible conclusions concerning portfolios. A portfolio analysis must be based
on some criteria which serve as a guide to the important and unimportant, the
relevant and irrelevant. The proper choice of criteria depends on the nature
of the investor. For each type of investor the details of the portfolio analysis
must be suitably selected. However, the two criteria that are common to all
investors are expected (mean) return and variance of return (risk). Markowitz
assumed that ‘beliefs’ or projections about assets follow the same probability
rules that random variables obey. From this assumption, it follows that (i)
the expected return on the portfolio is a weighted average of the expected
returns on individual assets, and (ii) the variance of return on the portfolio is
a particular function of the variances of and the covariances between assets,
and their weights in the portfolio. Hence, investors must consider risk and
return together and determine the allocation of capital among investment
alternatives on the basis of the trade-off between them.

Further, Markowitz suggested that portfolio selection should be based on
reasonable beliefs about future rather than past performances per se. Choices
based on past performances alone assume, in effect, that average returns of
the past are good estimates of the ‘likely’ return in the future; and variability
of return in the past is a good measure of the uncertainty of return in the
future.

In what follows next, we present the mathematical formulation of the
mean-variance model proposed by Markowitz [90]. Let Ri be a random
variable representing the rate of return (per period) of the i-th asset (i =
1, 2, . . . , n). Also, let xi be the proportion of the total funds invested in the
i-th asset.

Definition 1.1 (Asset return). The asset return is expressed as the rate
of return which is defined during a given period as

(
(closing price for the current period)−(closing price for the previous period)

+ (dividend(s) for the current period)
)

/
(closing price for the previous period)

Note that the period of return may be a day or a week or a month or a year.
In particular, for the i-th asset the realization rit of the random variable

Ri during period t (t = 1, 2, . . . ,T) is defined as

rit =
(pit) − (pit−1) + (dit)

(pit−1)
,



1.1 Mean-Variance Model 3

where pit is the closing price of the i-th asset during the period t, pit−1 is the
closing price during the period t−1, dit is the dividend of the i-th asset during
the period t.

For example, the yearly return of an asset in 2012 is calculated as follows:

(closing price, 2012) − (closing price, 2011) + (dividend(s), 2012)
(closing price, 2011)

The investor would have gained or lost the above amount if he/she invested
Rs. 1.00 at the end of 2011, collected the dividend(s) declared in 2012 and
sold at the closing price of 2012. A loss is represented by a negative return.
Suppose if the closing price of 2011 was 36, that of 2012 was 40 and 2 is the
dividend declared during 2012, then the return in 2012 would be

(40) − (36) + (2)
(36)

= 0.1667

or a gain of 16.67% per rupee invested.

Definition 1.2 (Portfolio). A portfolio is a collection of two or more as-
sets represented by an ordered n-tuple Θ = (x1, x2, . . . , xn), where xi is the
proportion of the total funds invested in the i-th asset.

The expected return (per period) of the investment (portfolio) is given by

r(x1, x2, . . . , xn) = E

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Rixi

⎤
⎥⎥⎥⎥⎥⎦ =

n∑

i=1

E[Ri]xi =

n∑

i=1

rixi ,

where E[·] represents the expected value of the random variable in the bracket
and ri = E[Ri]. The expected value of the random variable can also be ap-
proximated by the average derived from the past data, i.e.,

ri = E[Ri] =
1
T

T∑

t=1

rit . (1.1)

An investor prefers to have portfolio return (r(x1, x2, . . . , xn)) as large as pos-
sible. Further, an investor would also prefer that the portfolio return should
have minimum possible dispersion/variability. Markowitz suggested that vari-
ance which measures the dispersion from expected return can be used to
quantify portfolio risk. The variance of the i-th asset denoted by σ2

i is ex-
pressed as

σ2
i = v(Ri) = E

[
(Ri − E[Ri])2

]
= E
[
(Ri − ri)2

]
.

He also suggested standard deviation as another measure of dispersion. The
standard deviation of the i-th asset is expressed as
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σi =
√

v(Ri) =
√

E [(Ri − E[Ri])2] =
√

E [(Ri − ri)2] .

Note that variance of return on a portfolio is not determined solely by the
variances of the individual asset returns. It also depends on the covariance
between return on assets. The covariance σi j between asset returns Ri and Rj

is expressed as

σi j = E
[
(Ri − E[Ri])(Rj − E[Rj])

]
.

Using past data, the covariance σi j can be approximated as follows:

σi j =
1
T

T∑

t=1

(rit − ri)(rjt − rj) . (1.2)

Further, σi j may be expressed in terms of the correlation coefficient (ρi j) as
follows:

σi j = ρi j σi σ j .

The variance of return on a portfolio is thus obtained as

v(x1, x2, . . . , xn) = E

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

Rixi − E

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Rixi

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎥⎦

= E

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

Rixi −
n∑

i=1

rixi

⎞
⎟⎟⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎥⎦ = E

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

(Ri − ri)xi

⎞
⎟⎟⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎥⎦

= E

⎡
⎢⎢⎢⎢⎢⎢⎣

n∑

i=1

x2
i (Ri − ri)2 + 2

n−1∑

i=1

n∑

j=i+1

xixj(Ri − ri)(Rj − rj)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

n∑

i=1

x2
i E
[
(Ri − ri)2

]
+ 2

n−1∑

i=1

n∑

j=i+1

xixjE
[
(Ri − ri)(Rj − rj)

]

=

n∑

i=1

x2
i σ

2
i + 2

n−1∑

i=1

n∑

j=i+1

xixjσi j .

If we use the fact that v(Ri) = σii, then we have

v(x1, x2, . . . , xn) =
n∑

i=1

n∑

j=1

xixjσi j .

Remark 1.1. It is important to point out that while the standard deviation
is stated in terms of the rate of returns, the variance is stated in terms of



1.1 Mean-Variance Model 5

the rate of returns squared. As it is more natural to interpret rate of returns
rather than rate of returns squared, risk is usually measured with standard
deviation of returns. However, for calculation purposes, it is usually more
convenient to use the variance rather than the standard deviation. Either
risk measure is appropriate because the standard deviation is merely a simple
mathematical transformation of the variance.

Definition 1.3 (Short selling). It refers to a situation where an investor
actually does not own an asset but he/she establishes a market position by
selling the asset in anticipation that the price of that asset will fall. In such
situations, the investor is said to have taken a short position. Mathematically,
this situation can be explained by taking the number of assets owned by the
investor as negative.

In the portfolio analysis, we exclude the negative values of xi (i.e., short selling
is not allowed); therefore, xi ≥ 0 for all i (i = 1, 2, . . . , n). Also, since xi is the
proportion of the total funds invested therefore

∑n
i=1 xi = 1.

We now present two different formulations of the Markowitz’s mean-
variance model based on the following assumptions derived from the above
discussion:

(i) The prices of all assets at any time are strictly positive.
(ii) The rate of return Ri (i = 1, 2, . . . , n) is a random variable taking finitely

many values.
(iii) An investor can own a fraction of an asset. This assumption is known

as divisibility.
(iv) An asset can be bought or sold on demand in any quantity at the market

price. This assumption is known as liquidity.
(v) There are no brokerage/transaction costs.
(vi) Short selling of an asset is not permitted.

Case 1: The portfolio optimization model for minimizing variance and con-
straining the expected portfolio return is formulated as follows:

P(1.1) min
n∑

i=1

n∑

j=1

σi jxixj

subject to
n∑

i=1

rixi = r0 , (1.3)

n∑

i=1

xi = 1 , (1.4)

xi ≥ 0 , i = 1, 2, . . . , n , (1.5)
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where r0 is the portfolio return desired by the investor. The objective function
of the problem P(1.1) minimizes the portfolio risk (variance). Constraint (1.3)
ensures that the expected portfolio return at the end of a holding period must
be equal to target value r0 desired by the investor. Constraint (1.4) represents
capital budget constraint on the assets and constraint (1.5) ensures no short
selling of assets. The problem P(1.1) is a quadratic programming problem. By
varying the desired level of return (r0) and repeatedly solving the quadratic
programming problem, the minimum variance portfolio for each value of r0

can be obtained.

Remark 1.2. Regarding the choice of r0, the investor should not aspire for
a very high return which is unrealistic to be achieved from the assets under
consideration. In other words, if the investor desires for a very high return
then the problem P(1.1) may become infeasible. The achievable portfolio re-
turn value, i.e., r0 always lies between rmin and rmax. The rmin is the value
of r0 corresponding to a portfolio with minimum variance. That is, it is the
return corresponding to the portfolio obtained by solving the problem P(1.1)
excluding the constraint (1.3). The rmax is the maximum feasible r0, i.e., it is
the maximum mean return among the mean returns of assets.

Case 2: The portfolio optimization model for maximizing the expected
portfolio return and constraining variance of the portfolio is formulated as
follows:

P(1.2) max
n∑

i=1

rixi

subject to
n∑

i=1

n∑

j=1

σi jxixj = v0 (1.6)

n∑

i=1

xi = 1 ,

xi ≥ 0 , i = 1, 2, . . . , n ,

where v0 is the portfolio risk (variance) that the investor is willing to take.
Note that unlike r0 in problem P(1.1), it is not an easy task to find the range
for v0 in which it lies. However, it is possible to find the upper limit of the
range for v0, i.e., vmax. It is the value v0 of a portfolio with maximum portfolio
return. In other words, it is the variance corresponding to the portfolio ob-
tained by solving the problem P(1.2) excluding the constraint (1.6). We can
generate different portfolios by considering the values v0 ≤ vmax. Further, the
value v0 should not be too small; otherwise, the problem P(1.2) may become
infeasible.
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Definition 1.4 (Efficient portfolio). A feasible portfolio x is called effi-
cient if it has the maximal expected return among all portfolios with the
same variance or alternatively, if it has a minimum variance among all port-
folios that have the same expected return.

In order to exemplify, let us consider two portfolios A and B. According to
the definition of efficient portfolio, A will be preferred to B if:

E(A) > E(B), v(A) = v(B) ,

or

E(A) = E(B), v(A) < v(B) ,

where E(A) = expected return of portfolio A; E(B) = expected return of
portfolio B; v(A) = variance of portfolio A and v(B) = variance of portfolio B.

The expected return and variance of every investment opportunity can thus
be calculated and plotted as a single point on the mean-variance diagram, as
shown in Fig. 1.1.
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Fig. 1.1 Efficient frontier in portfolio analysis

It is important to point out that all the points on or below the curve EF
represent portfolio combinations that are possible. Point D represents a port-
folio of return rD and risk σ2

D. All points above the curve EF are combinations
of risk and returns that do not exist. Point B would, therefore, represent risk
and return that cannot be possibly obtained using any combination of as-
sets. Also, point E represents a portfolio with 100% investment in minimum
variance portfolio, alternatively, a point of minimum variance. On the other
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hand, point F represents a portfolio with 100% investment in single asset
having maximum expected return.

Definition 1.5 (Efficient frontier). The curve obtained corresponding to
efficient portfolios of the optimization problem P(1.1) or P(1.2) is called an
efficient frontier.

Based on the definition of efficient frontier, the curve EF is also called
efficient frontier because all points below the curve are dominated by any
point on the curve. For example, suppose an investor is willing to take a
portfolio risk σ2

D. Now, the investor can obtain a portfolio return rD with
portfolio D or move to point C on the frontier and receive a higher portfolio
return rC in comparison to portfolio D. Therefore, portfolio C dominates
portfolio D because it would give higher return for the same level of risk.

A similar argument could be made in terms of risk. If the investor wishes to
achieve a return rA, he/she will select portfolio A over D, because portfolio A
represents the same return at a smaller level of risk, i.e., σ2

A < σ
2
D. Therefore,

portfolio D is not efficient but portfolios A and C are.

Remark 1.3. The value rmin of the portfolio corresponding to problem
P(1.1)/P(1.2) is the return from the portfolio with minimum variance (see
portfolio E in Fig. 1.1). On the other hand, the value rmax of the portfolio
is the return from the portfolio by investing the entire capital in the asset
having maximum return among assets under consideration (see portfolio F in
Fig. 1.1).

• Numerical illustration

The portfolio selection models P(1.1) and/or P(1.2) are validated using a data
set extracted from National Stock Exchange (NSE), Mumbai, India which is
the 9th largest stock exchange in the world by market capitalization. It is
also the largest stock exchange in the world in terms of the number of trades
in equities. Further, it is world’s second fastest growing stock exchange too.
Domestically, it is the largest by daily turnover and number of trades, for
both equities and derivative trading.

We have randomly selected 10 assets listed on NSE to form a population
from which we attempt to construct portfolios. Our sample data include daily
closing prices of the 10 assets covering the period from April 1, 2007 to March
31, 2008. We use the average returns based on the average of the averages,
that is, the average monthly returns to obtain the expected return, variance
and covariance for the selected assets. Table 1.1 provides the historical returns
for the entire period of the study in respect of each asset.
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First, we use equation (1.1) to calculate the expected return of the asset
ABL based on the data given in Table 1.1 as follows:

r1 = E[R1] =
1
12

12∑

t=1

r1t

=
(
0.07200+ 0.32032+ 0.29710 + 0.23600+ (−0.05161)+ 0.50633

+ (−0.02516)+ 0.90484+ 0.03214+ 0.45968 + 0.22700 + (−0.87871)
)/

12
= 0.17499.

On the same lines, we calculate the expected returns of the remaining nine
assets. The expected returns of all the assets are provided in Table 1.2.

Table 1.2 Input data corresponding to expected return

Company Return

ABL 0.17499
ALL 0.09950
BHL 0.33979
CGL 0.23657
HHM 0.11487
HCC 0.27989
KMB 0.21578
MML 0.25928
SIL 0.26859
UNL 0.44054

Now, we use equation (1.2) to calculate the variance of the asset ABL
based on the data given in Tables 1.1-1.2 as follows:

σ11 =
1

12

12∑

t=1

(r1t − r1)(r1t − r1)

=
(
(0.07200− 0.17499)2 + (0.32032− 0.17499)2 + (0.29710− 0.17499)2

+ (0.23600− 0.17499)2 + (−0.05161− 0.17499)2 + (0.50633− 0.17499)2

+ (−0.02516− 0.17499)2 + (0.90484− 0.17499)2 + (0.03214− 0.17499)2

+ (0.45968− 0.17499)2 + (0.22700− 0.17499)2 + (−0.87871− 0.17499)2
)/

12
= 0.16656.
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Also, we use equation (1.2) to calculate the covariance between assets ABL
and ALL based on the data given in Tables 1.1-1.2 as follows:

σ12 =
1

12

12∑

t=1

(r1t − r1)(r2t − r2)

=
(
(0.07200− 0.17499)(−0.14433− 0.09950)+ (0.32032− 0.17499)

(0.19032− 0.09950)+ (0.29710− 0.17499)(0.75032− 0.09950)
+ (0.23600− 0.17499)(0.03433− 0.09950)+ (−0.05161− 0.17499)
(−0.33581− 0.09950)+ (0.50633− 0.17499)(0.24700− 0.09950)
+ (−0.02516− 0.17499)(0.49968− 0.09950)+ (0.90484− 0.17499)
(0.27032− 0.09950)+ (0.03214− 0.17499)(−0.32768− 0.09950)
+ (0.45968− 0.17499)(0.31968− 0.09950)+ (0.22700− 0.17499)

(0.19933− 0.09950)+ (−0.87871− 0.17499)(−0.50903− 0.09950)
)/

12
= 0.08967

On the same lines, we calculate the remaining variance and covariances
values. The data corresponding to variance and covariance are provided in
Table 1.3.

To find an optimal asset allocation, we use the model P(1.1). For the
purpose, we first formulate the model P(1.1) using the input data from Tables
1.2-1.3 as follows:

min 0.16656x1x1 + 0.12562x2x2 + 0.25614x3x3 + 0.10279x4x4

+0.05677x5x5 + 0.32041x6x6 + 0.10648x7x7 + 0.06992x8x8

+0.18959x9x9 + 0.07689x10x10 + 0.17934x1x2 + 0.25722x1x3

+0.17363x1x4 + 0.08810x1x5 + 0.31991x1x6 + 0.13785x1x7

+0.10520x1x8 + 0.28308x1x9 + 0.00732x1x10 + 0.22842x2x3

+0.12756x2x4 + 0.05282x2x5 + 0.33415x2x6 + 0.16949x2x7

+0.08022x2x8 + 0.20558x2x9 + 0.07364x2x10 + 0.24788x3x4

+0.10665x3x5 + 0.32192x3x6 + 0.16751x3x7 + 0.17479x3x8

+0.29710x3x9 + 0.12898x3x10 + 0.08120x4x5 + 0.26409x4x6

+0.11311x4x7 + 0.10494x4x8 + 0.21969x4x9 + 0.05881x4x10

+0.17784x5x6 + 0.06202x5x7 + 0.09840x5x8 + 0.12642x5x9

−0.02591x5x10 + 0.28287x6x7 + 0.19339x6x8 + 0.40237x6x9

0.05333x6x10 + 0.10643x7x8 + 0.21261x7x9 + 0.08868x7x10

+0.15467x8x9 + 0.03957x8x10 + 0.08543x9x10
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subject to

0.17499x1 + 0.09950x2 + 0.33979x3 + 0.23657x4 + 0.11487x5

+0.27989x6 + 0.21578x7 + 0.25928x8 + 0.26859x9 + 0.44054x10 = r0,

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 = 1,
xi ≥ 0 , i = 1, 2, . . . , 10 .

In order to solve the above model, we need to decide the expected portfolio
return, i.e., r0. As mentioned earlier the value of r0 lies between rmin and
rmax. To obtain the value of rmin, we solve the above model excluding the first
constraint using the LINGO 12.0 software [105] and the computational result
is summarized in Table 1.4.

Table 1.4 Summary result of portfolio selection using variance

Portfolio Allocation

risk ABL ALL BHL CGL HHM

0.02631 0.0 0.0 0.0 0.0 0.56304

HCC KMB MML SIL UNL

0.0 0.0 0.0 0.0 0.43696

Based on the result presented in Table 1.4, we obtain the value of rmin =
0.25717. The value of rmax is the maximum feasible return, therefore, rmax =
0.44054. Now, by varying the value of r0 between rmin and rmax, we solve the
above model and the computational results are summarized in Table 1.5.

It can be seen that all the obtained portfolios presented in Table 1.5 are
efficient portfolios. Also, it is clear from the obtained portfolios that as the
return level increases, portfolio risk increases too. This relationship always
hold in portfolio optimization. Fig. 1.2 shows the efficient frontier of the
obtained portfolios.

It is worthy to discuss about the investor desire for portfolio return (r0). As
mentioned earlier the value of r0 should vary between rmin and rmax and hence,
if the desire is too high, i.e., r0 > rmax, the problem P(1.1) becomes infeasible.
This is so because the desire is unrealistic in the sense that it is more than
what is possible from the assets under consideration. It is clear from Portfolio
10 presented in Table 1.5 that even when the investor puts the entire capital
in one asset the portfolio return is 0.44054. Thus, any combination of assets
can not generate a portfolio return more than 0.44054, i.e., rmax. On the other
hand, what about the portfolio selection, if the investor desires for a portfolio
return less than rmin? In order to handle this issue, let us assume that the
investor desires for a portfolio return, r0 = 0.24, i.e., less than rmin. We solve
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Table 1.5 Summary results of portfolio selection using model P(1.1)

Portfolio Allocation Portfolio

return (r0) ABL ALL BHL CGL HHM risk

Portfolio 1 0.27557 0.0 0.0 0.0 0.0 0.50656 0.02681
Portfolio 2 0.29397 0.0 0.0 0.0 0.0 0.45006 0.02834
Portfolio 3 0.31237 0.0 0.0 0.0 0.0 0.39356 0.03089
Portfolio 4 0.33077 0.0 0.0 0.0 0.0 0.33706 0.03445
Portfolio 5 0.34917 0.0 0.0 0.0 0.0 0.28056 0.03904
Portfolio 6 0.36757 0.0 0.0 0.0 0.0 0.21760 0.04464
Portfolio 7 0.38597 0.0 0.0 0.0 0.0 0.12107 0.05109
Portfolio 8 0.40437 0.0 0.0 0.0 0.0 0.02454 0.05832
Portfolio 9 0.42277 0.0 0.0 0.0 0.0 0.0 0.06673
Portfolio 10 0.44054 0.0 0.0 0.0 0.0 0.0 0.07689

HCC KMB MML SIL UNL

0.0 0.0 0.0 0.0 0.49344
0.0 0.0 0.0 0.0 0.54994
0.0 0.0 0.0 0.0 0.60644
0.0 0.0 0.0 0.0 0.66294
0.0 0.0 0.0 0.0 0.71944
0.0 0.0 0.01160 0.0 0.77080
0.0 0.0 0.08353 0.0 0.79540
0.0 0.0 0.15546 0.0 0.82000
0.0 0.0 0.09804 0.0 0.90196
0.0 0.0 0.0 0.0 1.0
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Fig. 1.2 Efficient frontier of return-risk corresponding to portfolios presented in
Table 1.5

the model P(1.1) with r0 = 0.24 and the computational result is presented in
Table 1.6.

On comparing the portfolio presented in Table 1.6 with that given in Table
1.4 it is clear that the portfolio in Table 1.6 is not efficient. This is because
the portfolio in Table 1.4 gives higher return even at lower portfolio risk.

Note that based on the information available, we can handle the mean-
variance portfolio optimization problem P(1.1) in two ways. First, if the



1.2 Mean-Semivariance Model 15

Table 1.6 Summary result of portfolio selection using r0 = 0.24

Portfolio Allocation Portfolio

return (r0) ABL ALL BHL CGL HHM risk

0.24000 0.0 0.0 0.0 0.0 0.61578 0.02681

HCC KMB MML SIL UNL

0.0 0.0 0.0 0.0 0.38422

investor is able to specify the expected portfolio return that he/she desires,
then the portfolio optimization problem P(1.1) can be solved directly to gen-
erate an efficient portfolio. Second, if the investor is not able to specify the
expected portfolio return, then we can generate set of efficient portfolios us-
ing the procedure explained above and the investor may pick the one that
meets his/her preferences.

Markowitz’s portfolio optimization model, contrary to the theoretical rep-
utation, has not been used extensively in its original form to construct large-
scale portfolios. Its main limitations are: (i) the resultant large-scale quadratic
programming problems are difficult to solve (computational complexity) and
(ii) for real markets, the size of the variance-covariance matrix may be very
large and hence, difficult to estimate. Several authors tried to alleviate these
difficulties by using various approximation schemes. The single index model
of Sharpe [110] is an early breakthrough in this direction. He pointed out
that if the portfolio selection problem could be formulated as a linear pro-
gramming problem, the prospects for practical applications would be greatly
enhanced. Since then, many attempts have been made to linearize the port-
folio optimization model. Several alternative risk measures that can be used
for transformation to linear programming have been proposed in the litera-
ture. In the subsequent sections, we discuss portfolio selection models based
on alternative risk measures.

1.2 Mean-Semivariance Model

Although, variance is widely accepted as a risk measure; however, it has limi-
tations. One of the main limitations of using variance as a risk measure is that
it penalizes extreme upside (gains) and downside (losses) deviations from the
expected return. Thus, when probability distributions of asset returns are
asymmetric, variance becomes less appropriate measure of portfolio risk [20].
This is so because the obtained portfolio may have a potential danger in terms
of sacrificing higher expected return. In such cases, it is desirable to replace
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variance with a downside risk measure, i.e., a measure which only considers
the negative deviations from a reference return level. Semivariance is one of
the best known downside risk measure originally introduced by Markowitz
[91] and used in mean-semivariance portfolio selection models [39, 92, 102].
Its advantage over variance is that semivariance does not consider values be-
yond the critical value (i.e., gains) as risk; thus, it is a more appropriate mea-
sure of risk when investors are concerned about portfolio underperformance
rather than overperformance [92]. It may be noted that the implementation
of mean-semivariance portfolio selection models is, however, computationally
much more tedious as compared to mean-variance portfolio selection models
[39, 92].

Semivariance is the expected value of the squared negative deviations of
possible outcomes from the expected return. The portfolio risk measured as
semivariance denoted by s(x1, x2, . . . , xn) is defined as follows:

s(x1, x2, . . . , xn) = E

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Rixi − E

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Rixi

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎦

−⎤⎥⎥⎥⎥⎥⎦

2

,

where

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Rixi − E

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Rixi

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎦

−
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=1

Rixi − E

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Rixi

⎤
⎥⎥⎥⎥⎥⎦ , if

n∑

i=1

Rixi − E

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Rixi

⎤
⎥⎥⎥⎥⎥⎦ < 0,

0, if

n∑

i=1

Rixi − E

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Rixi

⎤
⎥⎥⎥⎥⎥⎦ ≥ 0.

In order to obtain portfolio selection using semivariance, it is not required
to compute the variance-covariance matrix; but the joint distribution of as-
sets is needed. This risk measure tries to minimize the dispersion of portfolio
return from the expected return but only when the former is below the lat-
ter. Note that if all distribution returns are symmetric, or have the same
degree of asymmetry, then semivariance and variance produces the same set
of efficient portfolios [92]. Using semivariance as a risk measure, the port-
folio optimization model for minimizing semivariance and constraining the
expected portfolio return is formulated as follows:
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P(1.3) min E

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Rixi − E

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Rixi

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎦

−⎤⎥⎥⎥⎥⎥⎦

2

subject to
n∑

i=1

rixi = r0 ,

n∑

i=1

xi = 1 ,

xi ≥ 0 , i = 1, 2, . . . , n .

As stated earlier the expected return of the portfolio (r0) lies between rmin and
rmax. Here, rmin is the value r0 of the portfolio with minimum semivariance.

Since the expected value of the random variable can be approximated by
the average derived from the past data, in particular using, ri = E[Ri] =

T∑

t=1

rit/T, the semivariance s(x1, x2, . . . , xn) is approximated as follows:

s(x1, x2, . . . , xn) = E

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Rixi − E

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Rixi

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎦

−⎤⎥⎥⎥⎥⎥⎦

2

=
1
T

T∑

i=1

⎧⎪⎪⎨⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

(rit − ri)xi

⎤
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2

,

where

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

(rit − ri)xi

⎤
⎥⎥⎥⎥⎥⎦

−
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=1

(rit − ri)xi, if

n∑

i=1

(rit − ri)xi < 0,

0, if

n∑

i=1

(rit − ri)xi ≥ 0,
t = 1, 2, . . . ,T.

Now, the problem P(1.3) leads to the following minimization problem.

P(1.4) min
1
T

T∑

i=1

⎧⎪⎪⎨⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

(rit − ri)xi

⎤
⎥⎥⎥⎥⎥⎦

−⎫⎪⎪⎬⎪⎪⎭

2

subject to
n∑

i=1

rixi = r0 ,

n∑

i=1

xi = 1 ,

xi ≥ 0 , i = 1, 2, . . . , n .
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The above problem can further be transformed into the following equivalent
nonlinear programming problem.

P(1.5) min
1
T

T∑

i=1

p2
t

subject to

pt ≥ −
n∑

i=1

(rit − ri)xi, t = 1, 2, . . . ,T , (1.7)

n∑

i=1

rixi = r0 , (1.8)

n∑

i=1

xi = 1 , (1.9)

pt ≥ 0, t = 1, 2, . . . ,T , (1.10)

xi ≥ 0 , i = 1, 2, . . . , n . (1.11)

To understand how the problem P(1.5) can exactly solve the original mean-
semivariance problem P(1.4), let us consider the following possible situations.
If, for a given value t, the right-hand-side of the constraint (1.7) is negative
or zero, that is, if

∑n
i=1(rit − ri)xi ≥ 0, the constraint (1.7) and the constraint

(1.10) leaves the variable pt free to take any nonnegative value. Therefore,
as the variable p2

t appears in the objective function with coefficient +1, in
any optimal solution it will take value 0 since we are minimizing the sum
of p2

t . If, on the contrary, the right-hand-side of constraint (1.7) is positive,
that is, if

∑n
i=1(rit − ri)xi < 0, in any optimal solution pt will be equal to the

right-hand-side value of (1.7). Thus, using the problem P(1.5) we can exactly
solve the original mean-semivariance problem P(1.4).

• Numerical illustration

The working of the portfolio selection model P(1.5) is demonstrated with
reference to the data set provided in Tables 1.1-1.2.

To find an optimal asset allocation, we now formulate the model P(1.5) as
follows:
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min
1

12
·
(
p2

1 + p2
2 + p2

3 + p2
4 + p2

5 + p2
6 + p2

7 + p2
8 + p2

9 + p2
10 + p2

11 + p2
12

)

subject to

p1 − 0.10299x1 − 0.24383x2 − 0.25313x3 − 0.42223x4 + 0.06747x5 − 0.43689x6

−0.03011x7 + 0.11605x8 − 0.37326x9 − 0.17687x10 ≥ 0 ,
p2 + 0.14533x1 + 0.09083x2 + 0.71634x3 + 0.53118x4 + 0.21513x5 + 0.33237x6

+0.06228x7 + 0.39975x8 − 0.01343x9 − 0.02473x10 ≥ 0 ,
p3 + 0.12210x1 + 0.65083x2 − 0.28463x3 − 0.07463x4 + 0.02191x5 + 0.95560x6

+0.33519x7 − 0.06638x8 + 0.04302x9 − 0.19570x10 ≥ 0 ,
p4 + 0.06101x1 − 0.06516x2 − 0.06413x3 + 0.24977x4 + 0.35047x5 + 0.28078x6

−0.18845x7 − 0.09395x8 + 0.16474x9 − 0.31087x10 ≥ 0 ,
p5 − 0.22661x1 − 0.43530x2 − 0.55818x3 − 0.44366x4 − 0.24261x5 − 0.99053x6

−0.68191x7 − 0.41154x8 − 0.58569x9 − 0.52344x10 ≥ 0 ,
p6 + 0.33134x1 + 0.14750x2 + 0.15254x3 + 0.24177x4 + 0.44580x5 + 0.69345x6

+0.51755x7 + 0.54938x8 + 0.83541x9 + 0.09946x10 ≥ 0 ,
p7 − 0.20016x1 + 0.40018x2 + 0.77537x3 + 0.02053x4 − 0.00648x5 + 0.04850x6

−0.00998x7 + 0.13169x8 + 0.10334x9 + 0.49204x10 ≥ 0 ,
p8 + 0.72984x1 + 0.17083x2 + 0.23634x3 + 0.35827x4 − 0.11487x5 + 0.33592x6

−0.04514x7 + 0.03072x8 + 0.46237x9 + 0.17817x10 ≥ 0 ,
p9 − 0.14285x1 − 0.42735x2 − 0.16836x3 − 0.25978x4 + 0.02835x5 − 0.24703x6

−0.26864x7 − 0.06178x8 − 0.23538x9 − 0.21304x10 ≥ 0 ,
p10+0.28468x1 + 0.22018x2 + 0.58279x3 + 0.31730x4 − 0.10519x5 + 0.21947x6

+0.45132x7 − 0.04089x8 + 0.49044x9 + 0.24914x10 ≥ 0 ,
p11+0.05201x1 + 0.09984x2 − 0.11613x3 − 0.16323x4 − 0.27253x5 − 0.31722x6

+0.15722x7 − 0.22828x8 − 0.17393x9 + 0.21380x10 ≥ 0 ,
p12−1.05370x1 − 0.60853x2 − 1.01882x3 − 0.35528x4 − 0.38745x5 − 0.87440x6

−0.29933x7 − 0.32477x8 − 0.71763x9 + 0.21204x10 ≥ 0 ,
0.17499x1 + 0.09950x2 + 0.33979x3 + 0.23657x4 + 0.11487x5

+0.27989x6 + 0.21578x7 + 0.25928x8 + 0.26859x9 + 0.44054x10 = r0 ,

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 = 1 ,
pt ≥ 0 , t = 1, 2, . . . , 12 ,
xi ≥ 0 , i = 1, 2, . . . , 10 .

To solve the above model, we need to decide the expected portfolio return,
i.e., r0. The value of rmin is obtained by solving the above model excluding the
return constraint using the LINGO 12.0 and the corresponding computational
result is summarized in Table 1.7.
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Table 1.7 Summary result of portfolio selection using semivariance

Portfolio Allocation

risk ABL ALL BHL CGL HHM

0.13628 0.0 0.0 0.0 0.0 0.61291

HCC KMB MML SIL UNL

0.0 0.0 0.0 0.0 0.38709

Based on the result presented in Table 1.7, we take the value of rmin =
0.24093. The value of rmax is the maximum feasible return, therefore, rmax =
0.44054. Now, varying the value of r0 between rmin and rmax, we solve the
above model and the corresponding computational results are summarized in
Table 1.8.

Table 1.8 Summary results of portfolio selection using model P(1.5)

Portfolio Allocation Portfolio

return (r0) ABL ALL BHL CGL HHM risk

Portfolio 1 0.26083 0.0 0.0 0.0 0.0 0.55182 0.01389
Portfolio 2 0.28073 0.0 0.0 0.0 0.0 0.49071 0.01468
Portfolio 3 0.30063 0.0 0.0 0.0 0.0 0.42961 0.01605
Portfolio 4 0.32053 0.0 0.0 0.0 0.0 0.36850 0.01810
Portfolio 5 0.34043 0.0 0.0 0.0 0.0 0.30740 0.02074
Portfolio 6 0.36033 0.0 0.0 0.0 0.0 0.24629 0.02381
Portfolio 7 0.38023 0.0 0.0 0.0 0.0 0.18519 0.02730
Portfolio 8 0.40013 0.0 0.0 0.0 0.0 0.12408 0.03121
Portfolio 9 0.42003 0.0 0.0 0.0 0.0 0.06298 0.03556
Portfolio 10 0.44054 0.0 0.0 0.0 0.0 0.0 0.04052

HCC KMB MML SIL UNL

0.0 0.0 0.0 0.0 0.44818
0.0 0.0 0.0 0.0 0.50929
0.0 0.0 0.0 0.0 0.57039
0.0 0.0 0.0 0.0 0.63150
0.0 0.0 0.0 0.0 0.69260
0.0 0.0 0.0 0.0 0.75371
0.0 0.0 0.0 0.0 0.81481
0.0 0.0 0.0 0.0 0.87592
0.0 0.0 0.0 0.0 0.93702
0.0 0.0 0.0 0.0 1.0

It may be noted that all the obtained portfolios presented in Table 1.8 are
efficient portfolios. Fig. 1.3 shows the efficient frontier obtained in respect of
the portfolios presented in Table 1.8.
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Fig. 1.3 Efficient frontier of return-risk corresponding to portfolios presented in
Table 1.8

1.3 Mean-Absolute Deviation Model

To improve Markowitz’s mean-variance model both computationally and the-
oretically, Konno and Yamazaki [72] proposed a linear programming portfolio
selection model using absolute deviation as an alternative measure to quan-
tify risk. They called the risk (absolute deviation) function as L1-risk function
because it is based on L1 metric on Rn. It is important to point out that in
metric terminology, risk (variance) function can be termed as a L2-risk func-
tion since it is based on the notion of L2 metric. The mathematical model
proposed by Konno and Yamazaki [72] can treat the difficulties associated
with the Markowitz’s mean-variance model while maintaining its advantages
over equilibrium models such as mean-semivariance. Much attention has been
focused on this risk function because the portfolio optimization problem with
L1 risk function can be converted into a scalar parametric linear programming
problem. Hence, the implementation of the portfolio optimization with this
model can be easily obtained even when large number of assets are consid-
ered. Simplicity and computational ease are perceived as the most important
advantages of the mean-absolute deviation model. In particular, the mean-
absolute deviation model has been applied to problems with asymmetric dis-
tributions of the rate of return [126].

The absolute deviation of a random variable is the expected absolute value
of the difference between the random variable and its mean. The portfolio
risk measured as absolute deviation denoted by m(x1, x2, . . . , xn) is expressed
as follows:

m(x1, x2, . . . , xn) = E

⎡
⎢⎢⎢⎢⎢⎣

∣∣∣∣∣∣∣

n∑

i=1

Rixi − E

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Rixi

⎤
⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎦ .
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The following theorem proved in Konno and Yamazaki [72] presents the rela-
tionship between portfolio risk using variance and absolute deviation as risk
measures.

Theorem 1.1. Let (R1,R2, . . . ,Rn) be multivariate normally distributed. Then
for a given portfolio x = (x1, x2, . . . , xn)

m(x) =

√
2
π
σ(x) ,

where

σ(x) =

√√√√
E

⎡
⎢⎢⎢⎢⎢⎢⎣

⎧⎪⎪⎨⎪⎪⎩
n∑

i=1

Rixi − E

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Rixi

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭

2⎤⎥⎥⎥⎥⎥⎥⎦ .

Proof. Let (r1, r2, . . . , rn) be the mean of (R1,R2, . . . ,Rn). Also, let (σi j) ∈ Rn×n

be the variance-covariance matrix of (R1,R2, . . . ,Rn). Then under the given

hypothesis,

n∑

i=1

Rixi is normally distributed with mean

n∑

i=1

rixi and standard

deviation

σ(x) =

√√√ n∑

i=1

n∑

j=1

σi jxixj .

Therefore,

m(x) =
1√

2πσ(x)

∫ ∞

−∞
|r| exp

(
− r2

2σ2(x)

)
dr ,

=
2√

2πσ(x)

∫ ∞

0
r exp

(
− r2

2σ2(x)

)
dr ,

which on substitution (r2
/
2σ2(x)) = s gives

m(x) =

√
2
π

σ2(x)
σ(x)

∫ ∞

0
e(−s)ds =

√
2
π
σ(x) .

��
Based on Theorem 1.1, it is clear that the mean-absolute deviation approach
is equivalent to the mean-variance approach if the returns are multivariate
normally distributed, i.e., both L1 and L2-risk models are equivalent. Even in
the case when normality assumption does not hold, through certain case stud-
ies, it has been shown that minimizing the L1-risk produces portfolios which
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are comparable to Markowitz’s mean-variance model minimizing L2-risk. Un-
der these assumptions, the minimization of the sum of absolute deviations
of portfolio returns about the mean is equivalent to the minimization of the
variance. Thus, we have the following alternative risk minimization problem
for portfolio selection.

P(1.6) min E

⎡
⎢⎢⎢⎢⎢⎣

∣∣∣∣∣∣∣

n∑

i=1

Rixi − E

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Rixi

⎤
⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎦

subject to
n∑

i=1

rixi = r0 ,

n∑

i=1

xi = 1 ,

xi ≥ 0 , i = 1, 2, . . . , n .

Using the fact that the expected value of the random variable can be
approximated by the average derived from the past data, particularly, using

ri = E[Ri] =

T∑

t=1

rit/T, the portfolio risk m(x1, x2, . . . , xn) is approximated as

follows:

m(x1, x2, . . . , xn) = E

⎡
⎢⎢⎢⎢⎢⎣

∣∣∣∣∣∣∣

n∑

i=1

Rixi − E

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Rixi

⎤
⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎦ =

1
T

T∑

t=1

∣∣∣∣∣∣∣

n∑

i=1

(rit − ri)xi

∣∣∣∣∣∣∣
.

Now, the problem P(1.6) leads to the following minimization problem.

P(1.7) min
1
T

T∑

t=1

∣∣∣∣∣∣∣

n∑

i=1

(rit − ri)xi

∣∣∣∣∣∣∣
subject to

n∑

i=1

rixi = r0 ,

n∑

i=1

xi = 1 ,

xi ≥ 0 , i = 1, 2, . . . , n .

The problem P(1.7) is nonlinear and nonsmooth due to the presence of
absolute-valued function. In order to eliminate the absolute-valued function
in problem P(1.7), we transform the problem into the following form.
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P(1.8) min
1
T

T∑

t=1

pt

subject to

pt ≥ −
n∑

i=1

(rit − ri)xi , t = 1, 2, . . . ,T, (1.12)

pt ≥
n∑

i=1

(rit − ri)xi , t = 1, 2, . . . ,T, (1.13)

n∑

i=1

rixi = r0 , (1.14)

n∑

i=1

xi = 1 , (1.15)

pt ≥ 0, t = 1, 2, . . . ,T, (1.16)

xi ≥ 0 , i = 1, 2, . . . , n . (1.17)

where pt =

∣∣∣∣∣∣∣

n∑

i=1

(rit − ri)xi

∣∣∣∣∣∣∣
= max

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

(rit − ri)xi, −
n∑

i=1

(rit − ri)xi

⎞
⎟⎟⎟⎟⎟⎠. In compari-

son to problem P(1.7), problem P(1.8) is a linear programming problem that
can be solved efficiently even when the large number of assets are considered,
i.e., n is large.

To understand the role of pt more clearly, we present the following dis-
cussion. If, for a given value t, the right-hand-side of the constraint (1.12) is
negative or zero, that is, if

∑n
i=1(rit − ri)xi ≥ 0, the constraint (1.12) and the

constraints (1.13) and (1.16) leave the variable pt free to take any nonnega-
tive value. Therefore, as the variable pt appear in the objective function with
coefficient +1, in any optimal solution it will take value 0 since we are min-
imizing the sum of pt. If, on the contrary, the right-hand-side of constraint
(1.12) is positive, that is, if

∑n
i=1(rit − ri)xi < 0, in any optimal solution pt

will be equal the right-hand-side value of (1.12). Thus, using the problem
P(1.8) we can exactly solve the original mean-absolute deviation problem
P(1.7).

• Numerical illustration

The working of the portfolio selection model P(1.8) is demonstrated with
reference to the data set provided in Tables 1.1-1.2. In order to find an optimal
asset allocation, we formulate the model P(1.8) as follows:
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min
1

12
·
(
p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12

)

subject to

p1 − 0.10299x1 − 0.24383x2 − 0.25313x3 − 0.42223x4 + 0.06747x5 − 0.43689x6

−0.03011x7 + 0.11605x8 − 0.37326x9 − 0.17687x10 ≥ 0 ,
p2 + 0.14533x1 + 0.09083x2 + 0.71634x3 + 0.53118x4 + 0.21513x5 + 0.33237x6

+0.06228x7 + 0.39975x8 − 0.01343x9 − 0.02473x10 ≥ 0 ,
p3 + 0.12210x1 + 0.65083x2 − 0.28463x3 − 0.07463x4 + 0.02191x5 + 0.95560x6

+0.33519x7 − 0.06638x8 + 0.04302x9 − 0.19570x10 ≥ 0 ,
p4 + 0.06101x1 − 0.06516x2 − 0.06413x3 + 0.24977x4 + 0.35047x5 + 0.28078x6

−0.18845x7 − 0.09395x8 + 0.16474x9 − 0.31087x10 ≥ 0 ,
p5 − 0.22661x1 − 0.43530x2 − 0.55818x3 − 0.44366x4 − 0.24261x5 − 0.99053x6

−0.68191x7 − 0.41154x8 − 0.58569x9 − 0.52344x10 ≥ 0 ,
p6 + 0.33134x1 + 0.14750x2 + 0.15254x3 + 0.24177x4 + 0.44580x5 + 0.69345x6

+0.51755x7 + 0.54938x8 + 0.83541x9 + 0.09946x10 ≥ 0 ,
p7 − 0.20016x1 + 0.40018x2 + 0.77537x3 + 0.02053x4 − 0.00648x5 + 0.04850x6

−0.00998x7 + 0.13169x8 + 0.10334x9 + 0.49204x10 ≥ 0 ,
p8 + 0.72984x1 + 0.17083x2 + 0.23634x3 + 0.35827x4 − 0.11487x5 + 0.33592x6

−0.04514x7 + 0.03072x8 + 0.46237x9 + 0.17817x10 ≥ 0 ,
p9 − 0.14285x1 − 0.42735x2 − 0.16836x3 − 0.25978x4 + 0.02835x5 − 0.24703x6

−0.26864x7 − 0.06178x8 − 0.23538x9 − 0.21304x10 ≥ 0 ,
p10+0.28468x1 + 0.22018x2 + 0.58279x3 + 0.31730x4 − 0.10519x5 + 0.21947x6

+0.45132x7 − 0.04089x8 + 0.49044x9 + 0.24914x10 ≥ 0 ,
p11+0.05201x1 + 0.09984x2 − 0.11613x3 − 0.16323x4 − 0.27253x5 − 0.31722x6

+0.15722x7 − 0.22828x8 − 0.17393x9 + 0.21380x10 ≥ 0 ,
p12−1.05370x1 − 0.60853x2 − 1.01882x3 − 0.35528x4 − 0.38745x5 − 0.87440x6

−0.29933x7 − 0.32477x8 − 0.71763x9 + 0.21204x10 ≥ 0 ,
p1 + 0.10299x1 + 0.24383x2 + 0.25313x3 + 0.42223x4 − 0.06747x5 + 0.43689x6

+0.03011x7 − 0.11605x8 + 0.37326x9 + 0.17687x10 ≥ 0 ,
p2 − 0.14533x1 − 0.09083x2 − 0.71634x3 − 0.53118x4 − 0.21513x5 − 0.33237x6

−0.06228x7 − 0.39975x8 + 0.01343x9 + 0.02473x10 ≥ 0 ,
p3 − 0.12210x1 − 0.65083x2 + 0.28463x3 + 0.07463x4 − 0.02191x5 − 0.95560x6

−0.33519x7 + 0.06638x8 − 0.04302x9 + 0.19570x10 ≥ 0 ,
p4 − 0.06101x1 + 0.06516x2 + 0.06413x3 − 0.24977x4 − 0.35047x5 − 0.28078x6

+0.18845x7 + 0.09395x8 − 0.16474x9 + 0.31087x10 ≥ 0 ,
p5 + 0.22661x1 + 0.43530x2 + 0.55818x3 + 0.44366x4 + 0.24261x5 + 0.99053x6

+0.68191x7 + 0.41154x8 + 0.58569x9 + 0.52344x10 ≥ 0 ,
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p6 − 0.33134x1 − 0.14750x2 − 0.15254x3 − 0.24177x4 − 0.44580x5 − 0.69345x6

−0.51755x7 − 0.54938x8 − 0.83541x9 − 0.09946x10 ≥ 0 ,
p7 + 0.20016x1 − 0.40018x2 − 0.77537x3 − 0.02053x4 + 0.00648x5 − 0.04850x6

+0.00998x7 − 0.13169x8 − 0.10334x9 − 0.49204x10 ≥ 0 ,
p8 − 0.72984x1 − 0.17083x2 − 0.23634x3 − 0.35827x4 + 0.11487x5 − 0.33592x6

+0.04514x7 − 0.03072x8 − 0.46237x9 − 0.17817x10 ≥ 0 ,
p9 + 0.14285x1 + 0.42735x2 + 0.16836x3 + 0.25978x4 − 0.02835x5 + 0.24703x6

+0.26864x7 + 0.06178x8 + 0.23538x9 + 0.21304x10 ≥ 0 ,
p10−0.28468x1 − 0.22018x2 − 0.58279x3 − 0.31730x4 + 0.10519x5 − 0.21947x6

−0.45132x7 + 0.04089x8 − 0.49044x9 − 0.24914x10 ≥ 0 ,
p11−0.05201x1 − 0.09984x2 + 0.11613x3 + 0.16323x4 + 0.27253x5 + 0.31722x6

−0.15722x7 + 0.22828x8 + 0.17393x9 − 0.21380x10 ≥ 0 ,
p12+1.05370x1 + 0.60853x2 + 1.01882x3 + 0.35528x4 + 0.38745x5 + 0.87440x6

+0.29933x7 + 0.32477x8 + 0.71763x9 − 0.21204x10 ≥ 0 ,
0.17499x1 + 0.09950x2 + 0.33979x3 + 0.23657x4 + 0.11487x5

+0.27989x6 + 0.21578x7 + 0.25928x8 + 0.26859x9 + 0.44054x10 = r0 ,

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 = 1 ,
pt ≥ 0 , t = 1, 2, . . . , 12 ,
xi ≥ 0 , i = 1, 2, . . . , 10 .

To solve the above model, we need to decide the expected portfolio return,
i.e., r0. The value of rmin is obtained by solving the above model excluding
the return constraint using the LINGO 12.0 and the computational result is
summarized in Table 1.9.

Table 1.9 Summary result of portfolio selection using absolute deviation

Portfolio Allocation

risk ABL ALL BHL CGL HHM

0.12183 0.0 0.0 0.0 0.0 0.47006

HCC KMB MML SIL UNL

0.0 0.0 0.0 0.0 0.52994

Based on the result presented in Table 1.9, we take the value of rmin =
0.28745. The value of rmax is the maximum feasible return, therefore, rmax =
0.44054. Now, varying the value of r0 between rmin and rmax, we solve the above
model and and the computational results are summarized in Table 1.10.
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Table 1.10 Summary results of portfolio selection using model P(1.8)

Portfolio Allocation Portfolio

return (r0) ABL ALL BHL CGL HHM risk

Portfolio 1 0.30275 0.0 0.0 0.0 0.0 0.42310 0.12755
Portfolio 2 0.31805 0.0 0.0 0.0 0.0 0.37612 0.13574
Portfolio 3 0.33335 0.0 0.0 0.0 0.0 0.31995 0.14586
Portfolio 4 0.34865 0.0 0.0 0.0 0.0 0.0.2554 0.15773
Portfolio 5 0.36395 0.0 0.0 0.0 0.0 0.19085 0.16961
Portfolio 6 0.37925 0.0 0.0 0.0 0.0 0.12630 0.18148
Portfolio 7 0.39455 0.0 0.0 0.0 0.0 0.06326 0.19344
Portfolio 8 0.40985 0.0 0.0 0.0 0.0 0.01145 0.20605
Portfolio 9 0.42515 0.0 0.0 0.0 0.0 0.0 0.22098
Portfolio 10 0.44054 0.0 0.0 0.0 0.0 0.0 0.24078

HCC KMB MML SIL UNL

0.0 0.0 0.0 0.0 0.57690
0.0 0.0 0.0 0.0 0.62388
0.01862 0.0 0.0 0.0 0.66143
0.05424 0.0 0.0 0.0 0.69036
0.08986 0.0 0.0 0.0 0.71929
0.12548 0.0 0.0 0.0 0.74822
0.15803 0.0 0.0 0.0 0.77871
0.16782 0.0 0.0 0.0 0.82073
0.09580 0.0 0.0 0.0 0.90420
0.0 0.0 0.0 0.0 1.0

It may be noted that all the obtained portfolios presented in Table 1.10
are efficient portfolios. Fig. 1.4 shows the efficient frontier obtained in respect
of the portfolios presented in Table 1.10.
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Fig. 1.4 Efficient frontier of return-risk corresponding to portfolios presented in
Table 1.10
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Remark 1.4. The value of rmin for the mean-absolute deviation model is
higher than those for mean-variance model and mean-semivariance model.
More specifically, mean-absolute deviation provides higher value of rmin than
mean-variance model and mean-variance model provides higher value of rmin

than mean-semivariance model.

1.4 Mean-Semiabsolute Deviation Model

Motivated by the work of Konno and Yamazaki [72], Sprenza [112] proposed
semi-absolute deviation as an alternative measure to quantify risk. Speranza
[112] showed that taking risk function as a linear combination of the mean
semi-absolute deviations, i.e., mean deviations below and above the portfolio
return, a model equivalent to the mean-absolute deviation model [72] can be
obtained, whenever the sum of the coefficients of the linear combination is
positive. Then, in turn, this model is equivalent to Markowitz model, if the
returns are normally distributed. Moreover, Speranza showed that, through
a suitable selection of the coefficients of the combination, 1 and 0 for the
deviations below and above the average, respectively, it is possible to sub-
stantially reduce the number of constraints by half in comparison with the
mean-absolute deviation model.

The semi-absolute deviation of return of the portfolio below the expected
return over the past period t, t = 1, 2, . . . ,T can be expressed as

wt(x1, x2, . . . , xn) =

∣∣∣∣∣∣∣
min

⎧⎪⎪⎨⎪⎪⎩0,
n∑

i=1

(rit − ri)xi

⎫⎪⎪⎬⎪⎪⎭

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

n∑

i=1

(rit − ri)xi

∣∣∣∣∣∣∣
+

n∑

i=1

(ri − rit)xi

2
.

Therefore, the expected semi-absolute deviation of return of the portfolio
below the expected return is given by

w(x1, x2, . . . , xn) =
1
T

T∑

t=1

wt(x1, x2, . . . , xn)

=

T∑

t=1

∣∣∣∣∣∣∣

n∑

i=1

(rit − ri)xi

∣∣∣∣∣∣∣
+

n∑

i=1

(ri − rit)xi

2T
.

Using semi-absolute deviation as a risk measure, the portfolio optimization
model for minimizing semi-absolute deviation and constraining the expected
portfolio return is formulated as follows:
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P(1.9) min
T∑

t=1

∣∣∣∣∣∣∣

n∑

i=1

(rit − ri)xi

∣∣∣∣∣∣∣
+

n∑

i=1

(ri − rit)xi

2T

subject to
n∑

i=1

rixi = r0 ,

n∑

i=1

xi = 1 ,

xi ≥ 0 , i = 1, 2, . . . , n .

To eliminate the absolute-valued function in P(1.9), we transform the problem
into the following form.

P(1.10) min
1
T

T∑

t=1

pt

subject to

pt ≥ −
n∑

i=1

(rit − ri)xi , t = 1, 2, . . . ,T,

n∑

i=1

rixi = r0 ,

n∑

i=1

xi = 1 ,

pt ≥ 0 , t = 1, 2, . . . ,T,
xi ≥ 0 , i = 1, 2, . . . , n .

Remark 1.5. The comparison of the mean-absolute deviation model P(1.8)
and mean-semiabsolute deviation model P(1.10) makes it clear that mean-
semiabsolute deviation model reduces the number of constraints by half in
comparison with the mean-absolute deviation model. To be more explanatory,
the mean-semiabsolute deviation model requires only T linearizing constraints
whereas the mean-absolute deviation model requires 2T linearizing constraints.

1.5 Comparison of the Models

We now compare the performance of the portfolio selection models, namely,
mean-variance model, mean-semivariance model, mean-absolute deviation
model. These models are solved with the data set provided in Tables 1.1-
1.2 by varying the value of r0. The computational results are summarized
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Table 1.11 Summary result of portfolio selection- a comparison

Portfolio Portfolio risk

return (r0)
√
variance

√
semivariance absolute deviation

Portfolio 1 0.33077 0.18561 0.13925 0.14386
Portfolio 2 0.34917 0.19759 0.14843 0.15837
Portfolio 3 0.36757 0.21128 0.15821 0.17242
Portfolio 4 0.38597 0.22603 0.16846 0.18670
Portfolio 5 0.40437 0.24150 0.17916 0.20154
Portfolio 6 0.42277 0.25832 0.19024 0.21855
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Fig. 1.5 Efficient frontier of models in respect of return-risk

in Table 1.11. Fig. 1.5 show the efficient frontiers obtained in respect of the
portfolios presented in Table 1.11.

It is clear from the results presented in Table 1.11 that for the same
expected return, the three models show different risk values. The risk val-
ues using mean-variance model are always higher than those obtained using
mean-semivariance model and mean-absolute deviation model. Particularly,
the mean-variance model provides higher risk than mean-absolute deviation
model and mean-absolute deviation model provides higher risk than mean-
semivariance model at any given portfolio return. These relationships exist
due to the following reasons: (1) variance as a risk measure penalizes ex-
treme upside (gains) and downside (losses) movements from the expected
return. On the other hand semivariance does not consider values beyond the
critical values (i.e., gains) as risk. Thus, the mean-variance model provides
higher risk than mean-semivariance model; (2) the relationship between port-
folio risk using variance and absolute deviation as risk measures presented
in Theorem 1.1 clearly shows that the mean-variance model provides higher
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risk than mean-absolute deviation model; and (3) the semivariance risk mea-
sure does not consider values beyond the critical values (i.e., gains) as risk
whereas in absolute deviation risk measure, we consider these values also as
risk; therefore, the mean-absolute deviation model provides higher risk than
mean-semivariance model.

1.6 Comments

In this chapter, we have presented the following facts:

• An overview of portfolio optimization has been presented.
• The Markowitz’s mean-variance model for portfolio optimization has been

discussed in detail to understand its formulation and limitations in terms
of handling large scale portfolios.

• Various alternative risk measures to quantify portfolio risk in order to
improve Markowitz’s model both theoretically and computationally have
been discussed.

• Moreover, to understand the working of the portfolio selection models,
numerical illustration, based on real-world data have been provided.



Chapter 2

Portfolio Optimization with Interval
Coefficients

Abstract. In this chapter, we discuss portfolio optimization models with
interval coefficients, where the expected return, risk and liquidity of assets
are treated as interval numbers. In addition, some realistic constraints such
as number of assets held in the portfolio and the maximal and minimal frac-
tions of the capital allocated to the various assets are considered. We present
optimization models for portfolio selection in respect of three types of in-
vestment strategies, namely, conservative strategy, aggressive strategy and
combination strategy.

2.1 Interval Numbers and Interval Arithmetic

The portfolio decisions are based on investor expectations, in regard to the
return, risk and liquidity characteristics of the assets under contemplation.
More importantly, one should know how different assets may be combined in
order to have the desired return-risk-liquidity of the resultant portfolio. In
real-world, the asset returns (risk, liquidity) and consequently portfolio re-
turns (risk, liquidity) defy accurate or crisp measurement. This is because the
information available about the assets/their issuers is often incomplete, the
markets in which the assets are traded exhibit volatility and expert opinion
might vary. Therefore, it would be more realistic to define portfolio parame-
ters in terms of intervals rather than crisp numbers.

Let R be the set of all the real numbers. A closed and bounded interval in
R is defined by

a = [α, α] = {x ∈ R : α ≤ x ≤ α},
where α is the finite lower bound and α is the finite upper bound of interval
a. Further, a = [α, α] is called an interval number. The center and the half
width (or, simply termed as ‘width’) of a are defined as

Center of a = m(a) =
α + α

2
and Half width of a = w(a) =

α − α
2
.

P. Gupta et al., Fuzzy Portfolio Optimization, 33
Studies in Fuzziness and Soft Computing 316,
DOI: 10.1007/978-3-642-54652-5_2, © Springer-Verlag Berlin Heidelberg 2014
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The interval a can also be denoted by its center and width as

a = 〈m(a),w(a)〉 = {x ∈ R : m(a) − w(a) ≤ x ≤ m(a) + w(a)} .
Note that m(a) has also been referred as mean, center, central value or

expected value of interval a in the literature. Babad and Berliner [4] defined
m(a) as the plausible value, around which an interval a of possibilities exists.
Similarly, w(a) alternatively has been termed as the spread or range or level of
uncertainty or the extent of uncertainty or simply, uncertainty of interval a.
The limits α and α of an interval number have also been defined as the lower
and upper bounds or as the minimum and maximum value or as the infimum
and supremum [4, 36]. Okada and Gen [97] called them as pessimistic and
optimistic values, respectively. Schjaer-Jacobsen [106, 107] used the name
worst- and best-case of economic consequences for these parameters.

Remark 2.1. An interval number can be represented by its characteristic
function which takes the value 1 over the interval, 0 otherwise (see Fig. 2.1),
∀x ∈ a on R as

μa(x) =
{

1, if α ≤ x ≤ α ,
0, otherwise .

𝒂 𝟎 

𝟏 

0 

                                                   

  𝜶 𝜶 𝑹 

Fig. 2.1 Graphical representation of characteristic function of a

Extension of ordinary arithmetic to closed and bounded intervals of R is
known as interval arithmetic. We, first discuss interval arithmetic, i.e., how
to perform ‘addition’, ‘subtraction’, ‘multiplication’ and ‘division’ between
two given closed intervals in R. A detailed discussion on interval arithmetic
is presented in Alefeld and Mayer [2] and Hansen [47].

Let a = [α, α] and b = [β, β] be two closed and bounded intervals in R. We

present the following definitions.

Definition 2.1 (Addition (+) and subtraction (-)). Let a = [α, α] and
b = [β, β] be two interval numbers. Then, the addition of a and b, denoted by

a(+)b, is defined as
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a(+)b = [α, α](+)[β, β] = [α + β, α + β].

The addition a(+)b can also be denoted by its center and width as

a(+)b = 〈(m(a) + m(b)), (w(a) + w(b))〉
= {x ∈ R : (m(a) + m(b)) − (w(a) + w(b)) ≤ x ≤ (m(a) + m(b)) + (w(a) + w(b))} .

Similarly, the subtraction of a and b, denoted by a(−)b is defined as

a(−)b = [α, α](−)[β, β] = [α − β, α − β].

The subtraction a(−)b can also be denoted by its center and width as

a(−)b = 〈(m(a) −m(b)), (w(a) + w(b))〉
= {x ∈ R : (m(a) −m(b)) − (w(a) + w(b)) ≤ x ≤ (m(a) −m(b)) + (w(a) + w(b))} .

Example 2.1. Let a = [4, 6] and b = [3, 8] be two interval numbers. Then the
addition and subtraction of these two interval numbers is obtained as

a(+)b = [4, 6](+)[3, 8] = [4 + 3, 6 + 8] = [7, 14].

a(−)b = [4, 6](−)[3, 8] = [4 − 8, 6 − 3] = [−4, 3].

Fig. 2.2 depicts the graphical representation of addition and subtraction of
the above defined interval numbers.

𝟑 𝟖   7 𝟏𝟒 

𝒂 𝒃 𝒂(+)𝒃 

-4 

𝒂(−)𝒃 𝟎 

𝟏 

0 

                                                                                               

 

 

    𝟒 𝟔 𝑹 

Fig. 2.2 Graphical representation of a(+)b and a(−)b

Definition 2.2 (Image of an interval). Let a = [α, α] be an interval num-
ber. Then the image of a, denoted by a is defined as

a = [α, α] = [−α,−α].

The image a can also be denoted by its center and width as

a = 〈−m(a),w(a)〉
= {x ∈ R : −m(a) − w(a) ≤ x ≤ −m(a) + w(a)} .
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Example 2.2. Let a = [4, 6] be an interval number. Then its image is ob-
tained as

a = [−6,−4].

Fig. 2.3 depicts the graphical representation of image of the above defined
interval number.

𝒂 𝟎 

𝟏 

-𝟒 -𝟔 

𝒂 

0 

                                                                                    

 

 

    𝟒 𝟔 𝑹 

Fig. 2.3 Graphical representation of a

Definition 2.3 (Multiplication (·)). Let a = [α, α] and b = [β, β] be two

interval numbers. Then their product, denoted by a(·)b, is defined as

a(·)b = [α, α](·)[β, β]
= [min(αβ, αβ, αβ, αβ),max(αβ, αβ, αβ, αβ)].

The product a(·)b can also be denoted by its center and width as

a(·)b = {x ∈ R : min((m(a) − w(a)) · (m(b) − w(b)), (m(a)− w(a)) · (m(b) + w(b)),
(m(a) + w(a)) · (m(b) − w(b)), (m(a) + w(a)) · (m(b) + w(b)))
≤ x ≤ max((m(a)− w(a)) · (m(b) − w(b)), (m(a)− w(a)) · (m(b) + w(b)),
(m(a) + w(a)) · (m(b) − w(b)), (m(a) + w(a)) · (m(b) + w(b)))} .

In case the intervals are in R+, the non-negative real line, the product a(·)b
becomes

a(·)b = [α β, α β]

which can also be denoted by its center and width as

a(·)b = {x ∈ R : (m(a) − w(a)) · (m(b) − w(b)) ≤ x ≤ (m(a) + w(a)) · (m(b)+w(b))} .
Example 2.3. Let a = [4, 6] and b = [3, 8] be two interval numbers. Then the
multiplication of these two interval numbers is obtained as
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a(·)b = [4, 6](·)[3, 8]
= [min(12, 32, 18, 48),max(12, 32, 18, 48)]
= [12, 48].

Fig. 2.4 depicts the graphical representation of multiplication of the above
defined interval numbers.

𝟑 𝟖 𝟏𝟐 

𝒂 𝒃 𝒂(∙)𝒃 

-2 

𝟎 

𝟏 

0 𝟒𝟖 

                                                                         

   𝟒 𝟔 𝑹 

Fig. 2.4 Graphical representation of a(·)b

Definition 2.4 (Scalar multiplication and inverse). Let a = [α, α] be a
closed and bounded interval in R+ and k ∈ R+. Considering the scalar k as
the closed interval [k, k], the scalar multiplication k · a is defined as

k · a = [k, k](·)[α, α] = [kα, kα].

The scalar multiplication k · a can also be denoted by its center and width as

k · a = 〈k ·m(a), k · w(a)〉
= {x ∈ R : k · (m(a) − w(a)) ≤ x ≤ k · (m(a) + w(a))} .

Further, the inverse of a, denoted by a−1, is defined as

a−1 = [α, α]−1 =

[
1
α
,

1
α

]
,

provided 0 � [α, α].
The inverse a−1 can also be denoted by its center and width as

a−1 =

〈
m(a)

m(a)2 − w(a)2 ,
w(a)

m(a)2 − w(a)2

〉

=

{
x ∈ R :

1
(m(a) + w(a))

≤ x ≤ 1
(m(a) − w(a))

}
.

Example 2.4. Let a = [4, 6] be an interval number and k = 2. Then the
scalar multiplication is obtained as
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k · a = [2, 2](·)[4, 6] = [8, 12].
Further, the inverse of a is obtained as

a−1 = [4, 6]−1 =
[1
6
,

1
4

]
.

Fig. 2.5 depicts the graphical representation of scalar multiplication and in-
verse of the above defined interval number.
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𝒌 ∙ 𝒂 
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𝒂ି𝟏 
                                                                                

   𝟒 𝟔 𝑹 

Fig. 2.5 Graphical representation of k · a and a−1

Definition 2.5 (Division(:)). Let a = [α, α] and b = [β, β] be two interval

numbers. The division of these intervals, denoted by a(:)b is defined as the

multiplication of [α, α] and

⎡
⎢⎢⎢⎢⎣

1

β
,

1
β

⎤
⎥⎥⎥⎥⎦ provided 0 � [β, β]. Therefore,

a(:)b = [α, α](:)[β, β]

= [α, α](·)
⎡
⎢⎢⎢⎢⎣
1

β
,

1
β

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣min

⎛
⎜⎜⎜⎜⎝
α

β
,
α

β
,
α

β
,
α
β

⎞
⎟⎟⎟⎟⎠ , max

⎛
⎜⎜⎜⎜⎝
α

β
,
α

β
,
α

β
,
α
β

⎞
⎟⎟⎟⎟⎠
⎤
⎥⎥⎥⎥⎦ .

The division a(:)b can also be denoted by its center and width as

a(:)b =

{
x ∈ R : min

(
m(a) − w(a)
m(b) + w(b)

,
m(a) − w(a)
m(b) − w(b)

,
m(a) + w(a)
m(b) + w(b)

,
m(a) + w(a)
m(b) − w(b)

)

≤ x ≤ max
(

m(a) − w(a)
m(b) + w(b)

,
m(a) − w(a)
m(b) − w(b)

,
m(a) + w(a)
m(b) + w(b)

,
m(a) + w(a)
m(b) − w(b)

)}
.

In case the intervals are in R+ and as before 0 � [β, β], the division a(:)b
becomes

a(:)b =

⎡
⎢⎢⎢⎢⎣
α

β
,
α
β

⎤
⎥⎥⎥⎥⎦
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which can also be denoted by its center and width as

a(:)b =

{
x ∈ R :

(
m(a) − w(a)
m(b) + w(b)

)
≤ x ≤

(
m(a) + w(a)
m(b) − w(b)

)}
.

Also, one can identify a(:)b ≡ a(·)b−1 provided 0 � b = [β, β]. Further, along
the lines of scalar multiplication, the division by a scalar k > 0 can also be
defined as

a(:)k = [α, α](·)
[1

k
,

1
k

]
=

[
α

k
,
α
k

]
.

Example 2.5. Let a = [4, 6] and b = [3, 8] be two interval numbers. Then the
division of these intervals is obtained as

a(:)b = [4, 6](:)[3, 8]

= [4, 6](·)
[1
8
,

1
3

]

=
[
min
(4

8
,

4
3
,

6
8
,

6
3

)
,max

(4
8
,

4
3
,

6
8
,

6
3

)]

=
[4
8
,

6
3

]
= [0.5, 2] .

Fig. 2.6 depicts the graphical representation of division of the above defined
interval numbers.
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𝒃 
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   𝟒 𝟔 𝑹 

Fig. 2.6 Graphical representation of a(:)b

Comparison of Interval Numbers

We, now discuss the comparison between two interval numbers. There exist
two types of approaches for the comparison of interval numbers, namely, set
theoretic approach and probabilistic approach.
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• Set theoretic approach
Moore [94, 95] has defined two transitive order relations between intervals

a = [α, α] and b = [β, β]. The first one is an extension of ‘<’ on the real line,

defined as

a < b, if and only if α < β.

The second one is an extension of the concept of set inclusion, defined as

a ⊆ b, if and only if α ≥ β and α ≤ β.
A major limitation of the above mentioned order relations is that they

cannot explain ranking between two overlapping intervals. The first order
relation defines the simplest case of two non-overlapping intervals. The second
one, describes the condition that the interval a is nested in b but it cannot
order a and b neither in terms of value nor in terms of preference. Considering
these facts, Ishibuchi and Tanaka [66] proposed a more prominent approach
for the comparison of interval numbers. In their approach, the maximum of
two interval a and b may be defied by an order relation ≤LR as follows:

a ≤LR b, if and only if α ≤ β and α ≤ β,
a <LR b, if and only if a ≤LR b and a � b.

The order relation ≤LR defines that if both the lower and upper limits of an
interval are higher than that of another interval, then the former is higher val-
ued interval. So, for a maximization problem in which objective function coef-
ficients are interval profits, interval b is higher valued and hence preferred to a.
Similarly, for a minimization problem in which objective function coefficients
are interval costs, interval a is lower valued and hence preferred to b.

It may be noted that when one interval is nested in another, the above
mentioned ≤LR is not applicable. For such cases, Ishibuchi and Tanaka [66]
suggested another relation ≤mw defined as follows:

a ≤mw b, if and only if m(a) ≤ m(b) and w(a) ≥ w(b),
a <mw b, if and only if a ≤mw b and a � b.

The second order relation ≤mw defines that if the central value of an interval
is higher than that of another interval as well as if the latter is a wider interval,
then the former interval is preferred if the problem were to choose maximum
between the two. However, for a minimization problem, if a is chosen as a
preferred minimum, then the condition is given as follows:

a ≤mw b, if and only if m(a) ≤ m(b) and w(a) ≤ w(b),
a <mw b, if and only if a ≤mw b and a � b.

Example 2.6. Let a = [3, 6] and b = [4, 8] be two interval returns. Then
using the ≤LR order relation, we have

α = 3 < β = 4 and α = 6 < β = 8.

Therefore, b is preferred over a. Further, as a ≤LR b and a � b, hence, a <LR b.
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• Probabilistic approach
We discuss probabilistic approach given by Sengupta and Pal [108] to define
an acceptability index (A) for the comparison of intervals.

Definition 2.6 (Extended order relation). Let � be an extended order

relation between the intervals a = [α, α] and b = [β, β] on the real line R.

Then for m(a) ≤ m(b), a premise a � b is constructed, which implies that a is
inferior to b (or b is superior to a). The term ‘inferior to’ (‘superior to’) is
analogous to ‘less than’ (‘greater than’).

Definition 2.7 (Acceptability index). Let I be the set of all closed and
bounded intervals on the real line R. Then, an acceptability index A : I× I →
[0,∞) is defined as

A(a � b) =
m(b) −m(a)
w(b) + w(a)

,

where w(b)+w(a) � 0.A(a�b) may be interpreted as the grade of acceptability
of the ‘first interval to be inferior to the second interval ’.

The grade of acceptability (A(a � b)) may be classified and interpreted
further on the basis of comparative position of mean and width of interval b
with respect to those of interval a as follows:

A(a � b) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

= 0, if m(a) = m(b) ,
∈ (0, 1), if m(a) < m(b) and α > β ,
≥ 1, if m(a) < m(b) and α ≤ β .

The classification of the acceptability grades are interpreted as follows:

(i) If A(a � b) = 0, then the premise ‘a is inferior to b’ is not accepted.
(ii) If 0 < A(a � b) < 1, then the premise (a � b) is accepted with different

grades of satisfaction ranging from zero to one (excluding zero and one).
(iii) If A(a � b) ≥ 1, then the premise (a � b) is true.

Remark 2.2. If A(a � b) > 0, then for a maximization problem, interval b
is preferred to a and for a minimization problem, a is preferred to b in terms
of value.

Example 2.7. Let a = [0.10, 0.16] = 〈0.13, 0.03〉 and b = [0.11, 0.19] =
〈0.15, 0.04〉 be two interval returns. Then in order to find the maximizing
alternative, the investor can use the acceptability index as

A(a � b) =
m(b) −m(a)
w(b) + w(a)

=
0.15 − 0.13
0.04 + 0.03

= 0.286 .

Therefore, a is inferior to b, i.e., b is the maximizing alternative and the
grade of satisfaction is 0.286.
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2.2 Portfolio Selection Using Interval Numbers

We assume that investors allocate their wealth among n assets offering ran-
dom rate of returns. We first introduce the assumptions and notation as
follows.

2.2.1 Assumptions and Notation

r̃i: the expected rate of return of the i-th asset ,

xi: the proportion of the total funds invested in the i-th asset ,

yi: a binary variable indicating whether the i-th asset is contained in the
portfolio, where

yi =

⎧⎪⎪⎨⎪⎪⎩
1, if i-th asset is contained in the portfolio ,

0, otherwise ,

r12
i : the average performance of the i-th asset during a 12-month period ,

r36
i : the average performance of the i-th asset during a 36-month period ,

rit: the historical return of the i-th asset over the past period t ,

L̃i: the liquidity of the i-th asset ,

ui: the maximal fraction of the capital allocated to the i-th asset ,

li: the minimal fraction of the capital allocated to the i-th asset .
Operationally, formulating an asset portfolio requires an estimation of fu-

ture returns for the various assets. Traditionally, the arithmetic mean of his-
torical returns is considered as the expected return of an asset and thus, it
is obtained as a crisp value. However, in reality, asset prices and the returns
accruing therefrom are subject to a host of variables whose behavior can-
not be simply extrapolated on the basis of the past. Additionally, the use of
arithmetic mean of historical returns as the expected return, has two major
shortcomings. Firstly, if historical data for a long period of time are con-
sidered to obtain the arithmetic mean, the influence of the earlier historical
data is the same as that of the recent past data. However, recent past data
of an asset are more important than the earlier historical data. Secondly, if
the historical data of an asset are not adequate, due to lack of information,
the estimation of the statistical parameters would not be accurate. For these
reasons and to account for the uncertainty associated with estimation, the
expected return of an asset is better considered as an interval number in place
of the arithmetic mean of historical data. Some of the relevant references for
portfolio selection using interval numbers are [8, 33, 37, 53, 54, 77, 89, 100].

Here, we present multiobjective portfolio selection models with interval
coefficients. In order to determine the interval range of the expected return
of an asset, we may use company’s financial reports, asset’s historical data
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and experts’ judgements. To determine the range of change in expected return
of an asset, we consider here the following three factors [32].

(i) Arithmetic mean: Although, arithmetic mean of returns of an asset
should not be expressed as expected return directly, they are a good
approximation. Denote the arithmetic mean return of the i-th asset as
ai, which may be calculated using historical data.

(ii) Historical return tendency: If recent returns of an asset have been
increasing, the expected return of the asset is greater than the arith-
metic mean based on historical data. If recent returns of an asset have
been declining, the expected return of the asset is smaller than the
arithmetic mean based on historical data. Denote the historical return
tendency factor as hi. We can use the arithmetic mean of recent returns
of the i-th asset as hi.

(iii) Forecasted returns: The third factor influencing the expected return
of an asset is its estimated future return. Based on the publicly available
information about a company, if we believe that the returns of the asset
will increase then the expected return of the asset may be larger than
ai. On the other hand, if we think that returns of the asset will decrease
in future, the expected return of the asset will be smaller than the
arithmetic mean ai. Denote the forecast return factor as fi. Computation
of fi requires some forecasts based on the financial reports and experts’
judgements and experiences.

Based on the above three factors, we can derive lower and upper limits of the
expected return of the asset. We use the minimum of the three factors ai, hi

and fi as the lower limit of the expected return, while we use the maximum
values of the three factors ai, hi and fi as the upper limit of the expected
return of the i-th asset. Therefore, the expected return of the i-th asset may
be represented as the following interval number.

r̃i =
[
ri, ri

]
=
[
min{ai, hi, fi},max{ai, hi, fi}] .

We consider the following objective functions and constraints in the mul-
tiobjective portfolio selection problem.

2.2.2 Objective Functions

Return
The return of the portfolio is expressed as

f̃1(x) =
n∑

i=1

r̃ixi =

n∑

i=1

[
ri, ri

]
xi =

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

rixi,
n∑

i=1

rixi

⎤
⎥⎥⎥⎥⎥⎦ .
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Risk
For a given expected return, the investor penalizes negative semi-absolute
deviation which is defined as portfolio risk. The semi-absolute deviation of
return of the portfolio below the expected return over the past period t,
t = 1, 2, . . . ,T, can be expressed as

wt(x) =

∣∣∣∣∣∣∣
min

⎧⎪⎪⎨⎪⎪⎩0,
n∑

i=1

(rit − ri)xi

⎫⎪⎪⎬⎪⎪⎭

∣∣∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1
(rit − ri)xi

∣∣∣∣∣ +
n∑

i=1
(ri − rit)xi

2
.

Because the expected return of assets are considered as interval numbers, we
may consider the expected semi-absolute deviation of return of the portfolio
x = (x1, x2, . . . , xn) below the expected return as an interval number too. The
expected semi-absolute deviation of return of the portfolio below the expected
return thus becomes

w̃t(x) =

⎡
⎢⎢⎢⎢⎢⎣

∣∣∣∣∣∣∣
min

⎧⎪⎪⎨⎪⎪⎩0,
n∑

i=1

(rit − ri)xi

⎫⎪⎪⎬⎪⎪⎭

∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣
min

⎧⎪⎪⎨⎪⎪⎩0,
n∑

i=1

(rit − ri)xi

⎫⎪⎪⎬⎪⎪⎭

∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣∣
n∑

i=1
(rit − ri)xi

∣∣∣∣∣ +
n∑

i=1
(ri − rit)xi

2
,

∣∣∣∣∣
n∑

i=1
(rit − ri)xi

∣∣∣∣∣ +
n∑

i=1
(ri − rit)xi

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore, the expected semi-absolute deviation of return of the portfolio
x = (x1, x2, . . . , xn) below the expected return becomes

f̃2(x) = w̃(x) =
1
T

T∑

t=1

w̃t(x)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T∑

t=1

∣∣∣∣∣
n∑

i=1
(rit − ri)xi

∣∣∣∣∣ +
n∑

i=1
(ri − rit)xi

2T
,

T∑

t=1

∣∣∣∣∣
n∑

i=1
(rit − ri)xi

∣∣∣∣∣ +
n∑

i=1
(ri − rit)xi

2T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We use w̃(x) to measure portfolio risk.

Liquidity
For any asset, liquidity may be measured using the turnover rate as char-
acterized by the ratio of the average trading volume of the stocks traded in
the market and the trading volume of the tradable stock (i.e., shares held
by the public) corresponding to that asset. Because of incomplete informa-
tion, the turnover rates are only vague estimates, therefore, we may consider
the liquidity of the portfolio as an interval number too. The liquidity of the
portfolio is expressed as
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f̃3(x) =
n∑

i=1

L̃ixi =

n∑

i=1

[
Li, Li

]
xi =

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Lixi,
n∑

i=1

Lixi

⎤
⎥⎥⎥⎥⎥⎦ .

2.2.3 Constraints

The short term return of the portfolio is expressed as

n∑

i=1

r12
i xi ≥ rst ,

where r12
i =

1
12

12∑
t=1

rit, i = 1, 2, . . . , n and rst is the minimum desired level of

short term return indicated by the investor.

The long return of the portfolio is expressed as

n∑

i=1

r36
i xi ≥ rlt ,

where r36
i =

1
36

36∑
t=1

rit, i = 1, 2, . . . , n and rlt is the minimum desired level of

long term return indicated by the investor.
From the discussion on the various factors accounting for the rate of change

in expected return of the assets, it is clear that the short term return (compa-
rable with recent return hi) and long term return (comparable with arithmetic
mean ai) have a huge impact on the portfolio return. Hence, in addition to
the return objective function, it may be good to consider also the short and
long term returns separately as constraints in the model since many investors
may plan their asset allocation considering a minimum desired level of short
term return, long term return or both [8].

Capital budget constraint on the assets is expressed as

n∑

i=1

xi = 1 .

Maximal fraction of the capital that can be invested in a single asset is ex-
pressed as

xi ≤ ui yi , i = 1, 2, . . . , n .

Minimal fraction of the capital that can be invested in a single asset is ex-
pressed as

xi ≥ li yi , i = 1, 2, . . . , n .
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The maximal and minimal fractions of the capital allocated to the assets
in the portfolio depend upon a number of factors. For example, one may
consider the price or value of the asset relative to the average price or value of
all the assets in the chosen portfolio, the minimal lot size that can be traded
in the market, the past behavior of the price or volume of the asset, the
information available about the issuer of the asset and trends in the industry
of which it is a part. Thus, the investor considers many fundamental and
technical analysis factors that affect the company and the industry. Because
investors differ in their interpretation of the available information, they may
allocate the same capital budget differently. The constraints corresponding
to lower bounds li and upper bounds ui on the investment in individual
assets (0 ≤ li, ui ≤ 1, li ≤ ui , i = 1, 2, . . . , n) are included to avoid a large
number of very small investments (this is ensured by the lower bounds) and
to achieve sufficient diversification of the investments (this is ensured by
the upper bounds); however, the lower and upper bounds have to be chosen
carefully so that the portfolio selection problem does not become infeasible.

Number of assets held in a portfolio is expressed as

n∑

i=1

yi = h ,

where h is the number of assets that the investor chooses to include in the
portfolio. Of all the assets from a given set, the investor would pick up the
ones that are likely to yield the desired satisfaction of his/her preferences.
It is not necessary that all the assets from a given set may configure in the
portfolio as well. Investors would differ with respect to the number of assets
they can effectively manage in a portfolio.

No short selling of assets is expressed as

xi ≥ 0 , i = 1, 2, . . . , n .

2.2.4 The Decision Problem

The constrained multiobjective portfolio selection problem involving interval
coefficients is formulated as follows:

P(2.1) max f̃1(x) =

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

rixi,
n∑

i=1

rixi

⎤
⎥⎥⎥⎥⎥⎦

min f̃2(x) = w̃(x)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T∑

t=1

∣∣∣∣∣
n∑

i=1
(rit − ri)xi

∣∣∣∣∣ +
n∑

i=1
(ri − rit)xi

2T
,

T∑

t=1

∣∣∣∣∣
n∑

i=1
(rit − ri)xi

∣∣∣∣∣ +
n∑

i=1
(ri − rit)xi

2T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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max f̃3(x) =

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Lixi,
n∑

i=1

Lixi

⎤
⎥⎥⎥⎥⎥⎦

subject to
n∑

i=1

r12
i xi ≥ rst ,

n∑

i=1

r36
i xi ≥ rlt ,

n∑

i=1

xi = 1 ,

n∑

i=1

yi = h ,

xi ≤ ui yi , i = 1, 2, . . . , n ,
xi ≥ liyi , i = 1, 2, . . . , n ,
xi ≥ 0 , i = 1, 2, . . . , n ,
yi ∈ {0, 1} , i = 1, 2, . . . , n .

The absolute-valued function in problem P(2.1) can be eliminated by using
the transformation discussed in Chapter 1. The equivalent problem is formu-
lated as

P(2.2) max f̃1(x) =

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

rixi,
n∑

i=1

rixi

⎤
⎥⎥⎥⎥⎥⎦

min f̃2(p) = w̃(p) =

⎡
⎢⎢⎢⎢⎢⎣

1
T

T∑

t=1

p1
t ,

1
T

T∑

t=1

p2
t

⎤
⎥⎥⎥⎥⎥⎦

max f̃3(x) =

⎡
⎢⎢⎢⎢⎢⎣

n∑

i=1

Lixi,
n∑

i=1

Lixi

⎤
⎥⎥⎥⎥⎥⎦

subject to

p1
t +

n∑

i=1

(rit − ri)xi ≥ 0, t = 1, 2, . . . ,T ,

p2
t +

n∑

i=1

(rit − ri)xi ≥ 0, t = 1, 2, . . . ,T ,

n∑

i=1

r12
i xi ≥ rst ,

n∑

i=1

r36
i xi ≥ rlt ,
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n∑

i=1

xi = 1 ,

n∑

i=1

yi = h ,

xi ≤ ui yi , i = 1, 2, . . . , n ,
xi ≥ li yi , i = 1, 2, . . . , n ,
xi ≥ 0 , i = 1, 2, . . . , n ,
yi ∈ {0, 1} , i = 1, 2, . . . , n ,
p1

t ≥ 0 , t = 1, 2, . . . ,T ,
p2

t ≥ 0 , t = 1, 2, . . . ,T .

2.3 Solution Methodology

The problem P(2.2) is a multiobjective mixed integer interval linear pro-
gramming problem. The weighted-sum method is used to convert the multi-
objective problem into the following single objective optimization problem.

P(2.3) max
(
α · f̃1(x) − β · f̃2(x) + γ · f̃3(x)

)

subject to

p1
t +

n∑

i=1

(rit − ri)xi ≥ 0, t = 1, 2, . . . ,T ,

p2
t +

n∑

i=1

(rit − ri)xi ≥ 0, t = 1, 2, . . . ,T ,

n∑

i=1

r12
i xi ≥ rst ,

n∑

i=1

r36
i xi ≥ rlt ,

n∑

i=1

xi = 1 ,

n∑

i=1

yi = h ,

xi ≤ ui yi , i = 1, 2, . . . , n ,
xi ≥ li yi , i = 1, 2, . . . , n ,
xi ≥ 0 , i = 1, 2, . . . , n ,
yi ∈ {0, 1} , i = 1, 2, . . . , n ,
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p1
t ≥ 0 , t = 1, 2, . . . ,T ,

p2
t ≥ 0 , t = 1, 2, . . . ,T ,

where 0 < α, β, γ < 1. If x∗ is an optimal portfolio obtained by solving the
problem P(2.3) then x∗ is an efficient portfolio. It is worthy to mention that
the weighted-sum method [35] is one of the possible ways to solve the mul-
tiobjective optimization problem. There are other solution methods, e.g. ε-
constraint method [17], goal programming [18] and its variants-preemptive
(lexicographic goal programming) [55] and non-preemptive (weighted goal
programming) [93] for the purpose.
Let us denote

F(x) = α ·
⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

rixi

⎞
⎟⎟⎟⎟⎟⎠ − β ·

⎛
⎜⎜⎜⎜⎜⎝

1
T

T∑

t=1

p2
t

⎞
⎟⎟⎟⎟⎟⎠ + γ ·

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

Lixi

⎞
⎟⎟⎟⎟⎟⎠ , (2.1)

F(x) = α ·
⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

rixi

⎞
⎟⎟⎟⎟⎟⎠ − β ·

⎛
⎜⎜⎜⎜⎜⎝

1
T

T∑

t=1

p1
t

⎞
⎟⎟⎟⎟⎟⎠ + γ ·

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

Lixi

⎞
⎟⎟⎟⎟⎟⎠ . (2.2)

Then we have,

max
(
α · f̃1(x) − β · f̃2(x) + γ · f̃3(x)

)
= max

[
F(x), F(x)

]
.

Thus, the objective function of model P(2.3) becomes an interval
[
F(x), F(x)

]

satisfying equations (2.1)-(2.2) and the maximization may be interpreted as
an optimization problem defined on the basis of some order relations between
intervals. We now discuss optimization models for portfolio selection in re-
spect of three types of investment strategies, namely, conservative strategy,
aggressive strategy and combination strategy.

• Conservative strategy
The investor pursuing conservative strategy is more concerned about portfolio
risk in comparison to portfolio return and liquidity. In other words, he/she is
more concerned about reducing portfolio risk rather than enhancing portfolio
return and liquidity. Hence, the optimization model for such an investor type
is formulated as follows:

P(2.4) max F(x)
subject to

p2
t +

n∑

i=1

(rit − ri)xi ≥ 0, t = 1, 2, . . . ,T ,

n∑

i=1

r12
i xi ≥ rst ,



50 2 Portfolio Optimization with Interval Coefficients

n∑

i=1

r36
i xi ≥ rlt ,

n∑

i=1

xi = 1 ,

n∑

i=1

yi = h ,

xi ≤ ui yi , i = 1, 2, . . . , n ,
xi ≥ li yi , i = 1, 2, . . . , n ,
xi ≥ 0 , i = 1, 2, . . . , n ,
yi ∈ {0, 1} , i = 1, 2, . . . , n ,
p2

t ≥ 0 , t = 1, 2, . . . ,T .

• Aggressive strategy
The investor pursuing aggressive strategy aspires more for portfolio return
and liquidity in comparison to portfolio risk. In other words, he/she is more
concerned about increasing portfolio return and liquidity rather than reduc-
ing portfolio risk. Hence, the optimization model for such an investor type is
formulated as follows:

P(2.5) max F(x)
subject to

p1
t +

n∑

i=1

(rit − ri)xi ≥ 0, t = 1, 2, . . . ,T ,

n∑

i=1

r12
i xi ≥ rst ,

n∑

i=1

r36
i xi ≥ rlt ,

n∑

i=1

xi = 1 ,

n∑

i=1

yi = h ,

xi ≤ ui yi , i = 1, 2, . . . , n ,
xi ≥ li yi , i = 1, 2, . . . , n ,
xi ≥ 0 , i = 1, 2, . . . , n ,
yi ∈ {0, 1} , i = 1, 2, . . . , n ,
p1

t ≥ 0 , t = 1, 2, . . . ,T .
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• Combination strategy
In contrast to conservative and aggressive strategies, the combination strat-
egy is neither too conservative nor too aggressive. The investor aspires for a
balance in portfolio performance on return, risk and liquidity. In other words,
he/she is equally concerned about reducing portfolio risk as well as enhanc-
ing portfolio return and liquidity. Hence, the optimization model for such an
investor type is formulated as follows:

P(2.6) maxλ · F(x) + (1 − λ) · F(x)
subject to

p1
t +

n∑

i=1

(rit − ri)xi ≥ 0, t = 1, 2, . . . ,T ,

p2
t +

n∑

i=1

(rit − ri)xi ≥ 0, t = 1, 2, . . . ,T ,

n∑

i=1

r12
i xi ≥ rst ,

n∑

i=1

r36
i xi ≥ rlt ,

n∑

i=1

xi = 1 ,

n∑

i=1

yi = h ,

xi ≤ ui yi , i = 1, 2, . . . , n ,
xi ≥ li yi , i = 1, 2, . . . , n ,
xi ≥ 0 , i = 1, 2, . . . , n ,
yi ∈ {0, 1} , i = 1, 2, . . . , n ,
p1

t ≥ 0 , t = 1, 2, . . . ,T ,
p2

t ≥ 0 , t = 1, 2, . . . ,T ,
0 ≤ λ ≤ 1 ,

where λ is an index of pessimism ranging on a scale from 0 to 1. An λ = 0 in-
dicates that the investor follows the aggressive strategy while λ = 1 indicates
that the investor follows conservative strategy. In general, for combination
strategy we choose λ = 0.5, i.e., the investor strategy is neither too conserva-
tive nor too aggressive.

2.4 Numerical Illustration

We present the results of an empirical study done for the imaginary in-
vestors using the data set extracted from NSE, Mumbai, India in order to
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demonstrate the working of the portfolio selection models presented in this
chapter.

Ten assets listed on NSE have been randomly selected to form a popula-
tion from which we attempt to construct portfolios comprising 5 assets for
numerical experiments. It may be noted that it is not advisable to have very
few or very large number of assets in the portfolio so as to achieve diver-
sification. Generally, portfolio diversification by investors lies in the narrow
range of 3-10 assets. The historical data of the 10 assets from April 1, 2005
to March 31, 2008 in respect of daily asset price and daily turnover rates was
collected and the average returns based on the average of the averages, that
is, the average monthly returns were used to obtain historical rates of return.
We also use daily turnover rates to calculate the historical turnover rates,
during the 36-month period. Finally, following to the method described in
Section 2.2.1, we obtain the intervals in respect of return, risk and liquidity
of each asset. Table 2.1 provides the data corresponding to expected return,
risk and liquidity as interval numbers. The short term return and long term
return of the assets are provided in Table 2.2. Also, the returns for the entire
period of the study in respect of each asset are provided in Table 2.3.

Table 2.1 Input data of assets corresponding to expected return, risk and liquidity

Company Return Risk Liquidity

A B B Ltd. (ABL) [0.17499, 0.19278] [0.12267, 0.13233] [0.00032, 0.00050]
Ambuja Cements Ltd. (ACL) [0.14240, 0.14868] [0.12047, 0.12344] [0.00201, 0.00441]
Ashok Leyland Ltd. (ALL) [0.15058, 0.17240] [0.17243, 0.18333] [0.00359, 0.00706]
Bajaj Auto Ltd. (BAL) [0.17354, 0.24587] [0.11865, 0.15696] [0.00152, 0.00193]
C E S C Ltd. (CSL) [0.15108, 0.27477] [0.13568, 0.19649] [0.00413, 0.00424]
G A I L (India) Ltd. (GIL) [0.05292, 0.11579] [0.11835, 0.14229] [0.00266, 0.00532]
H D F C Bank Ltd. (HBL) [0.10273, 0.12124] [0.08701, 0.09540] [0.00132, 0.00170]
Hindustan Unilever Ltd. (HUL) [0.06188, 0.16679] [0.13386, 0.19557] [0.00168, 0.00192]
Reliance Industries Ltd. (RIL) [0.16188, 0.29220] [0.11311, 0.18762] [0.00672, 0.00724]
Voltas Ltd. (VOL) [0.30120, 0.41967] [0.16652, 0.23555] [0.00029, 0.00039]

Table 2.2 Input data of assets corresponding to short term return, long term
return, lower bound and upper bounds on allocation in each asset

Company Short term Long term Lower bound Upper bound
return return

ABL 0.17499 0.19278 0.08 0.3
ACL 0.14240 0.14868 0.08 0.3
ALL 0.17240 0.15058 0.08 0.3
BAL 0.24587 0.17354 0.08 0.3
CSL 0.15108 0.27477 0.08 0.3
GIL 0.05292 0.11579 0.08 0.3
HBL 0.10273 0.12072 0.08 0.3
HUL 0.16679 0.06188 0.08 0.3
RIL 0.29220 0.16188 0.08 0.3
VOL 0.41967 0.30120 0.08 0.3
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We now present the computational results for investors pursuing three
different investment strategies.

• Conservative strategy
Using the input data from Tables 2.1-2.3, rst = 0.165, rlt = 0.195, h = 5 and
α = β = γ = 1/3, we formulate the problem P(2.4) as follows:

max F(x) =
1
3
· (0.17499x1 + 0.14240x2 + 0.15058x3 + 0.17354x4 + 0.15108x5

+0.05292x6 + 0.10273x7 + 0.06188x8 + 0.16188x9 + 0.30120x10)

−1
3
·
( 1

36
· (p2

1 + p2
2 + p2

3 + p2
4 + p2

5 + p2
6 + p2

7 + p2
8 + p2

9 + p2
10 + p2

11+p2
12

+p2
13 + p2

14 + p2
15 + p2

16 + p2
17 + p2

18 + p2
19 + p2

20 + p2
21 + p2

22 + p2
23 + p2

24

+p2
25 + p2

26 + p2
27 + p2

28 + p2
29 + p2

30 + p2
31 + p2

32 + p2
33 + p2

34 + p2
35 + p2

36)
)

+
1
3
· (0.00032x1 + 0.00201x2 + 0.00359x3 + 0.00152x4 + 0.00413x5

+0.00266x6 + 0.00132x7 + 0.00168x8 + 0.00672x9 + 0.00029x10)
subject to

p2
1 + 0.09489x1 + 0.35665x2 + 0.34360x3 + 0.13913x4 + 1.51423x5 + 0.14554x6

+0.06209x7 + 0.28488x8 + 0.00380x9 + 0.69833x10 ≥ 0 ,
p2

2 − 0.10504x1 + 0.18551x2 + 0.01244x3 + 0.20252x4 + 0.01911x5 + 0.18195x6

+0.00295x7 − 0.28034x8 + 0.02844x9 − 0.10903x10 ≥ 0 ,
p2

3 + 0.57367x1 − 0.01772x2 + 0.47276x3 + 0.19736x4 + 0.21491x5 + 0.23711x6

+0.01199x7 + 0.16643x8 + 0.07909x9 + 0.13129x10 ≥ 0 ,
p2

4 − 0.17578x1 − 0.14135x2 + 0.36593x3 + 0.03313x4 − 0.46277x5 + 0.34854x6

−0.12024x7 − 0.18012x8 + 0.06713x9 − 0.63634x10 ≥ 0 ,
p2

5 + 0.17722x1 + 0.16680x2 + 0.44889x3 + 0.25026x4 + 2.08878x5 + 0.23324x6

+0.34650x7 − 0.32421x8 + 0.01876x9 + 0.04226x10 ≥ 0 ,
p2

6 − 0.17911x1 + 0.23265x2 + 0.04493x3 − 0.01287x4 + 0.82323x5 + 0.15954x6

−0.26124x7 − 0.08579x8 − 0.27854x9 + 0.54199x10 ≥ 0 ,
p2

7 + 0.58851x1 + 0.12615x2 + 0.50696x3 + 0.23930x4 + 0.00975x5 + 1.20550x6

+0.50457x7 + 0.28289x8 + 0.24328x9 − 0.31129x10 ≥ 0 ,
p2

8 − 0.15988x1 − 0.27352x2 − 0.93175x3 − 0.63522x4 − 0.43122x5 − 0.49418x6

−0.29576x7 − 0.42582x8 − 0.34478x9 − 1.06806x10 ≥ 0 ,
p2

9 − 0.06099x1 + 0.10060x2 + 0.33224x3 − 0.57337x4 − 0.54762x5 − 0.38472x6

+0.18412x7 − 0.43108x8 − 0.31613x9 − 0.20432x10 ≥ 0 ,
p2

10+0.26045x1 − 0.25836x2 − 0.26982x3 − 0.20296x4 − 0.53283x5 + 0.07614x6

−0.07092x7 − 0.53002x8 − 0.37769x9 − 0.47354x10 ≥ 0 ,
p2

11−0.21445x1 + 0.25165x2 + 0.02460x3 − 0.20187x4 + 0.09757x5 − 0.00546x6

−0.12557x7 − 0.45246x8 − 0.35287x9 − 0.07867x10 ≥ 0 ,
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p2
12−0.41264x1 − 0.80246x2 − 0.14511x3 − 0.63030x4 − 0.59960x5 − 0.14163x6

−0.81498x7 − 0.83349x8 − 1.01419x9 − 0.86031x10 ≥ 0 ,
p2

13−0.01911x1 − 0.10368x2 + 0.16993x3 − 0.18953x4 − 0.66777x5 + 0.16754x6

+0.06509x7 − 0.40379x8 − 0.27420x9 − 0.33367x10 ≥ 0 ,
p2

14−0.00988x1 − 0.19901x2 − 0.41756x3 − 0.37070x4 + 0.59362x5 + 0.36001x6

−0.07059x7 − 0.45195x8 + 0.13747x9 + 0.07904x10 ≥ 0 ,
p2

15+0.03658x1 + 0.39325x2 − 0.48337x3 + 0.16317x4 − 0.32896x5 − 0.29999x6

−0.18092x7 − 0.20324x8 − 0.37220x9 + 0.01000x10 ≥ 0 ,
p2

16−0.21945x1 − 0.01335x2 − 0.16373x3 + 0.08413x4 − 0.06577x5 + 0.07054x6

+0.18376x7 + 0.21854x8 − 0.00187x9 + 0.05499x10 ≥ 0 ,
p2

17−0.14342x1 − 0.09385x2 − 0.18046x3 − 0.45135x4 + 0.06394x5 − 0.03482x6

−0.01318x7 − 0.17647x8 − 0.21349x9 − 0.49516x10 ≥ 0 ,
p2

18+0.56422x1 + 0.10398x2 + 0.15627x3 − 0.08120x4 + 0.17690x5 + 0.26121x6

+0.48809x7 + 0.33354x8 − 0.36254x9 + 0.21566x10 ≥ 0 ,
p2

19−0.12633x1 + 0.14551x2 + 0.43341x3 + 0.13317x4 + 0.33814x5 + 0.13453x6

+0.03618x7 − 0.18324x8 − 0.17736x9 − 0.02548x10 ≥ 0 ,
p2

20−0.17633x1 + 0.22744x2 − 0.20498x3 − 0.50264x4 − 0.21993x5 − 0.08708x6

+0.16424x7 + 0.19095x8 − 0.29382x9 − 0.18516x10 ≥ 0 ,
p2

21+0.79170x1 − 0.14420x2 − 0.21757x3 − 0.25966x4 + 0.21661x5 + 0.05421x6

+0.02290x7 − 0.50610x8 − 0.13531x9 − 0.22623x10 ≥ 0 ,
p2

22−0.50278x1 − 0.51352x2 − 0.53530x3 − 0.08651x4 − 0.18444x5 − 0.51837x6

−0.35092x7 − 0.44002x8 − 0.34156x9 − 0.35032x10 ≥ 0 ,
p2

23−0.05378x1 + 0.02732x2 + 0.15293x3 − 0.23920x4 − 0.43243x5 − 0.23813x6

−0.17124x7 − 0.01312x8 − 0.39254x9 − 0.20734x10 ≥ 0 ,
p2

24+0.07496x1 + 0.14680x2 − 0.03079x3 + 0.17381x4 − 0.19928x5 + 0.04195x6

−0.06350x7 − 0.02453x8 − 0.20124x9 − 0.32000x10 ≥ 0 ,
p2

25−0.12078x1 − 0.22002x2 − 0.23673x3 + 0.21513x4 − 0.02143x5 + 0.10087x6

+0.44576x7 + 0.35754x8 + 0.33280x9 − 0.63301x10 ≥ 0 ,
p2

26+0.12754x1 + 0.14132x2 + 0.69663x3 − 0.08877x4 − 0.03347x5 − 0.13128x6

+0.19682x7 − 0.11034x8 + 0.00844x9 − 0.16935x10 ≥ 0 ,
p2

27+0.10432x1 − 0.05707x2 − 0.22885x3 − 0.31006x4 − 0.04702x5 − 0.00418x6

−0.39898x7 − 0.12711x8 − 0.20736x9 + 1.23065x10 ≥ 0 ,
p2

28+0.04322x1 + 0.41132x2 − 0.19873x3 + 0.37447x4 − 0.21543x5 + 0.35587x6

+0.11709x7 + 0.14721x8 + 0.04446x9 + 0.19899x10 ≥ 0 ,
p2

29−0.24439x1 − 0.46030x2 − 0.25595x3 − 0.20200x4 − 0.87509x5 − 0.46547x6

−0.50414x7 − 0.52518x8 − 0.41414x9 − 0.66871x10 ≥ 0 ,
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p2
30+0.31355x1 + 0.36232x2 + 0.26860x3 + 0.31180x4 + 0.29723x5 + 0.32587x6

+0.30609x7 + 0.24988x8 + 0.00513x9 + 0.39233x10 ≥ 0 ,
p2

31−0.21794x1 − 0.16578x2 − 0.09756x3 − 0.25264x4 − 0.17573x5 − 0.11934x6

−0.01124x7 + 0.09611x8 − 0.07382x9 − 0.10129x10 ≥ 0 ,
p2

32−0.00200x1 + 0.71206x2 + 0.12424x3 + 0.19938x4 + 0.10814x5 − 0.19292x6

−0.28982x7 + 0.44038x8 − 0.03806x9 + 0.26840x10 ≥ 0 ,
p2

33−0.16064x1 − 0.15190x2 + 0.66832x3 + 0.44521x4 − 0.04227x5 − 0.33258x6

−0.23088x7 + 0.65428x8 − 0.31256x9 + 0.32140x10 ≥ 0 ,
p2

34+0.26690x1 + 0.37228x2 + 0.00857x3 − 0.06232x4 + 0.51136x5 + 0.39388x6

+0.04392x7 + 0.20031x8 + 0.08393x9 + 0.29775x10 ≥ 0 ,
p2

35+0.03422x1 + 0.49298x2 + 0.70760x3 + 0.08413x4 − 0.43443x5 − 0.42979x6

+0.10909x7 + 0.08121x8 + 0.56946x9 − 0.42167x10 ≥ 0 ,
p2

36−1.07149x1 − 0.99997x2 − 1.04208x3 − 0.51296x4 − 0.55606x5 − 0.71676x6

−0.41995x7 − 0.83098x8 − 0.47672x9 − 0.40903x10 ≥ 0 ,
0.17499x1 + 0.14240x2 + 0.17240x3 + 0.24587x4 + 0.15108x5 + 0.05292x6

+0.10273x7 + 0.16679x8 + 0.29220x9 + 0.41967x10 ≥ 0.165 ,
0.19278x1 + 0.14868x2 + 0.15058x3 + 0.17354x4 + 0.27477x5 + 0.11579x6

+0.12072x7 + 0.06188x8 + 0.16188x9 + 0.30120x10 ≥ 0.195 ,
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 = 1 ,
y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 = 5 ,
x1 − 0.08y1 ≥ 0, x2 − 0.08y2 ≥ 0, x3 − 0.08y3 ≥ 0, x4 − 0.08y4 ≥ 0 ,
x5 − 0.08y5 ≥ 0, x6 − 0.08y6 ≥ 0, x7 − 0.08y7 ≥ 0, x8 − 0.08y8 ≥ 0 ,
x9 − 0.08y9 ≥ 0, x10 − 0.08y10 ≥ 0 ,
x1 − 0.3y1 ≤ 0, x2 − 0.3y2 ≤ 0, x3 − 0.3y3 ≤ 0, x4 − 0.3y4 ≤ 0 ,
x5 − 0.3y5 ≤ 0, x6 − 0.3y6 ≤ 0, x7 − 0.3y7 ≤ 0, x8 − 0.3y8 ≤ 0 ,
x9 − 0.3y9 ≤ 0, x10 − 0.3y10 ≤ 0 ,
xi ≥ 0 , i = 1, 2, . . . , 10 ,
yi ∈ {0, 1} , i = 1, 2, . . . , 10 ,
p2

t ≥ 0 , t = 1, 2, . . . , 36 .

Now, in order to obtain portfolio selection strategy, we solve the above
problem using the LINGO 12.0. The computational results summarized in
Table 2.4 are based on four different sets of values of α, β and γ indicating
the investor preferences in respect of return, risk and liquidity, respectively.
Table 2.5 presents proportions of the assets in the obtained portfolios. Note
that the intervals for return, risk and liquidity are constructed using equations
(2.1)-(2.2) at the obtained solutions.
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Table 2.4 Summary results of portfolio selection for conservative strategy

Return Risk Liquidity

Portfolio 1 [0.19913, 0.24879] [0.13183, 0.16554] [0.00089, 0.00162]
Portfolio 2 [0.20412, 0.26434] [0.13212, 0.16018] [0.00081, 0.00122]
Portfolio 3 [0.18405, 0.23126] [0.12327, 0.14952] [0.00083, 0.00124]
Portfolio 4 [0.18601, 0.22713] [0.12792, 0.15092] [0.00101, 0.00188]

Table 2.5 The proportions of the assets in the obtained portfolio using conserva-
tive strategy

Company

α β γ ABL ACL ALL BAL CSL

Portfolio 1 1/3 1/3 1/3 0.3 0.24 0.0 0.08 0.0
Portfolio 2 2/3 1/2 1/3 0.3 0.08 0.0 0.24 0.0
Portfolio 3 1/3 2/3 1/3 0.3 0.08 0.0 0.08 0.0
Portfolio 4 1/3 1/2 2/3 0.3 0.3 0.0 0.08 0.0

GIL HBL HUL RIL VOL

0 0.08 0.0 0.0 0.3
0 0.08 0.0 0.0 0.3
0 0.28402 0.0 0.0 0.25598
0 0.09810 0.0 0.0 0.2219

• Aggressive strategy
Using the input data from Tables 2.1-2.3, rst = 0.165, rlt = 0.195 and
h = 5, we obtain portfolio selection strategy by solving the problem P(2.5)
using the LINGO 12.0. The computational results summarized in Table 2.6
are based on four different sets of values of α, β and γ indicating the investor
preferences in respect of return, risk and liquidity, respectively. Table 2.7
presents proportions of the assets in the obtained portfolios.

Table 2.6 Summary results of portfolio selection for aggressive strategy

Return Risk Liquidity

Portfolio 1 [0.20489, 0.31122] [0.13448, 0.19360] [0.00301, 0.00329]
Portfolio 2 [0.20306, 0.31460] [0.13576, 0.19725] [0.00324, 0.00350]
Portfolio 3 [0.20088, 0.30425] [0.11740, 0.16759] [0.00290, 0.00323]
Portfolio 4 [0.15560, 0.24949] [0.13018, 0.18797] [0.00366, 0.00399]
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Table 2.7 The proportions of the assets in the obtained portfolio using aggressive
strategy

Company

α β γ ABL ACL ALL BAL CSL

Portfolio 1 1/3 1/3 1/3 0.1 0.0 0.0 0.14 0.16
Portfolio 2 2/3 1/3 1/3 0.08 0.0 0.0 0.08 0.24
Portfolio 3 1/3 2/3 1/3 0.0 0.0 0.0 0.24 0.08
Portfolio 4 1/10 1/2 2/3 0.0 0.0 0.0 0.08 0.28087

GIL HBL HUL RIL VOL

0.0 0.0 0.0 0.3 0.3
0.0 0.0 0.0 0.3 0.3
0.0 0.08 0.0 0.3 0.3
0.0 0.25913 0.0 0.3 0.08

• Combination strategy
Using the input data from Tables 2.1-2.3, rst = 0.165, rlt = 0.195, h = 5 and
α = β = γ = 1/3, we obtain portfolio selection strategy by solving the prob-
lem P(2.6) using the LINGO 12.0. The computational results summarized
in Table 2.8 are based on four different values of λ indicating the level of
pessimism in the preferences of the investor. Table 2.9 presents proportions
of the assets in the obtained portfolios.

Table 2.8 Summary results of portfolio selection for combination strategy

λ Return Risk Liquidity

Portfolio 1 0.1 [0.20306, 0.31460] [0.13576, 0.19725] [0.00324, 0.00350]
Portfolio 2 0.5 [0.20666, 0.30997] [0.13303, 0.19093] [0.00282, 0.00313]
Portfolio 3 0.7 [0.20876, 0.28120] [0.13368, 0.17440] [0.00132, 0.00175]
Portfolio 4 0.9 [0.20412, 0.26434] [0.13183, 0.16554] [0.00081, 0.00122]

A comparison of the solutions listed in Tables 2.4, 2.6 and 2.8 highlights
that the portfolio selection models discussed in this chapter are capable not
only in capturing the investor attitudes among investor types, but also in
capturing individual preferences among the investors within a given type.
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Table 2.9 The proportions of the assets in the obtained portfolio using combina-
tion strategy

Company

ABL ACL ALL BAL CSL

Portfolio 1 0.08 0.0 0.0 0.08 0.24
Portfolio 2 0.08 0.0 0.0 0.24 0.08
Portfolio 3 0.24 0.08 0.0 0.3 0.0
Portfolio 4 0.3 0.08 0.0 0.24 0.0

GIL HBL HUL RIL VOL

0.0 0.0 0.0 0.3 0.3
0.0 0.0 0.0 0.3 0.3
0.0 0.0 0.0 0.08 0.3
0.0 0.08 0.0 0.0 0.3

2.5 Comments

In this chapter, we have presented the following facts:

• In practise one needs to consider currently available information as well as
future scenarios for estimating return, risk and liquidity of assets. A well
constructed interval can be a good measure of uncertainty associated with
the behavior of asset prices.

• A framework of portfolio selection using the concept of interval coefficients
has been discussed.

• To capture investor attitude, three different models of portfolio selection
corresponding to conservative strategy, aggressive strategy and combina-
tion strategy have been discussed.

• Moreover, it has been shown that the portfolio selection models can gener-
ate satisfying portfolios using intervals that represent degrees of optimism
and pessimism in respect of portfolio parameters by performing numerical
experiments based on real-world data.



Chapter 3

Portfolio Optimization in Fuzzy
Environment

Abstract. In this chapter, we discuss a bi-objective fuzzy portfolio selec-
tion model that maximizes the portfolio return and minimizes the portfolio
risk. We use an fuzzy interactive approach to solve the model so that the
desired aspiration levels of the decision maker with regard to return and risk
objectives are achieved as closely as possible.

3.1 Fuzzy Decision Theory

The investor expectations regarding financial parameters on the basis of
which portfolio decisions are taken are often vaguely stated, e.g. ‘one would
expect a return significantly more than 30% ’ or ‘one would expect a risk sig-
nificantly lower than 15% ’. Constructing satisfactory portfolios on the basis
of such vague expressions poses a methodological challenge that can not be
met using crisp numbers or even the interval numbers. Under such situations
recourse to fuzzy set theory would be more useful; thus, there is a growing
reliance on fuzzy set theory for modeling portfolio selection problems. Fuzzy
set theory not only captures the vagueness and uncertainty but also provides
the flexibility in decision making by integrating the subjective preferences of
the investors and knowledge of the experts.

Zadeh [123] introduced the concept of fuzzy sets in 1965. Further, based on
this concept, Bellman and Zadeh [7] presented fuzzy decision theory. They
defined decision making in a fuzzy environment with a decision set which uni-
fies fuzzy goals and fuzzy constraints. In fuzzy set theory, unlike the classical
set theory, there is no sharp boundary between those elements that belong
to the set and those that do not.

Definition 3.1 (Fuzzy set). Let X be a universe whose generic element be
denoted by x. A fuzzy set A in X is a set of ordered pairs A = {(x, μA(x)) : x ∈
X}, where μA(x) is the membership function or grade of membership of x ∈ X
defined on the real interval [0,1].

P. Gupta et al., Fuzzy Portfolio Optimization, 61
Studies in Fuzziness and Soft Computing 316,
DOI: 10.1007/978-3-642-54652-5_3, © Springer-Verlag Berlin Heidelberg 2014
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The fuzzy set A in X is thus uniquely characterized by its membership
function μA(x), which associates with each element in X, a non-negative real
number whose value is finite and lies in the interval [0, 1]. The value of μA(x)
at x represents the ‘grade of membership’ of x in A. Thus, nearer the value
of μA(x) to 1, higher the grade of ‘belongingness’ of x in A.

Example 3.1. Let X = {2000, 4000, 6000, 8000} be the set of possible amounts
that an individual investor desires to invest in the financial market. Then the
fuzzy set A of ‘comfortable investments’ may be defined subjectively by an
investor according to his/her risk bearing capacity as

μ(x = 2000) = 1, μ(x = 4000) = 0.8, μ(x = 6000) = 0.6, μ(x = 8000) = 0.4

where μ(·) is the membership function of the fuzzy set A of X. The fuzzy set
can also be represented as A = {(2000, 1), (4000, 0.8), (6000, 0.6), (8000, 0.4)}.

Further, suppose that fuzzy sets are defined on a set of alternatives, X, to
a decision problem. Then a fuzzy goal G in X may be identified with a given
fuzzy set G in X. Similarly, one can define a fuzzy constraint C in X. Given the
fuzzy goals and fuzzy constraints, one can define the decision making situation
in a fuzzy environment as the intersection of goals and constraints. It may
be noted that in a fuzzy environment the goals and constraints are treated
similarly. More specifically, if we are given a space of decision alternatives
X, then the fuzzy decision D be defined as a fuzzy set in X given by D =
G ∩ C where ∩ is a conjunctive operator, which has different alternatives
and different meanings in practical situations. In terms of the membership
functions, the fuzzy decision can be formulated as

μD(x) = min(μG(x), μC(x)) , ∀ x ∈ X ,

where μG(x) and μC(x) are the membership functions of the fuzzy goal and the
fuzzy constraint, respectively. More generally, if there are m fuzzy goals Gi(i =
1, . . . ,m) and n fuzzy constraints Cj( j = 1, . . . , n), then the fuzzy decision is
defined by the following fuzzy set

D = {G1 ∩G2 ∩ . . . ∩ Gm} ∩ {C1 ∩ C2 ∩ . . . ∩ Cn}
and its membership function is characterized as

μD(x) = min(μG1(x), μG2(x), . . . , μGm(x), μC1(x), μC2(x), . . . , μCn (x)) , ∀ x ∈ X .

Bellman and Zadeh [7] proposed a maximizing decision x∗ defined by the
following non-fuzzy set

D∗ = {x∗ ∈ X|x∗ = argmax{μD(x)} = argmax{min(μG(x), μC(x))}} .
More specifically, when m fuzzy objectives and n fuzzy constraints are given,
the optimal decision may be obtained as follows:
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D∗ = {x∗ ∈ X|x∗ = argmax{μD(x)}
= argmax{min(μG1 (x), μG2(x), . . . , μGm(x), μC1(x), μC2(x), . . . , μCn (x))}} .

In other words, the maximizing decision x∗ may be defined as an alternative
with the highest membership in the fuzzy decision D, i.e.,

μD(x∗) = ∪
x∈X
μD(x) .

The maximizing decision x∗ may be considered to be an optimal decision
in a sense that it can be interpreted in different ways, depending on the
definitions of the operators ∩ and ∪. The operator ∩ may be extended to
various forms of conjunctive operators such as minimum operator, weighted
sum of the goals and the constraints, multiplication operator, mean value
operator, bounded product, Hamacher’s min operator. The operator ∪ can be
substituted by algebraic sum, bounded sum, Yager’s max operator. A detailed
discussion on these operators is presented in [74]. Among these operators, the
max-min operator, i.e., Bellman-Zadeh’s approach [7] is commonly used in
practice. The selection of the operators depend on the preferences of the
decision maker, the problem-context and semantic interpretation.

Example 3.2. Let us assume that the investor sets the goal for a portfolio
return performance indicator r(x) to ‘significantly more than a level r0 = 15%’.
This vague goal in respect of portfolio return can be modeled by means of its
linear membership function [128, 129] as follows:

μr(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if r(x) ≥ r1 ,
r(x)−r0
r1−r0
, if r0 < r(x) < r1 ,

0, if r(x) ≤ r0 ,

where r0 = 15% is the lower aspiration level and r1 = 30% is the upper as-
piration level of the investor in respect of portfolio return. The membership
function is shown in Fig. 3.1. The x-axis represents all possible values for r(x)
while the y-axis measures the overall degree of goal attainment. The investor
effectively rejects solutions for which the value of r(x) falls below r0 that cor-
responds to degree of satisfaction equal to 0. As r(x) increases, so does the
goal fulfilment and the investor is practically indifferent towards any solution
for which the value of r(x) exceeds r1. The portfolio returns between r0 and r1
are acceptable at the varying degrees of satisfaction between 0 and 1.

In a similar manner, one can formulate goal or constraint for a portfolio
risk performance indicator w(x) to ‘significantly less than a level w1 = 40%’.
This vague constraint in respect of portfolio risk can be modeled by means of
its membership function as follows:

μw(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if w(x) ≤ w0 ,
w1−w(x)
w1−w0

, if w0 < w(x) < w1 ,
0, if w(x) ≥ w1 ,
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Fig. 3.1 Graphical representation of membership function of portfolio return

where w1 = 40% is the upper aspiration level and w0 = 20% is the lower
aspiration level of the investor in respect of portfolio risk. The membership
function is shown in Fig. 3.2. The investor effectively rejects solutions for
which the value of w(x) falls above w1 corresponding to degree of satisfaction
equal to 0. As w(x) decreases, the goal fulfilment increases and the investor is
practically indifferent towards any solution for which the value of w(x) is less
than w0. The portfolio risks between w0 and w1 are acceptable at the varying
degrees of satisfaction between 0 and 1.
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Fig. 3.2 Graphical representation of membership function of portfolio risk

Now, using Bellman-Zadeh’s approach [7], the fuzzy decision D equals
r(x) ∩w(x), i.e.,

μD(x) = min(μr(x), μw(x)).

Fig. 3.3 depicts the fuzzy decision situation and identifies the optimal solution
x∗ corresponding to which portfolio return is r∗ and portfolio risk is w∗.
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Fig. 3.3 Graphical representation of fuzzy decision

3.2 Fuzzy Portfolio Selection Model

We consider a bi-objective portfolio optimization model based on mean-
variance framework proposed by Markowitz. The model simultaneously max-
imize the portfolio return ( f1(x)) and minimize the portfolio risk ( f2(x)) and
is formulated as follows:

P(3.1) max f1(x) =
n∑

i=1

rixi

min f2(x) =
n∑

i=1

n∑

j=1

σi jxixj

subject to
n∑

i=1

xi = 1 , (3.1)

xi ≥ 0 , i = 1, 2, . . . , n , (3.2)

where ri = E[Ri], σi j = E[(Ri − ri)(Rj − rj)], i.e., the covariance between assets
i and j. The problem P(3.1) is a quadratic programming problem.

Considering that in the real-world applications of portfolio selection, deci-
sions are often structured around vague aspirations about the desired portfo-
lio return and risk, we present a fuzzy framework for accommodating approx-
imate linguistic-type information in the portfolio selection problem. Some of
the relevant references for fuzzy framework of portfolio selection using mean-
variance model are [9, 100, 101, 119, 127]. We formulate a fuzzy bi-objective
portfolio selection problem based on vague aspiration levels of investors re-
garding portfolio return and risk to determine a satisfying portfolio selec-
tion strategy. It is assumed that investors indicate aspiration levels on the
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basis of their prior experience and knowledge and linear membership func-
tions are used to express such vague aspiration levels of the investors. A linear
membership function is most commonly used because it is simple and it is
defined by fixing two points: the upper and lower levels of acceptability (as
defined in Section 3.1 for fuzzy goal and fuzzy constraint).

The linear membership function of the goal of expected portfolio return is
defined as follows:

μ f1 (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if f1(x) ≥ f R
1 ,

f1(x)− f L
1

f R
1 − f L

1
, if f L

1 < f1(x) < f R
1 ,

0, if f1(x) ≤ f L
1 ,

where f L
1 is the worst lower bound (lower aspiration level) and f R

1 is the best
upper bound (upper aspiration level) of the portfolio return, see Fig. 3.4.
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Fig. 3.4 Graphical representation of goal of fuzzy portfolio return

Similarly, the membership function of the goal of portfolio risk is given by

μ f2(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if f2(x) ≤ f L
2 ,

f R
2 − f2(x)
f R
2 − f L

2
, if f L

2 < f2(x) < f R
2 ,

0, if f2(x) ≥ f R
2 ,

where f R
2 is the worst upper bound (upper aspiration level) and f L

2 is the best
lower bound (lower aspiration level) of the portfolio risk, see Fig. 3.5.

Following Bellman-Zadeh’s maximization approach [7] and using the above
defined fuzzy membership functions, the fuzzy bi-objective optimization
model for portfolio selection problem is formulated as follows:
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P(3.2) maxλ
subject to

λ ≤ μ f1 (x) ,
λ ≤ μ f2 (x) ,

n∑

i=1

xi = 1 ,

xi ≥ 0 , i = 1, 2, . . . , n ,
0 ≤ λ ≤ 1 ,

where λ is an auxiliary variable representing the grade of membership.
In real-world multiobjective portfolio selection problems (like problem

P(3.2)), the investor desires for a solution which is as close to his/her ex-
pectations as possible in terms of attainment level of the objectives. To find
such a ‘compromise solution’ we need to solve the model P(3.2) iteratively
in an interactive manner wherein the investor is initially required to spec-
ify the preferences and expectations. Based on these inputs the problem is
solved and the investor is provided with a possible solution. If the investor
is satisfied with the obtained solution, it is considered as ‘preferred compro-
mise solution’ and the process terminates; otherwise, the preferences need to
be modified in the light of the results obtained. This iterative procedure is
continued till a preferred compromise solution is obtained.
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Fig. 3.5 Graphical representation of goal of fuzzy portfolio risk

3.3 Solution Methodology

We now present a fuzzy interactive approach based on the idea discussed in
[1] to incorporate investor preferences for the attainment level of the objective
functions. This interactive approach follows a number of iterations that might
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be necessary for attaining the preferred compromise solution. In the initial
stage of determining the bounds (aspiration levels) in respect of the objective
functions, the involvement of the investor is not necessary. If the aspiration lev-
els are too tight, then there is no achievable solution and the investor is required
to relax the aspiration levels. On the other hand, if the aspiration levels are too
weak, then too many solutions may be generated and it becomes difficult for
the investor to identify the preferred compromise solution. To determine the
appropriate bounds, we solve the problem P(3.1) as a single-objective prob-
lem in respect of return and risk objective functions. The worst lower (upper)
bounds and best upper (lower) bounds are obtained by evaluating the objective
functions at both the solutions. These bounds are used to construct the mem-
bership functions for the problem P(3.2) and the obtained solution is provided
to the investor. If the investor is satisfied, the obtained solution is considered as
the preferred compromise solution and the solution process terminates. Oth-
erwise, both the objective functions are re-evaluated and the worst bound(s)
are modified for further possible improvement in the attainment level of the
objective(s). This approach has the following advantages.

(i) It helps in minimizing the information needed from the investor.
(ii) It does not require the investor to specify bounds (aspiration levels) in

respect of the objective functions.
(iii) It helps in reducing the number of iterations in the interactive approach

to reach the preferred compromise solution.
(iv) The investor has greater confidence in the solution obtained.

Stepwise Description of the Fuzzy Interactive Approach

The solution methodology of the fuzzy interactive approach for problem
P(3.2) consists of the following steps:

Step 1: Construct the mathematical model P(3.1).
Step 2: Solve the problem P(3.1) as a single-objective problem in respect

of return and risk objective functions. Mathematically,

For return objective function:
max f1(x), subject to constraints (3.1)-(3.2).

For risk objective function:
min f2(x), subject to constraints (3.1)-(3.2).

Let x1 and x2 denote the optimal solutions obtained by solving
the single-objective problems in respect of return and risk ob-
jective functions, respectively. If both the solutions, i.e., x1 =
x2 = (x1, x2, . . . , xn) are same, we obtain an efficient (preferred
compromise) solution and stop; otherwise, go to Step 3.
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Step 3: Evaluate the objective functions at the obtained solutions. De-
termine the worst lower bound ( f L

1 ) and best upper bound ( f R
1 )

for return objective; and, the best lower bound ( f L
2 ) and worst

upper bound ( f R
2 ) for risk objective. We obtain these bounds as

f R
1 = f1(x1),

f L
1 = f1(x2),

f L
2 = f2(x2),

f R
2 = f2(x1).

Step 4: Define the linear membership functions for return and risk.
Step 5: Develop the mathematical model P(3.2) and solve it. Present the

solution to the investor. If the investor accepts it then stop; oth-
erwise, re-evaluate both the objective functions. For the return
objective, compare the present worst lower bound with the new
objective value. If the new value is higher than the worst lower
bound, consider it as a new lower bound; otherwise, use the old
value as is. On the other hand, for the risk objective, compare
the present worst upper bound with the new objective value. If
the new value is lower than the worst upper bound, consider it
as a new upper bound; otherwise, use the old value as is. If there
are no changes in current bounds of both the objective functions
then stop; otherwise go to Step 4 and re-iterate the solution
process.

Fig. 3.6 depicts the flowchart of the fuzzy interactive approach.

Remark 3.1. The preferred compromise solution is the optimal solution of
problem P(3.2) and consequently this solution is an efficient solution (for
more details about this readers may refer to [78] and [113]).

3.4 Numerical Illustration

The model presented in Section 3.2 is empirically verified in this section with
reference to the data set extracted from NSE, Mumbai, India corresponding
to ten assets. Table 3.1 provides the data corresponding to expected return.
Table 3.2 provides the data corresponding to variance and covariance among
the 10 randomly selected assets.
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 Yes 

No 

    No 

Yes 

Develop the mathematical model P(3.1) 

Is there a preferred 
compromise 

solution? 

Evaluate the objective functions at both the obtained 
solutions. Determine ࢌ૚ࡸ, ,ࡾ૚ࢌ  ࡾ૛ࢌ and ࡸ૛ࢌ

Define the membership functions for return and risk 

Develop the mathematical model P(3.2) and solve it 

Is the investor 
satisfied with the 

obtained solution? 

Modify, if possible, the lower 
and upper bounds of the 
return and risk objective 

functions 

Start 

Stop 

Solve the problem P(3.1) as a single objective problem 
corresponding to return and risk 

Fig. 3.6 Flow chart of the fuzzy interactive approach

Table 3.1 Input data of assets corresponding to expected return

Company Return

A B B Ltd. (ABL) 0.19278
Alfa Laval (India) Ltd. (ALL) 0.13587
Bajaj Hindusthan Ltd. (BHL) 0.40086
Crompton Greaves Ltd. (CGL) 0.29892
Hero Honda Motors Ltd. (HHM) 0.14921
Hindustan Construction Co. Ltd. (HCC) 0.30107
Kotak Mahindra Bank Ltd. (KMB) 0.23818
Mahindra & Mahindra Ltd. (MML) 0.23114
Siemens Ltd. (SIL) 0.26122
Unitech Ltd. (UNL) 0.56246
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Portfolio Selection

In order to find an optimal asset allocation (i.e., preferred compromise solu-
tion), we use the interactive approach discussed in Section 3.3.

Step 1: We formulate the model P(3.1) using the input data from Tables
3.1-3.2 as follows:

max f1(x) = 0.19278x1 + 0.13587x2 + 0.40086x3 + 0.29892x4 + 0.14921x5

+0.30107x6 + 0.23818x7 + 0.23114x8 + 0.26122x9 + 0.56246x10

min f2(x) = 0.14010x1x1 + 0.08682x2x2 + 0.42326x3x3 + 0.23027x4x4

+0.07587x5x5 + 0.18957x6x6 + 0.16280x7x7 + 0.11891x8x8

+0.18988x9x9 + 0.58191x10x10 + 0.10078x1x2 + 0.18711x1x3

+0.19250x1x4 + 0.08633x1x5 + 0.12689x1x6 + 0.13209x1x7

+0.06919x1x8 + 0.21966x1x9 + 0.02598x1x10 + 0.20718x2x3

+0.15458x2x4 + 0.05175x2x5 + 0.14749x2x6 + 0.08768x2x7

+0.03790x2x8 + 0.14741x2x9 + 0.10203x2x10 + 0.35904x3x4

+0.09484x3x5 + 0.26475x3x6 + 0.05923x3x7 + 0.11967x3x8

+0.30827x3x9 + 0.08954x3x10 + 0.05233x4x5 + 0.18741x4x6

+0.02499x4x7 + 0.00701x4x8 + 0.23510x4x9 + 0.09450x4x10

+0.06021x5x6 + 0.11656x5x7 + 0.12379x5x8 + 0.11404x5x9

−0.03522x5x10 + 0.09074x6x7 + 0.05367x6x8 + 0.20890x6x9

−0.01913x6x10 + 0.18631x7x8 + 0.15498x7x9 + 0.14058x7x10

+0.10665x8x9 − 0.02910x8x10 + 0.13128x9x10

subject to

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 = 1 ,
xi ≥ 0 , i = 1, 2, . . . , 10 .

Step 2: To determine the worst lower (upper) bound and best upper (lower)
bound for return and risk objective functions, respectively, the above problem
is solved as a single-objective problem as follows:

For Return Objective Function

max f1(x) = 0.19278x1 + 0.13587x2 + 0.40086x3 + 0.29892x4 + 0.14921x5

+0.30107x6 + 0.23818x7 + 0.23114x8 + 0.26122x9 + 0.56246x10

subject to

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 = 1 ,
xi ≥ 0 , i = 1, 2, . . . , 10 .

The obtained solution (x1) using the LINGO 12.0 is provided in Table 3.3.
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For Risk Objective Function

min f2(x) = 0.14010x1x1 + 0.08682x2x2 + 0.42326x3x3 + 0.23027x4x4

+0.07587x5x5 + 0.18957x6x6 + 0.16280x7x7 + 0.11891x8x8

+0.18988x9x9 + 0.58191x10x10 + 0.10078x1x2 + 0.18711x1x3

+0.19250x1x4 + 0.08633x1x5 + 0.12689x1x6 + 0.13209x1x7

+0.06919x1x8 + 0.21966x1x9 + 0.02598x1x10 + 0.20718x2x3

+0.15458x2x4 + 0.05175x2x5 + 0.14749x2x6 + 0.08768x2x7

+0.03790x2x8 + 0.14741x2x9 + 0.10203x2x10 + 0.35904x3x4

+0.09484x3x5 + 0.26475x3x6 + 0.05923x3x7 + 0.11967x3x8

+0.30827x3x9 + 0.08954x3x10 + 0.05233x4x5 + 0.18741x4x6

+0.02499x4x7 + 0.00701x4x8 + 0.23510x4x9 + 0.09450x4x10

+0.06021x5x6 + 0.11656x5x7 + 0.12379x5x8 + 0.11404x5x9

−0.03522x5x10 + 0.09074x6x7 + 0.05367x6x8 + 0.20890x6x9

−0.01913x6x10 + 0.18631x7x8 + 0.15498x7x9 + 0.14058x7x10

+0.10665x8x9 − 0.02910x8x10 + 0.13128x9x10

subject to

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 = 1 ,
xi ≥ 0 , i = 1, 2, . . . , 10 .

The obtained solution (x2) is provided in Table 3.3.

Table 3.3 The proportions of the assets in the obtained portfolio corresponding
to single-objectives

Allocation

ABL ALL BHL CGL HHM

x1 0.0 0.0 0.0 0.0 0.0
x2 0.05151 0.29415 0.0 0.01321 0.38874

HCC KMB MML SIL UNL

0.0 0.0 0.0 0.0 1.0
0.03884 0.0 0.14241 0.0 0.07114

Step 3: We evaluate both the objective functions at the obtained solutions,
i.e., x1 and x2. The objective function values are provided in Table 3.4.
Now, the worst lower (upper) bound and best upper (lower) bound of both
the objective functions are obtained as follows:

0.19647 ≤ f1(x) ≤ 0.56246
0.04841 ≤ f2(x) ≤ 0.58191
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Table 3.4 Objective function values of return and risk at both obtained solutions

x1 x2

Return ( f1(x)) 0.56246 0.19647
Risk ( f2(x)) 0.58191 0.04841

Step 4: The membership functions for return and risk are constructed as
follows:

The linear membership function of the objective of expected portfolio return
is

μ f1(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if f1(x) ≥ 0.56246 ,
f1(x)−0.19647

0.56246−0.19647 , if 0.19647 < f1(x) < 0.56246 ,
0, if f1(x) ≤ 0.19647 .

The linear membership function of the objective of portfolio risk is

μ f2(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if f2(x) ≤ 0.04841 ,
0.58191− f2(x)

0.58191−0.04841 , if 0.04841 < f2(x) < 0.58191 ,
0, if f2(x) ≥ 0.58191 .

Step 5: We formulate the model P(3.2) as follows:

max λ
subject to

0.19278x1 + 0.13587x2 + 0.40086x3 + 0.29892x4 + 0.14921x5 + 0.30107x6

+0.23818x7 + 0.23114x8 + 0.26122x9 + 0.56246x10 − 0.36599λ ≥ 0.19647 ,
0.14010x1x1 + 0.08682x2x2 + 0.42326x3x3 + 0.23027x4x4

+0.07587x5x5 + 0.18957x6x6 + 0.16280x7x7 + 0.11891x8x8 + 0.18988x9x9

+0.58191x10x10 + 0.10078x1x2 + 0.18711x1x3 + 0.19250x1x4 + 0.08633x1x5

+0.12689x1x6 + 0.13209x1x7 + 0.06919x1x8 + 0.21966x1x9 + 0.02598x1x10

+0.20718x2x3 + 0.15458x2x4 + 0.05175x2x5 + 0.14749x2x6 + 0.08768x2x7

+0.03790x2x8 + 0.14741x2x9 + 0.10203x2x10 + 0.35904x3x4 + 0.09484x3x5

+0.26475x3x6 + 0.05923x3x7 + 0.11967x3x8 + 0.30827x3x9 + 0.08954x3x10

+0.05233x4x5 + 0.18741x4x6 + 0.02499x4x7 + 0.00701x4x8 + 0.23510x4x9

+0.09450x4x10 + 0.06021x5x6 + 0.11656x5x7 + 0.12379x5x8 + 0.11404x5x9

−0.03522x5x10 + 0.09074x6x7 + 0.05367x6x8 + 0.20890x6x9 − 0.01913x6x10

+0.18631x7x8 + 0.15498x7x9 + 0.14058x7x10 + 0.10665x8x9 − 0.02910x8x10

+0.13128x9x10 + 0.5335λ ≤ 0.58191 ,
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x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 = 1 ,
xi ≥ 0 , i = 1, 2, . . . , 10 ,
0 ≤ λ ≤ 1 .

The above problem is solved using the LINGO 12.0 and the computational
results are summarized in Table 3.5. Table 3.6 presents proportions of the
assets in the obtained portfolio.

Table 3.5 Summary results of portfolio selection

λ Return ( f1(x)) Risk ( f2(x))

0.70541 0.45464 0.20557

Table 3.6 The proportions of the assets in the obtained portfolio

Allocation

ABL ALL BHL CGL HHM

Portfolio 0.0 0.0 0.24646 0.0 0.0

HCC KMB MML SIL UNL

0.24659 0.0 0.01067 0.0 0.49628

Now, suppose the investor is not satisfied with the solution obtained and
wants to improve it further. As desired by the investor, an individual objec-
tive, i.e., return (risk) can be improved; however, due to the multiobjective
nature of the problem, the improvement in one objective can produce adverse
effects on other objective. Hence, depending upon investor preferences for both
the objectives, we can modify the obtained solution. In this process, the lower
(upper) bound and aspiration level of the selected objective function are mod-
ified. The fuzzy problem P(3.2) is resolved with the new parameters and this
process is re-iterated until the investor terminates the process.

An important issue at this stage that needs to be addressed is whether the
proposed model fit across investor types? In order to test this, let us consider
two cases.

• Case 1: Aggressive investor
Suppose the investor is not satisfied with the obtained portfolio presented in
Table 3.6. Since the investor follows aggressive strategy, the portfolio return
is improved at the cost of taking a higher risk level. To do so, as the obtained
portfolio return value (see Table 3.5) is higher than the worst lower bound, we
consider it as a new lower bound and no changes are made in the bounds of
the risk objective. The problem P(3.2) is solved with new parameters. Table
3.7 lists some sample preferred compromise solutions obtained by varying the
lower bound of the return objective.
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3.4 Numerical Illustration 77

The computational results presented in Table 3.7 highlight that if the
investor follows aggressive strategy, a higher level of expected return is ob-
tained, corresponding only to a higher risk level which is in sync with risk-
return trade-off principle. Further, it is worthy to mention that the obtained
portfolios provide the flexibility to the investor to choose the one that facil-
itate an effective risk-return trade-off. Fig. 3.7 shows risk-return trade-off of
the obtained portfolios.
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Fig. 3.7 Risk-return trade-off of the obtained portfolios presented in Table 3.7

The risk-return trade-off shown in Fig. 3.7 typically follows the diminishing-
return principle, i.e., the successive increments in return pursuant to the
assumption of higher level of risks get smaller and smaller. Thus, the com-
pensation for higher level of risks becomes smaller.

• Case 2: Conservative investor
Suppose the investor is not satisfied with the obtained portfolio presented in
Table 3.6. As the investor follows conservative strategy, the portfolio risk is
improved at the cost of taking a lower return level. To do so, we consider
the obtained portfolio risk value (see Table 3.5) as a new upper bound as it
is lower than the worst upper bound. Further, no changes are made in the
bounds of the return objective. The problem P(3.2) is solved with new param-
eters. Table 3.8 lists some sample preferred compromise solutions obtained
by varying the upper bound of the risk objective.
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3.5 Comments 79

The computational results presented in Table 3.8 highlight that if the
investor follows conservative strategy, a lower level of risk is obtained, cor-
responding to a lower return level which is in sync with risk-return trade-off
principle. Fig. 3.8 shows risk-return trade-off of the obtained portfolios.
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Fig. 3.8 Risk-return trade-off of the obtained portfolios presented in Table 3.8

It is clear from Fig. 3.8 that in terms of the diminishing-return principle,
the fall in expected return becomes successively smaller as the conservative
investor indicates successively lower levels of preferred risks.

3.5 Comments

In this chapter, we have presented the following facts:

• A bi-objective portfolio selection problem under fuzzy environment has
been discussed.

• Linear membership functions have been used to represent the vague aspi-
ration levels of investor.
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• An fuzzy interactive approach has been used to obtain the solution of the
fuzzy bi-objective portfolio selection model that meet the desired aspira-
tion levels of the investor as closely as possible.

• The computational results based on real-world data have been provided to
demonstrate that the solution approach is capable of generating the pre-
ferred compromise portfolio for general investor, according to the strategy
being followed, i.e., aggressive or conservative strategy.

• The interactive approach has two main advantages: (i) it controls the
search direction via updating lower (upper) bounds of both the objective
functions; and (ii) if the investor is not satisfied with any of the obtained
portfolios, several other portfolios can be generated by updating lower
(upper) bounds of both the objective functions.



Chapter 4

Possibilistic Programming Approaches
to Portfolio Optimization

Abstract. In this chapter, we describe possibilistic programming approaches
to portfolio optimization. First we briefly introduce the foundations of
possibility theory. Then we describe the portfolio selection problem with
fuzzy coefficients. The problem is a fuzzy counterpart of Markowitz model.
The classical possibilistic programming approaches are described. They are
the fractile optimization approach, the modality optimization approach and
the spread minimization approach. We show that the reduced problems be-
come simple linear programming problems and that the solutions obtained
by those approaches suggest concentrated investments or semi-concentrated
investments when fuzzy coefficients are non-interactive. To obtain diversified
investment solutions, regret-based possibilistic programming approach is pro-
posed. It is shown that the reduced problem is also an linear programming
problem and that the solution can be a diversified investment solution. As the
other way to obtain a diversified investment solution, three models to treat
the interaction among fuzzy coefficients are described. The necessity fractile
optimization approach and usual minimax regret approach are applied to
portfolio selection problems with interactive fuzzy coefficients. It is shown
that the reduced problems are solved by linear programming techniques and
that more diversified investment solutions are obtained due to the interaction
among fuzzy coefficients.

4.1 Possibility Theory

Possibility theory was originally proposed by Zadeh [125] in relation to fuzzy
sets. It has been developed as a theoretical foundation of fuzzy set manipu-
lations and as a complementary theory of probability [29].

Let A and B be crisp subsets of a universal set X and u an uncertain
variable which takes value in X. Under information ‘u is in A’, if A ∩ B � ∅,
we say that ‘u is in B’ is possible, and if A ⊆ B, we say that ‘u is in B’ is

P. Gupta et al., Fuzzy Portfolio Optimization, 81
Studies in Fuzziness and Soft Computing 316,
DOI: 10.1007/978-3-642-54652-5_4, © Springer-Verlag Berlin Heidelberg 2014
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necessary. A possibility measure Π and a necessity measure N are defined as
follows:

ΠA(B) =
{

1, if A ∩ B � ∅,
0, otherwise, (4.1)

NA(B) =
{

1, if A ⊆ B,
0, otherwise. (4.2)

In order to treat cases where A and B are generalized to fuzzy subsets of X,
necessity and possibility measures of equations (4.1) and (4.2) are extended
as follows:

Definition 4.1 (Possibility and necessity measures). Let u be an un-
certain variable. The possibility and necessity measures of an event ‘u is in a
fuzzy subset B’ under information ‘u is in a fuzzy subset A’ are defined as

ΠA(B) = sup
r∈X

min(μA(r), μB(r)), (4.3)

NA(B) = inf
r∈X

max(1 − μA(r), μB(r)), (4.4)

respectively. To consider possibility and necessity measures, we usually as-
sume the normality of A, i.e., ∃ r ∈ X; μA(r) = 1

Fig. 4.1 Possibility measure and necessity measure

Possibility and necessity measures are depicted in Fig. 4.1. The possibility
and necessity measures satisfy the properties shown in the following propo-
sitions and are established in [29].

Proposition 4.1. When A is normal, i.e., ∃ r ∈ X; μA(r) = 1, we have

NA(B) ≤ ΠA(B).
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Proof. Let r̄ ∈ X be a point such that μA(r̄) = 1. Then we obtain

NA(B) = inf
r∈X

max(1 − μA(r), μB(r)) ≤ max(1 − μA(r̄), μB(r̄))

= μB(r̄) = min(μA(r̄), μB(r̄)) ≤ sup
r∈X

min(μA(r), μB(r)) = ΠA(B)

��
Proposition 4.1 shows a fact that everything which is necessary is possible.
However, we do not have that NA(B) > 0 implies ΠA(B) = 1.

Proposition 4.2. We have

NA(B) = 1 −ΠA(Bc),

where Bc is the complementary set of fuzzy set B. It is defined by the following
membership function:

μBc (r) = 1 − μB(r), ∀r ∈ X.

Proof. We can prove it directly as

NA(B) = inf
r∈X

max(1 − μA(r), μB(r))

= 1 − sup
r∈X

min(μA(r), 1 − μB(r)) = 1 − sup
r∈X

min(μA(r), μBc(r)) = 1 −ΠA(Bc).

��
Proposition 4.2 shows the duality between possibility and necessity measures,
i.e., B is necessary if and only if not B is impossible.

Possibility and necessity measures can be represented by strong and weak
α-level sets, where a strong α-level set (A)α of fuzzy set A and a weak α-level
set [A]α of fuzzy set A are defined as follows for α ∈ R:

(A)α = {r ∈ X | μA(r) > α}, (4.5)

[A]α = {r ∈ X | μA(r) ≥ α}. (4.6)

We have the following propositions established in [56].

Proposition 4.3. We have

ΠA(B) > α ⇔ (A)α ∩ (B)α � ∅, (4.7)

NA(B) ≥ α ⇔ (A)1−α ⊆ [B]α. (4.8)
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Proof.

ΠA(B) > α ⇔ sup
r∈X

min(μA(r), μB(r)) > α,

⇔ ∃ r ∈ X;μA(r) > α, μB(r) > α⇔ (A)α ∩ (B)α � ∅.
NA(B) ≥ α ⇔ inf

r∈X
max(1 − μA(r), μB(r)) ≥ α,

⇔ (1 − μA(r) < α implies μB(r) ≥ α) ⇔ (A)1−α ⊆ [B]α.

��
From Proposition 4.3, we obtain

ΠA(B) = sup{α ∈ R | (A)α ∩ (B)α � ∅}
= sup{α ∈ R | [A]α ∩ [B]α � ∅},

NA(B) = sup{α ∈ R | (A)1−α ⊆ [B]α}
= sup{α ∈ R | [A]1−α ⊆ (B)α}.

However, we only have

ΠA(B) ≥ α ⇒ [A]α ∩ [B]α � ∅,
NA(B) ≥ α ⇐ [A]1−α ⊆ (B)α,

and the opposite entailments of these equations do not always satisfy.
The comparisons of closed α-level sets are more useful than those of un-

closed α-level sets in programming problems with fuzzy coefficients. Then,
we use the following propositions.

Proposition 4.4. If A and B have upper semi-continuous membership func-
tions and for any α ∈ (0, 1], [A]α or [B]α is bounded, we have

ΠA(B) ≥ α⇔ [A]α ∩ [B]α � ∅. (4.9)

Proof. When ΠA(B) = 0, equation (4.9) is obvious because we have [A]α = X
and [B]α = X for any α ≤ 0. Then, we assume ΠA(B) = β > 0. From the
assumptions of the proposition, we have [A]0.5β∩[B]0.5β is closed and bounded,
and min(μA, μB) is upper semi-continuous. Applying Weierstrass’s theorem,
we obtain

ΠA(B) ≥ α ⇔ sup
r∈X

min(μA(r), μB(r)) ≥ α,
⇔ sup

r∈[A]0.5β∩[B]0.5β⊂X
min(μA(r), μB(r)) ≥ α,

⇔ ∃r ∈ X;μA(r) ≥ α, μB(r) ≥ α⇔ [A]α ∩ [B]α � ∅.
��
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Proposition 4.5. When B has an upper semi-continuous membership func-
tion, we have

NA(B) ≥ α⇔ cl(A)1−α ⊆ [B]α,

where clD is a closure of set D ⊆ X.

Proof. It is trivial. ��
Let us consider a fuzzy set A defined in X1×X2, which shows a possible range
of variables u1 ∈ X1 and u2 ∈ X2. From the joint membership function μA :
X1×X2 → [0, 1], we define marginal membership functions μA[u1] : X1 → [0, 1]
and μA[u2] : X2 → [0, 1] by

μA[u1](r1) = sup
r2∈X2

μA(r1, r2),

μA[u2](r2) = sup
r1∈X1

μA(r1, r2).

In analogy to probability theory, we consider the following equation to define
conditional membership functions μA[u2 |u1] : X2 × X1 → [0, 1] and μA[u1 |u2] :
X1 × X2 → [0, 1]

μA(r1, r2) = min
(
μA[u1](r1), μA[u2 |u1](r2, r1)

)
= min

(
μA[u2](r2), μA[u1|u2](r1, r2)

)
.

(4.10)
Equation (4.10) was proposed by Hisdal [49] in possibility theory. Because
A shows a possible range of variables u1 ∈ X1 and u2 ∈ X2, μA can be seen
as a (joint) membership function. Accordingly, μA[u1] and μA[u2] can be seen
as marginal membership functions and μA[u2 |u1] and μA[u1 |u2] can be seen as
conditional membership functions.

The non-interaction and the possibilistic independence are defined as
follows.

Definition 4.2 (Non-interaction and possibilistic independence).
Variables u1 and u2 are said to be non-interactive if and only if the joint
membership function μA and marginal membership functions μA[u1] and μA[u2]
satisfy

μA(r1, r2) = min
(
μA[u1](r1), μA[u2](r2)

)
.

Variable u1 is said to be possibilistically independent of u2 if and only if the
conditional membership function μA[u1 |u2] equals to the marginal membership
function μA[u1] for any r2 ∈ X2, i.e.,

μA[u1 |u2](r1, r2) = μA[u1](r1), ∀r2 ∈ X2.

Similarly, variable u2 is said to be possibilistically independent of u1 if and
only if the conditional membership function μA[u2 |u1] equals to the marginal
membership function μA[u2] for any r1 ∈ X1, i.e.,

μA[u2 |u1](r1, r2) = μA[u2](r2), ∀r1 ∈ X1.
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(a) 3D graph of μA (b) equivalence lines of μA

Fig. 4.2 Joint membership function μA of non-interactive variables u1 and u2 (Non-
interaction)

Finally, variables u1 and u2 are said to be mutually independent if and only
if variable u1 is possibilistically independent of u2 and variable u2 is possi-
bilistically independent of u1.

An example of joint membership function μA : R2 → [0, 1] of non-
interactive variables u1 and u2 is depicted in Fig. 4.2.

We note that u1 and u2 are non-interactive when u1 is possibilistically
independent of u2. However, u1 is not always possibilistically independent
of u2 even when u1 and u2 are non-interactive. Similarly, u1 and u2 are
non-interactive when u2 is possibilistically independent of u1. However, u2
is not always possibilistically independent of u1 even when u1 and u2 are
non-interactive. Moreover, u2 is not always possibilistically independent
of u1 even when u1 is possibilistically independent of u2. Similarly, u1 is
not always possibilistically independent of u2 even when u2 is possibilisti-
cally independent of u1. These can be understood by solving μA(r1, r2) =
min
(
μA[u1](r1), μA[u2 |u1](r2, r1)

)
and μA(r1, r2) = min

(
μA[u2](r2), μA[u1 |u2](r1, r2)

)

with respect to μA[u2 |u1] and μA[u1 |u2](r1, r2), respectively, when u1 and u2 are
non-interactive. We obtain the following solutions:

μA[u2 |u1](r2, r1) =
{

[μA[u1](r1), 1] if μA[u1](r1) = μA(r1, r2),
μA[u2](r2) if μA[u1](r1) > μA(r1, r2),

μA[u1 |u2](r1, r2) =
{

[μA[u2](r2), 1] if μA[u2](r2) = μA(r1, r2),
μA[u1](r1) if μA[u2](r2) > μA(r1, r2).

Choosing any values in intervals [μA[u1](r1), 1] and [μA[u2](r2), 1], we obtain a
solution. Namely, we have other solutions than marginal membership func-
tions μA[u2](r2) and μA[u1](r1).

The concepts, joint, marginal and conditional membership functions can
be extended into a fuzzy set in

∏n
i=1 Xi = X1 × X2 × · · · × Xn.
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Given a function f :
∏n

i=1 Xi → Y, we can extend this function from a
fuzzy set in

∏n
i=1 Xi to a fuzzy set in Y by the following extension principle.

Definition 4.3 (Extension principle). Given a function f :
∏n

i=1 Xi → Y,
the image f (A) of fuzzy set A ⊆ ∏n

i=1 Xi is a fuzzy set with the following
membership function:

μ f (A)(y) =

⎧⎪⎪⎨⎪⎪⎩
sup

r:y= f (r)
μA(r), if ∃ r, y = f (r),

0, otherwise.

In order to describe briefly the properties of the extension principle given
by Definition 4.3, we assume Xi = R, i = 1, 2, . . . , n and Y = R. For strong
and weak α-level sets we have the following property:

( f (A))α = f ((A)α), ∀α ∈ [0, 1), (4.11)

[ f (A)]α ⊇ f ([A]α), ∀α ∈ (0, 1], (4.12)

where we define f (S) = { f (r) | r ∈ S} for a crisp set S ⊆ Rn.
In equations (4.11) and (4.12), the left-hand sides are strong and weak

α-level sets of fuzzy set f (A), the function image of fuzzy set A, while the
right-hand sides are the function images of strong and weak α-level sets of
A. Equation (4.11) implies that the strong α-level set of the function image
of fuzzy set A equals to the function image of strong α-level set of A. On the
contrary, the similar result cannot always be obtained for any weak α-level
set as shown in (4.12). The only result we have is that the weak α-level set of
the function image of fuzzy set A include the function image of weak α-level
set of A.

However, when f is continuous, we have equality in equation (4.12) for a
special fuzzy set A as shown in the following theorem [28].

Theorem 4.1. Let f : Rn → R be a continuous function. When the weak
α-level sets of A, [A]α, ∀α ∈ (0, 1] are closed, convex and bounded, we have

[ f (A)]α = f ([A]α), ∀α ∈ (0, 1].

Proof. We prove only [ f (A)]α ⊆ f ([A]α) for an arbitrary α ∈ (0, 1], because of
equation (4.12). Let y ∈ [ f (A)]α. Then, μ f (A)(y) ≥ α > 0. We have

μ f (A)(y) = sup
r:y= f (r)

μA(r) = sup
r∈{r|y= f (r)}∩[A]0.5α

μA(r) ≥ α. (4.13)

Because f is continuous and [A]0.5α is closed and bounded, the set {r | y =
f (r)}∩[A]0.5α is closed and bounded. Moreover, [A]α, ∀α ∈ (0, 1] are closed and
bounded if and only if μA is upper semi-continuous. Applying Weierstrass’s
theorem, from (equation 4.13), we obtain

∃ r; y = f (r) and r ∈ [A]α
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This implies y ∈ f ([A]α).
Hence, we obtain [ f (A)]α ⊆ f ([A]α). ��

Let us consider a case where the membership function μA of A ⊆ Rn is the
joint membership function of n non-interactive variables ui, i = 1, 2, . . . , n. Let
μAi be the marginal membership function on ui and Ai be fuzzy set defined
by μAi (i = 1, 2, . . . , n). We may apply the following corollary:

Corollary 4.1. Consider a fuzzy set A ⊆ Rn defined by membership function

μA(r1, r2, . . . , rn) = min
(
μA1(r1), μA2(r2), . . . , μAn(rn)

)
,

where μAi is the membership function of Ai ⊆ R (i = 1, 2, . . . , n). When the
weak α-level sets [Ai]α, α ∈ (0, 1] of Ai are closed and bounded intervals for
i = 1, 2, . . . , n, we have

[ f (A)]α = f ([A1]α, [A2]α, . . . , [An]α) , ∀α ∈ (0, 1].

Especially, when f is a weighted sum, i.e., f (r1, r2, . . . , rn) =
∑n

i=1 wiri and
when [Ai]α, α ∈ (0, 1] are closed and bounded intervals [aL

i (α), aR
j (α)] for i =

1, 2, . . . , n, we obtain

[ f (A)]α = [ f L(α), f R(α)], ∀α ∈ [0, 1],

where f L : (0, 1] → R and f R : (0, 1] → R are defined by

f L(α) =
∑

i:wi≥0

wiaL
i (α) +

∑

i:wi<0

wiaR
i (α),

f R(α) =
∑

i:wi≥0

wiaR
i (α) +

∑

i:wi<0

wiaL
i (α).

We define fuzzy numbers as follows.

Definition 4.4 (Fuzzy number). A fuzzy set A of real line R is said to be
a fuzzy number if and only if A satisfies the following four requirements:

(i) A is normal, i.e., ∃ r ∈ R; μA(r) = 1, or equivalently, [A]1 � ∅
(ii) A is convex, i.e., μA is a quasi-concave function (∀κ ∈ [0, 1], ∀r1, r2 ∈ R;
μA(κr1 + (1−κ)r2) ≥ min(μA(r1), μA(r2)), or equivalently, [A]α, ∀α ∈ (0, 1]
is convex

(iii) A has an upper semi-continuous membership function μA, or equiva-
lently, [A]α, ∀α ∈ (0, 1] is closed

(iv) A is bounded, i.e., limr→+∞ μA(r) = limr→−∞ μA(r) = 0, or equivalently,
[A]α, ∀α ∈ (0, 1] is bounded

For a continuous function values of fuzzy numbers, we can apply
Theorem 4.1.
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4.2 Portfolio Selection Using Non-interactive
Coefficients

The Markowitz model [91] is famous for portfolio selection. In this model, an
expected return rate of a bond is treated as a random variable. Stochastic
programming is applied so that the solution is obtained by minimizing the
variance of the total expected return rate under the constraint that the mean
of the total expected return rate is equal to a predetermined value. This model
yields a diversified investment solution unless the expected return rates are
completely positively dependent on each other. In the traditional portfolio
theory, a diversified investment has been often regarded as a good policy to
reduce the risk.

Possibilistic programming is a known similar approach to stochastic pro-
gramming; therefore, an application of possibilistic programming to port-
folio selection is conceivable. In possibilistic programming approaches, the
expected return rates are not treated as random variables but as variables
whose possible ranges are given by fuzzy numbers. Application of possibilistic
programming to portfolio selection may have a two-fold advantage [59]:

(i) The knowledge of the expert can be easily used for the estimation of
the return rates

(ii) The reduced problem is more tractable than that of the stochastic pro-
gramming approach

However, because classical possibilistic programming approaches have been
developed under the implicit assumption that all uncertain variables are non-
interactive one and their applications to the portfolio selection do not yield
diversified investments. In Section 4.2.2, we observe the tractability of the re-
duced problems of possibilistic programming approaches and also that their
solutions are not diversified investments. In Section 4.2.3 considering how an
optimization model yields a diversified investment solution, a novel possibilis-
tic programming approach to the portfolio selection is shown. This approach
is based on regret which the decision maker may undertake. More concretely,
a minimax regret approach to the possibilistic portfolio selection is discussed.
It is shown that a diversified investment solution is obtained by this approach
even if uncertain variables are non-interactive. In Section 4.2.4 some exam-
ples are given in order to compare the solutions obtained by the classical and
novel approaches.

4.2.1 Possibilistic Portfolio Selection Problem

When rate of return of all assets are known exactly, a portfolio selection
problem can be formulated as
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P(4.1) max cTx
subject to

eTx = 1 ,
x ≥ 0 ,

where c = (c1, c2, . . . , cn)T, x = (x1, x2, . . . , xn)T and e = (1, 1, . . . , 1)T. The
component ci represents the rate of return of the i-th asset and xi represent
the proportion of the total funds invested in the i-th asset. Thus, the problem
is maximizing the total return rate. An optimal solution can be obtained
easily as shown in the following theorem.

Theorem 4.2. An optimal solution to problem P(4.1) is a concentrated in-
vestment on an asset which have the maximum rate of return. Namely, a
solution xi∗ = 1, xi = 0, ∀i � i∗ where ci∗ ≥ ci, i = 1, 2, . . . , n is an optimal
solution to problem P(4.1).

Proof. Trivial. ��
However, in the real setting, one can seldom obtain the return rate without
any uncertainty. Thus, the decision maker should make decisions under un-
certainty. Such an uncertainty has been treated as a random variable so far.
The problem has been formulated as the following stochastic programming
problem:

P(4.2) max CTx
subject to

eTx = 1 ,
x ≥ 0 ,

where C = (C1,C2, . . . ,Cn)T is a random variable vector obeying a multivari-
ate probability distribution which have a mean vector m and a covariance
matrix V. To such a problem, Markowitz [91] proposed the following model
to determine the investment rates x:

P(4.3) min xTVx

subject to

cTx ≥ z0 ,

eTx = 1 ,
x ≥ 0 ,

where z0 is a predetermined desirable expected return rate. In problem P(4.3),
equality constraint cTx = z0 of the original Markowitz model is replaced
with inequality constraint cTx ≥ z0. This replacement enables the model
to generate a suitable solution even for an underestimated expected return
rate z0.
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To formulate problem P(4.3), we need to estimate the probability distribu-
tion, strictly speaking, a mean vector c and a covariance matrix V. This is not
an easy task when the number of assets is large. Therefore, several simplified
methods, sacrificing generality, have been proposed. Moreover, it is difficult
to reflect the unquantifiable factors such as the knowledge of experts, the
trend of public opinion, and so on. Furthermore, even though the probability
distribution can be estimated, there is no guarantee that the return rates
truly obey it.

The variation range of an uncertain return rate can be represented by
a fuzzy number other than a probability distribution. In this approach, al-
though the uncertain values are estimated substantially, the unquantifiable
factors such as the knowledge of experts can be reflected easily. Then, it may
be worthwhile to introduce fuzzy numbers to the portfolio selection problem.

Treating each return rate as a variable γi whose variation range is repre-
sented by a fuzzy number Ci, we have the following portfolio selection problem
with fuzzy numbers:

P(4.4) max γTx
subject to

eTx = 1 ,
x ≥ 0 ,

where γ = (γ1, γ2, . . . , γn)T is a variable vector whose variation range is
represented by an n-dimensional fuzzy set C. An easiest way to obtain n-
dimensional fuzzy set C is to define it with non-interaction assumption by

μC(c) = min
i=1,2,...,n

μCi(ci), (4.14)

where μC is the membership function of C and μCi is the membership function
of the variation range Ci of the return rate γi of the i-th asset (i = 1, 2, . . . , n).
Namely, we assume that γi, i = 1, 2, . . . , n are non-interactive one another. In
this section, we consider C defined by the membership function of equation
(4.14). For the sake of simplicity, we assume that μC is upper semi-continuous,
in other words, each μCi is upper semi-continuous. Moreover, we assume

lim
ci→−∞

μCi (ci) = lim
ci→+∞μCi(ci) = 0, i = 1, 2, . . . , n.

By these assumptions, [Ci]α, α ∈ (0, 1] become closed and bounded intervals.

4.2.2 The Classical Possibilistic Programming
Approaches

Various approaches have been proposed to a possibilistic programming prob-
lem. In this section, we apply major possibilistic programming approaches
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[57, 58, 59] to the portfolio selection problem P(4.4) with fuzzy numbers. We
assume that the decision maker’s attitude is uncertainty (risk) averse [56].
From this point of view, proper possibilistic approaches are introduced.

• Fractile optimization approach
Given an appropriate level α0 ∈ (0, 1], problem P(4.4) is formulated so as to
maximize a return rate z under a constraint that a necessity measure of the
event that the objective function value is not less than z is greater than or
equal to α0:

P(4.5) max z

subject to

NC({c | cTx ≥ z}) ≥ α0 ,

eTx = 1 ,
x ≥ 0 ,

where NC is a necessity measure under a possible range C of rate of return
of assets. From the definition of the necessity measure NC, NC({c | cTx ≥ z})
shows a necessity degree to what extent the objective function value is not
less than z. It is represented as

NC({c | cTx ≥ z}) = inf
c

cTx<z

(
1 − μC(c)

)

= inf
y<z

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 − sup

c
cTx=y

μC(c)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= inf
y<z

(
1 − μCTx(y)

)
= NCTx([z,+∞)), (4.15)

where we define fuzzy set CTx by the extension principle, i.e., the membership
function of CTx is defined by

μCTx(y) = sup
c

cTx=y

μC(c).

Problem P(4.5) is called a necessity fractile optimization model because z
corresponds to a fractile of probability distribution where the probability
measure is replaced with a necessity measure.

Applying Proposition 4.5, we obtain

NC({c | cTx ≥ z}) ≥ α0 ⇔ NCTx((−∞, z]) ≥ α0 ⇔ cl(CTx)1−α0 ⊆ (−∞, z]. (4.16)
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Under the non-interaction equation (4.14) and the non-negativity of x,
similar to Corollary 4.1, we have

cl(CTx)1−α0 =
[
cL(1 − α0)

T
x, cR(1 − α0)

T
x
]
, (4.17)

where cL(·) = (cL
1 (·), cL

2 (·), . . . cL
n(·))T, cR(·) = (cR

1 (·), cR
2 (·), . . . cR

n (·))T and

cL
i (α) = inf{q | μCi (q) > α},

cR
i (α) = sup{q | μCi (q) > α}.

Then, from equation (4.16), problem P(4.5) is reduced to the following liner
programming problem [58]:

P(4.6) max cL(1 − α0)
T
x

subject to

eTx = 1 ,
x ≥ 0 .

• Modality optimization approach
Given a target value z0, problem P(4.4) is formulated so as to maximize a
necessity measure of the event that the objective function value is not less
than z0:

P(4.7) max NC({c | cTx ≥ z0})
subject to

eTx = 1 ,
x ≥ 0 .

This problem is called a necessity measure optimization model.
Because problem P(4.7) is equivalent to

P(4.8) max α
subject to

NC({c | cTx ≥ z0}) ≥ α ,
eTx = 1 ,
x ≥ 0 .

From equations (4.16) and (4.17), the above problem reduces to the fol-
lowing non-linear programming problem [58]:
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P(4.9) max α
subject to

cL(1 − α)
T
x ≥ z0 ,

eTx = 1 ,
x ≥ 0 .

When μCi(ci), i = 1, 2, . . . , n are expressed by

μCi (ci) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L

⎛
⎜⎜⎜⎜⎝

c̄L
i − ci

sL
i

⎞
⎟⎟⎟⎟⎠ if ci < c̄L

i ,

1 if c̄L
i ≤ ci ≤ c̄R

i ,

Ri

⎛
⎜⎜⎜⎜⎝

ci − c̄R
i

sR
i

⎞
⎟⎟⎟⎟⎠ if ci > c̄R

i ,

where c̄L
i , c̄R

i , sL
i > 0 and sR

i > 0 are constants and L : [0,+∞) → [0, 1] and
Ri : [0,+∞) → [0, 1] are reference functions such that (i) L(0) = Ri(0) = 1,
(ii) L and Ri are upper semi-continuous and non-increasing functions, and
(iii) limr→+∞ L(r) = limr→+∞ Ri(r) = 0. We note that L are common for all Ci,
i = 1, 2, . . . , n while Ri may depend on Ci.

For α ∈ [0, 1] we define

L∗(α) =
{

sup{r ∈ [0,+∞) | L(r) > α}, if α < 1,
0, if α = 1. (4.18)

We obtain
cL

i (α) = c̄L
i − L∗(α)sL

i .

Then because L∗(·) is non-increasing, problem P(4.9) is reduced to

P(4.10) max L∗(1 − α)
subject to

(c̄L)Tx − L∗(1 − α)(sL)Tx ≥ z0 ,

eTx = 1 ,
x ≥ 0 .

Finally, the above problem reduces to the following linear fractional pro-
gramming problem:

P(4.11) max
(c̄L)Tx − z0

(sL)Tx
subject to

eTx = 1 ,
x ≥ 0 .
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As is known in the literature, the solution to problem P(4.11) can be
obtained by solving the following linear programming problem:

P(4.12) max (c̄L)Ty − z0t

subject to

(sL)Ty = 1 ,
eTy = t ,

y ≥ 0 ,
t ≥ 0 .

Let (ŷ, t̂) be an optimal solution of problem P(4.12), then the solution to
problem P(4.11) is obtained as x̂ = ŷ/t̂.

• Spread minimization approach
Define a representative vector ĉ of fuzzy set C ⊆ Rn. Given α0 ∈ (0, 1] and z0,
the width of the α0-level set [CTx]α0 = {y | μCTx(y) ≥ α0} of fuzzy set CTx can
be minimized under the constraint ĉTx ≥ z0. Problem P(4.4) is formulated as

P(4.13) min w

subject to

max
yR,yL∈[Cxt]α0

(yR − yL) ≤ w ,

ĉTx ≥ z0 ,

eTx = 1 ,
tx ≥ 0 .

and reduced to the following linear programming problem [58]:

P(4.14) min (cR(α0)
T − cL(α0)

T
)x

subject to

ĉxt ≥ z0 ,

eTx = 1 ,
x ≥ 0 ,

where cL(·) = (c1L(·), c2L(·), . . . , cnL(·))T, cR(·) = (c1R(·), c2R(·), . . . , cnR(·))T and

ciL(α) = inf{q | μCi (q) ≥ α},
ciR(α) = sup{q | μCi(q) ≥ α}.

Since the variance of a probability distribution corresponds to the spread
of a fuzzy set, this model can be seen as a counterpart of the Markowitz
model.
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• Classical fuzzy programming approach

We have the following theorem.

Theorem 4.3. A concentrated investment solution such that xi = 1 for some
i ∈ {1, 2, . . . , n} is an optimal solution to problem P(4.6). The same assertion
is valid for problem P(4.9). A semi-concentrated investment solution such
that xi + xj = 1 for some i, j ∈ {1, 2, . . . , n} is an optimal solution to problem
P(4.14).

Proof. The first and third assertion of this theorem are obvious when taking
into account the number of constraints excluding non-negativity constraints
of the problem. Indeed, problem P(4.6) is a linear programming problem with
one constraint and problem P(4.14) is a linear programming problem with two
constraints. Since a linear programming problem can be solved by the sim-
plex method, problems P(4.6) and P(4.14) have one and two basic variables,
respectively. Hence concentrated and semi-concentrated investment solutions
are optimal to problems P(4.6) and P(4.14), respectively. Now, we prove the
second assertion. Let (x̂, α̂) be an optimal solution to problem P(4.9). Con-
sider an optimal solution x∗ to a linear programming problem,

P(4.15) max cL(1 − α̂)
T
x

subject to

eTx = 1 ,
x ≥ 0 .

The solution (x∗, α̂) is also an optimal solution to problem P(4.9). By the
same way of the proof of the first and second assertions, an optimal solution
to problem P(4.15) is a concentrated investment solution. ��
Theorem 4.3 shows that if each of problems P(4.6), P(4.9) and P(4.14) has
a unique solution, no diversified investment solution is obtained. Moreover,
when those problems are solved by the simplex method, the conventional
possibilistic programming approaches to the portfolio selection do not yield
a solution compatible with the traditional portfolio theory.

4.2.3 Regret-Based Possibilistic Programming
Approach

Inuiguchi and Tanino [63] discussed why a diversified investment solution
under independent return rate assumption is preferred by a decision maker
who has an uncertainty (risk) averse attitude. They pointed out the following
two reasons:

(a) Property of a measure. Consider the event that the total return rate
is not less than a certain value. When the measure of the event under
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a diversified investment solution is greater than that of the event under
a concentrated investment solution, the diversified investment solution
should be preferred. In the other words, the uncertainty is decreased by
distribution to many assets.

(b) The worst regret criterion. Suppose that the investor has invested his
money in an asset according to a concentrated investment solution. If the
rate of return of another asset becomes better than that of the invested
asset as a result, the investor may feel a regret. At the decision making
stage, we cannot know the return rate determined in the future. Thus,
any concentrated investment solution may bring regret to the decision
maker. In this sense, if the decision maker is interested in minimizing the
worst regret which may be undertaken, a diversified investment solution
must be preferred.

Markowitz model [91] and the other stochastic programming approaches
yield a diversified investment solution because of (a). Indeed, we have

Prob(λX1 + (1 − λ)X2 ≥ k) > Prob(Xi ≥ k), ∀λ ∈ (0, 1), i = 1, 2,

when independent random variables X1 and X2 obey the same marginal nor-
mal (probability) distribution. Moreover we have

Var(λX1 + (1 − λ)X2) < Var(Xi), ∀λ ∈ (0, 1), i = 1, 2,

where Var(X) is the variance, i.e., an uncertainty criterion, of a random vari-
able X.

In possibilistic programming approaches, we could not obtain a diversified
investment solution since possibility and necessity measures do not have the
property mentioned in (a). For possibility and necessity measures, we have

Pos(λX1 + (1 − λ)X2 ≥ k) = Pos(Xi ≥ k), ∀λ ∈ [0, 1], i = 1, 2,

Nes(λX1 + (1 − λ)X2 ≥ k) = Nes(Xi ≥ k), ∀λ ∈ [0, 1], i = 1, 2,

where X1 and X2 are non-interactive uncertain variables whose possible ranges
are expressed by the same marginal fuzzy sets. Moreover, in the same setting
of X1 and X2, we have

Spd(λX1 + (1 − λ)X2) = Spd(Xi), ∀λ ∈ [0, 1], i = 1, 2,

where Spd(X) is the spread of fuzzy sets representing uncertain variable X,
i.e.,

Spd(X) = sup{r | μX(r) > 0} − inf{r | μX(r) > 0}.
Hence, the conventional possibilistic programming approaches fail to yield

a diversified investment solution without introducing the concept of the regret
or the interaction among uncertain variables. In what follows, we describe an



98 4 Possibilistic Programming Approaches to Portfolio Optimization

approach proposed by Inuiguchi and Tanino [63]. They introduced regret into
the possibilistic portfolio selection problem P(4.4).

Suppose that a decision maker is informed about the determined return
rates c after he/she has invested his/her money in assets according to a
feasible solution x to problem P(4.4), he/she will have a regret r(x; c) which
can be quantified as

r(x; c) = max
y

eTy=1, y≥0

F(cTy, cTx), (4.19)

where F : D1 ×D2 → R (D1,D2 ⊆ R) is a continuous function such that F(·; r)
is strictly increasing and F(r; ·) is strictly decreasing. These properties of the
function F reflect the fact that the right side of equation (4.19) evaluates the
regret r(x; c). Since F is continuous, so is r(·; ·).

At the decision making stage, the decision maker cannot know the return
rate c determined in the future but a possible range C with membership
function μC. By the extension principle (Definition 4.3), the possible range
of regret r(x) can be obtained by a fuzzy set R(x) having the following mem-
bership function:

μR(x)(r) = sup
c

r=r(x;c)

μC(c). (4.20)

We regard the possibilistic portfolio selection problem P(4.1) as a problem
of minimizing a regret r(x), i.e.,

P(4.16) min r(x)
subject to

eTx = 1 ,
x ≥ 0 .

Since r(x) is an uncertain value whose possible range is given by a fuzzy
set R(x), problem P(4.16) is a programming problem with fuzzy parameters.
Thus, we can apply a possibilistic programming approach. We apply the frac-
tile model to problem P(4.16) so that, given α0, problem P(4.16) is formulated
as

P(4.17) min z

subject to

NR(x)({r | r ≤ z}) ≥ α0 ,

eTx = 1 ,
x ≥ 0 .

Now we transform problem P(4.17) to a linear programming problem.
Using equations (4.4) and (4.20), we have
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NR(x)({r | r ≤ z}) = inf
r>z

(
1 − μR(x)(r)

)
= inf

r>z

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 − sup

c
r=r(x;c)

μC(c)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= inf
c

r(x;c)>z

(1 − μC(c)).

Thus, NR(x)({r | r ≤ z}) ≥ α0 is equivalent to

μC(c) > 1 − α0 implies r(x; c) ≤ z. (4.21)

By the continuity of r(x; c) with respect to c, equation (4.21) becomes equiv-
alent to

sup
c∈(C)1−α0

r(x; c) ≤ z, (4.22)

where (C)1−α0 is a (1 − α0)–level set, i.e., (C)1−α0 = {c | μC(c) > 1 − α0}. A
closure of the (1 − α0)–level set, cl (C)1−α0 , can be expressed as

cl (C)1−α0 = {c = (c1, c2, . . . , cn) | cL
i (1 − α0) ≤ ci ≤ cR

i (1 − α0), i = 1, 2, . . . , n},
where cL

i (·) is a function defined by (4.18) and cR
i (·) is defined by

cR
i (α) = sup{q | μCi(q) > α}.

By the continuity of r(x; c) with respect to c, the supremum, ‘sup’, and the
(1−α0)–level set, (C)1−α0 , can be replaced with the maximum, ‘max’, and the
closure, cl (C)1−α0 in (4.22), respectively. Hence, we have

NR(x)({r | r ≤ z}) ≥ α0 ⇔ max
c∈cl (C)1−α0

r(x; c) ≤ z. (4.23)

Using equations (4.19) and (4.23) into problem P(4.17), we have

P(4.18) min z

subject to

max
c,y

c∈cl (C)1−α0

eT y=1, y≥0

F(cTy, cTx) ≤ z ,

eTx = 1 ,
x ≥ 0 .

Since cl (C)1−α0 = [cL
i (1 − α0), cR

i (1 − α0)], problem P(4.18) is a minimax
problem with linear constraints. From the assumption of F and Theorem 4.2,
we have
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max
c,y

c∈cl (C)1−α0

eT y=1, y≥0

F(cTy, cTx) = max
c∈cl (C)1−α0

F
(

max
eT y=1, y≥0

cTy, cTx
)

= max
i=1,2,...,n

max
c∈cl (C)1−α0

F(ci, cTx),

where ei is a unit vector whose i-th component is one. Hence, problem P(4.18)
is reduced to

P(4.19) min z

subject to

max
c∈cl (C)1−α0

F(ci, cTx) ≤ z, i = 1, 2, . . . , n ,

eTx = 1 ,
x ≥ 0 .

Problem P(4.19) can be solved by a relaxation procedure and non-linear
programming techniques. Moreover, we consider the case when F can be ex-
pressed as

F(r1, r2) = ϕ( f (r1)r2 + g(r1)), (4.24)

where ϕ : R → R is strictly increasing, f : D1 → R and g : D2 → R satisfies

(i) f (r) < 0, ∀r ∈ [L,R]
(ii) f ′(r1)r2 + g′(r1) > 0, ∀(r1, r2) ∈ [L,R] × [L,R]
(iii) For all i ∈ {1, 2, . . . , n}

inf
c,x

c∈(C)0

eTx=1, x≥0

( f ′(ci)cTx + g′(ci) + f (ci)xi) ≥ 0.

L and R are defined by

L = min
i=1,2,...,n

cL
i (0), R = max

i=1,2,...,n
cR

i (0).

When F is represented by equation (4.24), problem P(4.19) can be written as

P(4.20) min q

subject to

max
c∈cl (C)1−α0

f (ci)cTx + g(ci) ≤ q, i = 1, 2, . . . , n ,

eTx = 1 ,
x ≥ 0 .
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Let Q = {ϕ(r) | r ∈ R} ⊆ R and ϕ−1 : Q → R be the inverse function of ϕ.
We have

∂ϕ−1(F(ci, cTx))
∂cj

=

{
f (ci)xj ≤ 0, if i � j,
f ′(ci)cTx + g′(ci) + f (ci)xi ≥ 0, if i = j.

Hence, problem P(4.20) can be reduced to the following linear programming
problem:

P(4.21) min q

subject to

f (cR
i (1 − α0))

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j=1
j�i

cL
j (1 − α0)xj + cR

i (1 − α0)xi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ q − g(cR
i (1 − α0)), i = 1, 2, . . . , n ,

eTx = 1 ,
x ≥ 0 .

Problem P(4.21) has (n + 1) constraints excluding non-negativity con-
straints. Therefore, even if the simplex method is applied, (n+1) variables can
take positive values. This means that problem P(4.21) can yield a diversified
investment solution.

Table 4.1 Examples of f , g and ϕ

No. Name f (r) g(r) ϕ(r)

1 minimax regret −1 r r

2 minimax regret rate − 1
1 + r

r
1 + r

r

linear combination of
3

1 and 2 (κ1, κ2 ≥ 0)
−κ1(1 + r) + κ2

1 + r
κ1r2 + (κ1 + κ2)r

1 + r
r

Before describing numerical examples, we show some meaningful combi-
nations of f , g and α in Table 4.1. The first one is the conventional minimax
regret model [61] where the worst regret of x under a return rate vector c is
defined by the difference between the optimal total return rate with respect
to c and the obtained total return rate cTx. The second one is a regret rate
model which is equivalent with the achievement rate model [62]. In the regret
rate model, the worst regret of x under a return rate vector c is defined by the
ratio of the difference between the optimal total return rate with respect to c
and the obtained total return rate cTx to the optimal total income rate. Note
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that, because of the negativity of f (r), for all r ∈ [L,R], we cannot consider
the ratio to the optimal total return rate. The third one is the non-negative
linear combination of the first and second ones.

4.2.4 Numerical Illustration

In order to see what solution is obtained from problem P(4.21), three numeri-
cal examples given by Inuiguchi and Tanino [63] are shown in this subsection.
For comparison, not only the proposed approach but also a stochastic and the
previous possibilistic programming approaches are applied to each example.
In these examples, we have five assets whose possible return rate ranges are
known as fuzzy sets having the following type of membership function:

μCi(r) = exp

⎛
⎜⎜⎜⎜⎝−

(r − cc
i )

2

wi

⎞
⎟⎟⎟⎟⎠ , (4.25)

where cc
i and wi show the center and the spread.

As the corresponding probability distribution pCi , we consider the following
normal distribution N(cc

i ,
√

wi/2):

pCi(r) =
1√
πwi

exp

⎛
⎜⎜⎜⎜⎝−

(r − cc
i )2

wi

⎞
⎟⎟⎟⎟⎠ .

We assume the independence among return rates. The joint membership func-
tion is given as in equation (4.14) while the joint probability distribution is
given as

pC(c) =
n∏

1=1

pCi(ci).

Since pCi is a normal distribution, pC becomes a multivariate normal distri-
bution with a mean vector m = (cc

1, c
c
2, . . . , c

c
n) and a covariance matrix

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1
2 0 0 · · · 0
0 w2

2 0 · · · 0

0 0
. . .
. . .
...

...
...
. . .
. . . 0

0 0 0 · · · wn
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In the following examples, we assume that functions f , g and α are defined
by those in the first row of Table 4.1, i.e., the conventional minimax regret
model.
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Fig. 4.3 Distribution of membership functions corresponding to five assets for
Example 4.1

Table 4.2 Solutions for Example 1

Approach x1 x2 x3 x4 x5

Markowitz 0.061225 0.081633 0.122449 0.244898 0.489796
fractile 0 0 0 0 1
modality 0 0 0 0 1
spread 0 0 0 0 1
regret 0.25 0.211325 0.146446 0 0.392229

Example 4.1. Let us consider five assets whose rate of return are given by
membership functions depicted in Fig. 4.3. All cc

i ’s are equal to 0.2 but wi

decreases as i increases:

w1 = 0.04, w2 = 0.03, w3 = 0.02, w4 = 0.01 and w5 = 0.005.

The optimal solutions to problems P(4.3), P(4.6), P(4.9), P(4.14) and
P(4.21) are obtained as shown in Table 4.2 with setting z0 = 0.18 and
α0 = 0.9. Whereas, we obtain a concentrated investment solution on the 5th
asset by the previous possibilistic programming approaches, i.e., the fractile
optimization approach, the modality optimization approach and the spread
minimization approach, we obtain a diversified investment solution on the 1st,
2nd, 3rd and 5th assets by the proposed possibilistic programming approach.
However, the solution is rather different from the diversified investment so-
lution of the Markowitz (stochastic programming) model P(4.3). The reason
is that an asset with a small variance gathers the investment rate around it
since minimization of the variance which is not related to the original objec-
tive, maximization of the total return rate, is adopted by the Markowitz model.
This property of the Markowitz model will also be observed in Example 3.

Example 4.2. Let us consider five assets whose rate of return are given by
membership functions depicted in Fig. 4.4. All wi’s are equal to 0.02 but cc

i
decreases as i increases:
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Fig. 4.4 Distribution of membership functions corresponding to five assets for
Example 4.2

Table 4.3 Solutions for Example 2

Approach x1 x2 x3 x4 x5

Markowitz 0.200003 0.200002 0.200002 0.199997 0.199996
Fractile 1 0 0 0 0
Modality 1 0 0 0 0
Spread 1 0 0 0 0
Regret 0.293198 0.246599 0.2 0.153401 0.106802

cc
1 = 0.24, cc

2 = 0.22, cc
3 = 0.2, cc

4 = 0.18 and cc
5 = 0.16.

Table 4.3 shows the optimal solutions by Markowitz (stochastic programming),
fractile, modality optimization, spread minimization and the conventional
minimax regret approaches with setting z0 = 0.18 and α0 = 0.9. We can see
that a diversified investment solution is not obtained by the previous possi-
bilistic programming approaches, i.e., the fractile optimization approach, the
modality optimization approach and the spread minimization approach, but by
the proposed minimax regret approach. Markowitz model solution has almost
equal investment rate proportions, whereas the proposed minimax approach
solution claims a decreasing proportion going from right to left in Fig. 4.4
which corresponds to the decrease of the return rates.

Table 4.4 Solutions for Example 3

Approach x1 x2 x3 x4 x5

Markowitz 0.192775 0.255173 0.232509 0.131889 0.187654
Fractile 0 1 0 0 0
Modality 1 0 0 0 0
Spread 0 0.42857 0 0.57143 0
Regret 0.408018 0.306634 0.252826 0.032522 0
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Fig. 4.5 Distribution of membership functions corresponding to five assets for
Example 4.3

Example 4.3. Let us consider five assets whose rate of return are given by
membership functions depicted in Fig. 4.5. The parameters cc

i ’s and wi’s are
defined as

cc
1 = 0.25, cc

2 = 0.22, cc
3 = 0.2, cc

4 = 0.15, cc
5 = 0.05,

w1 = 0.0225, w2 = 0.015, w3 = 0.015, w4 = 0.01 and w5 = 0.005.

The larger cc
i is, the larger is wi. The 5th asset with cc

5 = 0.05 and w5 = 0.005,
intuitively speaking, seems to be inferior since it has the lowest return rate and
is set apart from all the others on the critical edge close to zero. The optimal
solutions by Markowitz, fractile, modality optimization, spread minimization
and minimax regret approaches are obtained as shown in Table 4.4 with setting
z0 = 0.18 and α0 = 0.9. By the proposed minimax regret approach, we got a
diversified investment solution but not by the other possibilistic programming
approaches. The solution obtained from the proposed minimax regret approach
does not support investment in the 5th asset but the Markowitz model solution
does. In this case, the solution to problem P(4.21) seems to be better than that
to problem P(4.3) since it is following the return rate pattern.

4.3 Portfolio Selection Using Interactive Coefficients

Another way to obtain a diversified investment solution is to introduce the
interaction among return rates. The interaction stands for a mutual relation
among rate of return of assets, e.g., ‘an asset has a tendency to take a high
rate of return if rate of return of certain assets are small’, ‘the sum of rate of
return of several assets are more or less stable around 0.5’, and so on. Until
the previous section, we assumed the non-interaction among return rates.
This implies that the possible range of the rate of return of an asset does not
change with a realization of the rate of return of any other asset. Therefore,
the investor is not motivated to distribute the fund to many assets. However,
if rate of return of two assets have negative relations, i.e., one is high when the
other is low, the investor may be motivated to distribute the fund to those
assets in order to reduce risk. The introduction of interaction among rate
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of return would play a key role in possibilistic portfolio selection problem.
We note that by the introduction of interaction, the necessity measure has a
property to motivate the investor to distribute the fund to many assets, i.e.,
the necessity measure has the property described in Section 4.2.3.

However, the introduction of general interaction makes the reduced prob-
lem complex. In this subsection, we describe a few models to treat the in-
teraction among rate of return without great loss of the tractability of the
reduced problem. We describe the reduced problems of the necessity frac-
tile optimization model P(4.5) and the minimax regret model P(4.17) with
F(r1, r2) = −r1 − r2.

4.3.1 Scenario Decomposed Fuzzy Numbers

The rate of return of assets are often influenced by the economic situation.
Then the estimated rate of return of assets can be different by the economic
situation. This kind of the estimated rate of return can be represented by
scenario decomposed fuzzy numbers proposed by Inuiguchi and Tanino [64].
In this approach, the possible ranges of uncertain parameters which depend
on the situation are expressed by fuzzy if-then rules.

We may have a vague knowledge about the possible range of γ as the
following k fuzzy if-then rules:

if s = sk then γ ∈ Ck, k = 1, 2, . . . , u, (4.26)

where s is a variable taking a value from {s1, s2, . . . , su}. s is called a scenario
variable and showing the situation. Ck = (Ck

1,C
k
2, . . . ,C

k
n)T is a vector of non-

interactive fuzzy numbers. Namely, Ck has a membership function,

μCk (c) = min
(
μCk

1
(c1), μCk

2
(c2), . . . , μCk

n
(cn)
)
,

and Ck
j is a fuzzy number such that [Ck

j]h = {r | μCk
j
(r) ≥ h} is a bounded closed

interval, where μCk
j
is a membership function of a fuzzy number Ck

j . The body

of rules (4.26) shows a fuzzy relation between scenario variable s and possible
range of uncertain vector γ. Namely, when s = sk, the possible range of γ is

Ck.
For example, we may have knowledge,

• if economic situation s is s1 then the return rate vector γ is in a possible

range C1,
• if economic situation s is s2 then the return rate vector γ is in a possible

range C2,
• if economic situation s is s3 then the return rate vector γ is in a possible

range C3.
(4.27)
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When we obtain the estimated range of scenario variable s as a fuzzy set
S showing a possible range of s, the estimated fuzzy set C is obtained as

μC(c) = max
k=1,2,...,u

min
(
μS(sk), μCk (c),

)
(4.28)

where μS is a membership function of S. This equation is based on the fuzzy
reasoning proposed by Zadeh [124].

Fig. 4.6 An example of fuzzy partition

Inuiguchi and Tanino [64] considered a continuous scenario variable. In the
continuous scenario variable case, the knowledge can be represented by a set
of fuzzy if-then rules, ‘if s is in fuzzy set Sk then γ is in fuzzy set Ck’. For
example, to make (4.27) be a set of fuzzy rules, we may partition the range
of economic index into three fuzzy sets shown in Fig. 4.6.

Let μSk be the membership function of fuzzy set Sk in the antecedent part
of fuzzy if-then rules. For s = s̄, the estimated range Cj(s̄) of the return rate
of j-th asset is defined by

Cj(s̄) =

u∑

k=1

μSk (s̄)Ck
j

u∑

k=1

μSk (s̄)

. (4.29)

The extension principle is applied to calculate Cj(s̄). Let C(s̄) = (C1(s̄),C2(s̄),
. . . , Cn(s̄))T. The estimated fuzzy set C under a fuzzy set S showing a possible
realizations of s is obtained as

μC(c) = sup
s

min
(
μS(s), μC(s)(c)

)
. (4.30)

Level curves of the membership function of scenario decomposed fuzzy
numbers C defined by equation (4.28) with n = 2 is depicted in Fig. 4.7(a).
In equation (4.26), we consider a discrete scenario variable s. Level curves of
the membership function of scenario decomposed fuzzy numbers C defined by
equation (4.30) with a continuous scenario variable when n = 2 is illustrated
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(a) Discrete scenario variable (b) Continuous scenario variable

Fig. 4.7 Lever curves of the membership functions of scenario decomposed fuzzy
numbers

in Fig. 4.7(b). In this subsection, we concentrate on the continuous scenario
variable case.

The fuzzy set whose membership function is defined by equations (4.26)
and (4.30) is called scenario decomposed fuzzy numbers.

Now let us investigate the possible range of a linear function value γTx with
scenario decomposed fuzzy numbers C with membership function defined by
equation (4.30). Let Y(x) and Yk(x) be fuzzy sets defined by the following
membership functions:

μY(x)(y) = sup
{
μC(c) | cTx = y

}
, (4.31)

μYk(x)(y) = sup
{
μCk (c) | cTx = y

}
. (4.32)

Namely, Y(x) shows the overall possible range of γTx while Yk(x) shows the

possible range of γTx when the possible range of γ is given by Ck.
Because the linearity of function is preserved in the extension principle,

We obtain the following relation between Y(x) and Yk(x):

μY(x)(y) = sup
s

min

⎛
⎜⎜⎜⎜⎜⎝μS(s), sup

r:μ(s)Tr=y
min
(
μY1(x)(r1), μY2(x)(r2), . . . , μYu(x)(ru)

)
⎞
⎟⎟⎟⎟⎟⎠ ,

(4.33)
where r = (r1, r2, . . . , ru)T and

μ(s) = (μ1(s), μ2(s), . . . , μu(s))T =
(μS1 (s), μS2(s), . . . , μSu (s))T

u∑

k=1

μSk (s)

. (4.34)

From equations (4.8), (4.29) and the non-negativity of x, we obtain
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NY(x)([z,+∞)) ≥ α0 ⇔ cl(Y(x))1−α0 ⊆ [z,+∞)

⇔ cl(Yk(x))1−α0 ⊆ [z,+∞), ∀s such that μS(s) > 1 − α0

⇔
n∑

j=1

u∑

k=1

μk(s)c̄L
jk(1 − α0)xj ≥ z, ∀s such that μS(s) > 1 − α0, (4.35)

where we define cl(Ck
j)α = [c̄L

jk(α), c̄R
jk(α)], k = 1, 2, . . . , u and from equation

(4.34), we hvae μk(s) = μSk (s)/
∑u

j=1 μSj (s).
The necessity fractile optimization model P(4.5) is reduced to the following

programming problem:

P(4.22) max z

subject to
n∑

j=1

u∑

k=1

μk(s)c̄L
jk(1 − α0)xj ≥ z, ∀s such that μS(s) > 1 − α0 ,

eTx = 1 ,
x ≥ 0 .

When the range of scenario variable s is a subset of real line R, the an-
tecedent fuzzy sets Sk, k = 1, 2, . . . , u are fuzzy numbers satisfying

u∑

k=1

μSk (s) = 1, ∀s, (4.36)

and S is also a fuzzy number, problem P(4.22) is reduced to the following
linear programming problem [64]:

P(4.23) max z

subject to
n∑

j=1

c̄L
jk(1 − α0)xj ≥ z, ∀k such that [S]1 ∩ [Sk]1 � ∅ ,

n∑

j=1

u∑

k=1

μk(s̄L(1 − α0))c̄L
jk(1 − α0)xj ≥ z ,

n∑

j=1

u∑

k=1

μk(s̄R(1 − α0))c̄L
jk(1 − α0)xj ≥ z ,

eTx = 1 ,
x ≥ 0 ,

where s̄L(α) and s̄R(α) are defined by cl(S)α = [s̄L(α), s̄R(α)]. Because problem
P(4.23) has several constraints, some of variables xj, j = 1, 2, . . . , n may take
positive values.
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Now we describe the minimax regret model. We again assume that the
range of scenario variable s is a subset of real line R, the antecedent fuzzy
sets Sk, k = 1, 2, . . . , u are fuzzy numbers satisfying equation (4.36), and S is
also a fuzzy number.

Because C is the scenario decomposed fuzzy numbers, problem P(4.19) is
reduced to

P(4.24) min q

subject to

max
c∈cl (Ck)1−α0

F(ci, cTx) ≤ q, i = 1, 2, . . . , n, k such that [S]1 ∩ [Sk]1 � ∅ ,

max
c∈cl (C(s̄L(1−α0))1−α0

F(ci, cTx) ≤ q, i = 1, 2, . . . , n ,

max
c∈cl (C(s̄R(1−α0))1−α0

F(ci, cTx) ≤ q, i = 1, 2, . . . , n ,

eTx = 1 ,
x ≥ 0 .

By the same discussion as in Section 4.2.3 when F is defined by equa-
tion (4.24), problem P(4.24) is reduced to the following linear programming
problem:

P(4.25) min q

subject to

f (cR
ik(1 − α0))

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j=1
j�i

cL
jk(1 − α0)xj + cR

ik(1 − α0)xi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ q − g(cR
ik(1 − α0)), i = 1, 2, . . . , n, k such that [S]1 ∩ [Sk]1 � ∅ ,

f
(
μ(s̄L(1 − α0))Tc̄R

i (1 − α0)
)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j=1
j�i

μ(s̄L(1 − α0))Tc̄L
j (1 − α0)xj + μ(s̄L(1 − α0))Tc̄R

i (1 − α0)xi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ q − g
(
μ(s̄L(1 − α0))Tc̄R

i (1 − α0)
)
, i = 1, 2, . . . , n ,

f
(
μ(s̄R(1 − α0))Tc̄R

i (1 − α0)
)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j=1
j�i

μ(s̄R(1 − α0))Tc̄L
j (1 − α0)xj + μ(s̄R(1 − α0))Tc̄R

i (1 − α0)xi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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≤ q − g
(
μ(s̄R(1 − α0))Tc̄R

i (1 − α0)
)
, i = 1, 2, . . . , n ,

eTx = 1 ,
x ≥ 0 ,

where c̄L
j (α) = (cL

j1(α), cL
j2(α), . . . , cL

ju(α))T and c̄R
j (α) = (cR

j1(α), cR
j2(α), . . . ,

cR
ju(α))T. This problem has more constraints than problem P(4.23). Then,

roughly speaking, it is more probable that the optimal solution to problem
P(4.25) suggests a diversified investment.

The reduced problem of the conventional minimax regret model with
F(r1, r2) = r1 − r2 is obtained by substituting f (r) = −1 and g(r) = r in
problem P(4.25).

Remark 4.1. When the scenario variable obeys a probability distribution un-
der fuzzy if-then rules, the return rate becomes a fuzzy random number [73].
On the other hand, when the fuzzy number Ck is replaced with a probability
distribution, the return rate obeys a mixture model [10].

4.3.2 Oblique Fuzzy Vector

From the historical data, we may find a vague knowledge about a linear
function value of rate of return of several assets and the differences of two
uncertain values, e.g., γ1+2γ2+γ3 is about 1.3, |γ4−γ5| is approximately 0.1,
and so on. If we have only n independent pieces of vague knowledge about
the linear function values of return rates of assets, we can apply oblique fuzzy
vector [60] to represent the possible range of return rate vector.

Oblique fuzzy vectors are proposed by Inuiguchi, Ramı́k and Tanino [60]
and each of them can express n independent pieces of vague knowledge about
the linear function values of uncertain values. A non-singular matrix shows
the interaction among uncertain parameters in an oblique fuzzy vector as a
covariance matrix shows in a multivariate normal distribution.

An oblique fuzzy vector C is defined by the following membership
function,

μC(c) = min
j=1,2,...,n

μBj(d
T
j c),

where μBj is a membership function of an L-L fuzzy number Bj = (bL
j , b

R
j ,

βL
j , β

R
j )LL and d j, j = 1, 2, . . . , n are vectors such that D = (d1, d2, . . . , dn)T

be a non-singular real-valued n × n matrix. An L-L fuzzy number Bj =
(bL

j , b
R
j , β

L
j , β

R
j )LL can be characterized by the following membership function:
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μBj(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L

⎛
⎜⎜⎜⎜⎜⎝

bL
j − r

βL
j

⎞
⎟⎟⎟⎟⎟⎠ , if r < bL

j ,

1, if bL
j ≤ r ≤ bR

j ,

L

⎛
⎜⎜⎜⎜⎜⎝

r − bR
j

βR
j

⎞
⎟⎟⎟⎟⎟⎠ , if r > bR

j ,

where we assume bL
j ≤ bR

j , β
L
j > 0 and βR

j > 0. L : [0,+∞) → [0, 1] is a

reference function defined earlier. Namely, an oblique fuzzy vector can be
obtained from n pieces of knowledge ‘dT

j c takes a value in a fuzzy number Bj’,
j = 1, 2, . . . , n, where d j, j = 1, 2, . . . , n should be linearly independent.

(a) 3D image (b) Level curves

Fig. 4.8 The membership function of an oblique fuzzy vector

An example of an oblique fuzzy vector when n = 2 is given in Fig. 4.8.
Unlike non-interactive fuzzy numbers, the level curves of an oblique fuzzy
vector are neither always rectangle nor parallel to coordinate axes.

It is shown that a linear function value Y(x) of an oblique fuzzy vector
can be calculated easily. Y(x) is defined by the membership function (4.31)
with oblique fuzzy vector C. Inuiguchi, Ramı́k and Tanino [60] obtained the
following useful result:

cl(Y(x))α =
[ ∑

j:kj(x)≥0

b̄L
j (α)kj(x) +

∑

j:kj(x)<0

b̄R
j (α)kj(x),

∑

j:kj(x)≥0

b̄R
j (α)kj(x) +

∑

j:kj(x)<0

b̄L
j (α)kj(x)

]
, ∀α ∈ [0, 1),

(4.37)
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where kj(x), j = 1, 2, . . . , n are defined as follows with d∗i j, the (i, j) component

of D−1;

kj(x) =
n∑

i=1

d∗i jxi.

b̄L
j (h) and b̄R

j (h) are defined by

b̄L
j (h) = bL

j − βL
j L∗(h),

b̄R
j (h) = bR

j − βR
j L∗(h),

where L∗ is defined by equation (4.18). This result implies that the linear
function values of an oblique fuzzy vector is an L-L fuzzy number [60].

We consider the necessity fractile optimization model P(4.5). Applying the
result (4.37), the lower bound of cl(CTx)1−α0 = cl(Y(x))1−α0 , i.e., cL(1 − α0)Tx
in problem P(4.6) is replaced with

∑
j:kj(x)≥0 b̄L

j (α)kj(x)+
∑

j:kj(x)<0 b̄R
j (α)kj(x), we

obtain the following problem:

P(4.26) max
∑

j:kj(x)≥0

b̄L
j (1 − h0)kj(x) +

∑

j:kj(x)<0

b̄R
j (1 − h0)kj(x)

subject to

eTx = 1 ,
x ≥ 0 ,

kj(x) =
n∑

i=1

d∗i jxi .

We have

k(x) = (k1(x), k2(x), . . . , kn(x))T = D−Tx, (4.38)

where D−T = D−1T
= DT−1

. From this fact, we introduce variable vectors
y+ = (y+

1 , y
+
2 , . . . , y

+
n )T and y− = (y−1 , y

−
2 , . . . , y

−
n )T such that

D−Tx = y+ − y−, y+Ty− = 0, y+ ≥ 0, y− ≥ 0. (4.39)

From equations (4.38) and (4.39), we have kj(x) = y+
j if kj(x) ≥ 0 and kj(x) =

−y−j if kj(x) < 0. Moreover, from the first equation of (4.39), we have x =

DT(y+ − y−). Introducing those, we can prove problem P(4.26) is reduced to
the following linear programming problem:
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P(4.27) max
n∑

j=1

b̄L
j (1 − h0)y+

j −
n∑

j=1

b̄R
j (1 − h0)y−j

subject to

eTx = 1 ,
x ≥ 0 ,

x = DT(y+ − y−) ,
y+ ≥ 0 ,

y− ≥ 0 ,

or equivalently,

P(4.28) max
n∑

j=1

b̄L
j (1 − h0)y+

j −
n∑

j=1

b̄R
j (1 − h0)y−j

subject to

eTDT(y+ − y−) = 1 ,
DT(y+ − y−) ≥ 0 ,

y+ ≥ 0 ,

y− ≥ 0 .

Note that a complementary condition (y+)Ty− = 0 can be omitted in prob-
lem P(4.27) because we obtain a solution satisfying this condition easily from
any optimal solution of problem P(4.27) without change of x. It is shown in
[60] that Bender’s decomposition method can be applied to problem P(4.27).
When DT(y+ − y−) is non-negative for any y− ≥ 0 and y+ ≥ 0 such that
eTDT(y+ − y−) = 1, DT(y+ − y−) ≥ 0 is never active. Therefore, in this case,
only one y+

i or y−i may take a positive value at a basic feasible solution of

problem P(4.28). However, because of x = DT(y+ − y−), some components of
x may take positive values even in this case.

Now let us investigate a minimax regret model with F(r1, r2) = r1−r2. From
problem P(4.19), we consider linear function values

Ri(x) = ci − cTx =

n∑

l=1
l�i

clxl + ci(1 − xi). (4.40)

In the same way as we did for Y(x), we obtain

cl(Ri(x))α =
[ ∑

j:ki
j(x)≥0

b̄L
j (α)ki

j(x) +
∑

j:ki
j(x)<0

b̄R
j (α)ki

j(x),

∑

j:ki
j(x)≥0

b̄R
j (α)ki

j(x) +
∑

j:ki
j(x)<0

b̄L
j (α)ki

j(x)
]
, ∀α ∈ [0, 1),
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where we define

ki
j(x) =

n∑

l=1
l�i

d∗l jxl + d∗i j(1 − xi).

Introducing variable vectors y+
i = (y+

i1, y
+
i2, . . . , y

+
in)T and y−i = (y−i1, y

−
i2,

. . . , y−in)T such that

ki
j(x) = y+

i j − y−i j, y+
i j · y−i j = 0, y+

i j ≥ 0, y−i j ≥ 0, j = 1, 2, . . . , n,

we obtain the following reduced linear programming problem:

P(4.29) min q

subject to
n∑

j=1

b̄R
j (1 − h0)y+

i j −
n∑

j=1

b̄L
j (1 − h0)y−i j ≤ q, i = 1, 2, . . . , n ,

xi = 1 −
n∑

j=1

dij(y+
i j − y−i j), i = 1, 2, . . . , n ,

xl =

n∑

j=1

dlj(y+
i j − y−i j), l = 1, 2, . . . , n (l � i), i = 1, 2, . . . , n ,

y+
i j ≥ 0, y−i j ≥ 0, i = 1, 2, . . . , n, j = 1, 2, . . . , n ,

eTx = 1 ,
x ≥ 0 ,

where dij is the (i, j)-component of D. This problem can also be solved by
Bender’s decomposition method. Because problem P(4.29) has many con-
straints, many components of x can take positive values so that it suggests a
diversified investment solution.

4.3.3 Fuzzy Polytope

By oblique fuzzy vector, we can express n independent pieces of vague knowl-
edge about linear function values of uncertain parameters. However, in the
real-world, we may have more than n pieces of vague knowledge including
vague knowledge about the ratio between two uncertain parameters. The ra-
tio between two uncertain parameters cannot be expressed as a linear function
of uncertain parameters. Therefore such a body of vague knowledge cannot
be expressed well by an oblique fuzzy vector.

Inuiguchi and Tanino [65] introduced a fuzzy polytope to fuzzy linear pro-
gramming problems. A fuzzy polytope can express more than n pieces of
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Fig. 4.9 The membership function of a fuzzy polytope

vague knowledge about linear fractional function values of uncertain param-
eters. Then the oblique fuzzy vector is a special case of the fuzzy polytope.

When C is a fuzzy polytope, its membership function is expressed as

μC(c) = min
k=1,2,...,v

Lk

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wT
k c + w0k

dT
k c + d0k

− q̄k

αk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.41)

where Lk : R → [0, 1], k = 1, 2, . . . , v are reference functions, i.e., upper semi-
continuous non-increasing functions such that Lk(0) = 1 and limr→+∞ Lk(r) =
0. q̄k is the most plausible value for the k-th linear fractional function value

(wT
kγ + w0k)/(dT

kγ + d0k). αk shows the spread, i.e., to what extent the linear

fractional function value (wT
kγ + w0k)/(dT

kγ + d0k) possibly exceeds q̄k. The

knowledge about the maximum possible shortage (αl) of (wT
l γ+w0l)/(dT

l γ+d0l)
from q̄l is treated as the knowledge of the maximum possible exceeds (αl) of

(−wT
kγ − w0k)/(dT

kγ + d0k) from −q̄k. Fuzzy set C is assumed to be bounded,
i.e., h-level sets [C]h = {c | μC(c) ≥ h} for all h ∈ (0, 1] are bounded. Moreover,

without loss of generality, we assume that dT
k c+ d0k > 0 for all possible c. Let

L∗k(h) = sup{r | Lk(r) > h} for h ∈ [0, 1) and L∗k(h) = −∞ for h = 1.
Since a linear fractional function includes a sum, a difference, a linear func-

tion and a ratio, a fuzzy polytope is useful when we know possible ranges of
a sum of uncertain variables, a difference between two uncertain variables, a
linear function values of uncertain variables and a ratio between two uncer-
tain variables. The membership function of a fuzzy polytope when n = 2 is
depicted in Fig. 4.9.

Because of equation (4.41), we have

cl(C)h = {c | wT
k c + w0k ≤ (q̄k + αkL∗k(h))(dT

k c + d0k), k = 1, 2, . . . , v}
= {c | wd∗k(h)Tc ≤ −wd∗0k(h), k = 1, 2, . . . , v}, (4.42)
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where wd∗k(h) = wk − (q̄k + αkL∗k(h))dk and wd∗0k(h) = w0k − (q̄k + αkL∗k(h))d0k.
Since [C]h ⊆ Rn is bounded, from (4.42), we know that v > n and that [C]h

and cl(C)h are polytopes for all h ∈ [0, 1).
Using equation (4.16), problem P(4.5) is reduced to the following semi-

infinite programming problem:

P(4.30) max z

subject to

cTx ≥ z, ∀c ∈ cl(C)1−h0 ,

eTx = 1 ,
x ≥ 0 .

Together with equation (4.42), problem P(4.30) can be solved by the fol-
lowing relaxation procedure.

Solution Algorithm for Problem P(4.30)

Step 1: Select x0 satisfying eTx0 = 1, x0 ≥ 0. Let z0 = ∞ and l = 0.
Step 2: Solve a linear programming problem

P(4.31) min x0T
c

subject to

wd∗k(h)Tc ≤ −wd∗0k(h), k = 1, 2, . . . , v .

Let ĉ be an obtained optimal solution to problem P(4.31).
Step 3: If ĉTx0 < z0 then update l = l + 1 and let cl = ĉ. Otherwise, we

terminate the algorithm and obtain an optimal solution x0 to
problem P(4.30).

Step 4: Solve a linear programming problem,

P(4.32) max z

subject to

cT
wx ≥ z, w = 1, 2, . . . , l ,

eTx = 1 ,
x ≥ 0 .

Let (x0T
, z0)T be an obtained optimal solution. Return to Step 2.

In the algorithm described above, we solve two kinds of linear programming
problems; therefore, we can solve problem P(4.30) using linear programming
techniques only.

Let us investigate the minimax regret model with F(r1, r2) = r1 − r2. From
problem P(4.19), the problem is reduced to the following semi-infinite pro-
gramming problem:
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P(4.32) min z

subject to

ci − cTx ≤ z, ∀c ∈ cl(C)1−h0 , i = 1, 2, . . . , n ,
eTx = 1 ,
x ≥ 0 .

Together with equation (4.42), problem P(4.32) can also be solved by the
following relaxation procedure.

Solution Algorithm for Problem P(4.32)

Step 1: Select x0 satisfying eTx0 = 1, x0 ≥ 0. Let q0 = −∞ and li = 0,
i = 1, 2, . . . , n.

Step 2: For i = 1, 2, . . . , n, solve linear programming problems

P(4.33) max ci − x0T
c

subject to

wd∗k(h)Tc ≤ −wd∗0k(h), k = 1, 2, . . . , v .

Let ĉi be an obtained optimal solution to the i-th problemP(4.33).
Step 3: For i = 1, 2, . . . , n, if ĉT

i x0 > q0 then update li = li + 1 and let
cil = ĉi. If no li is updated, we terminate the algorithm and
obtain an optimal solution x0 to problem P(4.32).

Step 4: Solve a linear programming problem,

P(4.34) min q

subject to

ci − cT
iwx ≤ q, w = 1, 2, . . . , li, i = 1, 2, . . . , n ,

eTx = 1 ,
x ≥ 0 .

Let (x0T
, q0)T be an obtained optimal solution. Return to Step 2.

In this algorithm, we solve two kinds of linear programming problems;
therefore, we can also solve problem P(4.32) using linear programming tech-
niques only.

4.3.4 Numerical Illustration

In this section, we give examples of necessity fractile optimization models
and minimax regret models with scenario decomposed fuzzy numbers and an
oblique fuzzy vector because all of them are reduced to linear programming
problems.
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Example 4.4. As an example of scenario decomposed fuzzy numbers, we con-
sider a case where the possible range of return rates of five assets in different
categories of industry estimated by the following fuzzy if-then rules:

• if s is small then the return rate vector γ is in a possible range C1,
• if s is medium then the return rate vector γ is in a possible range C2,
• if s is large then the return rate vector γ is in a possible range C3,

where fuzzy sets small, medium and large are triangular fuzzy numbers de-
picted in Fig. 4.10. Ci, i = 1, 2, 3 are non-interactive fuzzy numbers whose
component Cij has the following type of membership function:

μCij(r) = exp

⎛
⎜⎜⎜⎜⎜⎝−

(r − cc
i j)

2

wij

⎞
⎟⎟⎟⎟⎟⎠ .

Parameters cc
i j and wij, i = 1, 2, 3, j = 1, 2, . . . , 5 are defined by the values in

Table 4.5. The estimated possible range S of scenario variable is a triangular
fuzzy number depicted in Fig. 4.10.

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

small large

mediumS

0.3 4.8 5

Fig. 4.10 Fuzzy sets small, medium and large and fuzzy set S

Table 4.5 Parameters of Cij

s i ci1 wi1 ci2 wi2 ci3 wi3 ci4 wi4 ci5 wi5

Small 1 0.18 0.023 0.22 0.05 0.26 0.01 0.2 0.026 0.2 0.008
Medium 2 0.25 0.023 0.22 0.014 0.19 0.013 0.16 0.005 0.14 0.004
Large 3 0.3 0.03 0.18 0.015 0.18 0.0225 0.2 0.006 0.13 0.004

Let α = 0.7. We obtain s̄L = 3.45 and s̄R = 6.36. The necessity fractile
optimization model is formulated as
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P(4.35) max z
subject to
0.08359x1 + 0.09017x2 + 0.06489x3 + 0.08241x4 + 0.07060x5 ≥ z,
0.06189x1 + 0.05436x2 + 0.09136x3 + 0.06402x4 + 0.08029x5 ≥ z,
0.09076x1 + 0.07805x2 + 0.05143x3 + 0.09128x4 + 0.06788x5 ≥ z,
x1 + x2 + x3 + x4 + x5 = 1,
x1, x2, x3, x4, x5 ≥ 0.

Solving this problem, we obtain the optimal solution shown in Table 4.6.
On the other hand, the minimum regret model with F(r1, r2) = r1 − r2 and

α = 0.7 is formulated as

P(4.36) min q
subject to

0.41641x1 + 0.09017x2 + 0.06489x3 + 0.08241x4 + 0.07060x5 + q ≥ 0.41641,
0.08359x1 + 0.34983x2 + 0.06489x3 + 0.08241x4 + 0.07060x5 + q ≥ 0.34983,
0.08359x1 + 0.09017x2 + 0.31511x3 + 0.08241x4 + 0.07060x5 + q ≥ 0.31511,
0.08359x1 + 0.09017x2 + 0.06489x3 + 0.23759x4 + 0.07060x5 + q ≥ 0.23759,
0.08359x1 + 0.09017x2 + 0.06489x3 + 0.08241x4 + 0.20940x5 + q ≥ 0.20940,
0.39471x1 + 0.05436x2 + 0.09136x3 + 0.06402x4 + 0.08029x5 + q ≥ 0.39471,
0.06189x1 + 0.38564x2 + 0.09136x3 + 0.06402x4 + 0.08029x5 + q ≥ 0.38564,
0.06189x1 + 0.05436x2 + 0.33204x3 + 0.06402x4 + 0.08029x5 + q ≥ 0.33204,
0.06189x1 + 0.05436x2 + 0.09136x3 + 0.28078x4 + 0.08029x5 + q ≥ 0.28078,
0.06189x1 + 0.05436x2 + 0.09136x3 + 0.06402x4 + 0.23691x5 + q ≥ 0.23691,
0.43644x1 + 0.07805x2 + 0.05143x3 + 0.09128x4 + 0.06788x5 + q ≥ 0.43644,
0.09076x1 + 0.34019x2 + 0.05143x3 + 0.09128x4 + 0.06788x5 + q ≥ 0.34019,
0.09076x1 + 0.07805x2 + 0.32313x3 + 0.09128x4 + 0.06788x5 + q ≥ 0.32313,
0.09076x1 + 0.07805x2 + 0.05143x3 + 0.25048x4 + 0.06788x5 + q ≥ 0.25048,
0.09076x1 + 0.07805x2 + 0.05143x3 + 0.09128x4 + 0.20668x5 + q ≥ 0.20668,
x1 + x2 + x3 + x4 + x5 = 1,
x1, x2, x3, x4, x5 ≥ 0.

Solving this problem, we obtain the optimal solution shown in Table 4.6.

Table 4.6 Solutions of problems P(4.35) and P(4.36)

Model x1 x2 x3 x4 x5 z/q

Necessity fractile
(P(4.35))

0 0 0.33456 0.54488 0.12056 0.07513

Minimax regret (P(4.36)) 0.42766 0.32750 0.22807 0.01677 0 0.210966

Comparing the solutions in Table 4.6, we observe that the solution of
the necessity fractile optimization model suggests the investment to asset
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whose estimated return rates are small and their variations are small while
the solution to the minimax regret model suggests the investment to asset
whose estimated rate of return are large and their variations are large. In the
necessity fractile optimization model, only the minimal return rates of assets
are used to estimate the worst case and thus a pessimistic solution is obtained.
On the other hand, in the minimax regret model, the maximal return rates
of assets are also used to estimate the worst regret and thus the solution is
not very pessimistic. Finally, note that the solutions are easily changed by a
small change of parameters because the five assets are comparable.

Example 4.5. As an example of the oblique fuzzy vector, we consider a case
where D is given by

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 7 −1.5 1 −6
0 20 20 10 3
0 0 0.5 3 3
0 0 0 3 2
4 0 6 −6.5 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and Bi, i = 1, 2, . . . , 5 is defined by membership function,

μBi(r) = exp

⎛
⎜⎜⎜⎜⎝−

(r − bc
i )2

si

⎞
⎟⎟⎟⎟⎠ ,

with the following parameters:

bc
1 = 0.396, bc

2 = 11.194, bc
3 = 1.396, bc

4 = 1.078, bc
5 = 1.463,

s1 = 0.008, s2 = 0.0025, s3 = 0.0036, s4 = 0.0009, s5 = 0.006.

In this case, we have

D−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.091265 −0.031943 −1.174707 1.742992 0.227184
0.170795 −0.009778 1.415906 −1.532757 −0.042699
−0.156454 0.054759 −1.129074 1.083442 0.039113
−0.052151 0.018253 −1.043025 1.361147 0.013038
0.078227 −0.027379 1.564537 −1.541721 −0.019557

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the membership function of marginal fuzzy set Ci, i = 1, 2, . . . , 5 is ob-
tained using equation (4.25) with parameters [60]:

cc
1 = 0.25, cc

2 = 0.22, cc
3 = 0.2, cc

4 = 0.214, cc
5 = 0.218,

w1=0.022539, w2=0.022503, w3=0.014402, w4=0.012101, w5=0.022501.

Applying the necessity fractile model with α = 0.7, we solve the following
linear programming problem:
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max 0.297858y+
1 + 11.139137y+

2 + 1.330165y+
3 + 1.045082y+

4
+1.378007y+

5 − 0.494142y−1 − 11.248863y−2−1.461835y−3 − 1.110918y−4 − 1.547993y−5
subject to
y+

1 + 4y+
5 − y−1 − 4y−5 ≥ 0,

7y+
1 + 20y+

2 − 7y−1 − 20y−2 ≥ 0,
−1.5y+

1 + 20y+
2 + 0.5y+

3 + 6y+
5

+1.5y−1 − 20y−2 − 0.5y−3 − 6y−5 ≥ 0,
y+

1 + 10y+
2 + 3y+

3 + 3y+
4 − 6.5y+

5−y−1 − 10y−2 − 3y−3 − 3y−4 + 6.5y−5 ≥ 0,
−6y+

1 + 3y+
2 + 3y+

3 + 2y+
4 + 3y+

5
+6y−1 − 3y−2 − 3y−3 − 2y−4 − 3y−5 ≥ 0,

1.5y+
1 + 53y+

2 + 6.5y+
3 + 5y+

4 + 6.5y+
5−1.5y−1 − 53y−2 − 6.5y−3 − 5y−4 − 6.5y−5 = 1,

y+
i ≥ 0, y−i ≥ 0, i = 1, 2, . . . , 5.

We obtain an optimal solution of the above problem as

y+
1 = 0, y+

2 = 0.015873, y+
3 = 0, y+

4 = 0, y+
5 = 0.024420,

y−1 = 0, y−2 = 0, y−3 = 0, y−4 = 0, y−5 = 0.

Then the optimal investment rate proportions x is obtained by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3
x4

x5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= DT

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y+
1

y+
2

y+
3

y+
4

y+
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y−1
y−2
y−3
y−4
y−5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.097680
0.317460
0.463981

0
0.120879

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that in this example, we use problem P(4.28) and solve it by a linear
programming technique because the problem size is not very big. However
when the problem size is rather big, we can use problem P(4.27) and utilize
Bender’s decomposition method so that we can obtain an optimal solution
by solving smaller linear programming problems [60].

On the other hand, applying minimax regret model with F(r1, r2) = r1 − r2
and α = 0.7, we formulated problem P(4.29). The problem is written as

min q
subject to
0.297858y+

11 + 11.139137y+
12 + 1.330165y+

13 + 1.045082y+
14 + 1.378007y+

15−0.494142y−11 − 11.248863y−12 − 1.461835y−13 − 1.110918y−14 − 1.547993y−15 ≥ q,
x1 + y+

11 + 4y+
15 − y−11 − 4y−15 = 1,
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−x2 + 7y+
11 + 20y+

12 − 7y−11 − 20y−12 = 0,
−x3 − 1.5y+

11 + 20y+
12 + 0.5y+

13 + 6y+
15 + 1.5y−11 − 20y−12 − 0.5y−13 − 6y−15 = 0,

−x4 + y+
11 + 10y+

12 + 3y+
13 + 3y+

14 − 6.5y+
15 − y−11 − 10y−12 − 3y−13 − 3y−14 + 6.5y−15 = 0,

−x5 − 6y+
11 + 3y+

12 + 3y+
13 + 2y+

14 + 3y+
15 + 6y−11 − 3y−12 − 3y−13 − 2y−14 − 3y−15 = 0,

0.297858y+
21 + 11.139137y+

22 + 1.330165y+
23 + 1.045082y+

24 + 1.378007y+
25−0.494142y−21 − 11.248863y−22 − 1.461835y−23 − 1.110918y−24 − 1.547993y−25 ≥ q,

−x1 + y+
21 + 4y+

25 − y−21 − 4y−25 = 0,
x2 + 7y+

21 + 20y+
22 − 7y−21 − 20y−22 = 1,

−x3 − 1.5y+
21 + 20y+

22 + 0.5y+
23 + 6y+

25 + 1.5y−21 − 20y−22 − 0.5y−23 − 6y−25 = 0,
−x4 + y+

21 + 10y+
22 + 3y+

23 + 3y+
24 − 6.5y+

25 − y−21 − 10y−22 − 3y−23 − 3y−24 + 6.5y−25 = 0,
−x5 − 6y+

21 + 3y+
22 + 3y+

23 + 2y+
24 + 3y+

25 + 6y−21 − 3y−22 − 3y−23 − 2y−24 − 3y−25 = 0,
0.297858y+

31 + 11.139137y+
32 + 1.330165y+

33 + 1.045082y+
34 + 1.378007y+

35−0.494142y−31 − 11.248863y−32 − 1.461835y−33 − 1.110918y−34 − 1.547993y−35 ≥ q,
−x1 + y+

31 + 4y+
35 − y−31 − 4y−35 = 0,

−x2 + 7y+
31 + 20y+

32 − 7y−31 − 20y−32 = 0,
x3 − 1.5y+

31 + 20y+
32 + 0.5y+

33 + 6y+
35 + 1.5y−31 − 20y−32 − 0.5y−33 − 6y−35 = 1,

−x4 + y+
31 + 10y+

32 + 3y+
33 + 3y+

34 − 6.5y+
35 − y−31 − 10y−32 − 3y−33 − 3y−34 + 6.5y−35 = 0,

−x5 − 6y+
31 + 3y+

32 + 3y+
33 + 2y+

34 + 3y+
35 + 6y−31 − 3y−32 − 3y−33 − 2y−34 − 3y−35 = 0,

0.297858y+
41 + 11.139137y+

42 + 1.330165y+
43 + 1.045082y+

44 + 1.378007y+
45−0.494142y−41 − 11.248863y−42 − 1.461835y−43 − 1.110918y−44 − 1.547993y−45 ≥ q,

−x1 + y+
41 + 4y+

45 − y−41 − 4y−45 = 0,
−x2 + 7y+

41 + 20y+
42 − 7y−41 − 20y−42 = 0,

−x3 − 1.5y+
41 + 20y+

42 + 0.5y+
43 + 6y+

45 + 1.5y−41 − 20y−42 − 0.5y−43 − 6y−45 = 0,
x4 + y+

41 + 10y+
42 + 3y+

43 + 3y+
44 − 6.5y+

45 − y−41 − 10y−42 − 3y−43 − 3y−44 + 6.5y−45 = 1,
−x5 − 6y+

41 + 3y+
42 + 3y+

43 + 2y+
44 + 3y+

45 + 6y−41 − 3y−42 − 3y−43 − 2y−44 − 3y−45 = 0,
0.297858y+

51 + 11.139137y+
52 + 1.330165y+

53 + 1.045082y+
54 + 1.378007y+

55−0.494142y−51 − 11.248863y−52 − 1.461835y−53 − 1.110918y−54 − 1.547993y−55 ≥ q,
−x1 + y+

51 + 4y+
55 − y−51 − 4y−55 = 0,

−x2 + 7y+
51 + 20y+

52 − 7y−51 − 20y−52 = 0,
−x3 − 1.5y+

51 + 20y+
52 + 0.5y+

53 + 6y+
55 + 1.5y−51 − 20y−52 − 0.5y−53 − 6y−55 = 0,

−x4 + y+
51 + 10y+

52 + 3y+
53 + 3y+

54 − 6.5y+
55 − y−51 − 10y−52 − 3y−53 − 3y−54 + 6.5y−55 = 0,

x5 − 6y+
51 + 3y+

52 + 3y+
53 + 2y+

54 + 3y+
55 + 6y−51 − 3y−52 − 3y−53 − 2y−54 − 3y−55 = 1,

x1 + x2 + x3 + x4 + x5 = 1,
xi ≥ 0, y+

i j ≥ 0, y−i j ≥ 0, i = 1, 2, . . . , 5, j = 1, 2, . . . , 5.

Solving this problem, we obtain an optimal solution q, x = (x1, x2, x3, x4, x5)T,
Y+ = (y+

i j) and Y− = (y−i j) as follows:

q = 0.440294, x = (0.159177, 0.328070, 0.043885, 0.061670, 0.407198)T ,

Y+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.154542 0 0 0.466399 0.171570
0.151061 0 1.287608 0 0.002029

0 0.034040 0 0.266643 0.052392
0.046613 0 0 0.471559 0.028141
0.106851 0 1.091117 0 0.013082

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Y− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.037686 0 0 0
0 0.019275 0 1.248760 0

0.050390 0 0.229241 0 0
0 0 0.113644 0 0
0 0.020994 0 1.007853 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.



124 4 Possibilistic Programming Approaches to Portfolio Optimization

The above problem can be solved by the Bender’s decomposition method
so that the problem is decomposed into five subproblems and one master
problem [60].

We observe the difference between those solutions: the solution of the ne-
cessity fractile optimization model suggests large amounts of investment to x2

and x3 while the solution of the minimax regret model suggests large amounts
of investment to x2 and x5.

Finally to see the significance of the interaction, we solve the problem
with non-interactive fuzzy numbers having the same marginal membership
functions. Namely, this problem can be seen as the problem discarding the
interaction. We obtain

x = (0, 0, 0, 1, 0)T

from necessity fractile optimization model, and

q = 0.4640220, x = (0.255508, 0.190326, 0.179810, 0.155279, 0.219077)T

from the conventional minimax regret model. We observe the big differ-
ences of solutions between problems with oblique fuzzy vector and with non-
interactive fuzzy numbers. In necessity fractile optimization model, while the
solution to the problem discarding the interaction suggests the concentrate
investment on the fourth asset, the solution to the problem taking care of
the interaction suggests no investment on the fourth asset. Similarly, in the
conventional minimax regret model, while the solution to the problem dis-
carding the interaction suggests the investment of more than 15% of the fund
on the fourth asset, the solution to the problem taking care of the interac-
tion suggests the investment of less than 7% of the fund. These facts show
that the fourth asset is not very attractive one if we consider the interaction
among the return rates of five assets. Moreover, the distributions of the fund
are significantly different between the solutions of the two conventional min-
imax regret models. By these results, we understand the significance of the
interaction.

4.4 Comments

In this chapter, we have presented the following facts:

• The classical possibilistic programming approaches to simple portfolio se-
lection problems with fuzzy coefficients have been discussed.

• When fuzzy coefficients are non-interactive, the reduced problems obtained
by the classical possibilistic programming approach are tractable. They are
linear programming problems. However, the obtained solutions indicate
concentrated investments.
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• To obtain diversified investment solutions, minimax regret approach has
been presented. It is shown that the reduced problem becomes a linear
programming problem.

• Moreover, three models to treat interaction among fuzzy coefficients with-
out loss of the tractability of the reduced problem are described. Using
those models together with minimax regret approach, more diversified in-
vestment solutions can be obtained.



Chapter 5

Portfolio Optimization Using
Credibility Theory

Abstract. In this chapter, we present a hybrid bi-objective credibility-based
fuzzy mathematical programming model for portfolio selection under fuzzy
environment. The expected value and chance constrained programming tech-
niques are used to formulate the mathematical model in which return, risk
and liquidity are considered for measuring performance of an asset. The model
seeks to maximize the portfolio return while minimizing the portfolio risk.
The portfolio liquidity is considered as a constraint. To solve the fuzzy opti-
mization model, a two-phase approach is discussed.

5.1 Credibility Theory

The possibility measure widely used in literature to deal with fuzzy variables
that represent return rates of the assets in portfolio theory does not obey the
law of truth conservation. Further, it is inconsistent with the law of excluded
middle and the law of contradiction. For example, a fuzzy event may fail
even though its possibility value is 1 and hold even though its necessity
value is 0. This is mainly due to the fact that possibility measure does not
satisfy self-duality property which is absolutely needed in both theory and
practice. In order to elevate this difficulty, Liu and Liu [85] presented a self-
dual measure, namely, credibility measure. Note that when the credibility
value of a fuzzy event attains 1, the fuzzy event will surely happen; however,
when the corresponding possibility value achieves 1, the fuzzy event may fail
to happen. In other words, the fuzzy event must hold if its credibility value is
1 and fail if its credibility value is 0. Credibility theory, founded by Liu [87] in
2004 and refined by Liu [88] in 2007, is a branch of mathematics for studying
the behavior of fuzzy phenomena. Mathematically, it can be described as
follows.

Let Θ be a nonempty set (representing the sample space) and P(Θ) be the
power set of Θ (i.e., all possible subsets of Θ). Each element in P(Θ) is called
an event. To present an axiomatic definition of credibility, it is necessary
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128 5 Portfolio Optimization Using Credibility Theory

to assign to each event A, a number Cr{A}, which represents the credibility
that A will occur. Further, to ensure that the number Cr{A} has certain
mathematical properties which we intuitively expect credibility to have, the
following four axioms must hold:

Axiom 1. (Normality) Cr{Θ} = 1.
Axiom 2. (Monotonicity) Cr{A} ≤ Cr{B} whenever A ⊂ B.
Axiom 3. (Self-Duality) Cr{A} + Cr{Ac} = 1 for any event A ∈ P(Θ).
Axiom 4. (Maximality) Cr{∪iAi} ∧ 0.5 = supi Cr{Ai} for any events {Ai}

with Cr{Ai} ≤ 0.5.

The first three axioms are self explanatory. The maximum axiom may be
understood as follows. There is no uncertainty in the outcome of an event if
its credibility measure is 1 (or 0) because we may believe that the event occurs
(or not). On the other hand, an event is the most uncertain if its credibility
measure is 0.5 since in such a case both the event and its complement may
be regarded as ‘equally likely’. Further, if there is no information about the
credibility measure of an event then we should consider it as 0.5. Based on this
argument, Liu [86] proposed the maximum uncertainty principle which states
that ‘For any event, if there are multiple reasonable values that a credibility
measure may take, then the value as close to 0.5 as possible is assigned to it’.

Definition 5.1 (Credibility measure). The set function Cr is called a
credibility measure if it satisfies the normality, monotonicity, self-duality, and
maximality axioms.

Example 5.1. Let Θ = {θ1, θ2}. There are only four possible events for this
case: A1 = φ, A2 = {θ1}, A3 = {θ2} A4 = Θ = {θ1, θ2}. Define Cr{A1} =
0, Cr{A2} = 0.7, Cr{A3} = 0.3, and Cr{A4} = 1. To verify wether the set
function Cr is a credibility measure or not, we need to check the four axioms.
Axiom 1. The set function Cr satisfies the normality as Cr{Θ} = 1.
Axiom 2. The set function Cr satisfies the monotonicity, for example,

A1 ⊂ A2 and Cr{A1} < Cr{A2}
A1 ⊂ A3 and Cr{A1} < Cr{A3}
A1 ⊂ A4 and Cr{A1} < Cr{A4}
A2 ⊂ A4 and Cr{A2} < Cr{A4}
A3 ⊂ A4 and Cr{A3} < Cr{A4}

Axiom 3. The set function Cr satisfies the self-duality, for example,
Cr{A1} + Cr{Ac

1}(= Cr{A4}) = 1
Axiom 4. The set function Cr satisfies the maximality, for example,

Cr{A1 ∪A3}(= Cr{A3}) ∧ 0.5 = sup{Cr{A1},Cr{A3}}
Hence, the set function Cr is a credibility measure.

The following theorems present additional properties of credibility measure
and are established in [85, 88].

Theorem 5.1. Let Θ be a nonempty set, P(Θ) the power set of Θ and Cr
the credibility measure. Then Cr{φ} = 0 and 0 ≤ Cr{A} ≤ 1 for any A ∈ P.
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Proof. From Axioms 1 and 3, we have Cr{φ} = 1 − Cr{Θ} = 1 − 1 = 0.
Also, φ ⊂ A ⊂ Θ, we have Cr{φ} ≤ Cr{A} ≤ Cr{Θ} from Axiom 2, i.e.,
0 ≤ Cr{A} ≤ 1. ��
Theorem 5.2. The credibility measure is subadditive. That is,

Cr{A ∪ B} ≤ Cr{A} + Cr{B}
for any events A and B. Further, the credibility measure is null-additive, i.e.,
Cr{A ∪ B} = Cr{A} + Cr{B} if either Cr{A} = 0 or Cr{B} = 0.

Proof. In order to prove the theorem, we need to consider the following three
cases.
Case 1: Cr{A} < 0.5 and Cr{B} < 0.5. Using Axiom 4, we have

Cr{A ∪ B} = Cr{A} ∨ Cr{B} ≤ Cr{A} + Cr{B} .
Case 2: Cr{A} ≥ 0.5. Using Axioms 2 and 3, we have Cr{Ac} ≤ 0.5 and
Cr{A ∪ B} ≥ Cr{A} ≥ 0.5. Then

Cr{Ac} = Cr{Ac ∩ B} ∨ Cr{Ac ∩ Bc}
≤ Cr{Ac ∩ B} + Cr{Ac ∩ Bc}
≤ Cr{B} + Cr{Ac ∩ Bc} .

Using the above inequality, we have

Cr{A} + Cr{B} = 1 − Cr{Ac} + Cr{B}
≥ 1 − Cr{B} − Cr{Ac ∩ Bc} + Cr{B}
= 1 − Cr{Ac ∩ Bc}
= Cr{A ∪ B} .

Case 3: Cr{B} ≥ 0.5. Using Axioms 2 and 3, we have Cr{Bc} ≤ 0.5 and
Cr{A ∪ B} ≥ Cr{B} ≥ 0.5. Then

Cr{Bc} = Cr{A ∩ Bc} ∨ Cr{Ac ∩ Bc}
≤ Cr{A ∩ Bc} + Cr{Ac ∩ Bc}
≤ Cr{A} + Cr{Ac ∩ Bc} .

Using the above inequality, we have

Cr{A} + Cr{B} = Cr{A} + 1 − Cr{Bc}
≥ 1 − Cr{A} − Cr{Ac ∩ Bc} + Cr{A}
= 1 − Cr{Ac ∩ Bc}
= Cr{A ∪ B} .

Thus, the subadditivity property is established. Further, it follows from sub-
additivity property that Cr{A ∪ B} = Cr{A} + Cr{B} if either Cr{A} = 0 or
Cr{B} = 0. ��
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Definition 5.2 (Credibility space). Let Θ be a nonempty set, P(Θ) the
power set of Θ and Cr the credibility measure. Then the triplet (Θ,P(Θ),Cr)
is called a credibility space.

Definition 5.3 (Fuzzy variable). A fuzzy variable is a (measurable) func-
tion from a credibility space (Θ,P(Θ),Cr) to the set of real numbers.

Example 5.2. Let Θ = {θ1, θ2} with Cr{θ1} = Cr{θ2} = 0.5. Then the function

ξ(θ) =
{

0, if θ = θ1 ,
1, if θ = θ2 ,

define a fuzzy variable.

Remark 5.1. Since a fuzzy variable ξ is a function on a credibility space,
for any set A of real numbers, the set

{ξ ∈ A} = {θ ∈ Θ|ξ(θ) ∈ A}
is always an element in P. In other words, the fuzzy variable ξ is always a
measurable function and {ξ ∈ A} is always an event.

Note that if ξ1 and ξ2 are two fuzzy variables defined on a credibility space
(Θ,P(Θ),Cr), then ξ1 = ξ2 implies ξ1(θ) = ξ2(θ) for almost all θ ∈ Θ.
Definition 5.4 (Membership function). Let ξ be a fuzzy variable defined
on the credibility space (Θ,P(Θ),Cr). Then its membership function is derived
from credibility measure using the following relation

μ(r) = (2Cr{ξ = r}) ∧ 1 , r ∈ R.

The membership function represents the degree that the fuzzy variable ξ takes
some prescribed value. The membership degree μ(r) = 0 if r is an impossible
point and μ(r) = 1 if r is the most possible point that ξ takes. Note that
a fuzzy variable has a unique membership function; however, a membership
function may produce multiple fuzzy variables.

Example 5.3. Let Θ = {θ1, θ2} with Cr{θ1} = Cr{θ2} = 0.5. Define the func-
tions

ξ1(θ) =
{

0, if θ = θ1 ,
1, if θ = θ2 ,

ξ2(θ) =
{

1, if θ = θ1 ,
0, if θ = θ2 .

It is clear that both of them are fuzzy variables and have the same membership
function, μ(r) ≡ 1 on r = 0 or 1.

An important issue that needs to be addressed now is that if the member-
ship function of a fuzzy variable ξ is known to us, then how can we determine
the credibility value of a fuzzy event? To answer this question, we have to rely
on the following credibility inversion theorem proved by Liu and Liu [85].
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Theorem 5.3. Let ξ be a fuzzy variable with membership function μ. Then
for any set A of real numbers, we have

Cr{ξ ∈ A} = 1
2

(
sup
r∈A
μ(r) + 1 − sup

r∈Ac

μ(r)
)
. (5.1)

Proof. In order to prove the theorem, we consider two cases:
Case 1: If Cr{ξ ∈ A} ≤ 0.5, then using Axiom 2, we have Cr{ξ = r} ≤ 0.5 for
each r ∈ A. From Axiom 4 we have

Cr{ξ ∈ A} = 1
2

(
sup
r∈A

(2Cr{ξ = r} ∧ 1)
)
=

1
2

sup
r∈A
μ(r) . (5.2)

Also, using Axiom 3, we have Cr{ξ ∈ Ac} ≥ 0.5 and sup
r∈Ac

Cr{ξ = r} ≥ 0.5.

Therefore, we have

sup
r∈Ac

μ(r) = sup
r∈Ac

(2Cr{ξ = r} ∧ 1) = 1 . (5.3)

From (5.2) and (5.3) it is clear that (5.1) holds.
Case 2: If Cr{ξ ∈ A} ≥ 0.5, then Cr{ξ ∈ Ac} ≤ 0.5. Now from case 1 it follows
that

Cr{ξ ∈ A} = 1 − Cr{ξ ∈ Ac} = 1 − 1
2

(
sup
r∈Ac

μ(r) + 1 − sup
r∈A
μ(r)
)

=
1
2

(
sup
r∈A
μ(r) + 1 − sup

r∈Ac

μ(r)
)
.

��
Remark 5.2. Let ξ be a fuzzy variable with membership function μ. Then
the following equations can follow from Theorem 5.3.

Cr{ξ = r} = 1
2

⎛
⎜⎜⎜⎜⎝μ(r) + 1 − sup

y�r
μ(y)

⎞
⎟⎟⎟⎟⎠ , ∀r ∈ R ;

Cr{ξ ≤ r} = 1
2

⎛
⎜⎜⎜⎜⎝sup

y≤r
μ(y) + 1 − sup

y>r
μ(y)

⎞
⎟⎟⎟⎟⎠ , ∀r ∈ R ;

Cr{ξ ≥ r} = 1
2

⎛
⎜⎜⎜⎜⎝sup

y≥r
μ(y) + 1 − sup

y<r
μ(y)

⎞
⎟⎟⎟⎟⎠ , ∀r ∈ R .

Further, if μ is a continuous function, then

Cr{ξ = r} = μ(r)
2
, ∀r ∈ R.
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Credibility of Some Special Fuzzy Variables

Definition 5.5 (Triangular fuzzy variable). A fuzzy variable is said to
be a triangular fuzzy variable if it is fully determined by the triplet (a, b, c) of
crisp numbers with a < b < c and its membership function (see Fig. 5.1) is
given by

μ(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r − a
b − a

, if a ≤ r ≤ b ,

c − r
c − b

, if b ≤ r ≤ c ,

0, otherwise .

𝒓 

𝝁(𝒓) 

𝒄 

                                                                1 

   0 𝒂 𝒃 

Fig. 5.1 Membership function of triangular fuzzy variable

To find the credibility Cr{ξ ≤ r}, we use the credibility inversion theorem.
Accordingly, if c ≤ r, we have

Cr{ξ ≤ r} = 1
2

⎛
⎜⎜⎜⎜⎝sup

y≤r
μ(y) + 1 − sup

y>r
μ(y)

⎞
⎟⎟⎟⎟⎠ , ∀r ∈ R

⇒ Cr{ξ ≤ r} = 1
2

(1 + 1 − 0) = 1 .

If b ≤ r ≤ c, we have

Cr{ξ ≤ r} = 1
2

⎛
⎜⎜⎜⎜⎝sup

y≤r
μ(y) + 1 − sup

y>r
μ(y)

⎞
⎟⎟⎟⎟⎠ , ∀r ∈ R

⇒ Cr{ξ ≤ r} = 1
2

(
1 + 1 − c − r

c − b

)
=

c − 2b + r
2(c − b)

.
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If a ≤ r ≤ b, we have

Cr{ξ ≤ r} = 1
2

⎛
⎜⎜⎜⎜⎝sup

y≤r
μ(y) + 1 − sup

y>r
μ(y)

⎞
⎟⎟⎟⎟⎠ , ∀r ∈ R

⇒ Cr{ξ ≤ r} = 1
2

( r − a
b − a

+ 1 − 1
)
=

r − a
2(b − a)

.

If r ≤ a, we have

Cr{ξ ≤ r} = 1
2

⎛
⎜⎜⎜⎜⎝sup

y≤r
μ(y) + 1 − sup

y>r
μ(y)

⎞
⎟⎟⎟⎟⎠ , ∀r ∈ R

⇒ Cr{ξ ≤ r} = 1
2

(0 + 1 − 1) = 0 .

That is,

Cr{ξ ≤ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if r ≤ a ,

r − a
2(b − a)

, if a ≤ r ≤ b ,

c − 2b + r
2(c − b)

, if b ≤ r ≤ c ,

1, if c ≤ r .

On the similar lines, we can obtain

Cr{ξ ≥ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if r ≤ a ,

2b − a − r
2(b − a)

, if a ≤ r ≤ b ,

c − r
2(c − b)

, if b ≤ r ≤ c ,

0, if c ≤ r .

A graphical representation of the credibility of events ξ ≤ r (see the left
part of Fig. 5.2) and ξ ≥ r (see the right part of Fig. 5.2) is presented in
Fig. 5.2.

Definition 5.6 (Trapezoidal fuzzy variable). A fuzzy variable is said to
be a trapezoidal fuzzy variable if it is fully determined by the quadruplet
(a, b, c, d) of crisp numbers with a < b < c < d and its membership function
(see Fig. 5.3) is given by
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𝒓 

𝑪𝒓{ ≤ 𝑟} 

   0.5 

𝑪𝒓{ ≥ 𝑟} 
   1 

   0.5 

   0 𝒓 𝒂 𝒃 𝒄 𝒄 

                                                                    1 

   0 𝒂 𝒃 

Fig. 5.2 Credibility of triangular fuzzy variable

𝒓 

𝝁(𝒓) 

𝒄 𝒅 

                                                                    1 

   0 𝒂 𝒃 

Fig. 5.3 Membership function of trapezoidal fuzzy variable

μ(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r − a
b − a

, if a ≤ r ≤ b ,

1, if b ≤ r ≤ c ,

d − r
d − c

, if c ≤ r ≤ d ,

0, otherwise .

To find the credibility Cr{ξ ≤ r}, we use the credibility inversion theorem.
Accordingly, if d ≤ r, we have

Cr{ξ ≤ r} = 1
2

⎛
⎜⎜⎜⎜⎝sup

y≤r
μ(y) + 1 − sup

y>r
μ(y)

⎞
⎟⎟⎟⎟⎠ , ∀r ∈ R

⇒ Cr{ξ ≤ r} = 1
2

(1 + 1 − 0) = 1 .
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If c ≤ r ≤ d, we have

Cr{ξ ≤ r} = 1
2

⎛
⎜⎜⎜⎜⎝sup

y≤r
μ(y) + 1 − sup

y>r
μ(y)

⎞
⎟⎟⎟⎟⎠ , ∀r ∈ R

⇒ Cr{ξ ≤ r} = 1
2

(
1 + 1 − d − r

d − c

)
=

d − 2c + r
2(d − c)

.

If b ≤ r ≤ c, we have

Cr{ξ ≤ r} = 1
2

⎛
⎜⎜⎜⎜⎝sup

y≤r
μ(y) + 1 − sup

y>r
μ(y)

⎞
⎟⎟⎟⎟⎠ , ∀r ∈ R

⇒ Cr{ξ ≤ r} = 1
2

(1 + 1 − 1) =
1
2
.

If a ≤ r ≤ b, we have

Cr{ξ ≤ r} = 1
2

⎛
⎜⎜⎜⎜⎝sup

y≤r
μ(y) + 1 − sup

y>r
μ(y)

⎞
⎟⎟⎟⎟⎠ , ∀r ∈ R

⇒ Cr{ξ ≤ r} = 1
2

( r − a
b − a

+ 1 − 1
)
=

r − a
2(b − a)

.

If r ≤ a, we have

Cr{ξ ≤ r} = 1
2

⎛
⎜⎜⎜⎜⎝sup

y≤r
μ(y) + 1 − sup

y>r
μ(y)

⎞
⎟⎟⎟⎟⎠ , ∀r ∈ R

⇒ Cr{ξ ≤ r} = 1
2

(0 + 1 − 1) = 0 .

That is,

Cr{ξ ≤ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if r ≤ a ,

r − a
2(b − a)

, if a ≤ r ≤ b ,

1
2
, if b ≤ r ≤ c ,

d − 2c + r
2(d − c)

, if c ≤ r ≤ d ,

1, if d ≤ r .
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Similarly, we can obtain

Cr{ξ ≥ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if r ≤ a ,

2b − r − a
2(b − a)

, if a ≤ r ≤ b ,

1
2
, if b ≤ r ≤ c ,

d − r
2(d − c)

, if c ≤ r ≤ d ,

0, if d ≤ r .

A graphical representation of the credibility of events ξ ≤ r (see the left part
of Fig. 5.4) and ξ ≥ r (see the right part of Fig. 5.4) is presented in Fig. 5.4.

𝒓 

𝑪𝒓{ ≤ 𝑟} 

   0.5 

𝑪𝒓{ ≥ 𝑟} 
   1 

   0.5 

   0 𝒓 𝒃 𝒄 𝒄 𝒅 𝒅 𝒂 

                                                                    1 

   0 𝒂 𝒃 

Fig. 5.4 Credibility of trapezoidal fuzzy variable

Expected Value of Fuzzy Variable

In literature, there are many ways to define an expected value operator for
fuzzy variables, for example, Campos and González [15], Dubois and Prade
[27], Heilpern [48] and Yager [121]. The most general definition of expected
value operator of fuzzy variable was given by Liu and Liu [85]. This definition
has an advantage in terms of its applicability, i.e., it is applicable not only to
continuous fuzzy variables but also to discrete ones.

Definition 5.7 (Expected value). Let ξ be a fuzzy variable. Then the
expected value of ξ is defined by

E[ξ] =
∫ +∞

0
Cr{ξ ≥ r}dr −

∫ 0

−∞
Cr{ξ ≤ r}dr (5.4)

provided that at least one of the two integrals is finite.
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The next two theorems provides the expected value of a triangular fuzzy
variable and a trapezoidal fuzzy variable.

Theorem 5.4. Let ξ = (a, b, c) with a < b < c be a triangular fuzzy variable.
The E[ξ] is given by

E[ξ] =
a + 2b + c

4
.

Proof. From the credibility inversion theorem, we have

Cr{ξ ≤ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if r ≤ a ,

r − a
2(b − a)

, if a ≤ r ≤ b ,

c − 2b + r
2(c − b)

, if b ≤ r ≤ c ,

1, if c ≤ r .

and

Cr{ξ ≥ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if r ≤ a ,

2b − a − r
2(b − a)

, if a ≤ r ≤ b ,

c − r
2(c − b)

, if b ≤ r ≤ c ,

0, if c ≤ r .

Now, we consider four possible cases to prove the theorem.
Case 1: If a ≥ 0, then Cr{ξ ≤ r} ≡ 0 when r < 0 and

Cr{ξ ≥ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if r ≤ a ,

2b − a − r
2(b − a)

, if a ≤ r ≤ b ,

c − r
2(c − b)

, if b ≤ r ≤ c ,

0, if c ≤ r .

Then the expected value of ξ using (5.4) is obtained as

E[ξ] =
(∫ a

0
1dr +

∫ b

a

2b − a − r
2(b − a)

dr +
∫ c

b

c − r
2(c − b)

dr +
∫ +∞

c
0dr
)

−
∫ 0

−∞
0dr

=
a + 2b + c

4
.
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Case 2: If a < 0 ≤ b < c, then

Cr{ξ ≤ r} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if r ≤ a ,
r − a
−2a
, if a ≤ r ≤ 0 ,

Cr{ξ ≥ r} =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2b − r
2b
, if 0 ≤ r ≤ b ,

c − r
2(c − b)

, if b ≤ r ≤ c ,

0, if c ≤ r .

Then the expected value of ξ using (5.4) is obtained as

E[ξ] =
(∫ b

0

2b − r
2b

dr +
∫ c

b

c − r
2(c − b)

dr +
∫ +∞

c
0dr

)
−
(∫ a

−∞
0dr +

∫ 0

a

r − a
−2a

dr

)

=
a + 2b + c

4
.

Case 3: If a < b ≤ 0 < c, then

Cr{ξ ≤ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if r ≤ a ,
r − a

2(b − a)
, if a ≤ r ≤ b ,

r − 2b
−2b

, if b ≤ r ≤ 0 ,

Cr{ξ ≥ r} =
⎧⎪⎪⎨⎪⎪⎩

c − r
2c
, if 0 ≤ r ≤ c ,

0, if c ≤ r .

Then the expected value of ξ using (5.4) is obtained as

E[ξ] =
(∫ c

0

c − r
2c

dr +
∫ +∞

c
0dr
)
−
(∫ a

−∞
0dr +

∫ b

a

r − a
2(b − a)

dr +
∫ 0

b

r − 2b
−2b

dr
)

=
a + 2b + c

4
.

Case 4: If a < b < c ≤ 0, then Cr{ξ ≥ r} ≡ 0 when r > 0 and
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Cr{ξ ≤ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if r ≤ a ,
r − a

2(b − a)
, if a ≤ r ≤ b ,

r + c − 2b
2(c − b)

, if b ≤ r ≤ c ,

1, if c ≤ r .

Then the expected value of ξ using (5.4) is obtained as

E[ξ] =
∫ +∞

0
0dr −

(∫ a

−∞
0dr +

∫ b

a

r − a
2(b − a)

dr +
∫ c

b

r + c − 2b
2(c − b)

dr +
∫ 0

c
1dr
)

=
a + 2b + c

4
.

��
Theorem 5.5. Let ξ = (a, b, c, d) with a < b < c < d be a trapezoidal fuzzy
variable. The E[ξ] is given by

E[ξ] =
a + b + c + d

4
. (5.5)

Proof. From the credibility inversion theorem, we have

Cr{ξ ≤ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if r ≤ a ,

r − a
2(b − a)

, if a ≤ r ≤ b ,

1
2
, if b ≤ r ≤ c ,

d − 2c + r
2(d − c)

, if c ≤ r ≤ d ,

1, if d ≤ r .

and

Cr{ξ ≥ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if r ≤ a ,

2b − r − a
2(b − a)

, if a ≤ r ≤ b ,

1
2
, if b ≤ r ≤ c ,

d − r
2(d − c)

, if c ≤ r ≤ d ,

0, if d ≤ r .
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Now, we consider five possible cases to prove the theorem.
Case 1: If a ≥ 0, then Cr{ξ ≤ r} ≡ 0 when r < 0 and

Cr{ξ ≥ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if r ≤ a ,

2b − a − r
2(b − a)

, if a ≤ r ≤ b ,

1
2
, if b ≤ r ≤ c ,

d − r
2(d − c)

, if c ≤ r ≤ d ,

0, if d ≤ r .

Then the expected value of ξ using (5.4) is obtained as

E[ξ] =
(∫ a

0
1dr +

∫ b

a

2b − a − r
2(b − a)

dr +
∫ c

b

1
2

dr +
∫ d

c

d − r
2(d − c)

dr +
∫ +∞

d
0dr

)

−
∫ 0

−∞
0dr

=
a + b + c + d

4
.

Case 2: If a < 0 ≤ b < c < d, then

Cr{ξ ≤ r} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if r ≤ a ,
r − a
−2a
, if a ≤ r ≤ 0 ,

Cr{ξ ≥ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2b − r
2b
, if 0 ≤ r ≤ b ,

1
2
, if b ≤ r ≤ c ,

d − r
2(d − c)

, if c ≤ r ≤ d ,

0, if d ≤ r .

Then the expected value of ξ using (5.4) is obtained as

E[ξ] =
(∫ b

0

2b − r
2b

dr +
∫ c

b

1
2

dr +
∫ d

c

d − r
2(d − c)

dr +
∫ +∞

d
0dr
)

−
(∫ a

−∞
0dr +

∫ 0

a

r − a
−2a

dr

)

=
a + b + c + d

4
.
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Case 3: If a < b ≤ 0 < c < d, then

Cr{ξ ≤ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if r ≤ a ,
r − a

2(b − a)
, if a ≤ r ≤ b ,

1
2
, if b ≤ r ≤ 0 ,

Cr{ξ ≥ r} =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2
, if 0 ≤ r ≤ c ,

d − r
2(d − c)

, if c ≤ r ≤ d ,

0, if d ≤ r .

Then the expected value of ξ using (5.4) is obtained as

E[ξ] =
(∫ c

0

1
2

dr +
∫ d

c

d − r
2(d − c)

dr +
∫ +∞

d
0dr

)

−
(∫ a

−∞
0dr +

∫ b

a

r − a
2(b − a)

dr +
∫ 0

b

1
2

dr
)

=
a + b + c + d

4
.

Case 4: If a < b < c ≤ 0 < d, then

Cr{ξ ≤ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if r ≤ a ,
r − a

2(b − a)
, if a ≤ r ≤ b ,

1
2
, if b ≤ r ≤ c ,

r − 2c
−2c

, if c ≤ r ≤ 0 ,

Cr{ξ ≥ r} =
⎧⎪⎪⎨⎪⎪⎩

d − r
2d
, if 0 ≤ r ≤ d ,

0, if d ≤ r .
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Then the expected value of ξ using (5.4) is obtained as

E[ξ] =
(∫ d

0

d − r
2d

dr +
∫ +∞

d
0dr
)
−
(∫ a

−∞
0dr +

∫ b

a

r − a
2(b − a)

dr +
∫ c

b

1
2

dr

+

∫ 0

c

r − 2c
−2c

dr

)

=
a + b + c + d

4
.

Case 5: If a < b < c < d ≤ 0, then Cr{ξ ≥ r} ≡ 0 when r > 0 and

Cr{ξ ≤ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if r ≤ a ,
r − a

2(b − a)
, if a ≤ r ≤ b ,

1
2
, if b ≤ r ≤ c ,

r − 2c + d
2(d − c)

, if c ≤ r ≤ d ,

1, if d ≤ r .

Then the expected value of ξ using (5.4) is obtained as

E[ξ] =
∫ +∞

0
0dr −

(∫ a

−∞
0dr +

∫ b

a

r − a
2(b − a)

dr +
∫ c

b

1
2

dr +
∫ d

c

r − 2c + d
2(d − c)

dr

+

∫ 0

d
1dr

)

=
a + b + c + d

4
.

��
Variance of a Fuzzy Variable

The variance of a fuzzy variable provides a measure of the spread of the
distribution around its expected value. A small value of variance indicates
that the fuzzy variable is tightly concentrated around its expected value and
a large value of variance indicates that the fuzzy variable has a wide spread
around its expected value.

Definition 5.8 (Variance). Let ξ be a fuzzy variable with finite expected
value e. Then the variance of ξ is defined by

V[ξ] = E[(ξ − e)2] .

Note that according to the above definition, the variance is simply the
expected value of (ξ − e)2. Since (ξ − e)2 is a nonnegative uncertain variable,
we also have
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V[ξ] =
∫ +∞

0
Cr{(ξ − e)2 ≥ r}dr .

The following theorems proved in [85] provides the variance of special fuzzy
variables, namely, triangular and trapezoidal fuzzy variables.

Theorem 5.6. Let ξ = (a, b, c) with a < b < c be a triangular fuzzy variable.
The V[ξ] is given by

V[ξ] =
33α3 + 21α2β + 11αβ2 − β3

384α
,

where α = max{b− a, c−b} and β = min{b− a, c−b}. Further, when ξ = (a, b, c)
is a symmetric triangular fuzzy variable, i.e., c − b = b − a, then

V[ξ] =
(c − a)2

24
.

Theorem 5.7. Let ξ = (a, b, c, d) with a < b < c < d be a symmetric trape-
zoidal fuzzy variable, i.e., d − c = b − a Then V[ξ] is given by

V[ξ] =
((d − a)2 + (d − a)(c − b) + (c − b)2)

24
. (5.6)

The proof of these theorems can be worked out on similar lines as presented
before for calculation of expected value.

5.2 Portfolio Selection Based on Credibility Theory

Considering that there are many non-probabilistic factors that may affect the
asset returns, we assume that the investor allocate his/her wealth among n
assets that offer fuzzy returns. We first introduce the following notation.

5.2.1 Notation

ri: the fuzzy rate of return of the i-th asset ,

xi: the proportion of the total funds invested in the i-th asset ,

yi: a binary variable indicating whether the i-th asset is contained in the
portfolio, where

yi =

⎧⎪⎪⎨⎪⎪⎩
1, if i-th asset is contained in the portfolio,

0, otherwise,

Li: the fuzzy turnover rate of the i-th asset ,

L: the minimum desired level of the expected liquidity of the portfolio ,
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β: the minimum acceptable confidence level for the satisfaction of chance
constraint corresponding to portfolio liquidity ,

ui: the maximal fraction of the capital allocated to the i-th asset ,

li: the minimal fraction of the capital allocated to the i-th asset ,

h: the number of assets held in the portfolio .

We consider the following objective functions and constraints in the bi-
objective portfolio selection problem.

5.2.2 Objective Functions

Return
The expected return of the portfolio is expressed as

f1(x) = E[r1x1 + r2x2 + . . . + rnxn] .

Risk
The portfolio risk is measured using variance in which the deviations of the
portfolio return from the expected portfolio return contribute towards risk.
That is, if the deviations are large, then the expected portfolio return is
difficult to obtain. The portfolio risk is expressed as

f2(x) = V[r1x1 + r2x2 + . . . + rnxn] .

5.2.3 Constraints

Liquidity
The chance constraint for the credibility of the fuzzy event that the portfolio
liquidity not less than L is more than or equal to a confidence level β (0.5 <
β ≤ 1) is expressed as

Cr{L1x1 + L2x2 + . . . + Lnxn ≥ L} ≥ β .
Note that any confidence level β ≤ 0.5 is considered low and thus may be
regarded as meaningless to the real-world problems.

Capital budget constraint on the assets is expressed as
n∑

i=1

xi = 1 .

Maximal fraction of the capital that can be invested in a single asset is ex-
pressed as

xi ≤ ui yi , i = 1, 2, . . . , n .
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Minimal fraction of the capital that can be invested in a single asset is ex-
pressed as

xi ≥ li yi , i = 1, 2, . . . , n .

Number of assets held in the portfolio is expressed as
n∑

i=1

yi = h .

No short selling of assets is expressed as

xi ≥ 0 , i = 1, 2, . . . , n .

5.2.4 The Decision Problem

The bi-objective credibility-based fuzzy optimization model for portfolio se-
lection problem is formulated as

P(5.1) max f1(x) = E[r1x1 + r2x2 + . . . + rnxn]
min f2(x) = V[r1x1 + r2x2 + . . . + rnxn]
subject to

Cr{L1x1 + L2x2 + . . . + Lnxn ≥ L} ≥ β , (5.7)
n∑

i=1

xi = 1 , (5.8)

n∑

i=1

yi = h , (5.9)

xi ≤ ui yi , i = 1, 2, . . . , n , (5.10)

xi ≥ li yi , i = 1, 2, . . . , n , (5.11)

yi ∈ {0, 1} , i = 1, 2, . . . , n , (5.12)

xi ≥ 0 , i = 1, 2, . . . , n . (5.13)

5.3 Solution Methodology

The model P(5.1) is difficult to solve analytically in the presence of fuzzy
variables; thus, we use a two-phase approach. In the first phase, the model
P(5.1) is converted into an equivalent crisp bi-objective model. Then, in the
second phase, an fuzzy interactive approach is used for finding a preferred
compromise solution through an interaction between the investor and model
analyzer.
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5.3.1 First Phase: Crisp Equivalent Bi-objective
Model

Here, we present the appropriate strategies for obtaining the crisp equivalent
of the model P(5.1). We assume that asset returns and turnover rates are
the independent symmetrical trapezoidal fuzzy variables denoted by ri =
(rai , rbi , rci , rdi) and Li = (Lai , Lbi , Lci , Ldi ) with rbi − rai = rdi − rci and Lbi − Lai =
Ldi−Lci , i = 1, 2, . . . , n, respectively. It is worthy to mention that, we may also
consider general fuzzy variables for asset returns and turnover rates (other
than linear, triangular or trapezoidal) but then it is computationally difficulty
to obtain the crisp equivalent of the fuzzy optimization model for portfolio
selection. Note that trapezoidal fuzzy variables are most widely-used in real-
world problems and are easy-processed fuzzy variables. Further, triangular
fuzzy variables are the special type of trapezoidal fuzzy variables.

• Treating the objective functions
Using equations (5.5) and (5.6), the return and risk objective functions of
the model P(5.1) are replaced by the following crisp objectives, respectively.

max f1(x) =
n∑

i=1

rai + rbi + rci + rdi

4
xi ,

min f2(x) =
n∑

i, j=1

( (rdi − rai )(rdj − raj ) + (rdi − rai )(rcj − rbj ) + (rci − rbi )(rcj − rbj )

24

)
xixj .

• Treating the chance constraint
To deal with the chance constraint in respect of portfolio liquidity, we use a
strategy based on the following result established in [131].

Theorem 5.8. Let ξ = (a, b, c, d) with a < b < c < d be a fuzzy number. For a
given confidence level λ (0.5 < λ ≤ 1), we have

Cr{ξ ≥ r} ≥ λ⇔ r ≤ (2λ − 1)a + 2(1 − λ)b . (5.14)

Proof. According to the credibility distribution Cr{ξ ≥ r}, we can deduce that
if 0.5 < λ ≤ 1 then the following two cases may be considered:

Case 1: Cr{ξ ≥ r} ≥ λ ⇒ r ≤ a(Cr{ξ ≥ r} ≡ 1) or
2b − a − r
2(b − a)

≥ λ. If r ≤ a,

then r ≤ a ≤ (2λ − 1)a + 2(1 − λ)b under the condition that 0.5 < λ ≤ 1; If
2b − a − r
2(b − a)

≥ λ, then r ≤ (2λ − 1)a + 2(1 − λ)b.
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Case 2: If r ≤ (2λ − 1)a + 2(1 − λ)b then
2b − a − r
2(b − a)

≥ λ ⇒ Cr{ξ ≥ r} ≥ λ.
Hence, Cr{ξ ≥ r} ≥ λ⇔ r ≤ (2λ − 1)a + 2(1 − λ)b. ��
Using (5.14), the chance constraint (5.7) of the model P(5.1) is replaced by
the following crisp constraint:

n∑

i=1

((2β − 1)Lai + (2 − 2β)Lbi)xi ≥ L . (5.15)

Consequently, the model P(5.1) is converted into the following equivalent
crisp model:

P(5.2) max f1(x) =
n∑

i=1

rai + rbi + rci + rdi

4
xi

min f2(x) =
n∑

i, j=1

(
(rdi − rai )(rdj − raj ) + (rdi − rai )(rcj − rbj ) + (rci − rbi )(rcj − rbj )

24

)
xixj

subject to

Constraints (5.8) − (5.13) and (5.15) .

5.3.2 Second Phase: Fuzzy Interactive Approach

To handle the bi-objective mixed integer quadratic programming problem
P(5.2), we present an fuzzy interactive approach based on the TH aggregation
function [115]. It is noteworthy to mention that unlike the existing methods
such as Guu and Wu [46], Lai and Hwang [75], Sakawa, Yano and Yumine
[103] that may lead to weakly efficient solutions, the TH method guarantees
to find efficient solutions.

The solution methodology of the fuzzy interactive approach for model
P(5.2) consists of the following steps:

Step 1: Solve the problem P(5.2) as a single-objective problem in respect
of return and risk objective functions. Mathematically,

For return objective function:
max f1(x) subject to constraints (5.8)-(5.13) and (5.15).

For risk objective function:
min f2(x) subject to constraints (5.8)-(5.13) and (5.15).

Let x1 and x2 denote the optimal solutions obtained by solving
the single-objective problems in respect of return and risk ob-
jective functions, respectively. If both the solutions, i.e., x1 =
x2 = (x1, x2, . . . , xn) are same, we obtain an efficient (preferred
compromise) solution and stop; otherwise, go to Step 2.
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Step 2: Evaluate both the objective functions at the obtained solutions.
Determine the worst lower bound ( f L

1 ) and best upper bound

( f R
1 ) for return objective; and, the best lower bound ( f L

2 ) and

worst upper bound ( f R
2 ) for risk objective as follows:

f R
1 = f1(x1),

f L
1 = f1(x2),

f L
2 = f2(x2),

f R
2 = f2(x1).

Step 3: Define the linear membership functions for return and risk ob-
jective functions as follows:

μ f1 (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if f1(x) ≥ f R
1 ,

f1(x)− f L
1

f R
1 − f L

1
, if f L

1 < f1(x) < f R
1 ,

0, if f1(x) ≤ f L
1 ,

where μ f1 (x) denotes the satisfaction degree of return objective
function for the given solution x.

μ f2(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if f2(x) ≤ f L
2 ,

f R
2 − f2(x)
f R
2 − f L

2
, if f L

2 < f2(x) < f R
2 ,

0, if f2(x) ≥ f R
2 ,

where μ f2 (x) denotes the satisfaction degree of risk objective func-
tion for the given solution x. A graphical representation of the
above membership functions is presented in Figs. 5.5 and 5.6,
respectively.

                                                                 

   1 

   0 𝒇𝟏𝑳 𝒇𝟏(𝒙) 𝒇𝟏𝑹 

𝝁𝒇𝟏(𝒙) 

Fig. 5.5 The membership function of the return objective
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   1 

   0 𝒇𝟐𝑳 𝒇𝟐𝑹 

𝝁𝒇𝟐(𝒙) 

𝒇𝟐(𝒙) 
Fig. 5.6 The membership function of the risk objective

Step 4: Convert the crisp equivalent problem P(5.2) into a single-
objective problem P(5.3) as follows:

P(5.3) max wα + (1 − w)(γ1μ f1 (x) + γ2μ f2(x))
subject to

α ≤ μ f1 (x) ,
α ≤ μ f2 (x) ,
0 ≤ w ≤ 1 ,
0 ≤ α ≤ 1 ,
and Constraints (5.8) − (5.13) and (5.15) ,

where α = min{μ f1(x), μ f2(x)} denotes the minimum satisfaction
degree of objectives. This formulation has a new achievement
function defined as a convex combination of the lower bound on
the satisfaction levels of objectives, i.e., α and the weighted sum
of the achievement degrees, i.e., μ f1 (x) and μ f2 (x) that ensure
yielding an adjustably balanced compromise solution. Moreover,
γ1, γ2 indicate the relative importance of the return and risk ob-
jective functions, respectively, and w indicate the relative impor-
tance of the coefficient of compensation. The parameters γ1, γ2

are determined using investor preferences in respect of the two
objective functions such that γ1 + γ2 = 1, γ1, γ2 > 0. Also, w
controls the minimum satisfaction level of objectives as well as
the compromise degree between the objectives implicitly. Thus,
the problem P(5.3) is capable of yielding both unbalanced and
balanced compromise solutions based on the investor preferences
through adjustment of the value of parameter w. To be more ex-
planatory, a higher value for w indicates that more attention is
paid to obtain a higher lower bound (α) for the satisfaction de-
gree of the two objectives and accordingly more balanced com-
promise solutions are obtained. On the contrary, the lower value
for w indicates that more attention is paid to obtain solutions
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with larger satisfaction degree for the objective that has higher
relative importance, i.e., yielding unbalanced compromise solu-
tions.

Step 5: Determine importance of the objectives (γ1, γ2) and the value of
compensation coefficient (w) based on investor preferences and
solve the resulting single-objective problem P(5.3). If the investor
is satisfied with the obtained efficient solution, then stop and se-
lect the current solution as the final decision; otherwise, alter the
required parameters such as β, γ1, γ2 and w according to the re-
vised and updated preferences of the investor. Reformulate model
P(5.2)/P(5.3) as the case may be and go to either Step 1 or Step
5.

Fig. 5.7 depicts the flowchart of the fuzzy interactive approach.

5.4 Numerical Illustration

We now discuss a real-world empirical study done for an imaginary investor
using the data set extracted from NSE, Mumbai, India corresponding to ten
different assets. Numerical tests are carried out using different confidence
levels, importance weights of objective functions and variations in the com-
pensation coefficient.

Since, it is assumed that the return and turnover rates for each asset are
symmetrical trapezoidal fuzzy variables, we need to estimate these param-
eters. For this purpose, a group of experts has been formed to specify the
four prominent values used to determine the corresponding trapezoidal fuzzy
numbers based on the available historical data and experts knowledge. As
an illustration, consider the calculation of fuzzy return of the asset AHB.
The historical data (daily return from April 1, 2005 to March 31, 2008) is
used to calculate the frequency of historical returns. Based upon experts
knowledge and historical data, we find that most of the returns fall into
the intervals [0.10246, 0.16350], [0.16350, 0.19454], [0.19454, 0.22558] and
[0.22558, 0.27308]. We take the mid-points of the intervals [0.10246, 0.16350]
and [0.22558, 0.27308] as the left and the right-end points of the tolerance in-
terval, respectively. Thus, the tolerance interval of the fuzzy return becomes
[0.13298, 0.24933]. Further, by observing all the historical data and experts
opinion, we use 0.08311 and 0.29920 as the minimum possible value and the
maximum possible value, respectively, of the uncertain return. Hence, the
fuzzy return of the asset AHB becomes [0.08311, 0.13298, 0.24933, 0.29920].
Similarly, we obtain fuzzy return and turnover rates of the remaining assets.
Table 5.1 gives the fuzzy data regarding return and liquidity.
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No Yes 

No 

Yes 

Solve the problem P(5.2) as a single objective problem 
corresponding to return and risk 

Is there a preferred 
compromise 

solution? 

Evaluate the objective functions at both the obtained 
solutions. Determine ࢌ૚ࡸ, ,ࡾ૚ࢌ  ࡾ૛ࢌ and ࡸ૛ࢌ

Define the membership functions for return and risk 

Develop the mathematical model P(5.3) 

Using the preferences of the investor for ࢽ૚,  ࢝ ૛andࢽ
solve the model P(5.3) 

Is the investor 
satisfied with the 

obtained solution? 

Modify, the required parameters 
such as ࢼ, ,૚ࢽ  ૛ and ࢝ accordingࢽ

to the revised and updated 
preferences. Reformulate model 

P(5.2) if required 

Start 

Stop 

Fig. 5.7 Flow chart of the fuzzy interactive approach

Table 5.1 Input data of assets corresponding to fuzzy return and liquidity

Company Return Liquidity

Allahabad Bank (AHB) (0.08311,0.13298,0.24933,0.29920) (0.00151,0.00403,0.00755,0.01007)
Axis Bank Ltd. (ABL) (0.05946,0.15855,0.29729,0.39638) (0.00100,0.00267,0.00501,0.00668)
B E M L Ltd. (BML) (0.08464,0.22570,0.42319,0.56425) (0.00413,0.01102,0.02067,0.02756)
Bharti Airtel Ltd. (BAL) (0.06961,0.18562,0.34804,0.46406) (0.00130,0.00348,0.00652,0.00869)
Essar Oil Ltd. (EOL) (0.07615,0.20306,0.38073,0.50765) [0.00365,0.00973,0.01825,0.02433]
Gammon India Ltd. (GIL) (0.08829,0.23543,0.44143,0.58857) (0.00031,0.00083,0.00156,0.00208)
Jindal Saw Ltd. (JSL) (0.04680,0.12481,0.23402,0.31203) (0.00282,0.00751,0.01408,0.01877)
Sesa Goa Ltd. (SGL) (0.09632,0.25685,0.48159,0.64212) (0.00476,0.01268,0.02378,0.03170)
Tata Steel Ltd. (TSL) (0.05440,0.14508,0.27202,0.36269) (0.00333,0.00889,0.01666,0.02221)
United Spirits Ltd. (USL) (0.08240,0.21974,0.41202,0.54936) (0.00288,0.00767,0.01438,0.01918)
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Optimal Asset Allocation

To find an optimal asset allocation, i.e., efficient (preferred compromise) so-
lution, we first formulate the uncertain model P(5.1) using the input data
from Table 5.1, L = 0.0045, h = 5, li = 0.08, and ui = 0.45, i = 1, 2, . . . , 10.

max f1(x) = E [(0.08311, 0.13298, 0.24933, 0.29920)x1 + (0.05946, 0.15855, 0.29729, 0.39638)x2

+(0.08464, 0.22570, 0.42319, 0.56425)x3 + (0.06961, 0.18562, 0.34804, 0.46406)x4

+(0.07615, 0.20306, 0.38073, 0.50765)x5 + (0.08829, 0.23543, 0.44143, 0.58857)x6

+(0.04680, 0.12481, 0.23402, 0.31203)x7 + (0.09632, 0.25685, 0.48159, 0.64212)x8

+(0.05440, 0.14508, 0.27202, 0.36269)x9 + (0.08240, 0.21974, 0.41202, 0.54936)x10]
min f2(x) = V [(0.08311, 0.13298, 0.24933, 0.29920)x1 + (0.05946, 0.15855, 0.29729, 0.39638)x2

+(0.08464, 0.22570, 0.42319, 0.56425)x3 + (0.06961, 0.18562, 0.34804, 0.46406)x4

+(0.07615, 0.20306, 0.38073, 0.50765)x5 + (0.08829, 0.23543, 0.44143, 0.58857)x6

+(0.04680, 0.12481, 0.23402, 0.31203)x7 + (0.09632, 0.25685, 0.48159, 0.64212)x8

+(0.05440, 0.14508, 0.27202, 0.36269)x9 + (0.08240, 0.21974, 0.41202, 0.54936)x10]
subject to

Cr {(0.00151, 0.00403, 0.00755, 0.01007)x1 + (0.00100, 0.00267, 0.00501, 0.00668)x2

+(0.00413, 0.01102, 0.02067, 0.02756)x3 + (0.00130, 0.00348, 0.00652, 0.00869)x4

+(0.00365, 0.00973, 0.01825, 0.02433)x5 + (0.00031, 0.00083, 0.00156, 0.00208)x6

+(0.00282, 0.00751, 0.01408, 0.01877)x7 + (0.00476, 0.01268, 0.02378, 0.03170)x8

+(0.00333, 0.00889, 0.01666, 0.02221)x9 + (0.00288, 0.00767, 0.01438, 0.01918)x10 ≥ 0.0045}
≥ β , (5.16)

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 = 1 , (5.17)

y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 = 5 , (5.18)

xi − 0.08yi ≥ 0 , i = 1, 2, . . . , 10 , (5.19)

xi − 0.45yi ≤ 0 , i = 1, 2, . . . , 10 , (5.20)

yi ∈ {0, 1} , i = 1, 2, . . . , 10 , (5.21)

xi ≥ 0 , i = 1, 2, . . . , 10 . (5.22)

Using the first phase of the solution methodology, the above model is con-
verted into its crisp equivalent bi-objective model for a given minimum ac-
ceptable confidence level β = 0.7 as follows:

max f1(x) = 0.19116x1 + 0.22792x2 + 0.32445x3 + 0.26683x4 + 0.29190x5

+0.33843x6 + 0.17942x7 + 0.36922x8 + 0.20855x9 + 0.31588x10

min f2(x) = 0.00356x2
1 + 0.00748x2

2 + 0.01516x2
3 + 0.01025x2

4 + 0.01227x2
5

+0.01649x2
6 + 0.00463x2

7 + 0.01963x2
8 + 0.00626x2

9 + 0.01437x2
10

+0.004955x1x2 + 0.007054x1x3 + . . . + 0.009485x9x10

subject to

0.00302x1 + 0.00200x2 + 0.00827x3 + 0.00261x4 + 0.00730x5

+0.00062x6 + 0.00563x7 + 0.00951x8 + 0.00666x9 + 0.00575x10 ≥ 0.0045,
and Constraints (5.17)-(5.22) .
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The above model is solved using the fuzzy interactive approach developed
in Section 5.3.2. The models are coded and solved using LINGO 12.0.

Step 1: We first determine the worst lower (upper) bound and best upper
(lower) bound for return and risk objective functions, respectively, by solving
the following single-objective problems.

For Return Objective Function

max f1(x) = 0.19116x1 + 0.22792x2 + 0.32445x3 + 0.26683x4 + 0.29190x5

+0.33843x6 + 0.17942x7 + 0.36922x8 + 0.20855x9 + 0.31588x10

subject to

0.00302x1 + 0.00200x2 + 0.00827x3 + 0.00261x4 + 0.00730x5

+0.00062x6 + 0.00563x7 + 0.00951x8 + 0.00666x9 + 0.00575x10 ≥ 0.0045,
and Constraints (5.17)-(5.22) .

The obtained solution is denoted as x1 = (x1, x2, . . . , x10) and is provided in
Table 5.2.

For Risk Objective Function

min f2(x) = 0.00356x2
1 + 0.00748x2

2 + 0.01516x2
3 + 0.01025x2

4 + 0.01227x2
5

+0.01649x2
6 + 0.00463x2

7 + 0.01963x2
8 + 0.00626x2

9 + 0.01437x2
10

+0.004955x1x2 + 0.007054x1x3 + . . . + 0.009485x9x10

subject to

0.00302x1 + 0.00200x2 + 0.00827x3 + 0.00261x4 + 0.00730x5

+0.00062x6 + 0.00563x7 + 0.00951x8 + 0.00666x9 + 0.00575x10 ≥ 0.0045,
and Constraints (5.17)-(5.22) .

The obtained solution is denoted as x2 = (x1, x2, . . . , x10) and is provided in
Table 5.2.

Table 5.2 The proportions of the assets in the obtained portfolio corresponding
to single-objective problems

Allocation

AHB ABL BML BAL EOL

x1 0.0 0.0 0.08 0.0 0.08
x2 0.32220 0.15335 0.0 0.0 0.09348

GIL JSL SGL TSL USL

0.31 0.0 0.45 0.0 0.08
0.0 0.24774 0.0 0.18323 0.0
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Step 2: Both the objective functions are evaluated at the obtained solutions,
i.e., x1 and x2. The objective function values are provided in Table 5.3.

Table 5.3 Objective function values of return and risk

x1 x2

Return ( f1(x)) 0.34564 0.20649
Risk ( f2(x)) 0.02381 0.00642

Now, we define the worst lower (upper) bound and best upper (lower) bound
of both the objective functions as

0.20649 ≤ f1(x) ≤ 0.34564 ,
0.00642 ≤ f2(x) ≤ 0.02381 .

Step 3: The linear membership function of the objective of expected return
is

μ f1 (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if f1(x) ≥ 0.34564 ,
f1(x)−0.20649

0.34564−0.20649 , if 0.20649 < f1(x) < 0.34564 ,

0, if f1(x) ≤ 0.20649 ,

and the linear membership function of the objective of risk is

μ f2 (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if f2(x) ≤ 0.00642 ,
0.02381− f2(x)

0.02381−0.00642 , if 0.00642 < f2(x) < 0.02381 ,

0, if f2(x) ≥ 0.02381 .

max 0.2α+ 0.8(0.05μ f1(x) + 0.95μ f2(x))
subject to

0.19116x1 + 0.22792x2 + 0.32445x3 + 0.26683x4 + 0.29190x5 + 0.33843x6

+0.17942x7 + 0.36922x8 + 0.20855x9 + 0.31588x10 − 0.13915α ≥ 0.20649,
0.00356x2

1 + 0.00748x2
2 + 0.01516x2

3 + 0.01025x2
4 + 0.01227x2

5 + 0.01649x2
6

+0.00463x2
7 + 0.01963x2

8 + 0.00626x2
9 + 0.01437x2

10 + 0.004955x1x2

+0.007054x1x3 + . . . + 0.009485x9x10 + 0.01739α ≤ 0.02381,
0.00302x1 + 0.00200x2 + 0.00827x3 + 0.00261x4 + 0.00730x5

+0.00062x6 + 0.00563x7 + 0.00951x8 + 0.00666x9 + 0.00575x10 ≥ 0.0045,
0 ≤ α ≤ 1 ,
and Constraints (5.17)-(5.22) .
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Table 5.4 Summary results of portfolio selection

Minimum confidence Importance of first Satisfaction Objective function
level objective function degrees values

β γ1 = (1 − γ2) μ f1 (x) μ f2 (x) Return
( f1(x))

Risk
( f2(x))

0.7 0.05 0.03361 0.99533 0.21117 0.00650

Table 5.5 The proportions of the assets in the obtained portfolio

Allocation

AHB ABL BML BAL EOL

Portfolio 0.29933 0.16856 0.0 0.0 0.13044

GIL JSL SGL TSL USL

0.0 0.21669 0.0 0.18498 0.0

The computational result is summarized in Table 5.4. Table 5.5 presents
proportions of the assets in the obtained portfolio.

Suppose the investor is not satisfied with the obtained portfolio. More
portfolios may be generated by varying the values of minimum confidence
level (β) and the importance weights of objective functions (γ1, γ2) according
to investor preferences. The corresponding computational results are summa-
rized in Table 5.6. Table 5.7 presents proportions of the assets in the obtained
portfolios. Note that the compensation coefficient (w) is set to 0.2 in all nu-
merical tests performed corresponding to the results summarized in Tables
5.6-5.7.

It can be seen from the results reported in Table 5.6 (see the fifth and
sixth columns of Table 5.6) that the relationship between return and risk
objective functions follows risk-return trade-off principle, i.e., an increase in
return objective value leads to an increase in risk objective value and vice
versa. It may be noted that the risk objective values listed in Table 5.6 are
based on variance measure. Also, the computational results clearly shows
that the risk-return trade-off is widen when the importance weight of the
return objective function is either γ1 < 0.25 or γ1 > 0.55. On the other hand,
more balanced solutions are obtained when 0.25 ≤ γ1 ≤ 0.45. In order to
exemplify, from Table 5.6, for β = 0.7, γ1 = 0.05, we have μ f1(x) = 0.03361
and μ f2(x) = 0.99533. However, for the same β, i.e., β = 0.7, γ1 = 0.45, we
have μ f1(x) = 0.69113 and μ f2(x) = 0.69128. This is because all the numerical
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Table 5.6 Summary results of portfolio selection

Minimum confidence Importance of first Satisfaction Objective function
level objective function degrees values

β γ1 = (1 − γ2) μ f1 (x) μ f2 (x) Return
( f1(x))

Risk
( f2(x))

0.7 0.05 0.03361 0.99533 0.21117 0.00650
0.1 0.30143 0.89915 0.24844 0.00817
0.15 0.53186 0.80372 0.28050 0.00983
0.25 0.59826 0.76595 0.28974 0.01049
0.35 0.68505 0.69694 0.30182 0.01169
0.45 0.69113 0.69128 0.30267 0.01179
0.55 0.86450 0.58798 0.32679 0.01340
0.65 0.87186 0.58108 0.32782 0.01360
0.75 0.88222 0.56771 0.32926 0.01374
0.85 0.89771 0.53961 0.33142 0.01437
0.95 0.92358 0.47120 0.33502 0.01552

0.8 0.05 0.05973 0.99011 0.22199 0.00659
0.1 0.31193 0.89936 0.25516 0.00822
0.15 0.46226 0.83868 0.27493 0.00923
0.25 0.62168 0.74547 0.29589 0.01085
0.35 0.68629 0.69410 0.30439 0.01184
0.45 0.81340 0.60434 0.32609 0.01330
0.55 0.85741 0.60025 0.32689 0.01357
0.65 0.86548 0.59269 0.32795 0.01371
0.75 0.87687 0.57802 0.32945 0.01380
0.85 0.89384 0.54723 0.33168 0.01429
0.95 0.92215 0.47228 0.33540 0.01560

0.9 0.05 0.12474 0.97972 0.25041 0.00677
0.1 0.28243 0.92608 0.26738 0.00837
0.15 0.29088 0.92246 0.26829 0.00847
0.25 0.70397 0.69686 0.31274 0.01186
0.35 0.70640 0.69608 0.31301 0.01196
0.45 0.70937 0.69467 0.31333 0.01201
0.55 0.83521 0.61488 0.32687 0.01347
0.65 0.84489 0.60682 0.33791 0.01582
0.75 0.85852 0.58824 0.33838 0.01590
0.85 0.87891 0.55127 0.33957 0.01593
0.95 0.91290 0.46134 0.34021 0.01598
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tests have been performed for a low value of compensation coefficient, i.e.,
w = 0.2 where more attention is paid to obtain solutions that have larger
satisfaction degree for the objective with higher relative importance, i.e.,
yielding unbalanced compromise solutions.

Next, suppose the investor desires that more attention be paid to obtain
higher satisfaction degrees for both the objectives and accordingly more bal-
anced compromise solutions. To do so, we set a higher value for compensation
coefficient, w = 0.8, in the single-objective model formulated above. Numer-
ical tests are carried out using different confidence levels and importance
weights of objective functions. The computational results are summarized in
Table 5.8 (see the first and second columns of Table 5.8). Table 5.9 presents
proportions of the assets in the obtained portfolios.

Table 5.8 Summary results of portfolio selection

Minimum confidence Importance of first Satisfaction Objective function
level objective function degrees values

β γ1 = (1 − γ2) μ f1 (x) μ f2 (x) Return
( f1(x))

Risk
( f2(x))

0.7 0.05-0.95 0.69113 0.69128 0.30267 0.01179

0.8 0.05-0.95 0.69027 0.69039 0.30491 0.01181

0.9 0.05-0.95 0.69986 0.69738 0.31230 0.01183

It can be seen from the results reported in Table 5.8 that for a given
confidence level (β), only a single balanced compromise solution is obtained
corresponding to different importance weights of the return objective func-
tion (γ1). To be more explanatory, a higher value for compensation coefficient
(w = 0.8) corresponds to more attention being paid in obtaining a higher lower
bound (α) for the satisfaction degree of the objectives with no attention paid
to the relative importance of the individual objective functions. Hence, the
relative importance weights of both the objective functions do not signifi-
cantly contribute in the achievement of the solutions.

The computational results presented in Tables 5.6 and 5.8 clearly shows
that the fuzzy interactive approach has many advantages that makes it more
realistic and flexible:
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• It is more robust and reliable as it always generates efficient solutions and
is able to produce both unbalanced and balanced compromise solutions
based on the investor preferences.

• The obtained solutions are consistent with the investor preferences, i.e.,
the consistency between importance weights of objectives (γ1, γ2) and sat-
isfaction degrees (μ f1(x), μ f2(x)).

• It is more flexible because it provides different efficient solutions for a spe-
cific problem instance with a given importance weight vector of objectives
(γ1, γ2) by varying values of the compensation coefficient (w).

5.5 Comments

In this chapter, we have presented the following facts:

• A hybrid bi-objective credibility-based fuzzy mathematical programming
model for portfolio selection problem under fuzzy environment has been
discussed.

• To deal with imprecise parameters, a hybrid credibility-based approach
that combines the expected value and chance constrained programming
techniques has been presented.

• The hybrid bi-objective fuzzy optimization model has been solved by using
a two-phase approach.

• Using the computational results, it has been shown that the fuzzy in-
teractive approach is a very promising approach that can provide both
unbalanced and balanced efficient solutions based on the investor prefer-
ences. Moreover, it also offers appropriate flexibility to generate different
portfolios in order to help the investor in selecting a preferred compromise
portfolio.



Chapter 6

Multi-criteria Fuzzy Portfolio
Optimization

Abstract. In this chapter, we describe fuzzy portfolio selection models using
five criteria: short term return, long term return, dividend, risk and liquidity.
For portfolio return, we consider short term return (average performance of
the asset during a 12-month period), long term return (average performance
of the asset during a 36-month period) and annual dividend. This is done
in order to capture subjective preferences of the investors for portfolio re-
turn. For a given expected return, the negative semi-absolute deviation is
penalized which quantifies portfolio risk. Further, we categorize all individ-
ual investor attitudes towards bearing portfolio risk into one of the following
two distinct classes: aggressive (weak risk aversion attitude) and conservative
(strong risk aversion attitude). The nonlinear S-shape membership functions
are employed to express vague aspiration levels of the investor regarding the
multiple criteria used for portfolio selection.

6.1 Multi-criteria Portfolio Selection Model

Most of the existing portfolio selection models consider return and risk as the
two fundamental factors that govern investors’ choice. However, it is often
found that not all the relevant information for portfolio selection can be
captured in terms of return and risk only. The other considerations/criteria
might be of equal, if not greater, importance to investors. By considering
these in the portfolio selection model, it may be possible to obtain portfolios
in which a deficit on account of the return and risk criteria is more than
compensated by portfolio performance on other criteria, resulting in greater
overall satisfaction for investors. Thus, multiple criteria portfolio selection
models have received great attention in recent past. Some of the relevant
references in this direction include Arenas et al. [3], Ehrgott et al. [30], Fang
et al. [33], Gupta et al. [41, 42, 43, 44], Li et al. [82], Nanda et al. [96].

Here, we formulate portfolio selection problem as an optimization problem
with multiple objectives assuming that the investor allocate his/her wealth
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among n assets that offer random rates of return. We introduce some notation
as follows:

6.1.1 Notation

ri: the expected rate of return of the i-th asset ,

xi: the proportion of the total funds invested in the i-th asset ,

yi: a binary variable indicating whether the i-th asset is contained in the
portfolio, where

yi =

⎧⎪⎪⎨⎪⎪⎩
1, if i-th asset is contained in the portfolio ,

0, otherwise ,

di: the annual dividend of the i-th asset ,

r12
i : the average performance of the i-th asset during a 12-month period ,

r36
i : the average performance of the i-th asset during a 36-month period ,

rit: the historical return of the i-th asset over the past period t ,

ui: the maximal fraction of the capital allocated to the i-th asset ,

li: the minimal fraction of the capital allocated to the i-th asset ,

L: the minimum desired level of portfolio liquidity ,

L̃i: the fuzzy turnover rate of the i-th asset ,

h: the number of assets held in the portfolio ,

T: the total time span .

We consider the following objective functions and constraints in the mul-
tiobjective portfolio selection problem.

6.1.2 Objective Functions

Short Term Return
The short term return of the portfolio is expressed as

f1(x) =
n∑

i=1

r12
i xi ,

where r12
i =

1
12

12∑

t=1

rit , i = 1, 2, . . . , n; rit is determined from the historical

data.
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Long Term Return
The long term return of the portfolio is expressed as

f2(x) =
n∑

i=1

r36
i xi ,

where r36
i =

1
36

36∑

t=1

rit , i = 1, 2, . . . , n.

Annual Dividend
The annual dividend of the portfolio is expressed as

f3(x) =
n∑

i=1

dixi .

Risk
The expected semi-absolute deviation of the portfolio return below the ex-
pected return is expressed as

f4(x) = w(x) =
1
T

T∑

t=1

wt(x) =
T∑

t=1

∣∣∣∣∣∣∣

n∑

i=1

(rit − ri)xi

∣∣∣∣∣∣∣
+

n∑

i=1

(ri − rit)xi

2T
.

6.1.3 Constraints

Liquidity
We assume that turnover rates used to determine liquidity of the assets are
vague estimates and conform to trapezoidal possibility distribution. A trape-
zoidal fuzzy number Ã = (a, b, α, β) with tolerance interval [a, b], left width α
and right width β, has the following membership function

μÃ(t′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t′ − (a − α)
α

, if a − α ≤ t′ ≤ a,

1 , if a ≤ t′ ≤ b,
b + β − t′

β
, if b ≤ t′ ≤ b + β,

0 , otherwise.

Let the trapezoidal fuzzy number L̃i = (Lai , Lbi , Lαi , Lβi ) denotes the turnover
rate of the i-th asset. Then, the turnover rate of the portfolio is expressed

as

n∑

i=1

L̃ixi. Using fuzzy extension principle [125], the crisp possibilistic mean

value of fuzzy turnover rate of the i-th asset is given by
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E(L̃i) =
∫ 1

0
γ(Lai − (1 − γ)Lαi + Lbi + (1 − γ)Lβi )dγ

=
Lai + Lbi

2
+

Lβi − Lαi

6
.

Therefore, the crisp possibilistic mean value of the portfolio liquidity is ob-
tained as

E(L̃(x)) = E

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

L̃ixi

⎞
⎟⎟⎟⎟⎟⎠ =

n∑

i=1

(
Lai + Lbi

2
+

Lβi − Lαi

6

)
xi .

Further, to maintain portfolio liquidity at a specified level L given by the
investor, we use the following constraint.

n∑

i=1

(
Lai + Lbi

2
+

Lβi − Lαi

6

)
xi ≥ L .

Capital budget constraint on the assets is expressed as

n∑

i=1

xi = 1 .

Maximal fraction of the capital that can be invested in a single asset is
expressed as

xi ≤ ui yi , i = 1, 2, . . . , n .

Minimal fraction of the capital that can be invested in a single asset is
expressed as

xi ≥ liyi , i = 1, 2, . . . , n .

Number of assets held in the portfolio is expressed as

n∑

i=1

yi = h .

No short selling of assets is expressed as

xi ≥ 0 , i = 1, 2, . . . , n .
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6.1.4 The Decision Problem

The constrained multiobjective portfolio selection problem is formulated
as

P(6.1) max f1(x) =
n∑

i=1

r12
i xi

max f2(x) =
n∑

i=1

r36
i xi

max f3(x) =
n∑

i=1

dixi

min f4(x) = w(x) =
T∑

t=1

∣∣∣∣∣∣∣

n∑

i=1

(rit − ri)xi

∣∣∣∣∣∣∣
+

n∑

i=1

(ri − rit)xi

2T

subject to
n∑

i=1

(
Lai + Lbi

2
+

Lβi − Lαi

6

)
xi ≥ L ,

n∑

i=1

xi = 1 ,

n∑

i=1

yi = h ,

xi ≤ uiyi , i = 1, 2, . . . , n ,
xi ≥ liyi , i = 1, 2, . . . , n ,
xi ≥ 0 , i = 1, 2, . . . , n ,
yi ∈ {0, 1} , i = 1, 2, . . . , n .

Note that portfolio liquidity can also be considered as one of the objective
functions in the problem P(6.1). To eliminate the absolute-valued function
in problem P(6.1), we transform it into the following multiobjective mixed
integer linear programming problem.
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P(6.2) max f1(x) =
n∑

i=1

r12
i xi

max f2(x) =
n∑

i=1

r36
i xi

max f3(x) =
n∑

i=1

dixi

min f4(p) = w(p) =
1
T

T∑

t=1

pt

subject to
n∑

i=1

(
Lai + Lbi

2
+

Lβi − Lαi

6

)
xi ≥ L ,

pt +

n∑

i=1

(rit − ri)xi ≥ 0, t = 1, 2, . . . ,T ,

n∑

i=1

xi = 1 ,

n∑

i=1

yi = h ,

xi ≤ uiyi , i = 1, 2, . . . , n ,
xi ≥ liyi , i = 1, 2, . . . , n ,
xi ≥ 0 , i = 1, 2, . . . , n ,
pt ≥ 0 , t = 1, 2, . . . ,T ,
yi ∈ {0, 1} , i = 1, 2, . . . , n .

6.2 Fuzzy Multi-criteria Portfolio Selection Models
and Solution Methodology

We discuss a fuzzy multiobjective portfolio selection problem based on vague
aspiration levels of the investor to determine a satisfying portfolio selection
strategy. The investor indicate aspiration levels on the basis of his/her prior
experience and knowledge. We use a nonlinear S-shape membership function
to express vague aspiration levels of the investor. The S-shape membership
function is defined as

f (x) =
1

1 + exp(−αx)
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where α, 0 < α < ∞ is a fuzzy parameter which measures the degree of
vagueness. Note that a logistic function is considered an appropriate function
to represent vague aspiration levels of the investor in financial decision making
problems.

Remark 6.1. The logistic (S-shape) membership function has shape similar
to that of tangent hyperbolic function, but it is more easily handled than
the tangent hyperbolic function. Further, the logistic membership function
preserves linearity even when the operator ‘product’ is used instead of the
operator ‘min’ for aggregating the overall satisfaction to arrive at the fuzzy set
decision. Moreover, a trapezoidal membership function is an approximation
to a logistic function.

Let us consider that the four objectives (short term return, long term
return, annual dividend and risk) and the constraint on the liquidity of the
portfolio are vague and uncertain. We define the vague aspiration levels of
the investor as follows:

• The membership function of the goal of expected short term return is given
by

μr12(x) =
1

1 + exp

⎛
⎜⎜⎜⎜⎜⎝−αr12

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

r12
i xi − r12

m

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

,

where r12
m is the mid-point (middle aspiration level for the expected short

term return) at which the membership function value is 0.5 and αr12 is
provided by the investor based on his/her degree of satisfaction of the
goal (see Fig. 6.1).

Fig. 6.1 Membership function of the goal of expected short term return
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• The membership function of the goal of expected long term return is given
by

μr36(x) =
1

1 + exp

⎛
⎜⎜⎜⎜⎜⎝−αr36

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

r36
i xi − r36

m

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

,

where r36
m is the mid-point (middle aspiration level for the expected long

term return) at which the membership function value is 0.5 and αr36 is
provided by the investor based on his/her degree of satisfaction of the
goal (see Fig. 6.2).

Fig. 6.2 Membership function of the goal of expected long term return

• The membership function of the goal of annual dividend is given by

μd(x) =
1

1 + exp

⎛
⎜⎜⎜⎜⎜⎝−αd

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

dixi − dm

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

,

where dm is the mid-point (middle aspiration level for the annual dividend)
where the membership function value is 0.5 and αd is provided by the
investor based on his/her degree of satisfaction of the goal (see Fig. 6.3).

• The membership function of the goal of risk is given by

μw(x) =
1

1 + exp (αw(w(x) − wm))
,

where wm is the mid-point (middle aspiration level for the portfolio risk)
at which the membership function value is 0.5 and αw is provided by the
investor based on his/her degree of satisfaction of the goal (see Fig. 6.4).



6.2 Fuzzy Multi-criteria Portfolio Selection Models 169

Fig. 6.3 Membership function of the goal of annual dividend

Fig. 6.4 Membership function of the goal of risk

Fig. 6.5 Membership function of the liquidity constraint

• The membership function of the portfolio liquidity threshold is given by

μL̃(x) =
1

1 + exp
(
−αL(E(L̃(x)) − Lm)

) ,
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where Lm is the mid-point (middle aspiration level for the liquidity thresh-
old) at which the membership function value is 0.5 and αL is provided by
the investor based on his/her degree of satisfaction (see Fig. 6.5).

Remark 6.2. The shape parameters αr12 , αr36 , αd, αw and αL determine
shapes of the membership functions μr12(x), μr36(x), μd(x), μw(x) and μL̃(x)
respectively, and are selected in the range (0,∞). The larger these parameters
get, the less their vagueness becomes.

Remark 6.3. The mid-points r12
m , r36

m , dm, wm and Lm are determined by tak-

ing r12
m =

r12
N + r12

S

2
, r36

m =
r36

N + r36
S

2
, dm =

dN + dS

2
, wm =

wN + wS

2
,

Lm =
LN + LS

2
. Here, r12

N , r36
N , dN, wN and LN are the necessity levels and r12

S ,

r36
S , dS, wS and LS are the sufficiency levels indicated by the investor. Note
that linear membership functions such as triangular and trapezoidal functions
show a necessity level and a sufficiency level at 0 and 1, respectively. On the
other hand, a necessity level and/or a sufficiency level may be approximated
for S-shape membership functions.

Now, using Bellman-Zadeh’s maximization principle [7], the fuzzy multiob-
jective portfolio selection problem is formulated as follows:

P(6.3) max η
subject to

η ≤ μr12(x) , (6.1)

η ≤ μr36(x) , (6.2)

η ≤ μd(x) , (6.3)

η ≤ μw(x) , (6.4)

η ≤ μL̃(x) , (6.5)
n∑

i=1

xi = 1 , (6.6)

n∑

i=1

yi = h , (6.7)

xi ≤ ui yi , i = 1, 2, . . . , n, (6.8)

xi ≥ li yi , i = 1, 2, . . . , n, (6.9)

yi ∈ {0, 1} , i = 1, 2, . . . , n , (6.10)

xi ≥ 0 , i = 1, 2, . . . , n, (6.11)

0 ≤ η ≤ 1 . (6.12)

The problem P(6.3) is a mixed integer nonlinear programming problem. We
transform it into a mixed integer linear programming problem. Let the con-
straints involving exponential function in the problem P(6.3) be rewritten as
the following inequations:
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αr12

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

r12
i xi − r12

m

⎞
⎟⎟⎟⎟⎟⎠ ≥ log

η

1 − η ,

αr36

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

r36
i xi − r36

m

⎞
⎟⎟⎟⎟⎟⎠ ≥ log

η

1 − η ,

αd

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

dixi − dm

⎞
⎟⎟⎟⎟⎟⎠ ≥ log

η

1 − η ,

−αw(w(x)− wm) ≥ log
η

1 − η ,

αL(E(L̃(x)) − Lm) ≥ log
η

1 − η .

Further, let θ = log
η

1 − η , so that η =
1

1 + exp(−θ)
; hence, maximizing η

also maximizes θ. Thus, the problem P(6.3) is transformed into the following
equivalent mixed integer linear programming problem.

P(6.4) max θ
subject to

θ ≤ αr12

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

r12
i xi − r12

m

⎞
⎟⎟⎟⎟⎟⎠ ,

θ ≤ αr36

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

r36
i xi − r36

m

⎞
⎟⎟⎟⎟⎟⎠ ,

θ ≤ αd

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

dixi − dm

⎞
⎟⎟⎟⎟⎟⎠ ,

θ ≤ αw (wm − w(x)) ,

θ ≤ αL

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

(
Lai + Lbi

2
+

Lβi − Lαi

6

)
xi − Lm

⎞
⎟⎟⎟⎟⎟⎠ ,

and Constraints (6.6) − (6.11) .

Note that θ ∈ ] − ∞,+∞[. The absolute-valued function in the expression
of w(x) can be eliminated on the same lines as discussed in Section 6.1.4.
The fuzzy portfolio selection problem P(6.3)/P(6.4) leads to a fuzzy deci-
sion that simultaneously satisfies all the fuzzy objectives. Then, we deter-
mine the maximizing decision as the maximum degree of membership for the
fuzzy decision. In this approach, the relationship between various objectives
in a fuzzy environment is considered fully symmetric, i.e., all fuzzy objec-
tives are treated equivalent. This approach is efficient in computation but it
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may provide ‘uniform’ membership degrees for all fuzzy objectives even when
achievement of some objective(s) is more stringently required. To incorporate
relative importance of various fuzzy objectives/criteria in portfolio selection
problem, we use a ‘weighted additive model’ [116]. The weighted additive
model of the fuzzy multiobjective portfolio selection problem is formulated
as follows:

P(6.5) max
5∑

p=1

ωpηp

subject to

η1 ≤ μr12(x) ,
η2 ≤ μr36(x) ,
η3 ≤ μd(x) ,
η4 ≤ μw(x) ,
η5 ≤ μL̃(x) ,
0 ≤ ηp ≤ 1 , p = 1, 2, . . . , 5,
and Constraints (6.6) − (6.11) ,

where ωp is the relative weight of the p-th objective given by the investor

such that ωp > 0 and

5∑

p=1

ωp = 1.

The max-min approach used in the formulation of the problems
P(6.3)/P(6.4) and P(6.5) possesses good computational properties; however,
the efficiency of the solution is not guaranteed. The compromise approach
[120] and the two-phase approach [81] have been proposed in literature to
treat inefficiency. Using compromise approach, the decision maker can choose
explicitly a desirable achievement degree for each fuzzy objective function by
adding additional constraints ηp ≥ βp, where βp is the desirable achievement
degree for the p-th fuzzy objective function. Note that if we increase the de-
sirable achievement degree for an objective function then the value of that
objective function is more close to the optimal value but it may yield other
objective function values far from the optimal values because of multiobjec-
tive nature of the problem. As a result, when a decision maker requires a very
high desirable achievement degree for each fuzzy objective function, we may
end up with ‘no feasible solution’; thus, a compromise between objective func-
tions should be made. To overcome the difficulty in selecting proper desirable
achievement degree for each fuzzy objective function, we use a two-phase ap-
proach [81] in which the desirable achievement degree is taken as the degree
of satisfaction corresponding to the solution from the max-min approach.
Consequently, the problems P(6.6) and P(6.7) are solved corresponding to



6.2 Fuzzy Multi-criteria Portfolio Selection Models 173

the problems P(6.4) and P(6.5), respectively, in the second-phase to ensure
efficiency of the solutions obtained.

P(6.6) max
5∑

p=1

ωpθp

subject to

log
μr12(x∗)

1 − μr12(x∗)
≤ θ1 ≤ αr12

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

r12
i xi − r12

m

⎞
⎟⎟⎟⎟⎟⎠ ,

log
μr36(x∗)

1 − μr36(x∗)
≤ θ2 ≤ αr36

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

r36
i xi − r36

m

⎞
⎟⎟⎟⎟⎟⎠ ,

log
μd(x∗)

1 − μd(x∗)
≤ θ3 ≤ αd

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

dixi − dm

⎞
⎟⎟⎟⎟⎟⎠ ,

log
μw(x∗)

1 − μw(x∗)
≤ θ4 ≤ αw (wm − w(x)) ,

log
μL̃(x∗)

1 − μL̃(x∗)
≤ θ5 ≤ αL

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

(
Lai + Lbi

2
+

Lβi − Lαi

6

)
xi − Lm

⎞
⎟⎟⎟⎟⎟⎠ ,

and Constraints (6.6) − (6.11) ,

where x∗ is an optimal solution of P(6.4), ω1 = . . . = ω5, ωp > 0,
5∑

p=1

ωp = 1

and θp ∈ ] −∞,+∞[ , p = 1, 2, . . . , 5.

P(6.7) max
5∑

p=1

ωpηp

subject to

μr12(x∗∗) ≤ η1 ≤ μr12(x) ,
μr36(x∗∗) ≤ η2 ≤ μr36(x) ,
μd(x∗∗) ≤ η3 ≤ μd(x) ,
μw(x∗∗) ≤ η4 ≤ μw(x) ,
μL̃(x∗∗) ≤ η5 ≤ μL̃(x) ,
0 ≤ ηp ≤ 1 , p = 1, 2, . . . , 5,
and Constraints (6.6) − (6.11) ,

where x∗∗ is an optimal solution of P(6.5), ωp is the relative weight of the

p-th objective given by the investor such that ωp > 0 and

5∑

p=1

ωp = 1.
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6.3 Numerical Illustration

To demonstrate the usefulness of the fuzzy optimization models for the port-
folio selection, a real-world empirical study is presented for an imaginary
investor on the data set extracted from NSE, Mumbai, India in respect of
randomly selected 20 assets. Table 6.1 provides the data corresponding to
expected short term return, expected long term return and risk.

Table 6.1 Input data of assets corresponding expected short term return, expected
long term return and risk

Company Expected short Expected long Risk
term return term return

A B B Ltd. (ABB) 0.06139 0.06252 0.04241
ACC Ltd. (ACC) 0.07012 0.05214 0.03732
Allahabad Bank (AHB) -0.00073 0.04638 0.05204
Ashok Leyland Ltd. (ALL) 0.05507 0.01758 0.06471
Bajaj Auto Ltd. (BAL) 0.07276 0.05144 0.03748
Bharat Electronics Ltd. (BEL) 0.03667 0.04443 0.04715
Bharat Heavy Electricals Ltd. (BHE) 0.07479 0.06472 0.04890
Bharat Petroleum Corpn. Ltd. (BPC) 0.00438 0.01840 0.0432
Cipla Ltd. (CIL) 0.01435 0.01128 0.06651
Dr. Reddy’s Laboratories Ltd. (DRL) 0.05630 0.01672 0.04128
Hindustan Motors (HIM) 0.02317 0.02123 0.04166
Infosys Technologies Ltd. (ITL) -0.04958 0.00948 0.04913
I T C Ltd. (ITC) 0.03368 0.02278 0.05161
Mahanagar Tele. Nig. Ltd. (MTN) 0.08718 0.08475 0.05041
Siemens Ltd. (SIL) 0.02667 0.04690 0.05527
Tata Power Co. Ltd. (TPC) 0.08307 0.07791 0.06113
Titan Industries Ltd (TIL) 0.13598 0.09203 0.05357
Voltas Ltd. (VOL) 0.07433 0.05407 0.05094
Videsh Sanchar Nigam Ltd. (VSN) 0.03422 0.04784 0.06062
Wipro Ltd. (WIL) -0.01825 0.00470 0.05418
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Table 6.2 provides liquidity profile of all the assets using trapezoidal fuzzy
numbers. The liquidity profile is based on the daily turnover rate for each
of the assets. Since we have assumed that the turnover rates are trapezoidal
fuzzy numbers, we need to estimate the tolerance interval, the left spread
and the right spread of the fuzzy numbers. In the real-world applications of
portfolio selection, the values of these parameters can be obtained by using
the Delphi Method [84]. As an illustration, consider the calculation of fuzzy
turnover rate of asset ABB. First, we use historical data (daily turnover
rates from April 1, 2005 to March 31, 2008) to calculate frequency of histori-
cal turnover rates. We find that most of the historical turnover rates fall into
the intervals [0.0004, 0.0012], [0.0012, 0.0020], [0.0020, 0.0028] and [0.0028,
0.0036]. We take the mid-points of the intervals [0.0004, 0.0012] and [0.0028,
0.0036] as the left and the right-end points of the tolerance interval, respec-
tively. Thus, the tolerance interval of the fuzzy turnover rate become [0.0008,
0.0032]. By observing all the historical data, we use 0.0004 and 0.005 as the
minimum possible value and the maximum possible value, respectively, of the
uncertain turnover rate. Thus, the left spread is 0.0004 and the right spread is
0.0018. The fuzzy turnover rate of asset ABB hence becomes [0.0008, 0.0032,
0.0004, 0.0018] and the corresponding crisp possibilistic mean value is 0.0022.
Similarly, we obtain fuzzy turnover rates and the corresponding crisp possi-
bilistic mean values of all 20 assets. Table 6.3 provides crisp possibilistic mean
values of all 20 assets.

Table 6.3 Crisp possibilistic mean values of all 20 assets (liquidity)

ABB ACC AHB ALL BAL BEL BHE BPC CIL DRL

0.0022 0.0103 0.0120 0.0065 0.0019 0.0056 0.0050 0.0062 0.0029 0.0029

HIM ITL ITC MTN SIL TPC TIL VOL VSN WIL

0.0062 0.0103 0.0012 0.0020 0.0079 0.0218 0.0028 0.0103 0.0192 0.0081

The input parameters of the problem instances solved are summarized
in Table 6.4. The 20 financial assets form the population from which we
construct a portfolio comprising 8 assets with the corresponding upper and
lower bounds of capital budget allocation. The objective is to maximize the
degree of satisfaction in regard to maximization of short term and long term
portfolio returns, portfolio liquidity and minimization of portfolio risk. Here,
we ignore the issue of annual portfolio dividend with a view to focus on the
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portfolio returns arising from the price movements of the underlying assets
(return on a asset is represented by the percentage change in daily closing
prices).

Table 6.4 The input parameters of the problem instances

Model P(6.4) Model P(6.4) Model P(6.5)
for aggressive for conservative

investor investor

No. of assets 20 20 20

No. of criteria 4 4 4

Membership functions nonlinear S-shape nonlinear S-shape nonlinear S-shape

Shape parameters (i) αr12 = 600, αr36 = 600, (i) αr12 = 600, αr36 = 600, αr12 = 600, αr36 = 600,
αw = 800, αL = 600, αw = 800, αL = 600, αw = 800, αL = 600,

(ii) αr12 = 500, αr36 = 500, (ii) αr12 = 500, αr36 = 500,
αw = 1000, αL = 500, αw = 1000, αL = 500,

(iii) αr12 = 400, αr36 = 400, (iii) αr12 = 400, αr36 = 400,
αw = 1200, αL = 400, αw = 1200, αL = 400,

Middle aspiration r12
m = 0.05, r36

m = 0.0475 r12
m = 0.045, r36

m = 0.042 (i) r12
m = 0.05, r36

m = 0.0475
levels wm = 0.0525, Lm = 0.0125 wm = 0.05, Lm = 0.01 wm = 0.0525, Lm = 0.0125

(ii) r12
m = 0.112, r36

m = 0.075
wm = 0.0525, Lm = 0.0083

(iii) r12
m = 0.1, r36

m = 0.075
wm = 0.0625, Lm = 0.0125

No. of assets held 8 8 8
in the portfolio

Criteria weights — — (i) ω1 = 0.4, ω2 = 0.35
ω3 = 0.15, ω4 = 0.1

(ii) ω1 = 0.2, ω2 = 0.4
ω3 = 0.35, ω4 = 0.05

(iii) ω1 = 0.2, ω2 = 0.3
ω3 = 0.35, ω4 = 0.15

In what follows, we present computational results by taking hypothetical
situations representing aggressive and conservative portfolio selection strate-
gies. The investor pursuing aggressive strategy aspire for higher returns and
liquidity even though it may result in higher risk. Conversely, the investor
pursuing conservative strategy prefer lower risk even though such a strategy
may result in lower returns and liquidity. The comparative values of the as-
piration levels in Table 6.4 amplify diversity of the investor behavior. All the
optimization models are coded and solved using LINGO 12.0.

• Aggressive portfolio selection strategy
To obtain a portfolio selection for the investor that has an aggressive and
optimistic mind, we formulate and solve the model P(6.4) using the input data
from Tables 6.1, 6.3-6.4, r12

m = 0.05, r36
m = 0.0475, wm = 0.0525, Lm = 0.0125,

h = 8, li = 0.01 and ui = 0.55, i = 1, 2, . . . , 20.
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max θ
subject to

36.834x1 + 42.072x2 − 0.438x3 + 33.042x4 + 43.656x5 + 22.002x6

+44.874x7 + 2.628x8 + 8.61x9 + 33.78x10 + 13.902x11 − 29.748x12

+20.208x13 + 52.308x14 + 16.002x15 + 49.842x16 + 81.588x17 + 44.598x18

+20.532x19 − 10.95x20 − 30 ≥ θ ,
37.512x1 + 31.284x2 + 27.828x3 + 10.548x4 + 30.864x5 + 26.658x6

+38.832x7 + 11.04x8 + 6.798x9 + 10.032x10 + 12.738x11 + 5.688x12

+13.688x13 + 50.85x14 + 28.14x15 + 46.746x16 + 55.218x17 + 32.442x18

+28.704x19 + 2.82x20 − 28.5 ≥ θ ,
−33.928x1 − 29.856x2 − 41.632x3 − 51.768x4 − 29.984x5 − 37.72x6

−39.12x7 − 34.56x8 − 53.208x9 − 33.024x10 − 33.328x11 − 39.304x12

−41.288x13 − 40.328x14 − 44.216x15 − 48.904x16 − 42.856x17 − 40.752x18

−48.496x19 − 43.344x20 + 42 ≥ θ ,
1.32x1 + 6.18x2 + 7.2x3 + 3.9x4 + 1.14x5 + 3.36x6 + 3x7 + 3.72x8 + 1.74x9

+1.74x10 + 3.72x11 + 0.72x12 + 6.18x13 + 1.2x14 + 4.74x15 + 13.08x16

+1.68x17 + 6.18x18 + 11.52x19 + 4.86x20 − 7.5 ≥ θ ,
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10

+x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + x20 = 1 ,
y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10

+y11 + y12 + y13 + y14 + y15 + y16 + y17 + y18 + y19 + y20 = 8 ,
xi − 0.01yi ≥ 0 , i = 1, 2, . . . , 20 ,
xi − 0.55yi ≤ 0 , i = 1, 2, . . . , 20 ,
yi ∈ {0, 1} , i = 1, 2, . . . , 20 ,
xi ≥ 0 , i = 1, 2, . . . , 20 .

If the investor is not satisfied with the portfolio obtained, more portfolios
can be generated by varying values of the shape parameters αr12 , αr36 , αw and
αL in the above problem. Corresponding to three different sets of values of
these parameters, the computational results are summarized in Table 6.5.
Table 6.6 presents proportions of the assets in the obtained portfolios. To
check efficiency of the solutions obtained, the two-phase approach is applied
in which the problem P(6.6) is solved. We find that the solution obtained
corresponding to the shape parameters αr36 = 500, αr12 = 500, αw = 1000, αL =
500 is not efficient. In this case, the recourse to the two-phase approach
produces the efficient solution listed in Tables 6.7-6.8. The solution criteria
vector (0.0508, 0.0645, 0.0743, 0.0160) of the Table 6.7 dominates the solution
criteria vector (0.0508, 0.0628, 0.0710, 0.0160) of the Table 6.5 corresponding
to the shape parameters αr36 = 500, αr12 = 500, αw = 1000, αL = 500.
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Table 6.6 The proportions of the assets in the obtained portfolios for aggressive
investor

Shape parameters Allocation

αr36 αr12 αw αL ABB ACC AHB ALL BAL

600 600 800 600 0 0.4 0.02 0 0.02
500 500 1000 500 0 0.374 0.02 0 0.019
400 400 1200 400 0 0.353 0.02 0 0.019

BEL BHE BPC CIL DRL

0 0 0.028 0 0
0 0 0.028 0 0
0 0 0.028 0 0

HIM ITL ITC MTN SIL

0 0 0.023 0 0
0 0 0.023 0 0
0 0 0.023 0 0

TPC TIL VOL VSN WIL

0.484 0 0 0.01 0.015
0.511 0 0 0.01 0.015
0.532 0 0 0.01 0.015

Table 6.7 Summary result of portfolio selection (improved solution)

αr36 αr12 αw αL Risk Expected return Liquidity

Long term Short term

500 500 1000 500 0.0508 0.0645 0.0743 0.0160

• Conservative portfolio selection strategy
To obtain a portfolio selection for the investor that has an conservative and
pessimistic mind, we formulate and solve the model P(6.4) using the input
data from Tables 6.1, 6.3-6.4, r12

m = 0.045, r36
m = 0.042, wm = 0.05 and Lm =

0.01, h = 8, li = 0.01, and ui = 0.55, i = 1, 2, . . . , 20.
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Table 6.8 The proportions of the assets in the obtained portfolio corresponding
to improved solution

Allocation

ABB ACC AHB ALL BAL BEL BHE BPC CIL DRL

Portfolio 0 0.374 0.02 0 0.019 0 0.02 0 0 0

HIM ITL ITC MTN SIL TPC TIL VOL VSN WIL

0 0 0.023 0 0 0.502 0 0.032 0.01 0

max θ
subject to

36.834x1 + 42.072x2 − 0.438x3 + 33.042x4 + 43.656x5 + 22.002x6

+44.874x7 + 2.628x8 + 8.61x9 + 33.78x10 + 13.902x11 − 29.748x12

+20.208x13 + 52.308x14 + 16.002x15 + 49.842x16 + 81.588x17 + 44.598x18

+20.532x19 − 10.95x20 − 27 ≥ θ ,
37.512x1 + 31.284x2 + 27.828x3 + 10.548x4 + 30.864x5 + 26.658x6

+38.832x7 + 11.04x8 + 6.798x9 + 10.032x10 + 12.738x11 + 5.688x12

+13.688x13 + 50.85x14 + 28.14x15 + 46.746x16 + 55.218x17 + 32.442x18

+28.704x19 + 2.82x20 − 25.2 ≥ θ ,
−33.928x1 − 29.856x2 − 41.632x3 − 51.768x4 − 29.984x5 − 37.72x6

−39.12x7 − 34.56x8 − 53.208x9 − 33.024x10 − 33.328x11 − 39.304x12

−41.288x13 − 40.328x14 − 44.216x15 − 48.904x16 − 42.856x17 − 40.752x18

−48.496x19 − 43.344x20 + 40 ≥ θ ,
1.32x1 + 6.18x2 + 7.2x3 + 3.9x4 + 1.14x5 + 3.36x6 + 3x7 + 3.72x8 + 1.74x9

+1.74x10 + 3.72x11 + 0.72x12 + 6.18x13 + 1.2x14 + 4.74x15 + 13.08x16

+1.68x17 + 6.18x18 + 11.52x19 + 4.86x20 − 6 ≥ θ ,
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10

+x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + x20 = 1 ,
y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10

+y11 + y12 + y13 + y14 + y15 + y16 + y17 + y18 + y19 + y20 = 8 ,
xi − 0.01yi ≥ 0 , i = 1, 2, . . . , 20 ,
xi − 0.55yi ≤ 0 , i = 1, 2, . . . , 20 ,
yi ∈ {0, 1} , i = 1, 2, . . . , 20 ,
xi ≥ 0 , i = 1, 2, . . . , 20 .
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If the investor is not satisfied with the portfolio obtained, more portfolios
can be generated by varying values of the shape parameters αr12 , αr36 , αw and
αL in the problem P(6.4). Corresponding to three different sets of values of
these parameters, the computational results are summarized in Table 6.9.
Table 6.10 presents proportions of the assets in the obtained portfolios. The
efficiency of the solutions is verified using the two-phase approach.

Table 6.10 The proportions of the assets in the obtained portfolios for conservative
investor

Shape parameters Allocation

αr36 αr12 αw αL ABB ACC AHB ALL BAL

600 600 800 600 0 0.4 0.02 0 0.019
500 500 1000 500 0 0.4 0.02 0 0.019
400 400 1200 400 0 0.4 0.02 0 0.019

BEL BHE BPC CIL DRL

0 0 0.028 0 0.026
0 0 0.028 0 0.026
0 0 0.028 0 0.026

HIM ITL ITC MTN SIL

0.1349 0 0 0 0
0.1022 0 0 0 0
0.074 0 0 0 0

TPC TIL VOL VSN WIL

0.3621 0 0 0.01 0
0.3948 0 0 0.01 0
0.422 0 0 0.01 0

A comparison of the solutions listed in Tables 6.5 and 6.9 highlights that if
the investor chooses aggressive strategy then a higher level of expected returns
is achieved than choosing conservative strategy, but it is accompanied with
a higher risk level. On the other hand, if the investor prefers conservative
strategy then a lower level of expected portfolio returns is achieved but it is
accompanied with a lower level of portfolio risk.

Next, we show computational results by incorporating investor preferences.
We consider the following three decision making situations.

• Case 1
Suppose the relative importance or weights of the fuzzy goals of expected
short term return, expected long term return, risk and liquidity are ω1 = 0.4,
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ω2 = 0.35, ω3 = 0.15, ω4 = 0.1, respectively. Setting r12
m = 0.05, r36

m = 0.0475,
wm = 0.0525 and Lm = 0.0125, we obtain a portfolio selection by solving
problem P(6.5). The corresponding computational results are listed in Tables
6.11-6.12. The efficiency of the solution is verified by solving problem P(6.7)
in the second-phase.

Table 6.11 Portfolio selection incorporating investor preferences (case 1)

αr36 αr12 αw αL Risk Expected return Liquidity

Long term Short term

600 600 800 600 0.0492 0.0606 0.0702 0.015

Table 6.12 The proportions of the assets in the obtained portfolio incorporating
investor preferences (case 1)

Allocation

ABB ACC AHB ALL BAL BEL BHE BPC CIL DRL

Portfolio 0 0.4 0.02 0 0.019 0 0 0.028 0 0.026

HIM ITL ITC MTN SIL TPC TIL VOL VSN WIL

0.04 0 0 0 0 0.457 0 0 0.01 0

The achievement levels of the various membership functions are η1 = 0.9999,
η2 = 0.9996, η3 = 0.9334, η4 = 0.8264 which are consistent with the investor
preferences. In other words, (η1 > η2 > η3 > η4) agrees with (ω1 > ω2 > ω3 >
ω4).

• Case 2
Suppose the relative importance or weights of the fuzzy goals of expected
short term return, expected long term return, risk and liquidity are ω1 = 0.2,
ω2 = 0.4, ω3 = 0.35, ω4 = 0.05, respectively. Setting r12

m = 0.112, r36
m = 0.075,

wm = 0.0525 and Lm = 0.0083, we obtain a portfolio selection by solving
problem P(6.5). The corresponding computational results are listed in Tables
6.13-6.14. The solution is found to be efficient using the two-phase approach.

The achievement levels of the various membership functions are η1 =
0.8081, η2 = 0.9425, η3 = 0.8916, η4 = 0.126 which are consistent with
the investor preferences. In other words, (η2 > η3 > η1 > η4) agrees with
(ω2 > ω3 > ω1 > ω4).
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Table 6.13 Portfolio selection incorporating investor preferences (case 2)

αr36 αr12 αw αL Risk Expected return Liquidity

Long term Short term

600 600 800 600 0.0499 0.0797 0.114 0.0051

Table 6.14 The proportions of the assets in the obtained portfolio incorporating
investor preferences (case 2)

Allocation

ABB ACC AHB ALL BAL BEL BHE BPC CIL DRL

Portfolio 0 0.2 0 0 0.019 0.025 0.02 0 0 0

HIM ITL ITC MTN SIL TPC TIL VOL VSN WIL

0 0 0 0 0 0.016 0.678 0.032 0.01 0

Table 6.15 Portfolio selection incorporating investor preferences (case 3)

αr36 αr12 αw αL Risk Expected return Liquidity

Long term Short term

600 600 800 600 0.056 0.0811 0.1051 0.0109

Table 6.16 The proportions of the assets in the obtained portfolio incorporating
investor preferences (case 3)

Allocation

ABB ACC AHB ALL BAL BEL BHE BPC CIL DRL

Portfolio 0 0 0.02 0 0.019 0 0.02 0 0 0

HIM ITL ITC MTN SIL TPC TIL VOL VSN WIL

0 0 0.023 0 0 0.385 0.491 0.032 0.01 0

• Case 3
Suppose the relative importance or weights of the fuzzy goals of expected
short term return, expected long term return, risk and liquidity are ω1 = 0.2,
ω2 = 0.3, ω3 = 0.35, ω4 = 0.15, respectively. Setting r12

m = 0.1, r36
m = 0.075,

wm = 0.0625 and Lm = 0.0125, we obtain a portfolio selection by solving
problem P(6.5). The corresponding computational results are listed in Tables
6.15-6.16. The solution is found to be efficient using the two-phase approach.

The achievement levels of the various membership functions are η1 =
0.9526, η2 = 0.9749, η3 = 0.9945, η4 = 0.2769 which are consistent with
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the investor preferences. In other words, (η3 > η2 > η1 > η4) agrees with
(ω3 > ω2 > ω1 > ω4).

6.4 Comments

In this chapter, we have presented the following facts:

• Multi-criteria portfolio selection using fuzzy mathematical programming
has been discussed.

• The fuzzy methodology has been used to incorporate uncertainty into his-
torical data and also to incorporate subjective/intutive characteristics into
the portfolio selection models, which are basic aspects for establishing dif-
ferent estimations of investor preferences.

• The generalization of the semi-absolute deviation portfolio optimization
model using nonlinear S-shape membership functions for the investor’s
aspiration levels has been discussed.

• The computational results based on real-world data have been provided
to demonstrate the effective working of the portfolio selection models.
Further, the efficiency of the obtained solutions has been verified using a
two-phase approach.

• The advantage of the portfolio selection models have been shown under
the situation that if the investor is not satisfied with any of the portfolio
obtained, more portfolios can be generated by varying values of shape
parameters of the nonlinear S-shape membership functions.

• Moreover, it has been shown that the fuzzy portfolio selection models can
provide satisfying portfolio selection strategies according to the investor’s
vague aspiration levels, varying degree of satisfaction and varying impor-
tance of various objectives.



Chapter 7

Suitability Considerations in
Multi-criteria Fuzzy Portfolio
Optimization-I

Abstract. In this chapter, we present fuzzy framework of portfolio selec-
tion by simultaneous consideration of suitability and optimality. Suitability
is a behavioral concept that refers to the propriety of the match between
investor preferences and portfolio characteristics. The approach described in
this chapter for portfolio selection is based on multiple methodologies. We
evolve a typology of investors using the inputs from a primary survey of
investor preferences. A cluster analysis is done on the basis of three evalua-
tion indices to categorize the chosen sample of financial assets into different
clusters. Further, using analytical hierarchy process (AHP), we determine
weights of the various assets within a cluster from the point of view of the
investor preferences. The optimal asset allocation based on a mix of suit-
ability and optimality is obtained using fuzzy portfolio selection models. The
criteria used for portfolio selection are short term return, long term return,
risk, liquidity and AHP weighted score of suitability.

7.1 Overview of AHP

AHP [104] is a decision making approach widely used for multi-criteria deci-
sion making problems in a number of application domains. It involves simple
procedure and is accessible to the end user as well as it possesses meaningful
scientific justifications. The important advantages of AHP are its simplicity,
robustness and the ability to incorporate ‘intangibles’ into the decision mak-
ing process. The decision maker judges the importance of each criterion using
pair-wise comparisons. The outcome of AHP is the weight of each decision
alternative. The following three steps are followed for solving decision making
problems by AHP.

Step 1: Establishing Structural Hierarchy
This step allows a complex decision to be structured into a hierarchy de-
scending from an overall objective to various ‘criteria’, ‘subcriteria’ and so
on until the lowest level. The objective or the overall goal of the decision is
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represented at the top level of the hierarchy. The criteria and subcriteria con-
tributing to the decision are represented at the intermediate levels. Finally,
the decision alternatives or selection choices are laid down at the bottom level
of the hierarchy. According to Saaty [104], a hierarchy can be constructed by
creative thinking, recollection and using people’s perspectives. The structure
of a hierarchy depends upon the nature or type of managerial decisions. Also,
the number of the levels in a hierarchy depends on the complexity of the prob-
lem being analyzed and the degree of detail of the problem that an analyst
requires. As such, the hierarchy representation of a decision process may vary
from one person to another.

Step 2: Establishing Comparative Judgements
Once the hierarchy has been structured, the next step is to determine the
priorities of elements at each level (‘element’ here means every member of
the hierarchy). A set of pair-wise comparison matrices of all elements in a
level of the hierarchy with respect to an element of the immediate higher
level are constructed so as to prioritize and convert individual comparative
judgements into ratio scale measurements. The preferences are quantified
by using a nine-point scale [104], see Table 7.1. The pair-wise comparisons
are given in terms of how much more an element A is important than an
element B.

Table 7.1 Saaty’s scale for pair-wise comparisons

Verbal scale Numerical values

Equally important, likely or preferred 1
Moderately more important, likely or preferred 3
Strongly more important, likely or preferred 5
Very strongly more important, likely or preferred 7
Extremely more important, likely or preferred 9
Intermediate values to reflect compromise 2,4,6,8

Reciprocals for inverse comparison Reciprocals

Step 3: Synthesis of Priorities and the Measurement of Consistency
The elements of each level of the decision hierarchy are rated using pair-wise
comparison. After all the elements have been compared pair by pair, a paired
comparison matrix is formed. The order of the matrix depends on the number
of elements at each level. The number of such matrices at each level depends
on the number of elements at the immediate upper level that it links to.
After developing all the paired comparison matrices, the eigenvector or the
relative weights representing the degree of the relative importance amongst
the elements and the maximum eigenvalue (λmax) are calculated for each
matrix. The λmax value is an important validating parameter which is used
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as a reference index to screen information by calculating the consistency ratio
of the estimated vector in order to validate whether the paired comparison
matrix provides a completely consistent evaluation. The consistency ratio is
calculated as per the following steps

(a) Calculate the eigenvector or the relative weights and λmax for each matrix
of order n.

(b) Compute the consistency index (CI) for each matrix of order n as follows:
CI = (λmax − n)/(n − 1).

(c) The consistency ratio (CR) is calculated as follows:
CR = CI/RI,

where RI is a known random consistency index that has been obtained from a
large number of simulation runs and varies according to the order of matrix.
If CI is sufficiently small then pair-wise comparisons are probably consistent
enough to give useful estimates of the weights. The acceptable CR value for a
matrix at each level is less than or equal to 0.1, i.e., if CI/RI ≤ 0.10 then the
degree of consistency is satisfactory; however, if CI/RI > 0.10 then serious
inconsistencies may exist and hence AHP may not yield meaningful results.
The evaluation process should, therefore, be reviewed and improved. The
eigenvectors are used to calculate the global weights if there is an acceptable
degree of consistency of the selection criteria.

7.2 Suitability Considerations

Financial experts and investment companies use various techniques to pro-
file investors and then recommend a suitable asset allocation. In our view,
portfolio selection models can be substantially improved by incorporating in-
vestor preferences. Some of the relevant references on portfolio selection by
simultaneous consideration of suitability and optimality include [11, 42, 43].

7.2.1 Investor Typology

No two investors are alike. Investor diversity is characterized by variations in
the demographic, socio-cultural, economic and psychographic factors, each
factor comprising in turn, a host of interrelated variables. Note that there
are many variables that impinge upon investment decision making and any
list would at best be illustrative. Moreover, it is not just an individual
variable but a configuration of several variables that influence investor be-
havior. Since these variables are not static, their relative influence changes
with the passage of time. Therefore, it is better to capture the dynamic na-
ture of these variables through life-stage analysis where the time element is
broken into discrete stages of life to reflect the combined effect of several
variables. Investment experts map the investors on these variables to assess
investment preferences. Such an assessment facilitates recommendation of the
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appropriate investment alternatives that have, at least, a prima facie suitabil-
ity for the investors. The individual investor then chooses from among these
alternatives.

We capture the investor diversity in terms of a typology developed from a
primary survey [40]. The survey relied on structured questionnaires covering
a variety of interrelated aspects such as investors’ economic and financial
position-including income and types of investment held, past experiences and
future investment intentions. Analysis of the survey data showed variation in
investor behavior across these variables. From a behavioral perspective such
a variation is understandable as even though investors prefer more of return
and liquidity over less and less of risk over more, they would order these
investment objectives differently. The profiling of the investors is done on the
basis of a select variables that are discussed as under.

• Age
It is generally believed that younger investors take greater risks in anticipa-
tion of higher returns. With growing age, they rebalance portfolio in favor of
safer and more secured even though somewhat lower returns. The investor
population can be broadly categorized as follows:

Young (25-40 years); Middle-aged (40-55 years); Seniors (above 55 years)

• Gender
On the basis of their gender, investors may be categorized into:

Male; Female
In finance literature, it is believed that women invest more conservatively
and are less likely to hold risky assets than men. They would not rebalance
their portfolios frequently and would prefer a buy-and-hold strategy.

• Life-stage
Life-stage analysis is a well-entrenched strategy for understanding consump-
tion, savings and investment behavior. A person’s economic behavior is likely
to change along with changes in the stages of life, i.e., whether a person is

Single; Married without dependents (children/adults);

Married/single with dependents ; Retired persons
The life-stage analysis leads to a more meaningful interpretation of investor
behavior. Investors’ income level, saving potential, time horizon of investment
and risk appetite, all depend on the stages of the life-cycles.

• Income status
Both consumption and savings are related to income; as income increases,
keeping other things constant, savings are likely to grow at a faster rate than
consumption. Thus, it is likely that persons from middle income and upper-
middle income groups (however defined) are drawn to investment markets.
As for high net-worth, affluent investors, it may more be a matter of wealth
preservation rather than wealth creation. The survey that we have relied on
for evolving the investor typology reports, that, by and large the sample
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comprised middle and upper-middle class households with the corresponding
monthly incomes as follows:

Low/lower-middle income group (up to 25,000.00 INR);

Middle income group (25,001.00 INR - 40, 000.00 INR);

Upper-middle/upper income group (above 40,000.00 INR)
where INR stands for Indian National Rupee.

• Accumulated savings/wealth
Size of the accumulated savings or the wealth status has a tremendous bearing
on the investor behavior. A wealthy investor can afford to undertake higher
risk. However, the relationship between wealth and return/risk expectations
is not straightforward. It is also possible that wealthy investors seek to protect
and conserve wealth rather than risk it any further.

• Education
Awareness about the investment alternatives as well as ability to arrive at an
informed investment decision is a matter of education. Professionally qualified
persons are more likely to take better-informed decisions and discriminate
among various investment alternatives. They take calculated risks whereas
their lesser-educated counterparts show greater aversion towards risk. The
relevant classes that investors were categorized into as per the survey data
are: non-graduates and graduates & above. However, we are of the view that
professionals may be categorized separately as they comprise a class unto
themselves. The resultant categories hence would be

Non-graduates; Graduates & above; Professionally qualified

• Occupation
A person’s occupational profile has a bearing on his/her investment behav-
ior. Employment in corporate and multinational sectors provides exposure to
share-owning culture. In fact, many companies now-a-days offer stock options
and the employees of such companies, therefore, get into the habit of investing
in stock markets. Persons in government service are mentally trained to be
risk averse and look for secured investment options. Business persons resort
to non-business investment alternatives as means of investing their funds in
short-term investments and look for quicker and more liquid returns. Self-
employed professionals prefer to take calculated risks and seek to accumulate
wealth through standard savings and investment plans. Accordingly, and in
line with the survey, the investors may be categorized as per their occupa-
tional profile into:

Service: large private and multinational companies ; Service: government;

Business persons; Self-employed professionals

• Prior experience
A prior experience in the investment markets has a moderating impact on in-
vestor expectations. Experienced investors have more reasonable expectations
from their investments. The relatively new entrants have great expectations
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and are more likely to get carried away by the swings of the market. Most of
the investors covered in the survey had some prior experience in investment.
Many of them had a prior experience of 10 years or more. We categorize the
investor experience as follows:

Less than a year; 1-5 years; 6-10 years; 10 years and above

Since investment decision is the outcome of a configuration of several vari-
ables, as an investment expert what one attempts is a broad estimation of the
investor type. We identify three stereotypes from an overview of the aforesaid
variables:

Return seekers: young, males, single, professionally qualified,
corporate executives ;

Safety seekers: females, middle-aged, mid-career, having dependents,
government servants, graduates or lesser educated,
self-employed persons ;

Liquidity seekers: seniors, retired persons, business persons.

Categorization of investors as above is useful for incorporating suitability
considerations into portfolio selection despite the fact that such a stereotyping
may not be all inclusive. The benefit of stereotyping, however, is that it
creates a prima facie ground for recommending the investment alternatives.

7.2.2 Modeling Suitability with the AHP

We measure suitability of the assets as per investor preferences using AHP.
The AHP model used here is a four level hierarchy as shown in Fig. 7.1.
Level 1 represents the goal, i.e., Suitability of assets; level 2 represents the
three main criteria of Suitability: Income and Savings (IS), Investment Ob-
jectives (IO) and Investing Experience (IE). At level 3, these criteria are
decomposed into various subcriteria, i.e., IS is decomposed into Income (IN),
Source (SO), Savings (SA) and Saving Rate (SR); IO is decomposed into
Age (AG), Dependents (DE), Time Horizon (TH) and Risk/Loss Appetite
(R/L); IE is decomposed into Length of Prior Experience (LE), Equity Hold-
ing (EH) and Education (ED). Finally, the bottom level of the hierarchy, i.e.,
level 4, represents the alternatives (assets). The said criteria and subcriteria
of suitability have been selected on the basis of the primary survey of investor
preferences [40].

7.3 Portfolio Selection Based on Suitability and
Optimality

Assume that investors allocate their wealth among n assets offering random
rates of return. We introduce some notation as follows:
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Fig. 7.1 Structural hierarchy for suitability of assets

7.3.1 Notation

ri: the expected rate of return of the i-th asset ,

xi: the proportion of the total funds invested in the i-th asset ,

yi: a binary variable indicating whether the i-th asset is contained in the
portfolio, where

yi =

⎧⎪⎪⎨⎪⎪⎩
1 , if i-th asset is contained in the portfolio ,

0 , otherwise ,

r12
i : the average performance of the i-th asset during a 12-month period ,

r36
i : the average performance of the i-th asset during a 36-month period ,

rit: the historical return of the i-th asset over the past period t ,

wAHPi : the AHP suitability weight of the i-th asset ,

ui: the maximal fraction of the capital allocated to the i-th asset ,

li: the minimal fraction of the capital allocated to the i-th asset ,

L: the minimum desired level of portfolio liquidity ,

L̃i: the fuzzy turnover rate of the i-th asset ,

h: the number of assets held in the portfolio ,

T: the total time span .
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We consider the following objective functions and constraints in the mul-
tiobjective portfolio selection problem.

7.3.2 Objective Functions
Short Term Return
The short term return of the portfolio is expressed as

f1(x) =
n∑

i=1

r12
i xi ,

where r12
i =

1
12

12∑

t=1

rit, i = 1, 2, . . . , n.

Long Term Return
The long term return of the portfolio is expressed as

f2(x) =
n∑

i=1

r36
i xi ,

where r36
i =

1
36

36∑

t=1

rit, i = 1, 2, . . . , n.

AHP Weighted Score of Suitability
The AHP weighted score of suitability of the portfolio is expressed as

f3(x) =
n∑

i=1

wAHPi xi .

Risk
The portfolio risk using semi-absolute deviation measure is expressed as

f4(x) = w(x) =
1
T

T∑

t=1

wt(x) =
T∑

t=1

∣∣∣∣∣∣∣

n∑

i=1

(rit − ri)xi

∣∣∣∣∣∣∣
+

n∑

i=1

(ri − rit)xi

2T
.
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Liquidity
The portfolio liquidity is expressed as

f5(x) = E(L̃(x)) = E

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

L̃ixi

⎞
⎟⎟⎟⎟⎟⎠ =

n∑

i=1

(
Lai + Lbi

2
+

Lβi − Lαi

6

)
xi .

7.3.3 Constraints

Capital budget constraint on the assets is expressed as

n∑

i=1

xi = 1 .

Maximal fraction of the capital that can be invested in a single asset is ex-
pressed as

xi ≤ ui yi , i = 1, 2, . . . , n .

Minimal fraction of the capital that can be invested in a single asset is ex-
pressed as

xi ≥ li yi , i = 1, 2, . . . , n .

Number of assets held in the portfolio is expressed as

n∑

i=1

yi = h .

No short selling of assets is expressed as

xi ≥ 0 , i = 1, 2, . . . , n .

7.3.4 The Decision Problem

The multiobjective mixed integer nonlinear programming problem for port-
folio selection based on suitability and optimality is formulated as follows:
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P(7.1) max f1(x) =
n∑

i=1

r12
i xi

max f2(x) =
n∑

i=1

r36
i xi

max f3(x) =
n∑

i=1

wAHPi xi

min f4(x) = w(x) =
T∑

t=1

∣∣∣∣∣∣∣

n∑

i=1

(rit − ri)xi

∣∣∣∣∣∣∣
+

n∑

i=1

(ri − rit)xi

2T

max f5(x) = E(L̃(x)) =
n∑

i=1

(
Lai + Lbi

2
+

Lβi − Lαi

6

)
xi

subject to
n∑

i=1

xi = 1 ,

n∑

i=1

yi = h ,

xi ≤ ui yi , i = 1, 2, . . . , n ,
xi ≥ li yi , i = 1, 2, . . . , n ,
xi ≥ 0 , i = 1, 2, . . . , n ,
yi ∈ {0, 1} , i = 1, 2, . . . , n .

To eliminate the absolute-valued function in problem P(7.1), we transform the
problem into the following multiobjective mixed integer linear programming
problem

P(7.2) max f1(x) =
n∑

i=1

r12
i xi

max f2(x) =
n∑

i=1

r36
i xi

max f3(x) =
n∑

i=1

wAHPi xi

min f4(p) = w(p) =
1
T

T∑

t=1

pt
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max f5(x) = E(L̃(x)) =
n∑

i=1

(
Lai + Lbi

2
+

Lβi − Lαi

6

)
xi

subject to

pt +

n∑

i=1

(rit − ri)xi ≥ 0, t = 1, 2, . . . ,T ,

n∑

i=1

xi = 1 ,

n∑

i=1

yi = h ,

xi ≤ ui yi , i = 1, 2, . . . , n ,
xi ≥ li yi , i = 1, 2, . . . , n ,
xi ≥ 0 , i = 1, 2, . . . , n ,
pt ≥ 0 , t = 1, 2, . . . ,T ,
yi ∈ {0, 1} , i = 1, 2, . . . , n .

7.4 Fuzzy Portfolio Selection Models Based on
Suitability and Optimality

We use logistic function [119], i.e., a nonlinear S-shape membership function
to express vague aspiration levels of the investor. The following nonlinear S-
shape membership function is used to characterize the goal of expected short
term return

• μr12(x) =
1

1 + exp

⎛
⎜⎜⎜⎜⎜⎝−αr12

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

r12
i xi − r12

m

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

,

where r12
m is the mid-point (middle aspiration level for the expected short term

return) at which the membership function value is 0.5 and αr12 is provided
by the investor based on his/her degree of satisfaction of the goal.

Similarly, we define membership functions of the goals of expected long term
return (μr36 (x)), AHP weighted score of suitability (μwAHP (x)) and liquidity
(μL̃(x)) as follows:

• μr36(x) =
1

1 + exp

⎛
⎜⎜⎜⎜⎜⎝−αr36

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

r36
i xi − r36

m

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

,

• μwAHP (x) =
1

1 + exp

⎛
⎜⎜⎜⎜⎜⎝−αwAHP

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

wAHPi xi − wAHPm

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

,
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• μL̃(x) =
1

1 + exp
(
−αL(E(L̃(x)) − Lm)

) ,

where r36
m , wAHPm , Lm are the respective mid-points and αr36 , αwAHP , αL are

provided by the investor.

The membership function of the goal of risk is given by

• μw(x) =
1

1 + exp (αw(w(x) − wm))
,

where wm is the mid-point and αw is provided by the investor based on his/her
degree of satisfaction regarding the level of risk.

Using Bellman-Zadeh’s maximization principle [7], the fuzzy portfolio se-
lection problem is formulated as follows:

P(7.3) max η
subject to

η ≤ μr12(x) ,
η ≤ μr36(x) ,
η ≤ μwAHP(x) ,
η ≤ μw(x) ,
η ≤ μL̃(x) ,

n∑

i=1

xi = 1 , (7.1)

n∑

i=1

yi = h , (7.2)

xi ≤ ui yi , i = 1, 2, . . . , n , (7.3)

xi ≥ li yi , i = 1, 2, . . . , n , (7.4)

xi ≥ 0 , i = 1, 2, . . . , n , (7.5)

yi ∈ {0, 1} , i = 1, 2, . . . , n , (7.6)

0 ≤ η ≤ 1 . (7.7)

The problem P(7.3) is a mixed integer nonlinear programming problem. The
above problem can be transformed into the following mixed integer linear

programming problem using the transformation θ = log
η

1 − η .
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P(7.4) max θ
subject to

θ ≤ αr12

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

r12
i xi − r12

m

⎞
⎟⎟⎟⎟⎟⎠ ,

θ ≤ αr36

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

r36
i xi − r36

m

⎞
⎟⎟⎟⎟⎟⎠ ,

θ ≤ αwAHP

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

wAHPi xi − wAHPm

⎞
⎟⎟⎟⎟⎟⎠ ,

θ ≤ αw (wm − w(x)) ,

θ ≤ αL

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

(
Lai + Lbi

2
+

Lβi − Lαi

6

)
xi − Lm

⎞
⎟⎟⎟⎟⎟⎠ ,

and Constraints (7.1) − (7.6) .

Note that θ ∈ ] −∞,+∞[. The absolute-valued function in the expression of
w(x) can be eliminated on the same lines as discussed in Section 7.3.4.

To incorporate relative importance of various fuzzy objectives in portfolio
selection, the weighted additive model of the fuzzy portfolio selection problem
is written as follows:

P(7.5) max
5∑

p=1

ωpηp

subject to

η1 ≤ μr12 (x) ,
η2 ≤ μr36 (x) ,
η3 ≤ μwAHP (x) ,
η4 ≤ μw(x) ,
η5 ≤ μL̃(x) ,
0 ≤ ηp ≤ 1 , p = 1, 2, . . . , 5 ,
and Constraints (7.1) − (7.6) ,

where ωp is the relative weight of the p-th objective given by investors such

that ωp > 0 and

5∑

p=1

ωp = 1.

Further, in order to ensure efficiency of the obtained solution, we solve the
problems P(7.6) and P(7.7) corresponding to the problems P(7.4) and P(7.5)
respectively, in the second-phase.
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P(7.6) max
5∑

p=1

ωpθp

subject to

log
μr12(x∗)

1 − μr12(x∗)
≤ θ1 ≤ αr12

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

r12
i xi − r12

m

⎞
⎟⎟⎟⎟⎟⎠ ,

log
μr36(x∗)

1 − μr36(x∗)
≤ θ2 ≤ αr36

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

r36
i xi − r36

m

⎞
⎟⎟⎟⎟⎟⎠ ,

log
μwAHP (x∗)

1 − μwAHP (x∗)
≤ θ3 ≤ αwAHP

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

wAHPi xi − wAHPm

⎞
⎟⎟⎟⎟⎟⎠ ,

log
μw(x∗)

1 − μw(x∗)
≤ θ4 ≤ αw (wm − w(x)) ,

log
μL̃(x∗)

1 − μL̃(x∗)
≤ θ5 ≤ αL

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

(
Lai + Lbi

2
+

Lβi − Lαi

6

)
xi − Lm

⎞
⎟⎟⎟⎟⎟⎠ ,

and Constraints (7.1) − (7.6) ,

where x∗ is an optimal solution of problem P(7.4), ω1 = . . . = ω5, ωp > 0,
5∑

p=1

ωp = 1 and θp ∈ ] −∞,+∞[ , p = 1, 2, . . . , 5..

P(7.7) max
5∑

p=1

ωpηp

subject to

μr12 (x∗∗) ≤ η1 ≤ μr12 (x) ,
μr36 (x∗∗) ≤ η2 ≤ μr36 (x) ,
μwAHP (x∗∗) ≤ η3 ≤ μwAHP(x) ,
μw(x∗∗) ≤ η4 ≤ μw(x) ,
μL̃(x∗∗) ≤ η5 ≤ μL̃(x) ,
0 ≤ ηp ≤ 1 , p = 1, 2, . . . , 5 ,
and Constraints (7.1) − (7.6) ,

where x∗∗ is an optimal solution of problem P(7.5), ωp is the relative weight

of the p-th objective given by the investor such that ωp > 0 and

5∑

p=1

ωp = 1.
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7.5 Numerical Illustration

Here, we present the results of an empirical study based on the data set of
daily closing prices of 150 assets listed on NSE, Mumbai, India.

7.5.1 Asset Clusters

Just as different investor types show distinct ordering of return, risk and
liquidity criteria, likewise different assets also show distinct characteristics
vis-à-vis these criteria. Thus, it is desirable to stratify the assets into clusters
on the basis of some pre-defined characteristics. We consider three evalua-
tion indices, namely, average return, standard deviation denoting risk and
turnover rate denoting liquidity. Since the measurement units and scales of
all the three indices are not same, we perform normalization using z-score
transformation. We use K-means method [68] for clustering of the assets. In
order to find the most suitable number of clusters (k) for the input data set,
we rely on the silhouette coefficients [68]. The silhouette coefficient s(i) is
computed as per the following steps

(a) For the i-th object, calculate its average distance to all other objects in
its cluster; call this value ai.

(b) For the i-th object and any cluster not containing the object, calculate
the object’s average distance to all the objects in the given cluster. Find
the minimum such value with respect to all the clusters; call this value
bi.

(c) For the i-th object, the silhouette coefficient is s(i) =
bi − ai

max(ai, bi)
.

The value of the silhouette coefficient of an object can vary between
-1 and 1, which indicates how much that object belongs to the cluster in
which it is classified. The closer the value is to 1, the higher the degree that
the object belongs to its cluster. The silhouette coefficients are used here to
quantify the quality of assignment of an asset to a particular cluster. The
silhouette value of a cluster is the average of the silhouette coefficients of all
data items belonging to the cluster. We refer to the following interpretation
of the silhouette value of a cluster proposed by Kaufman and Rousseeuw [68].

0.71 ≤ cluster silhouette ≤ 1 means it is a strong cluster;
0.51 ≤ cluster silhouette ≤ 0.7 means it is a reasonable cluster;
0.26 ≤ cluster silhouette ≤ 0.5 means it is a weak or artificial cluster;
cluster silhouette < 0.25 means no cluster is found.

The silhouette value for k is the average silhouette values of the k clusters.
The most suitable k is the one with the highest average silhouette value.

Using K-means tool of the MATLAB 7.0 software, we experiment with a
range of values for k to perform cluster analysis. We find that the average
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silhouette value 0.6841 for k = 3 is the highest in comparison with other
values of k (see Figs. 7.2-7.5). To overcome local minima, we use the optional
‘replicates’ parameter. The computational results are summarized in Table
7.2 in which the mean value of each variable (index) is provided.

Fig. 7.2 Cluster analysis for k = 2 (average silhouette = 0.5129)

C
lu

s
te

r

Silhouette Value

0 0.2 0.4 0.6 0.8 1

1

2

3

Fig. 7.3 Cluster analysis for k = 3 (average silhouette = 0.6841)

Table 7.2 Results of cluster analysis

Variables Clusters

Cluster 1 Cluster 2 Cluster 3
(56 assets) (51 assets) (43 assets)

Average return 0.14084 0.27078 0.18015

Standard deviation 0.44474 0.52338 0.32999

Turnover rate 0.011 0.00176 0.00487

Category Liquid assets High-yield assets Less risky assets
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Fig. 7.4 Cluster analysis for k = 4 (average silhouette = 0.4721)

Fig. 7.5 Cluster analysis for k = 5 (average silhouette = 0.2826)

On the basis of computational results, we propose the following three clusters
of assets:

(i) Cluster 1: liquid assets
Assets in cluster 1 are categorized as liquid assets since mean value for liq-
uidity is the highest in this cluster. This cluster is typified by low but widely
varying returns.

(ii) Cluster 2: high-yield assets
Assets in cluster 2 are categorized as high-yielding ones since they have rather
high returns. On the expected lines of return/risk relationship, these assets
also show high standard deviation. Although, investors may gain from the
high returns they also have to endure the high risk. These assets have low
liquidity amongst all the clusters indicating that high-yielding investment
involves a longer time horizon.
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(iii) Cluster 3: less risky assets
Assets in cluster 3 are categorized as less risky assets since compared to the
other clusters these assets have the lowest standard deviation. The return is
not high but medium. The liquidity is medium too.

The asset clusters discussed above have a prima facie suitability for the
corresponding investor types identified in Section 7.2.1. Thus, the cluster of
liquid assets is suitable for liquidity seekers, the cluster of high-yield assets
is suitable for return seekers and the cluster of less risky assets is suitable for
safety seekers.

7.5.2 Calculation of AHP Weights

The next step is to measure suitability of the assets from a particular cluster
as per investor preferences. Here, we follow the AHP model described in
Section 7.2.2. For the sake of simplicity, we make the following assumptions.

(a) Rather than finding suitability of all the assets in a given cluster, the
procedure is implemented for randomly chosen set of 20 assets from each
cluster.

(b) Rather than accounting for investor diversity at each level of the AHP
hierarchy, the same is introduced at the bottom level of the hierarchy.

Note that the above assumptions are all relaxable and the AHP model is
adequately capable of handling the same. The procedure followed is a pair-
wise comparison of the criteria, subcriteria and the assets, refer to Fig. 7.1 for
complete hierarchy. At level 2, we determine local weights of the criteria with
respect to the overall goal of suitability of assets at level 1. At level 3, we de-
termine local weights of the subcriteria with respect to their respective par-
ent criterion at level 2. For example, the subcriteria-income, source, savings
and saving rate are pair-wise compared with respect to their parent criterion-
income and savings. For the data in respect of pair-wise comparisonmatrices at
levels 2 and 3, we have relied on inputs from investment experts on the Saaty’s
verbal scale (see Table 7.1). As noted earlier, we have not introduced investor
diversity as yet. Hence, at these two levels the local weights of the criteria and
the subcriteria are identical for all the three investor types. At level 4, we de-
termine the local weights of each of the 20 assets with respect to each of the
eleven subcriteria at level 3. At this stage, we account for investor diversity and
incorporate the same by taking the investor preferences on the Saaty’s verbal
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scale. That is, the local weights of the 20 assets with respect to each of the
eleven subcriteria of suitability are calculated for each investor type.

After finding all the local weights, the global weights of each asset are
determined by following what in terms of the AHP hierarchy may be regarded
as a bottom-up process of successive multiplication. Illustratively speaking,
the local weight of an asset in relation to a subcriterion is multiplied with the
local weight of that subcriterion in relation to the respective parent criterion,
which in turn, is multiplied with the local weight of the parent criterion in
relation to the overall goal of suitability of assets. Thus, 11 global weights are
obtained for each asset. The final AHP weight of suitability for each asset is
then determined by adding all the global weights of the asset (refer to Tables
7.3-7.5).

7.5.3 Asset Allocation

The 20 financial assets from each cluster form the population from which
we attempt to construct a portfolio comprising 8 assets. Table 7.6 provides
the input data corresponding to expected short term return, expected long
term return, risk and liquidity of assets from the three clusters. The main
criteria of the problem instances solved are summarized in Table 7.7. The
comparative values of the aspiration levels in Table 7.7 show diversity of the
investor behavior. All the optimization models are coded and solved using
LINGO 12.0.
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We now present the computational results.

• Cluster 1 for liquidity seekers
Corresponding to r12

m = 0.15, r36
m = 0.18, wm = 0.215, Lm = 0.015, wAHPm =

0.035, h = 8, li = 0.01,, ui = 0.5, i = 1, 2, . . . , 20 and using the data from
Tables 7.3, 7.6-7.7, we obtain portfolio selection by solving the problem P(7.4)
formulated as follows:

max θ

subject to

1.79764x1 + 0.19715x2 + 10.32486x3 + 12.22569x4 + 12.82765x5 + 4.12976x6

+4.84157x7 + 2.31676x8 + 11.42234x9 + 4.77094x10 + 1.10269x11 + 10.72153x12

+9.00203x13 + 3.84331x14 + 3.55451x15 + 9.63005x16 + 9.30053x17 + 2.53058x18

+2.21942x19 + 8.42338x20 − 9 ≥ θ ,
6.72784x1 + 4.04520x2 + 9.03493x3 + 9.17531x4 + 16.92760x5 + 6.29862x6

+7.00240x7 + 4.13881x8 + 12.21672x9 + 10.36739x10 + 5.62217x11 + 3.48528x12

+6.03034x13 + 6.94756x14 + 5.44356x15 + 6.91998x16 + 3.71294x17 + 6.02335x18

+2.55661x19 + 6.89943x20 − 10.8 ≥ θ ,
34.47473x1 + 47.28331x2 + 42.01537x3 + 26.44420x4 + 17.77163x5 + 22.50126x6

+22.07219x7 + 29.79401x8 + 20.70612x9 + 28.67455x10 + 27.34722x11

+36.08266x12 + 22.59514x13 + 36.38170x14 + 36.28428x15 + 39.52408x16

+39.73776x17 + 27.15403x18 + 16.83442x19 + 25.32134x20 − 21 ≥ θ ,
−14.35820x1 − 11.93967x2 − 13.79407x3 − 13.31299x4 − 18.66862x5 − 12.90422x6

−13.40499x7 − 11.00324x8 − 15.33695x9 − 15.51005x10 − 13.60123x11

−10.72449x12 − 12.74118x13 − 11.38324x14 − 8.99547x15 − 13.45164x16

−10.70857x17 − 19.15735x18 − 13.68923x19 − 12.87272x20 + 17.2 ≥ θ ,
4.38x1 + 0.4x2 + 2.74x3 + 3.9x4 + 17x5 + 4.5x6 + 4.9x7 + 3.4x8 + 5.3x9 + 4.54x10

+1.29x11 + 1.04x12 + 5.59x13 + 5.35x14 + 0.45x15 + 1.995x16 + 1.36x17 + 6.11x18

+0.612x19 + 6.23x20 − 9 ≥ θ ,
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10

+x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + x20 = 1 ,

y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10

+y11 + y12 + y13 + y14 + y15 + y16 + y17 + y18 + y19 + y20 = 8 ,

xi − 0.01yi ≥ 0 , i = 1, 2, . . . , 20 ,

xi − 0.5yi ≤ 0 , i = 1, 2, . . . , 20 ,

yi ∈ {0, 1} , i = 1, 2, . . . , 20 ,

xi ≥ 0 , i = 1, 2, . . . , 20 .

To check efficiency of the solution obtained, we use the two-phase approach
and solve the problem P(7.6). If the investor is not satisfied with the portfolio
obtained, more portfolios can be generated by varying the values of the shape
parameters in the above problem. The computational results summarized in
Table 7.8 are based on three different sets of values of the shape parameters.
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Note that all the three solutions obtained are efficient, i.e., their criteria
vector are nondominated. Table 7.9 presents proportions of the assets in the
obtained portfolios.

• Cluster 2 for return seekers
Corresponding to r12

m = 0.26, r36
m = 0.325, wm = 0.25, Lm = 0.002, wAHPm =

0.045, h = 8, li = 0.01,, ui = 0.5, i = 1, 2, . . . , 20 and using the data from
Tables 7.4, 7.6-7.7, we obtain portfolio selection by solving the problem P(7.4)
formulated as follows:

max θ

subject to

10.42630x1 + 9.66667x2 + 12.14964x3 + 5.68882x4 + 21.00698x5 + 16.99939x6

+8.55833x7 + 10.39949x8 + 5.10631x9 + 11.58647x10 + 14.43422x11 + 9.09091x12

+7.23849x13 + 19.21932x14 + 5.10069x15 + 3.66572x16 + 16.49695x17

+11.31296x18 + 10.81811x19 + 23.74959x20 − 15.6 ≥ θ ,
11.56676x1 + 12.81936x2 + 13.02644x3 + 11.89147x4 + 24.05182x5 + 18.49870x6

+16.71450x7 + 16.48592x8 + 10.27970x9 + 10.79095x10 + 17.93493x11

+17.65701x12 + 16.18129x13 + 20.84027x14 + 14.26543x15 + 12.65853x16

+18.06412x17 + 17.77963x18 + 22.02014x19 + 18.07171x20 − 19.5 ≥ θ ,
15.31975x1 + 12.05122x2 + 37.17770x3 + 25.47086x4 + 39.33009x5 + 40.40148x6

+34.54299x7 + 24.98953x8 + 32.49344x9 + 15.84419x10 + 38.66340x11

+29.12957x12 + 26.61943x13 + 30.90250x14 + 33.78613x15 + 34.45534x16

+32.93229x17 + 37.42836x18 + 27.23141x19 + 31.23033x20 − 27 ≥ θ ,
−10.58670x1 − 12.67760x2 − 13.84627x3 − 14.22301x4 − 21.20466x5 − 18.58963x6

−17.44472x7 − 15.71899x8 − 13.87566x9 − 10.35620x10 − 15.36419x11

−16.23817x12 − 12.98879x13 − 19.82475x14 − 16.07054x15 − 14.54573x16

−13.85837x17 − 13.68933x18 − 16.95061x19 − 13.32169x20 + 20 ≥ θ ,
0.241x1 + 0.304x2 + 0.42x3 + 0.468x4 + 1.37x5 + 0.84x6 + 3.05x7 + 3x8 + 0.465x9

+0.22x10 + 0.24x11 + 0.335x12 + 0.68x13 + 0.735x14 + 0.617x15 + 1.225x16

+0.43x17 + 1.075x18 + 0.385x19 + 0.307x20 − 1.2 ≥ θ ,
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10

+x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + x20 = 1 ,

y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10

+y11 + y12 + y13 + y14 + y15 + y16 + y17 + y18 + y19 + y20 = 8 ,

xi − 0.01yi ≥ 0 , i = 1, 2, . . . , 20 ,

xi − 0.5yi ≤ 0 , i = 1, 2, . . . , 20 ,

yi ∈ {0, 1} , i = 1, 2, . . . , 20 ,

xi ≥ 0 , i = 1, 2, . . . , 20 .

If the investor is not satisfied with the portfolio obtained, more portfolios
can be generated by varying the values of the shape parameters in the above
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problem. The computational results summarized in Table 7.8 are based on
three different sets of values of the shape parameters. Note that all the three
solutions obtained are efficient. Table 7.10 presents proportions of the assets
in the obtained portfolios.

• Cluster 3 for safety seekers
Corresponding to r12

m = 0.185, r36
m = 0.20, wm = 0.175, Lm = 0.005, wAHPm =

0.06, h = 8, li = 0.01,, ui = 0.5, i = 1, 2, . . . , 20 and using the data from
Tables 7.5, 7.6-7.7, we obtain portfolio selection by solving the problem P(7.4)
formulated as follows:

max θ

subject to

6.07135x1 + 1.67374x2 + 8.39548x3 + 5.85066x4 + 13.73499x5 + 16.02906x6

+8.92199x7 + 9.67795x8 + 7.74328x9 + 7.55484x10 + 9.48577x11 + 6.80007x12

+6.06260x13 + 6.87204x14 + 7.45538x15 + 5.37990x16 + 14.83472x17

+6.50549x18 + 16.05907x19 + 7.82519x20 − 11.1 ≥ θ ,
8.15192x1 + 9.97332x2 + 8.92107x3 + 8.62928x4 + 10.41241x5 + 16.12749x6

+6.29500x7 + 7.01501x8 + 6.15299x9 + 7.39683x10 + 11.69495x11 + 9.55592x12

+7.24296x13 + 8.95255x14 + 7.43153x15 + 9.15999x16 + 13.86862x17

+9.60144x18 + 9.71277x19 + 9.26141x20 − 12 ≥ θ ,
19.57860x1 + 37.140x2 + 38.19420x3 + 30.08460x4 + 13.97640x5 + 44.23140x6

+12.52920x7 + 29.79180x8 + 47.38080x9 + 33.76440x10 + 36.15240x11 + 36.12120x12

+22.65660x13 + 26.79720x14 + 14.91180x15 + 14.93640x16 + 44.02380x17

+31.55040x18 + 23.15280x19 + 43.0260x20 − 36 ≥ θ ,
−9.32879x1 − 12.75605x2 − 9.87534x3 − 10.22537x4 − 9.49203x5 − 15.92201x6

−8.50213x7 − 9.12645x8 − 7.88276x9 − 7.13068x10 − 12.02566x11 − 10.63882x12

−7.61216x13 − 9.00134x14 − 8.97327x15 − 7.60692x16 − 10.35152x17

−10.50074x18 − 9.04904x19 − 8.74996x20 + 14 ≥ θ ,
0.241x1 + 0.304x2 + 0.42x3 + 0.468x4 + 1.37x5 + 0.84x6

+3.05x7 + 3x8 + 0.465x9 + 0.22x10 + 0.24x11 + 0.335x12

+0.68x13 + 0.735x14 + 0.617x15 + 1.225x16 + 0.43x17

+1.075x18 + 0.385x19 + 0.307x20 − 3 ≥ θ ,
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10

+x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + x20 = 1 ,

y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10

+y11 + y12 + y13 + y14 + y15 + y16 + y17 + y18 + y19 + y20 = 8 ,

xi − 0.01yi ≥ 0 , i = 1, 2, . . . , 20 ,

xi − 0.5yi ≤ 0 , i = 1, 2, . . . , 20 ,

yi ∈ {0, 1} , i = 1, 2, . . . , 20 ,

xi ≥ 0 , i = 1, 2, . . . , 20 .
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Table 7.12 Summary result of portfolio selection for cluster 3 (improved solution)

αr36 αr12 αw αL αwAHP Risk Expected return LiquidityAHP weighted

Long term Short term score

40 40 120 400 400 0.157730.21631 0.20140 0.00663 0.06665

Table 7.13 The proportions of the assets in the obtained portfolio (cluster 3)
corresponding to improved solution

Allocation

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Portfolio 0 0 0 0 0.019 0.37 0 0 0 0

A11 A12 A13 A14 A15 A16 A17 A18 A19 A20

0.31362 0.03 0 0 0 0.016 0.082410 0.01 0.15897

The computational results are summarized in Table 7.8. Table 7.11 presents
proportions of the assets in the obtained portfolios. Note that unlike the sit-
uation in cluster 1 and cluster 2, in this cluster, the solution obtained corre-
sponding to the shape parameters αr12 = 40, αr36 = 40, αw = 120, αL = 400,
αwAHP = 400 is not efficient. In this case, the recourse to the two-phase
approach produces the efficient solution listed in Tables 7.12-7.13. It may
be noted that the solution criteria vector (0.15773, 0.21631, 0.20140, 0.00663,
0.06665) of the Table 7.12 dominates the solution criteria vector (0.15781,
0.21631, 0.20131, 0.00663, 0.06662) of the Table 7.8 from cluster 3 correspond-
ing to the shape parameters αr12 = 40, αr36 = 40, αw = 120, αL = 400,
αwAHP = 400.

A comparison of the solutions for the three clusters listed in Table 7.8
highlights that if investors are liquidity seekers, they will obtain a higher
level of liquidity in comparison to return seekers and safety seekers, but that
supposes a medium risk level. If investors are return seekers, they will obtain
a higher level of expected return in comparison to liquidity seekers and safety
seekers, but that supposes a higher risk level. If investors are safety seekers,
they will obtain a lower level of risk in comparison to liquidity seekers and
return seekers, but that supposes accepting medium level of expected return.

Apart from optimizing the return, risk and liquidity objectives in the ob-
tained portfolios, we also analyze how the obtained portfolios perform on the
suitability considerations and overall satisfaction of investor preferences. The
normalized AHP weighted score of suitability of the portfolio lies between 0
and 1. It may be recalled that the overall suitability score captures suitability
of the portfolio on three criteria and eleven subcriteria. Further to this, and
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in view of the multiobjective portfolio selection problem, it is quite possible
that an asset that has a high AHP weight does not figure in the optimal port-
folio because it may not adequately contribute towards the attainment of the
other objectives. For example, asset A2 from cluster 1 has the highest AHP
weight but it does not figure in the obtained portfolios as it is not performing
well on the other objectives. Therefore, just as an optimal portfolio may not
comprise of only those assets that yield highest return, liquidity or lowest
risk, likewise, it does not necessarily include the assets with the highest AHP
weight. What matters is the ‘portfolio effect’ of the individual assets, be it
return, be it liquidity, be it risk or be it suitability.

Next, we present computational results considering individual preferences
within a given investor type.

• Individual preferences among liquidity seekers
We consider the following weights of the fuzzy goals of expected short term
return (ω1), expected long term return (ω2), risk (ω3), liquidity (ω4) and
AHP weighted score (ω5): ω1 = 0.25, ω2 = 0.2, ω3 = 0.1, ω4 = 0.3, ω5 = 0.15.
Corresponding to r12

m = 0.15, r36
m = 0.19, wm = 0.215, Lm = 0.012, wAHPm =

0.035, h = 8, li = 0.01,, and ui = 0.5, i = 1, 2, . . . , 20, we obtain portfolio
selection by solving the problem P(7.5). The efficiency of the solution is
verified by solving the problem P(7.7) in the second-phase. The corresponding
computational results are listed in Tables 7.14-7.15. The achievement levels
of the various membership functions are η1 = 0.86063, η2 = 0.81308, η3 =
0.73167, η4 = 0.87916, η5 = 0.75755 which are consistent with the investor
preferences, i.e., (η4 > η1 > η2 > η5 > η3) agrees with (ω4 > ω1 > ω2 > ω5 >
ω3).

• Individual preferences among return seekers
Here, we consider the weights as ω1 = 0.3, ω2 = 0.25, ω3 = 0.15, ω4 = 0.10,
ω5 = 0.20. By taking r12

m = 0.26, r36
m = 0.325, wm = 0.25, Lm = 0.002, wAHPm =

0.055, h = 8, li = 0.01,, and ui = 0.5, i = 1, 2, . . . , 20, we obtain portfolio
selection by solving the problem P(7.5). The solution is verified for efficiency.
The corresponding computational results are listed in Tables 7.14-7.15. The
achievement levels of the various membership functions are η1 = 0.97465,
η2 = 0.88775, η3 = 0.57460, η4 = 0.46035, η5 = 0.72716 which are consistent
with the investor preferences.

• Individual preferences among safety seekers
As performed above in cluster 1 and cluster 2, corresponding to the weights
ω1 = 0.18, ω2 = 0.12, ω3 = 0.35, ω4 = 0.10, ω5 = 0.25 and r12

m = 0.205,
r36

m = 0.21, wm = 0.19, Lm = 0.005, wAHPm = 0.068, h = 8, li = 0.01,, ui =
0.5, i = 1, 2, . . . , 20, we obtain portfolio selection by solving the problem
P(7.5). The solution is found to be efficient. The corresponding computational
results are listed in Tables 7.14-7.15. The achievement levels of the various
membership functions are η1 = 0.88969, η2 = 0.81399, η3 = 0.93570, η4 =
0.42061, η5 = 0.92636 which are consistent with the investor preferences.
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Table 7.15 The proportions of the assets in the obtained portfolios incorporating
investor preferences

Clusters Allocation

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Cluster 1 0.10 0 0.02 0.025 0.35 0 0 0 0.451 0

Cluster 2 0 0 0 0 0.35 0.17498 0.02 0 0 0

Cluster 3 0 0 0.02 0 0 0.40 0 0 0.035 0

A11 A12 A13 A14 A15 A16 A17 A18 A19 A20

0 0 0.023 0 0 0.016 0 0 0 0.015

0.04 0 0 0.367 0 0 0.023 0 0.01 0.015

0.04 0.03 0 0 0 0 0.45 0 0.01 0.015

The foregoing analysis of the various decision making situations from the
stand point of investor preferences demonstrates that the portfolio selection
models discussed in this chapter discriminate not only between investor types
but also among investors in a given type. Thus, it is possible to construct effi-
cient portfolios with reference to the diversity of investor preferences whether
considered at the level of investor type or at the level of an individual within
a given type.

7.6 Comments

In this chapter, we have presented the following facts:

• A hybrid approach that integrates behavior survey, cluster analysis, AHP
and fuzzy mathematical programming has been discussed to study the
portfolio selection problem.

• Based on a survey data in respect of investors demographic, socio-cultural,
economic and psychographic profiles, investors have been categorized as
return seekers, safety seekers and liquidity seekers.

• Cluster analysis has been introduced to categorize the chosen sample of
financial assets into three clusters-cluster 1: liquid assets; cluster 2: high-
yield assets; and cluster 3: less risky assets.

• Using AHP approach, the suitability of the assets from a particular cluster
has been measured for a given investor type.

• The convergence of the dual goals of suitability and optimality in portfolio
selection has been introduced.

• Recognizing that financial investment involves multiple criteria decision
making in an environment that befits more fuzzy approximation than de-
terministic formulation, the transformation of the semi-absolute deviation
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portfolio selection model into a fuzzy model using nonlinear S-shape mem-
bership functions has been discussed.

• The computational results based on real-world data for each of the three
clusters have been provided to demonstrate the effectiveness of the port-
folio selection models. Further, the efficiency of the obtained solutions has
been verified using the two-phase approach.

• The advantage of the portfolio selection models have been shown under the
situation that if investors are not satisfied with any of the portfolios, more
portfolios can be generated by varying the values of the shape parameters.

• Moreover, it has been shown that the fuzzy portfolio selection models
are capable of yielding suitable and optimal portfolios not only for each
investor type but can also accommodate individual preferences within a
given type.



Chapter 8

Suitability Considerations in
Multi-criteria Fuzzy Portfolio
Optimization-II

Abstract. In this chapter, we present an approach based on AHP and fuzzy
multiobjective programming (FMOP) to attain the convergence of suitability
and optimality in portfolio selection. We use a typology of investors with a
view to discriminate among investors types and asset clusters categorized on
the basis of three evaluation indices. The local weights (performance scores)
of each asset within a cluster with respect to the four key criteria, namely,
return, risk, liquidity and suitability are calculated using AHP. These weights
are used as coefficients of the objective functions corresponding to the four
criteria in the multiobjective programming model. The multiobjective pro-
gramming model is transformed into a weighted additive model using the
weights (relative importance) of the four key criteria that directly influence
the asset allocation decision. These criteria weights are also calculated us-
ing AHP. To improve portfolio performance on individual objective(s) as per
investor preferences, we use an interactive fuzzy programming approach.

8.1 AHP Model for Suitability and Optimality
Considerations

As discussed in the previous chapter, we use the following triadic typology of
investor behavior: return seekers, safety seekers and liquidity seekers. Further,
we use the following three clusters of assets as obtained in previous chapter.

(i) Cluster 1: liquid assets
Assets in Cluster 1 are categorized as liquid assets, as mean value for liquidity
is the highest in this cluster. This cluster is typified by low but widely varying
returns.

(ii) Cluster 2: high-yield assets
Assets in Cluster 2 are categorized as high-yielding ones, since they have
rather high returns. On the expected lines of return/risk relationship, these
assets also show high standard deviation. Although, investors may gain from
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the high returns, they also have to endure the high risk. However, these
assets have low liquidity amongst all the clusters indicating that high-yielding
investment involves a longer time horizon.

(iii) Cluster 3: less risky assets
Assets in Cluster 3 are categorized as less risky assets, since compared to
other clusters, these assets manifest the lowest standard deviation for the
cluster. The return is not high but medium. The liquidity is medium too.

These asset clusters have a prima facie suitability for the above stated
investor types. We calculate the local weights (performance scores) of each
asset within a cluster with respect to key asset allocation criteria and the
weights (relative importance) of the key criteria when making the asset allo-
cation decision using AHP. The AHP model used here comprises five levels
of hierarchy. Level 1 represents the overall goal, i.e. Asset Allocation. Level
2 represents the key criteria (Return, Risk, Liquidity and Suitability) that
directly influence the goal. At level 3, Return criterion is broken into Short
Term Return, Long Term Return and Forecasted Return; Risk criterion is
broken into Standard Deviation, Risk Tolerance and Microeconomic Risk;
Suitability criterion is broken into Income and Savings, Investment Objec-
tives and Investing Experience. At level 4, suitability subcriteria are further
broken into 11 subcriteria that may affect the choice of assets. At the bottom
level of the hierarchy, the alternatives (i.e., assets) are listed (please refer to
Fig. 8.1 for complete structural hierarchy).

Note that to determine the local weights of the assets with respect to
the quantitative measures of performance, namely, short term return, long
term return, risk (standard deviation) and liquidity, we have relied on actual
data, that is, the past performance of the assets. The question for pairwise
comparison of quantitative criteria can be considered as:

‘Of two elements i and j, how many times i is preferred to j’

If the values for the alternatives i and j are, respectively, wi and wj, the
preference of the alternative i to j is equal to wi/wj. Therefore, the pairwise
comparison matrix is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1/w1 w1/w2 . . . w1/wn

w2/w1 w2/w2 . . . w2/wn

. . .
wn/w1 wn/w2 . . . wn/wn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As this matrix is consistent, the weight of i-th element is its relative normal-

ized amount, i.e.,
wi

n∑

i=1

wi

.

The priority of the alternative i to j for negative criterion, such as risk, is
equal to wj/wi. The pairwise comparison matrix is therefore
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1/w1 w2/w1 . . . wn/w1

w1/w2 w2/w2 . . . wn/w2

. . .
w1/wn w2/wn . . . wn/wn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The above matrix is consistent [104] and the weight of the i-th element (for

negative criteria) is
1/wi

n∑

i=1

1/wi

.
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Fig. 8.1 Structural hierarchy for asset allocation

8.2 Fuzzy Multiobjective Portfolio Selection Model

Assume that investors allocate their wealth among n assets. We introduce
some notation as follows:
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8.2.1 Notation

ri: the AHP-local weight of the i-th asset with respect to return,

bi: the AHP-local weight of the i-th asset with respect to risk,

li: the AHP-local weight of the i-th asset with respect to liquidity,

si: the AHP-local weight of the i-th asset with respect to suitability,

θ1: the AHP-weight of the return criterion,

θ2: the AHP-weight of the risk criterion,

θ3: the AHP-weight of the liquidity criterion,

θ4: the AHP-weight of the suitability criterion,

xi: the proportion of the total funds invested in the i-th asset,

yi: a binary variable indicating whether the i-th asset is contained in the
portfolio, where

yi =

⎧⎪⎪⎨⎪⎪⎩
1, if i-th asset is contained in the portfolio ,

0, otherwise ,

h: the number of assets held in the portfolio .

We consider the following objective functions and constraints in the mul-
tiobjective portfolio selection problem.

8.2.2 Objective Functions

AHP-Weighted Score with Respect to Return
The AHP-weighted score with respect to return of the portfolio is expressed
as

f1(x) =
n∑

i=1

rixi.

AHP-Weighted Score with Respect to Risk
The AHP-weighted score with respect to risk of the portfolio is expressed as

f2(x) =
n∑

i=1

bixi.

AHP-Weighted Score with Respect to Liquidity
The AHP-weighted score with respect to liquidity of the portfolio is expressed
as
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f3(x) =
n∑

i=1

lixi.

AHP-Weighted Score with Respect to Suitability
The AHP-weighted score with respect to suitability of the portfolio is ex-
pressed as

f4(x) =
n∑

i=1

sixi.

8.2.3 Constraints

Capital budget constraint on the assets is expressed as
n∑

i=1

xi = 1 .

Maximal fraction of the capital that can be invested in a single asset is ex-
pressed as

xi ≤ ui yi , i = 1, 2, . . . , n .

Minimal fraction of the capital that can be invested in a single asset is ex-
pressed as

xi ≥ liyi , i = 1, 2, . . . , n .

Number of assets held in a portfolio is expressed as

n∑

i=1

yi = h

No short selling of assets is expressed as

xi ≥ 0 , i = 1, 2, . . . , n .

8.2.4 The Decision Problem

The multiobjective mixed integer linear programming model of portfolio se-
lection using AHP-local weights of suitability and optimality is formulated
as
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P(8.1) max f1(x) =
n∑

i=1

rixi

max f2(x) =
n∑

i=1

bixi

max f3(x) =
n∑

i=1

lixi

max f4(x) =
n∑

i=1

sixi

subject to
n∑

i=1

xi = 1 , (8.1)

n∑

i=1

yi = h , (8.2)

xi ≤ ui yi , i = 1, 2, . . . , n , (8.3)

xi ≥ li yi , i = 1, 2, . . . , n , (8.4)

xi ≥ 0 , i = 1, 2, . . . , n , (8.5)

yi ∈ {0, 1} , i = 1, 2, . . . , n. (8.6)

8.3 Solution Methodology

To handle the multiobjective programming model P(8.1), we present an in-
teractive fuzzy programming approach [1]. The solution methodology of the
interactive fuzzy programming approach consists of the following steps:

Step 1: Construct the model P(8.1) using the AHP-local weights (per-
formance scores) of each asset within a cluster with respect to
the four key criteria-return, risk, liquidity and suitability.

Step 2: Solve the problem P(8.1) as a single-objective problem in respect
each criterion. Mathematically, we solve the following problems:

(i) max f1(x) subject to constraints (8.1)-(8.6).

(ii) max f2(x) subject to constraints (8.1)-(8.6).

(iii) max f3(x) subject to constraints (8.1)-(8.6).

(iv) max f4(x) subject to constraints (8.1)-(8.6).

Let x1, x2, x3 and x4 denote the optimal solutions obtained by
solving the above defined single-objective problems. If all the
solutions, i.e., x1 = x2 = x3 = x4 = (x1, x2, . . . , xn) are same,
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we obtain an efficient (preferred compromise) solution and stop;
otherwise, go to Step 3.

Step 3: Evaluate all the objective functions at the obtained solutions.
Determine the worst lower bound ( f L

1 ) and best upper bound

( f R
1 ) for return criterion; the worst lower bound ( f L

2 ) and best

upper bound ( f R
2 ) for risk criterion; the worst lower bound ( f L

3 )

and best upper bound ( f R
3 ) for liquidity criterion; and, the worst

lower bound ( f L
4 ) and best upper bound ( f R

4 ) for suitability cri-
terion. We obtain these bounds as

f R
1 = max{ f1(x1), f1(x2), f1(x3), f1(x4)},
f L
1 = min{ f1(x1), f1(x2), f1(x3), f1(x4)},

f R
2 = max{ f2(x1), f2(x2), f2(x3), f2(x4)},
f L
2 = min{ f2(x1), f2(x2), f2(x3), f2(x4)},

f R
3 = max{ f3(x1), f3(x2), f3(x3), f3(x4)},
f L
3 = min{ f3(x1), f3(x2), f3(x3), f3(x4)},

f R
4 = max{ f4(x1), f4(x2), f4(x3), f4(x4)},
f L
4 = min{ f4(x1), f4(x2), f4(x3), f4(x4)}.

Step 4: Define the linear membership functions for return, risk, liquidity
and suitability criteria as follows:

μ f1 (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if f1(x) ≥ f R
1 ,

f1(x)− f L
1

f R
1 − f L

1
, if f L

1 ≤ f1(x) ≤ f R
1 ,

0, if f1(x) ≤ f L
1 ,

where μ f1 (x) denotes the satisfaction degree of return criterion
for a given solution x.

μ f2 (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if f2(x) ≥ f R
2 ,

f2(x)− f L
2

f R
2 − f L

2
, if f L

2 ≤ f2(x) ≤ f R
2 ,

0, if f2(x) ≤ f L
2 ,

where μ f2(x) denotes the satisfaction degree of risk criterion for
a given solution x.

μ f3 (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if f3(x) ≥ f R
3 ,

f3(x)− f L
3

f R
3 − f L

3
, if f L

3 ≤ f3(x) ≤ f R
3 ,

0, if f3(x) ≤ f L
3 ,
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where μ f3 (x) denotes the satisfaction degree of liquidity criterion
for a given solution x.

μ f4 (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if f4(x) ≥ f R
4 ,

f4(x)− f L
4

f R
4 − f L

4
, if f L

4 ≤ f4(x) ≤ f R
4 ,

0, if f4(x) ≤ f L
4 ,

where μ f4 (x) denotes the satisfaction degree of suitability crite-
rion for a given solution x.

Step 5: Convert multiobjective problem P(8.1) into a single-objective
problem P(8.2) using ‘weighted additive approach’ based on the
AHP-weights in respect of each criterion as follows:

P(8.2) max θ1α1 + θ2α2 + θ3α3 + θ4α4

subject to

α1 ≤ μ f1 (x) ,
α2 ≤ μ f2 (x) ,
α3 ≤ μ f3 (x) ,
α4 ≤ μ f4 (x) ,
0 ≤ α1 ≤ 1 ,
0 ≤ α2 ≤ 1 ,
0 ≤ α3 ≤ 1 ,
0 ≤ α4 ≤ 1 ,
and Constraints (8.1) − (8.6) ,

where α1, α2, α3, α4 are the lower bounds on the satisfaction levels
corresponding to return, risk, liquidity and suitability criteria,
respectively.

Step 6: Solve the single-objective problem P(8.2) using the AHP-weights
of the key criteria of asset allocation that reflect relative impor-
tance of each criterion in portfolio selection. Present the solu-
tion to the investor. If the investor is satisfied with the obtained
preferred compromise solution, then stop and select the current
solution as the final decision; otherwise, evaluate the objective
function(s) at the obtained solution in which the investor wishes
improvement. Compare the lower bound of objective function(s)
with the obtained new value(s). If the new value is higher than
the current lower bound, consider it as a new lower bound. If
there are no changes in current lower bound(s) of the desired
objective function(s) then stop; otherwise, go to Step 4.



8.4 Numerical Illustration 231

The solution process terminates when the investor accepts the obtained
solution and consider it as the preferred compromise solution which is in fact
a compromise feasible solution that meets the investor preferences.

8.4 Numerical Illustration

To demonstrate the applicability of the portfolio selection approach, we
present an empirical study done using a data set of daily closing prices in
respect of 150 assets listed on NSE, Mumbai, India. As demonstrated in
the previous chapter these assets have been categorized into three clusters,
namely, cluster 1: liquid assets (56 assets), cluster 2: high-yield assets (51
assets) and cluster 3: less risky assets (43 assets).

8.4.1 Calculation of AHP Weighted Scores

Here, we refer to Fig. 8.1 for complete hierarchy. Note that for the empirical
testing of the AHP model, we have randomly chosen 20 assets from each clus-
ter to ensure consistency in the application of the methodology. For the data
in respect of pair-wise comparisons involving qualitative measures (criteria
and subcriteria), we use inputs from investors that are based on the Saaty’s
verbal scale [104]. For the data in respect of pair-wise comparisons involving
quantitative measures, the real quantitative data listed in Table 8.1 is used
for the three clusters.

The pair-wise comparison process used in this study moves from the top of
the hierarchy down. In Fig. 8.1, the four key criteria are first compared with
respect to the overall goal. The three subcriteria beneath the return crite-
rion are then pair-wise compared. Similarly, the subcriteria beneath the risk
criterion and the suitability criterion are pair-wise compared. The various
subcriteria beneath each of the suitability subcriteria are also pair-wise com-
pared. Finally, pair-wise comparisons of asset 1 through asset 20 are made
with respect to various subcriteria and liquidity criterion. The local weights
(performance scores) assigned to an asset with respect to the four key crite-
ria are found by tracing the paths that lead from the respective key criterion
down to the asset, multiplying the weights of the branches in the path to
determine the weight of the path, and adding these path weights together.
The weights (relative importance) of the four key criteria with respect to the
overall goal are obtained from pair-wise comparisons with respect to the goal.
For the sake of brevity, we have not included all the pair-wise comparison
details for calculating the AHP-weights of the criteria, subcriteria, and alter-
natives. However, weights used in calculation of the performance scores of the
assets for all the three clusters are provided in the Tables 8.2-8.4. Table 8.5
presents the local weights of the 20 assets for cluster 1, cluster 2 and cluster
3 and also the criteria weights.
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Table 8.2 Weight calculations of 20 assets for cluster 1 using AHP

Asset weights

Criteria Subcriteria Weight A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Return
SR 0.55714 0.01436 0.00158 0.08248 0.09766 0.10247 0.03299 0.03867 0.01851 0.09124 0.03811
LR 0.32024 0.04820 0.02898 0.06473 0.06574 0.12128 0.04513 0.05017 0.02965 0.08753 0.07428
FR 0.12262 0.05829 0.06996 0.08353 0.03398 0.02655 0.03123 0.03573 0.06009 0.02416 0.08318

Risk
SD 0.52468 0.04838 0.05489 0.04939 0.04786 0.03220 0.05001 0.04625 0.05359 0.04005 0.04455
RT 0.33377 0.04720 0.07037 0.08209 0.04933 0.02198 0.03264 0.03702 0.06959 0.02186 0.07084
MR 0.14156 0.03819 0.08147 0.06234 0.05866 0.01718 0.06185 0.02470 0.08360 0.01509 0.02436

Liquidity - - 0.05953 0.00262 0.03500 0.04654 0.13428 0.05550 0.09128 0.03996 0.11199 0.06176
Suitability

IS
0.63335 IN 0.22230 0.09075 0.08079 0.08220 0.03047 0.01716 0.03057 0.03490 0.05910 0.02240 0.08297

SO 0.07692 0.08566 0.08056 0.04084 0.04409 0.02005 0.02774 0.02942 0.03113 0.02192 0.08566
SA 0.55357 0.03980 0.08187 0.06551 0.04343 0.01219 0.04233 0.02075 0.06926 0.01450 0.02135
SR 0.14721 0.04534 0.02540 0.06181 0.06535 0.14857 0.02406 0.04403 0.02362 0.11641 0.08662

IO
0.26050 AG 0.23595 0.03921 0.09272 0.04156 0.03862 0.01590 0.04232 0.03920 0.02319 0.01594 0.03877

DE 0.54536 0.08604 0.14502 0.13788 0.03502 0.02003 0.02903 0.03172 0.03275 0.02283 0.04365
TH 0.10153 0.04611 0.01974 0.02029 0.02482 0.11504 0.04329 0.09031 0.02299 0.11884 0.04748
R/L 0.11716 0.03947 0.07557 0.04008 0.03868 0.01109 0.03966 0.02063 0.06711 0.01587 0.01751

IE
0.10616 LE 0.62322 0.04987 0.02586 0.02616 0.04472 0.01476 0.04987 0.04943 0.04463 0.02777 0.04914

EH 0.23949 0.04599 0.02664 0.08116 0.08490 0.15088 0.02464 0.04440 0.02622 0.12132 0.08156
ED 0.13729 0.05985 0.03081 0.03081 0.10865 0.02143 0.05235 0.10425 0.05912 0.10785 0.05632

Asset weights

Criteria Subcriteria Weight A11 A12 A13 A14 A15 A16 A17 A18 A19 A20

Return
SR 0.55714 0.00881 0.08565 0.07191 0.03070 0.02839 0.07693 0.07430 0.02022 0.01773 0.06729
LR 0.32024 0.04028 0.02497 0.04321 0.04977 0.03900 0.04958 0.02660 0.04315 0.01832 0.04944
FR 0.12262 0.04608 0.03958 0.03185 0.04473 0.02864 0.08749 0.04748 0.08749 0.04848 0.03148

Risk
SD 0.52468 0.04814 0.06526 0.04748 0.05631 0.06633 0.05383 0.06585 0.03115 0.04383 0.05464
RT 0.33377 0.04531 0.04225 0.03371 0.05137 0.04200 0.08931 0.04580 0.08081 0.04308 0.02343
MR 0.14156 0.03976 0.09351 0.03960 0.08707 0.08145 0.07637 0.04889 0.03416 0.01260 0.01914

Liquidity - - 0.01800 0.01597 0.05556 0.05181 0.00740 0.01085 0.01635 0.09637 0.00812 0.08110
Suitability

IS
0.63335 IN 0.22230 0.04575 0.03081 0.02834 0.04268 0.02857 0.08696 0.04694 0.08696 0.04811 0.02357

SO 0.07692 0.04203 0.02667 0.03048 0.04969 0.03700 0.08162 0.04598 0.14440 0.04335 0.03170
SA 0.55357 0.03891 0.10000 0.04134 0.06415 0.09697 0.05957 0.09686 0.01254 0.01610 0.06258
SR 0.14721 0.05023 0.01561 0.02624 0.05126 0.03846 0.04515 0.02447 0.04309 0.01519 0.04909

IO
0.26050 AG 0.23595 0.04254 0.10470 0.04058 0.07270 0.09907 0.07645 0.09164 0.01049 0.01477 0.05962

DE 0.54536 0.04388 0.02807 0.02974 0.04733 0.03080 0.04683 0.04254 0.08381 0.04134 0.02168
TH 0.10153 0.01336 0.01387 0.04434 0.04561 0.01236 0.10277 0.09036 0.03409 0.04367 0.05065
R/L 0.11716 0.03872 0.11279 0.03606 0.05967 0.09989 0.07234 0.11329 0.01125 0.01762 0.07269

IE
0.10616 LE 0.62322 0.10095 0.05108 0.05289 0.14258 0.05290 0.09624 0.05119 0.02590 0.02588 0.01819

EH 0.23949 0.04560 0.01484 0.02691 0.04429 0.02455 0.04188 0.01694 0.04180 0.01597 0.03951
ED 0.13729 0.03120 0.05488 0.06038 0.02213 0.05106 0.02447 0.03430 0.03919 0.02128 0.02966
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Table 8.3 Weight calculations of 20 assets for cluster 2 using AHP

Asset weights

Criteria Subcriteria Weight A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Return
SR 0.32024 0.04480 0.04154 0.05221 0.02445 0.09027 0.07305 0.03678 0.04469 0.02194 0.04979
LR 0.55714 0.03597 0.03986 0.04051 0.03698 0.07479 0.05752 0.05197 0.05126 0.03196 0.03355
FR 0.12262 0.02709 0.03781 0.06781 0.03664 0.07678 0.05489 0.06178 0.06462 0.03103 0.04149

Risk
SD 0.54375 0.06580 0.05999 0.05422 0.04718 0.03786 0.03978 0.04076 0.04231 0.05407 0.06767
RT 0.34595 0.01729 0.02517 0.04316 0.05567 0.07547 0.06169 0.06357 0.06328 0.03775 0.02210
MR 0.11030 0.01768 0.03606 0.05191 0.05883 0.07454 0.06934 0.06703 0.05471 0.03457 0.02053

Liquidity - - 0.00920 0.03657 0.03593 0.03890 0.10227 0.06992 0.18340 0.12050 0.05225 0.01742
Suitability

IS
0.63335 IN 0.27763 0.01863 0.00825 0.06460 0.03279 0.05938 0.07297 0.06123 0.04195 0.05818 0.00891

SO 0.06346 0.01858 0.00914 0.08790 0.06855 0.07138 0.08549 0.08092 0.04289 0.04453 0.00822
SA 0.55526 0.01930 0.00824 0.06191 0.05470 0.05895 0.06069 0.05836 0.04472 0.07558 0.00887
SR 0.10365 0.01855 0.04598 0.04630 0.02163 0.09002 0.08075 0.05645 0.01062 0.01056 0.05791

IO
0.26050 AG 0.24956 0.01751 0.04188 0.09339 0.04359 0.08589 0.08311 0.06524 0.08284 0.03795 0.00910

DE 0.54777 0.01742 0.00872 0.07173 0.05017 0.06975 0.08347 0.06262 0.05346 0.06684 0.00835
TH 0.12761 0.07678 0.04061 0.03972 0.02744 0.08107 0.01969 0.01411 0.01703 0.03613 0.03789
R/L 0.07506 0.07210 0.06964 0.03573 0.02326 0.01836 0.02518 0.02865 0.02603 0.03463 0.17002

IE
0.10616 LE 0.55714 0.01835 0.03546 0.03842 0.01980 0.08177 0.07404 0.06340 0.01161 0.01637 0.04163

EH 0.12262 0.01845 0.03905 0.03869 0.02084 0.08465 0.07614 0.06229 0.05731 0.01033 0.01181
ED 0.32024 0.09969 0.04921 0.05030 0.03764 0.02452 0.02497 0.02937 0.02704 0.04343 0.17371

Asset weights

Criteria Subcriteria Weight A11 A12 A13 A14 A15 A16 A17 A18 A19 A20

Return
SR 0.32024 0.06203 0.03906 0.03110 0.08259 0.02192 0.01575 0.07089 0.04861 0.04649 0.10205
LR 0.55714 0.05577 0.05490 0.05032 0.06480 0.04436 0.03936 0.05617 0.05529 0.06847 0.05619
FR 0.12262 0.05938 0.04625 0.03862 0.07142 0.02949 0.02945 0.05687 0.06895 0.06395 0.03567

Risk
SD 0.54375 0.05133 0.04904 0.04872 0.03789 0.04194 0.05465 0.05657 0.05059 0.04515 0.05449
RT 0.34595 0.03786 0.04837 0.04438 0.06359 0.05134 0.05882 0.05892 0.06758 0.06566 0.03833
MR 0.11030 0.03605 0.05154 0.05274 0.05611 0.05093 0.05437 0.04884 0.06967 0.06292 0.03164

Liquidity - - 0.00818 0.03021 0.04454 0.03035 0.04510 0.10917 0.02013 0.02453 0.01225 0.00919
Suitability

IS
0.63335 IN 0.27763 0.05261 0.04307 0.03897 0.05759 0.06802 0.08862 0.06213 0.08267 0.03520 0.04423

SO 0.06346 0.06388 0.05584 0.03875 0.03531 0.04083 0.05352 0.05462 0.06550 0.03272 0.04143
SA 0.55526 0.07282 0.05488 0.03795 0.05027 0.06671 0.04741 0.06688 0.05758 0.04027 0.05392
SR 0.10365 0.05425 0.03758 0.07251 0.06821 0.04052 0.05280 0.05557 0.05751 0.06141 0.06088

IO
0.26050 AG 0.24956 0.05169 0.05081 0.06249 0.05773 0.03202 0.03420 0.01256 0.04316 0.06261 0.03224

DE 0.54777 0.06519 0.04560 0.03647 0.04548 0.06943 0.06014 0.04344 0.07114 0.03201 0.03858
TH 0.12761 0.14825 0.03797 0.03807 0.03586 0.04244 0.07790 0.03727 0.03965 0.07341 0.07869
R/L 0.07506 0.03696 0.03981 0.03733 0.02396 0.02945 0.03834 0.07007 0.07027 0.07040 0.07980

IE
0.10616 LE 0.55714 0.04435 0.04168 0.06870 0.07019 0.03553 0.06041 0.05682 0.06141 0.07531 0.08472

EH 0.12262 0.07560 0.07705 0.06184 0.07117 0.03905 0.03245 0.06523 0.04623 0.06392 0.04790
ED 0.32024 0.05479 0.05204 0.03353 0.02634 0.03555 0.05147 0.05038 0.05454 0.03102 0.05045
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Table 8.4 Weight calculations of 20 assets for cluster 3 using AHP

Asset weights

Criteria Subcriteria Weight A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Return
SR 0.45767 0.03511 0.00968 0.04855 0.03383 0.07942 0.09269 0.05159 0.05596 0.04478 0.04369
LR 0.41601 0.04393 0.05375 0.04808 0.04650 0.05611 0.08691 0.03392 0.03781 0.03316 0.03986
FR 0.12632 0.03017 0.06344 0.03931 0.03772 0.06506 0.10173 0.01845 0.02292 0.02505 0.03353

Risk
SD 0.58889 0.05092 0.03866 0.04710 0.04791 0.05275 0.02702 0.05452 0.05267 0.05798 0.06133
RT 0.25185 0.04269 0.02388 0.04247 0.04080 0.05156 0.01441 0.08888 0.04233 0.09604 0.09935
MR 0.15926 0.04178 0.01702 0.09032 0.04657 0.04048 0.02055 0.07835 0.06626 0.06863 0.10661

Liquidity - - 0.01294 0.07401 0.02956 0.03694 0.02411 0.18142 0.00867 0.03244 0.00656 0.01359
Suitability

IS
0.63335 IN 0.22596 0.02969 0.09665 0.09665 0.05531 0.00837 0.09158 0.01544 0.05531 0.09075 0.02969

SO 0.10462 0.03008 0.05851 0.05851 0.05896 0.00977 0.10572 0.01095 0.06740 0.10581 0.03008
SA 0.50693 0.02785 0.08182 0.08033 0.05279 0.00857 0.09656 0.00925 0.05378 0.09678 0.02835
SR 0.16250 0.02733 0.08436 0.10046 0.05201 0.00926 0.08267 0.00896 0.05201 0.09323 0.02733

IO
0.26050 AG 0.23734 0.04819 0.01811 0.02810 0.04637 0.04595 0.00975 0.04494 0.04753 0.09683 0.10348

DE 0.54536 0.04656 0.01226 0.01652 0.02501 0.04396 0.00874 0.04671 0.04436 0.08611 0.14811
TH 0.10784 0.02284 0.04280 0.04161 0.04333 0.07148 0.11671 0.01181 0.01169 0.01225 0.01224
R/L 0.10946 0.03996 0.01853 0.02086 0.02108 0.04066 0.00859 0.07204 0.03856 0.07521 0.12467

IE
0.10616 LE 0.54848 0.02315 0.08239 0.04372 0.04372 0.02874 0.13703 0.01231 0.04511 0.01223 0.02385

EH 0.21061 0.02625 0.04979 0.09076 0.10464 0.10644 0.08425 0.01253 0.01354 0.01304 0.01319
ED 0.24091 0.03630 0.01945 0.06864 0.10560 0.01215 0.02052 0.01924 0.06290 0.01888 0.08862

Asset weights

Criteria Subcriteria Weight A11 A12 A13 A14 A15 A16 A17 A18 A19 A20

Return
SR 0.45767 0.05485 0.03932 0.03506 0.03974 0.04311 0.03111 0.08578 0.03762 0.09286 0.04525
LR 0.41601 0.06303 0.05150 0.03903 0.04825 0.04005 0.04936 0.07474 0.05174 0.05234 0.04991
FR 0.12632 0.07766 0.05173 0.03047 0.06388 0.03048 0.05023 0.08119 0.06415 0.07185 0.04099

Risk
SD 0.58889 0.03737 0.04528 0.06066 0.05447 0.05272 0.05963 0.04351 0.04333 0.05345 0.05869
RT 0.25185 0.01924 0.02403 0.08609 0.04108 0.03928 0.08683 0.02500 0.02472 0.04780 0.06351
MR 0.15926 0.01953 0.02644 0.07075 0.04218 0.04403 0.07441 0.02301 0.04139 0.04024 0.04146

Liquidity - - 0.08053 0.03922 0.01940 0.06063 0.01260 0.02431 0.06946 0.03200 0.09877 0.14283
Suitability

IS
0.63335 IN 0.22596 0.05531 0.09158 0.01306 0.02969 0.01069 0.01502 0.09158 0.05531 0.01302 0.05531

SO 0.10462 0.10497 0.05953 0.01513 0.02981 0.00786 0.01565 0.09627 0.06036 0.01425 0.06036
SA 0.50693 0.09579 0.07688 0.01101 0.02782 0.00884 0.01463 0.10417 0.05895 0.00876 0.05708
SR 0.16250 0.08267 0.09278 0.00892 0.02733 0.00960 0.01424 0.09156 0.07454 0.00872 0.05201

IO
0.26050 AG 0.23734 0.01564 0.02486 0.08290 0.04547 0.04865 0.02836 0.02536 0.04725 0.09254 0.09973

DE 0.54536 0.01255 0.01749 0.08526 0.08355 0.04521 0.01776 0.01778 0.04497 0.08355 0.11354
TH 0.10784 0.09509 0.04819 0.02343 0.02308 0.04176 0.07304 0.08806 0.07483 0.07052 0.07524
R/L 0.10946 0.01247 0.02065 0.07591 0.07591 0.04038 0.07521 0.02065 0.02272 0.07788 0.11807

IE
0.10616 LE 0.54848 0.01213 0.04453 0.04449 0.07867 0.02385 0.04511 0.07797 0.04511 0.08025 0.09566

EH 0.21061 0.02747 0.04990 0.08095 0.02595 0.02773 0.04956 0.09481 0.02692 0.05179 0.05049
ED 0.24091 0.09013 0.05461 0.09669 0.06392 0.09142 0.06388 0.01672 0.01783 0.03281 0.01968
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8.4.2 Asset Allocation

The 20 financial assets of each cluster comprise the population from which we
attempt to construct a portfolio containing 8 assets with the corresponding
upper and lower bounds of capital budget allocation. We present computa-
tional results corresponding to three types of investor behaviour.

• Cluster 1 for liquidity seekers

Step 1: To find the optimal asset allocation, we first formulate the model
P(8.1) using the the local weights (performance scores) of the assets with
respect to the four key asset allocation criteria listed in Table 8.5, h = 8,
li = 0.01, and ui = 0.6, i = 1, 2, . . . , 20.

max f1(x) = 0.03058x1 + 0.01874x2 + 0.07692x3 + 0.07963x4 + 0.09918x5

+0.03666x6 + 0.04199x7 + 0.02717x8 + 0.08183x9 + 0.05522x10 + 0.02346x11

+0.06057x12 + 0.05781x13 + 0.03853x14 + 0.03182x15 + 0.06946x16

+0.05573x17 + 0.03581x18 + 0.02169x19 + 0.05718x20

max f2(x) = 0.04655x1 + 0.06382x2 + 0.06214x3 + 0.04988x4 + 0.02667x5

+0.04589x6 + 0.04012x7 + 0.06318x8 + 0.03045x9 + 0.05047x10 + 0.04601x11

+0.06158x12 + 0.04177x13 + 0.05902x14 + 0.06035x15 + 0.06886x16

+0.05675x17 + 0.04815x18 + 0.03916x19 + 0.03920x20

max f3(x) = 0.05953x1 + 0.00262x2 + 0.035x3 + 0.04654x4 + 0.13428x5

+0.0555x6 + 0.09128x7 + 0.03996x8 + 0.11199x9 + 0.06176x10 + 0.018x11

+0.01597x12 + 0.05556x13 + 0.05181x14 + 0.0074x15 + 0.01085x16

+0.01635x17 + 0.09637x18 + 0.00812x19 + 0.08110x20

max f4(x) = 0.05753x1 + 0.07834x2 + 0.07044x3 + 0.04364x4 + 0.03385x5

+0.03651x6 + 0.03358x7 + 0.04954x8 + 0.0345x9 + 0.04793x10 + 0.04549x11

+0.06094x12 + 0.03647x13 + 0.06080x14 + 0.06212x15 + 0.06538x16

+0.06693x17 + 0.04484x18 + 0.02685x19 + 0.04432x20

subject to

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15

+x16 + x17 + x18 + x19 + x20 = 1 , (8.7)

y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 + y11 + y12 + y13 + y14 + y15

+y16 + y17 + y18 + y19 + y20 = 8 , (8.8)

xi − 0.01yi ≥ 0 , i = 1, 2, . . . , 20 , (8.9)

xi − 0.6yi ≤ 0 , i = 1, 2, . . . , 20 , (8.10)

yi ∈ {0, 1} , i = 1, 2, . . . , 20 , (8.11)

xi ≥ 0 , i = 1, 2, . . . , 20 . (8.12)
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The above model is solved using the fuzzy interactive approach developed
in Section 8.3. The models are coded and solved using LINGO 12.0.

Step 2: We determine the worst lower bound and best upper bound for
return, risk, liquidity and suitability criteria, respectively, by solving the fol-
lowing single-objective problems.

For Return Criterion

max f1(x) = 0.03058x1 + 0.01874x2 + 0.07692x3 + 0.07963x4 + 0.09918x5

+0.03666x6 + 0.04199x7 + 0.02717x8 + 0.08183x9 + 0.05522x10 + 0.02346x11

+0.06057x12 + 0.05781x13 + 0.03853x14 + 0.03182x15 + 0.06946x16

+0.05573x17 + 0.03581x18 + 0.02169x19 + 0.05718x20

subject to

Constraints (8.7)-(8.12) .

The obtained solution is denoted as x1 = (x1, x2, . . . , x20) and is provided in
Table 8.6.

For Risk Criterion

max f2(x) = 0.04655x1 + 0.06382x2 + 0.06214x3 + 0.04988x4 + 0.02667x5

+0.04589x6 + 0.04012x7 + 0.06318x8 + 0.03045x9 + 0.05047x10 + 0.04601x11

+0.06158x12 + 0.04177x13 + 0.05902x14 + 0.06035x15 + 0.06886x16

+0.05675x17 + 0.04815x18 + 0.03916x19 + 0.03920x20

subject to

Constraints (8.7)-(8.12) .

The obtained solution is denoted as x2 = (x1, x2, . . . , x20) and is provided in
Table 8.6.

For Liquidity Criterion

max f3(x) = 0.05953x1 + 0.00262x2 + 0.035x3 + 0.04654x4 + 0.13428x5

+0.0555x6 + 0.09128x7 + 0.03996x8 + 0.11199x9 + 0.06176x10 + 0.018x11

+0.01597x12 + 0.05556x13 + 0.05181x14 + 0.0074x15 + 0.01085x16

+0.01635x17 + 0.09637x18 + 0.00812x19 + 0.08110x20

subject to

Constraints (8.7)-(8.12) .

The obtained solution is denoted as x3 = (x1, x2, . . . , x20) and is provided in
Table 8.6.
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For Suitability Criterion

max f4(x) = 0.05753x1 + 0.07834x2 + 0.07044x3 + 0.04364x4 + 0.03385x5

+0.03651x6 + 0.03358x7 + 0.04954x8 + 0.0345x9 + 0.04793x10 + 0.04549x11

+0.06094x12 + 0.03647x13 + 0.06080x14 + 0.06212x15 + 0.06538x16

+0.06693x17 + 0.04484x18 + 0.02685x19 + 0.04432x20

subject to

Constraints (8.7)-(8.12) .

The obtained solution is denoted as x4 = (x1, x2, . . . , x20) and is provided in
Table 8.6.

Table 8.6 The proportions of the assets in the obtained portfolios corresponding
to single-objective problems for liquidity seekers

Allocation

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

x1 0.0 0.0 0.02 0.253 0.35 0.0 0.0 0.0 0.3 0.0
x2 0.0 0.263 0.020 0.0 0.0 0.0 0.0 0.028 0.0 0.026
x3 0.0 0.0 0.0 0.0 0.35 0.0 0.02 0.0 0.3 0.026
x4 0.0 0.4 0.35 0.0 0.0 0.0 0.0 0.028 0.0 0.0

A11 A12 A13 A14 A15 A16 A17 A18 A19 A20

0.0 0.0 0.023 0.0 0.0 0.016 0.023 0.0 0.0 0.015
0.0 0.03 0.0 0.0 0.0 0.6 0.023 0.0 0.01 0.0
0.0 0.0 0.023 0.0 0.0 0.0 0.0 0.256 0.01 0.015
0.0 0.03 0.0 0.0 0.0 0.016 0.151 0.0 0.01 0.015

Step 3: All the objective functions are evaluated at the obtained solutions,
i.e., x1, x2, x3 and x4. The objective function values are provided in Table 8.7.

Table 8.7 Objective function values corresponding to return, risk, liquidity and
suitability criteria for liquidity seekers

x1 x2 x3 x4

Return( f1(x)) 0.08553a 0.05366 0.07311 0.04760b

Risk( f2(x)) 0.03629 0.06597a 0.03485b 0.06154
Liquidity( f3(x)) 0.09612 0.01156b 0.11127a 0.01883
Suitability( f4(x)) 0.03874 0.06751 0.03736b 0.07129a

aUpper bound
bLower bound
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Now, we define the worst lower bound and best upper bound of each criterion
as follows:

f L
1 (= 0.04760) ≤ f1(x) ≤ f R

1 (= 0.08553) ,

f L
2 (= 0.03485) ≤ f2(x) ≤ f R

2 (= 0.06597) ,

f L
3 (= 0.01156) ≤ f3(x) ≤ f R

3 (= 0.11127) ,

f L
4 (= 0.03736) ≤ f4(x) ≤ f R

4 (= 0.06751) .

Step 4: The linear membership function of the goal of return is

μ f1 (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if f1(x) ≥ 0.08553 ,
f1(x) − 0.04760

0.03793
, if 0.04760 ≤ f1(x) ≤ 0.08553 ,

0, if f1(x) ≤ 0.04760 .

The linear membership function of the goal of risk is

μ f2 (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if f2(x) ≥ 0.06597 ,
f2(x) − 0.03485

0.03112
, if 0.03485 ≤ f2(x) ≤ 0.06597 ,

0, if f2(x) ≤ 0.03485 .

The linear membership function of the goal of liquidity is

μ f3 (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if f3(x) ≥ 0.11127 ,
f3(x) − 0.01156

0.09971
, if 0.01156 ≤ f3(x) ≤ 0.11127 ,

0, if f3(x) ≤ 0.01156 .

The linear membership function of the goal of suitability is

μ f4 (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if f4(x) ≥ 0.06751 ,
f4(x) − 0.03736

0.03015
, if 0.03736 ≤ f4(x) ≤ 0.06751 ,

0, if f4(x) ≤ 0.03736 .

Steps 5 & 6: Using the weights of the four key criteria calculated using
AHP from Table 8.5, under the heading ‘Criteria weight’, we convert the
above multiobjective problem into a single-objective problem as
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max 0.19281α1 + 0.13521α2 + 0.57190α3 + 0.10008α4

subject to

0.03058x1 + 0.01874x2 + 0.07692x3 + 0.07963x4 + 0.09918x5

+0.03666x6 + 0.04199x7 + 0.02717x8 + 0.08183x9 + 0.05522x10 + 0.02346x11

+0.06057x12 + 0.05781x13 + 0.03853x14 + 0.03182x15 + 0.06946x16

+0.05573x17 + 0.03581x18 + 0.02169x19 + 0.05718x20 − 0.03793α1 ≥ 0.04760 ,

0.04655x1 + 0.06382x2 + 0.06214x3 + 0.04988x4 + 0.02667x5

+0.04589x6 + 0.04012x7 + 0.06318x8 + 0.03045x9 + 0.05047x10 + 0.04601x11

+0.06158x12 + 0.04177x13 + 0.05902x14 + 0.06035x15 + 0.06886x16

+0.05675x17 + 0.04815x18 + 0.03916x19 + 0.03920x20 − 0.03112α2 ≥ 0.03485 ,

0.05953x1 + 0.00262x2 + 0.035x3 + 0.04654x4 + 0.13428x5

+0.0555x6 + 0.09128x7 + 0.03996x8 + 0.11199x9 + 0.06176x10 + 0.018x11

+0.01597x12 + 0.05556x13 + 0.05181x14 + 0.0074x15 + 0.01085x16

+0.01635x17 + 0.09637x18 + 0.00812x19 + 0.08110x20 − 0.09971α3 ≥ 0.01156 ,

0.05753x1 + 0.07834x2 + 0.07044x3 + 0.04364x4 + 0.03385x5

+0.03651x6 + 0.03358x7 + 0.04954x8 + 0.0345x9 + 0.04793x10 + 0.04549x11

+0.06094x12 + 0.03647x13 + 0.06080x14 + 0.06212x15 + 0.06538x16

+0.06693x17 + 0.04484x18 + 0.02685x19 + 0.04432x20 − 0.03015α4 ≥ 0.03736 ,

0 ≤ α1 ≤ 1 ,

0 ≤ α2 ≤ 1 ,

0 ≤ α3 ≤ 1 ,

0 ≤ α4 ≤ 1 ,

and Constraints (8.7)-(8.12) .

The corresponding computational results are summarized in Table 8.8.
Table 8.9 present proportions of the assets in the obtained portfolios. The
achievement levels of the various objectives are consistent with the investor
preferences.

Table 8.8 Results of the model P(8.2) for liquidity seekers

Objective function value Membership function value

Return( f1(x)) 0.06655 0.49961
Risk( f2(x)) 0.04508 0.32862
Liquidity( f3(x)) 0.08539 0.74044
Suitability( f4(x)) 0.04773 0.30566
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Table 8.9 The proportions of the assets in the obtained portfolio for liquidity
seekers

Allocation

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Portfolio 0 0 0.264 0.025 0.10 0 0.02 0 0.25 0.026

A11 A12 A13 A14 A15 A16 A17 A18 A19 A20

0 0 0 0 0 0 0 0.30 0 0.015

Table 8.10 Attainment values of the quantitative criteria for liquidity seekers

Criteria Value

Short term return (SR) 0.13794
Long term return (LR) 0.16136
Risk (RI) 0.56233
Liquidity (LI) 0.00876

The values of the quantitative measures of asset performance correspond-
ing to the obtained solution are given in Table 8.10.

Note that it is possible to further improve portfolio performance on indi-
vidual objective(s) as per investor preferences. However, it must be under-
stood that because of the multiobjective nature of the problem there may
be a compensatory variation on the other performance measures. After get-
ting solution, suppose the investor is not satisfied with the first objective,
i.e., f1 (return criterion). We compare the present lower bound of the re-
turn objective with the obtained new value achieved for f1. Since the new
value for f1 listed in Table 8.8 is higher than the present lower bound, i.e.,
f1(x)(= 0.06655) > f L

1 (= 0.04760), the lower bound is revised. Revise the linear
membership function for return criterion as

μ f1 (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if f1(x) ≥ 0.08553 ,
f1(x) − 0.06655

0.01898
, if 0.06655 ≤ f1(x) ≤ 0.08553 ,

0, if f1(x) ≤ 0.06655 .

Now, the above mentioned single-objective problem is resolved with the
new membership function in respect of return and keeping the other param-
eters as is. The procedure is continued until the investor is satisfied with the
obtained portfolio. The solutions of all the iterations performed are given in
Table 8.11. Table 8.11 also shows the revised lower bounds of the various
objective functions at each iteration. Table 8.12 present attainment values of
the quantitative measures of asset performance and the proportions of the
assets in the obtained portfolios.
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• Cluster 2 for return seekers
The data set for the values of the best upper bound and the worst lower
bound are given in the pay-off table (Table 8.13).

Table 8.13 Objective function values corresponding to return, risk, liquidity and
suitability criteria for return seekers

x1 x2 x3 x4

Return( f1(x)) 0.07270a 0.05655 0.04704b 0.06661
Risk( f2(x)) 0.05104b 0.05713a 0.05207 0.05158
Liquidity( f3(x)) 0.05759 0.02928b 0.13116a 0.07202
Suitability( f4(x)) 0.05747 0.05934 0.05123b 0.06554a

aUpper bound
bLower bound

The model P(8.2) is formulated using the weights of the key asset allo-
cation criteria listed in Table 8.5. We obtain portfolio selection by solving
model P(8.2) as discussed above. The corresponding computational results
are summarized in Table 8.14. Table 8.15 present proportions of the assets in
the obtained portfolios. The achievement levels of the various objectives are
consistent with the investor preferences.

Table 8.14 Results of the model P(8.2) for return seekers

Objective function value Membership function value

Return( f1(x)) 0.06313 0.62692
Risk( f2(x)) 0.05479 0.61616
Liquidity( f3(x)) 0.04993 0.20272
Suitability( f4(x)) 0.05925 0.56042

The values of the quantitative measures of asset performance correspond-
ing to the obtained solution are given in Table 8.16.

The results of the various iterations performed in order to further improve
portfolio performance on individual objective(s) as per investor preferences
are given in Table 8.17 which also shows the revised lower bounds of the
various objective functions at each iteration. Table 8.18 present attainment
values of the quantitative measures of asset performance and the propor-
tions of the assets in the obtained portfolios corresponding to the iterations
performed.
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Table 8.15 The proportions of the assets in the obtained portfolio for return
seekers

Allocation

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Portfolio 0 0 0 0 0.20 0.19 0.02 0 0 0

A11A12A13 A14 A15 A16 A17 A18 A19 A20

0 0 0 0 0 0.016 0.17 0.20 0.189 0.015

Table 8.16 Attainment values of the quantitative criteria for return seekers

Criteria Value

Short term return (SR) 0.25215
Long term return (LR) 0.33203
Risk (RI) 0.54833
Liquidity (LI) 0.00172

• Cluster 3 for safety seekers
As demonstrated above, the data set for the values of the best upper bound
and the worst lower bound are given in the pay-off table (Table 8.19).
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Table 8.19 Objective function values corresponding to return, risk, liquidity and
suitability criteria for safety seekers

x1 x2 x3 x4

Return( f1(x)) 0.08203a 0.04030b 0.07111 0.06486
Risk( f2(x)) 0.03188b 0.07149a 0.04049 0.04600
Liquidity( f3(x)) 0.11370 0.01744b 0.13965a 0.05352
Suitability( f4(x)) 0.07298 0.05356b 0.06410 0.07678a

aUpper bound
bLower bound

Using the weights of the key asset allocation criteria listed in Table 8.5,
we obtain portfolio selection by solving model P(8.2) as discussed above. The
corresponding computational results are summarized in Table 8.20. Table 8.21
present proportions of the assets in the obtained portfolio. The achievement
levels of the various objectives are consistent with the investor preferences.

Table 8.20 Results of the model P(8.2) for safety seekers

Objective function value Membership function value

Return( f1(x)) 0.06209 0.52207
Risk( f2(x)) 0.05368 0.55048
Liquidity( f3(x)) 0.07432 0.46541
Suitability( f4(x)) 0.06230 0.37651

Table 8.21 The proportions of the assets in the obtained portfolio for safety
seekers

Allocation

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Portfolio 0 0 0 0 0.019 0.25 0 0 0.156 0.30

A11A12A13 A14 A15 A16 A17 A18 A19 A20

0 0 0 0 0 0.02 0.10 0 0.14 0.015
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Table 8.22 Attainment values of the quantitative criteria for safety seekers

Criteria Value

Short term return (SR) 0.19499
Long term return (LR) 0.17462
Risk (RI) 0.34066
Liquidity (LI) 0.00506

The values of the quantitative measures of the asset performance corre-
sponding to the obtained solution are given in Table 8.22.

The results of the various iterations performed in order to further improve
portfolio performance on individual objective(s) as per investor preferences
are given in Table 8.23. Table 8.23 also shows the revised lower bounds of the
various objective functions at each iteration. Table 8.24 present attainment
values of the quantitative measures of asset performance and the propor-
tions of the assets in the obtained portfolios corresponding to the iterations
performed.

A comparison of the solutions listed in Tables 8.10, 8.16 and 8.22 high-
lights that if investors are liquidity seekers they will obtain a higher level of
liquidity in comparison to return seekers and safety seekers, albeit they may
have to settle for similar variability of return/risk. If the investors are re-
turn seekers they will obtain a higher level of expected returns in comparison
to liquidity seekers and safety seekers, but that supposes assuming a higher
risk level. If the investors are safety seekers, they will obtain a lower level of
risk in comparison to liquidity seekers and return seekers, but that supposes
accepting medium level of expected returns.

The computational results indicate that the model presented here is capa-
ble of yielding optimal portfolios not only for each category of investors but
can also accommodate individual preferences within each category following
an interactive procedure. It may be noted that by revising lower bounds of
the linear membership functions, we can obtain different portfolio construc-
tions by solving the model P(8.2). Further, it is important to point out that
for some choices of the membership function there may be no improvement
in solution with the revised lower bound(s). In such instances, we will have
to modify the lower bound(s) for the various scenarios to find a satisfactory
solution.
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8.5 Comments

In this chapter, we have presented the following facts:

• To attain the convergence of suitability and optimality in portfolio selec-
tion an approach based on AHP and FMOP has been discussed.

• AHP technique has been used to calculate the local weights (performance
scores) of each asset with respect to the four key asset allocation criteria.
These weights have been used as objective function coefficients to formu-
late the multiobjective programming model.

• To solve the multiobjective programming model, an interactive fuzzy pro-
gramming approach has been used.

• Using the computational results, it has been shown that the fuzzy inter-
active approach is very promising approach that can provide the preferred
compromise solution which is indeed a compromise feasible solution that
meets the investor preferences.



Chapter 9

Ethicality Considerations in
Multi-criteria Fuzzy Portfolio
Optimization

Abstract. Of late, the investors have shown great interest in socially re-
sponsible investment, also called ethical investment. Ideally, the investors
may have a portfolio that is based not only on financial considerations but
also incorporates a set of ethical values. The ethical investment movement
that began from the USA in 1960s has gained tremendous momentum the
world over recently. The growing instances of corporate scams and scandals
have made it incumbent upon the investors to consider the quality of gover-
nance of corporations and ethicality of their conduct. Indeed, there has been
a spate of reforms relating to corporate laws and capital markets all over the
world. Also, the investors are becoming conscious of the desirability of ethi-
cal evaluation of the assets. The growing influence of institutional investors
has reinforced this consciousness. The focus of this chapter is to present a
comprehensive three-stage multiple criteria decision making framework for
portfolio selection based upon financial and ethical criteria simultaneously.
Fuzzy analytical hierarchy process (Fuzzy-AHP) technique is used to obtain
the ethical performance score of each asset based upon investor preferences.
A fuzzy multiple criteria decision making (Fuzzy-MCDM) method is used to
obtain the financial quality score of each asset based upon investor-ratings on
the financial criteria. Two hybrid portfolio optimization models are presented
to obtain well diversified financially and ethically viable portfolios.

9.1 Ethical Evaluation of Assets

The framework for incorporation of ethicality in portfolio selection involves
ethical screening of the assets and computation of their ethical scores.

9.1.1 Ethical Screening of Assets

One of the most important strategies applied by socially responsible investors
is ethical screening of assets. According to such a strategy, the assets are

P. Gupta et al., Fuzzy Portfolio Optimization, 255
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screened on the basis of social, ethical and environmental considerations.
Generally, two types of screening are used, namely, negative screening and
positive screening [71]. Negative screening is the oldest and most basic socially
responsible investment (SRI) filter. If a company is involved in businesses
that are significantly detrimental to the given ethical issue(s); for example,
the company is a tobacco manufacturer or dealer; then, the respective as-
set is excluded from further consideration. On the other hand, the positive
screening involves the examination of whether a company is pursuing policies
significantly in favor of the given ethical issue(s); for example, policies aimed
at more inclusive workplaces; the respective asset is thus included for consid-
eration in portfolio selection [5]. The following criteria are usually considered
by investors all over for their presence or absence in ethical evaluation of
assets:

Negative Screening Issues: firearms; weapons and military contracting;
tobacco; gambling; human rights violation; child labour; oppressive regimes;
pornography; alcohol; furs; excessive environmental impact and natural re-
sources consumption; products dangerous to health/environment.

Positive Screening Issues: products beneficial for the environment and
quality of life; product safety; environmental policies; management systems;
employees policies, measures to avoid human rights violations; corporate
governance.

The screening on the basis of aforesaid criteria leads to a set of ethical
assets from which a desired portfolio may be constructed. Note that there
could be assets that are neither significantly detrimental nor contributing
toward an ethical issue. Such assets should be included for consideration in
portfolio selection because they might contribute toward the financial per-
formance of the portfolio. Their presence would also enhance the scope for
portfolio diversification and the financial-ethical trade-off.

9.1.2 Ethical Performance Scores

In ethical evaluation of the financial assets, the rejection or selection of assets
on the basis of negative and positive screening, respectively, is not enough.
It is critical to score the assets with a view to discriminating among them
on the basis of their comparative performance on the ethical criteria. Such
an approach also permits the inclusion of the assets that are neither sig-
nificantly negative nor positive. Further, in view of the growing interest in
socially responsible investment, the investment advisors and experts are also
in need of a systematic and comparative measurement of assets on ethical
grounds rather than just relying on negative and positive screens. Toward this
purpose, we define a measure called ethical performance (EP) score which
can be used as an input along with the financial performance (FP) score
in the portfolio selection models. The EP scores allow us to profile investor
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preferences for ethical considerations in respect of the assets to be included
in the portfolio. Calculation of EP scores on the basis of perceptual data
necessitates the recourse to a technique that permits systematic assessment
of ethico-moral preferences of the investors. We use Fuzzy-AHP, a technique
to aid decision making that involves a multi-level hierarchical structure for
systematic decomposition of complex situations.

• The hierarchical basis of ethical evaluation of the assets

Determination of criteria/subcriteria for ethical evaluation of the assets is
crucial for obtaining EP scores of the assets. There are several research &
consulting organizations that provide regular information on these criteria.
Note that, here, the criteria and subcriteria for ethical evaluation of the
assets have been taken from the research presented in Gupta et al. [45].
The overall EP goal is decomposed into three main criteria of corporate so-
cial performance, namely, environmental sustainability (ES), corporate social
responsibility (CSR) and corporate governance & business ethics (CGBE).
Each of these criteria is further decomposed into three subcriteria apiece.
The decomposition of each criterion into subcriteria is on the basis of those
factors which are of prime concern that underline a company’s performance
on the said criterion. The reason of decomposing criteria into subcriteria lies
in the fact that the criteria categories are too broad to be used directly for
evaluating assets; hence, subcriteria within each criterion are considered. The
resultant hierarchy is shown in Figure 9.1. Level 1 represents the goal, i.e.,
EP score; level 2 represents the three main criteria: ES, CSR and CGBE.
At level 3, these criteria are decomposed into various subcriteria, i.e., ES is
decomposed into emissions & waste disposal (EWD), resource conservation
(RC), and recycling (RE); CSR is decomposed into product safety (PS), oc-
cupational safety (OS) and non-discrimination (ND); CGBE is decomposed
into corruption (CR), disclosure (DI) and code of ethics (CE); and finally, the
bottom level of the hierarchy, i.e., level 4 represents the alternatives (assets).

It is worthy to point out that the variables considered here represent just
the illustrative elements of the ethical screen used for investment decision
making rather than an exhaustive list of the subjective factors weighing in
investor’s mind at the time of decision making. It is also pertinent to men-
tion that the variables affecting investment decision in this regard are not
only multiple but are also diverse and dynamic in nature. That is, different
investors would weigh these factors differently and also with time the dom-
inant factors affecting ethical investing may undergo a change. We briefly
discuss the variables considered here for modeling investment decisions in-
volving ethical considerations.

• Environmental Sustainability (ES): It has become a buzz world for
macroeconomic as well as microeconomic or firm-level decision making. The
companies on their own and under pressure from the growing concern among
investors and consumers alike are increasingly becoming conscious of their
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Fig. 9.1 Structural hierarchy for EP score

ecological footprint. Globally, investor surveys show that investing populace
weighs corporate performance on this count while arriving at investment
decision making. We have referred to three variables of prime concern that
underline a company’s performance on this count.

Emissions and Waste Disposal (EWD): Effluent treatment and disposal
is obviously an important element of corporate performance on ecological
front. Investors clearly weigh favorably those industries and those firms that
demonstrate care and concern for EWD through their conduct.

Resource Conservation (RC): It relates to investor’s concern regarding
how positive are the companies on energy usage, water usage and general
conservation of natural resources throughout their project and product life
cycles.

Recycling (RE): The three R’s (Reduce, Reuse and Recycle) represent the
emerging ethos of sustainability and the extent to which a company is able to
recycle inorganic inputs throughout its value chain and is thus an important
contributory variable in its environmental performance.

• Corporate Social Responsibility (CSR): Corporate thinking on its
responsibilities has over the years got fairly broad based from myopic focus
on shareholders towards stakeholders in corporate performance. While the
nature and relative importance of stakeholder may vary with the nature of
industry and the bargaining power of the stakeholder, corporate performance
or lack of it on product safety, occupational safety and non-discrimination is
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believed to contain a lot of price-sensitive information and has a bearing on
investment decision making. We have referred to the following three variables
that underline a company’s performance on this count.

Product Safety (PS): Safety of the product or service for human/animal
consumption is an important aspect of EP score. The boycott of companies
selling tobacco, liquor, toys containing toxic colors/materials, etc. highlights
the sensitivity of these issues.

Occupational Safety (OS): Certain industries such as mining are inher-
ently risky for the employees; in other industries prolonged exposure to heat,
dust, cold, chemicals, etc. expose the employees to several health and safety
related hazards. Thus, how safe is the workplace becomes an important con-
sideration in ethical investing.

Non-discrimination (ND): If fire, electrocution and exposure to heat,
dust, cold, chemicals, etc. pose a physical hazard, discrimination on the
grounds of sex, religion, caste, country or ethnic origin imply a social hazard.
Socially inclusive workplaces find greater acceptance among the employees
and the investors alike. Some companies are able to access capital markets
much easily on account of their reputation for affirmative action on issues
such as child labor, racial discrimination, etc.

• Corporate Governance & Business Ethics (CGBE): The frequency
with which established corporates have tumbled and instances of corporate
scams, scandals and misconduct have surfaced has brought the issue of corpo-
rate governance and business ethics on the top priority among the investors.
The term corporate governance implies the mechanism for ensuring that the
managements of the companies pursue the interests of the common sharehold-
ers rather than their own or that of the promoters alone. The three variables
that we have considered here within the ambit of CGBE are explained as
under.

Corruption (CR): If a company is known or perceived to be engaged in
acts of corrupting public officials or the employees of the competitors, buyers,
vendors, etc. or defrauding investors, consumers, etc. then investors would be
wary of such a company as an investment avenue.

Disclosure (DI): Investment decision making is fraught not as much with
the risk due to errors of judgment as with information asymmetry. How
clearly and timely do the corporate reports communicate the realistic picture
about the financial health and performance of the companies has a critical
bearing on investment decisions.

Code of Ethics (CE): Code of ethics is a company’s statement of what is
perceived as morally right or wrong. It may pertain to such issues as bribery,
prohibition of the company officers from trading on the stock market on
the basis of information which only they come to know due to the position
they occupy, sexual harassment at work place, etc. Investors’ trust in the
companies as regards the practice of ethics is an important determinant of
investment choice in such companies.
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• Computational procedure for obtaining relative preferences

The conventional AHP cannot fully capture subjective assessment of the var-
ious alternatives available to a decision maker. Fuzzy pair-wise comparisons
are more rational to represent uncertain judgments than the crisp ones. By
incorporating fuzzy set theory with AHP, Fuzzy-AHP use fuzzy numbers to
evaluate pair-wise comparisons. The main steps of the Fuzzy-AHP procedure
are described as under.

Step 1 : Construction of Hierarchy
A typical decision problem consists of : a number of alternatives,
mi (i = 1, 2, . . . , n), a set of evaluation criteria, cj ( j = 1, 2, . . . ,m), a linguistic
judgment rij representing the relative importance of each pair-wise compari-
son, and a weighting vector w = (w1,w2, . . . ,wn). For a decision problem, we
first determine all important criteria, subcriteria and their relationships in
the form of a hierarchy. The hierarchy is structured from the top (the overall
goal of the problem) through the intermediate levels (criteria and subcriteria
on which subsequent levels depend) to the bottom level (the list of alterna-
tives).

Step 2 : Evaluation of Fuzzy Pair-Wise Comparisons
Once the hierarchy is established, pair-wise comparison evaluation takes place.
All the criteria at the same level of the hierarchy are compared to each cri-
terion at the preceding (upper) level using the linguistic terms [26] and the
corresponding fuzzy numbers shown in Table 9.1.

Table 9.1 Linguistic scale and its fuzzy representation

Fuzzy number Linguistic scales Triangular Membership function

1̃ Equally important (1,1,3)
3̃ Weakly important (1,3,5)
5̃ Essentially important (3,5,7)
7̃ Very strong important (5,7,9)
9̃ Absolutely important (7,9,9)

Fuzzy comparison matrix R̃ that represents fuzzy relative importance of
each pair-wise comparison is obtained as

R̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1̃ r̃12 . . . r̃1m

r̃21 1̃ . . . r̃2m

. . . . . . . . . . . .
r̃m1 r̃m2 . . . 1̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1̃ r̃12 . . . r̃1m

r̃−1
12 1̃ . . . r̃2m

. . . . . . . . . . . .
r̃−1

1m r̃−1
2m . . . 1̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where

r̃i j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1̃, 3̃, 5̃, 7̃, 9̃, if the i-th criterion is relatively important to the j-th criterion ,

1̃ , if i = j ,
1̃−1, 3̃−1, 5̃−1, 7̃−1, 9̃−1, if the i-th criterion is relatively less important to the

j-th criterion ,

Step 3 : Calculating Fuzzy Weights and Checking Consistency
The fuzzy local weights can be calculated using Buckley’s model [13] as
follows:

r̃i = [r̃i1 ⊗ r̃i2 . . . ⊗ r̃im]1/m , i = 1, 2, . . . ,m ,

w̃i =
r̃i

r̃1 ⊕ . . . ⊕ r̃m
,

where r̃i j is the fuzzy comparison value of the i-th criterion to the j-th crite-
rion, r̃i is the geometric mean of fuzzy comparison value of the i-th criterion
to each other criterion, and w̃i is the fuzzy weight of the i-th criterion.

In order to control the result of the method, the consistency ratio (CR)
needs to be calculated. The deviations from consistency are expressed by the
following equation:

Consistency index (CI) =
λmax −m

m − 1
,

where m is the order of the paired comparison matrix. Since λmax is a tri-
angular fuzzy number, it is defuzzified into a crisp number to compute the
CI. The central value of λmax can be used for the purpose because of the
symmetry of the triangular fuzzy number, the central value corresponds to
the centroid of the triangular area.

The consistency ratio (CR) is calculated as
CR = CI/RI,

where RI is a known random consistency index that has been obtained from a
large number of simulation runs and varies according to the order of matrix.
If CI is sufficiently small then pair-wise comparisons are probably consistent
enough to give useful estimates of the weights. The acceptable CR value for a
matrix at each level is less than or equal to 0.1, i.e., if CI/RI ≤ 0.10 then the
degree of consistency is satisfactory; however, if CI/RI > 0.10 then serious
inconsistencies may exist and hence Fuzzy-AHP may not yield meaningful
results. The evaluation process should, therefore, be reviewed and improved.
The eigenvectors are used to calculate the global weights if there is an ac-
ceptable degree of consistency of the selection criteria.

Step 4 : Hierarchical Layer Sequencing

The final fuzzy weight value Ũi = (li,mi, ui) of the i-th alternative is calculated
by hierarchical layer sequencing as
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Ũi =

m∑

j=1

w̃jẽi j ,

where ẽi j is the fuzzy weight value of the j-th criterion to the i-th alternative
obtained using pair-wise comparisons.

Step 5 : Ranking Alternatives

Since Ũi are fuzzy numbers, a defuzzification method is used for obtaining a
crisp value of the fuzzy number in order to choose the optimum alternative.
There are number of procedures to perform the ranking of fuzzy numbers
[12]. Among them, we use the representative method in which the following
relation is employed.

R(Ũi) =
li + 2mi + ui

4
,

where R(Ũi) represents the representative ordinal of a triangular fuzzy num-
ber.

9.2 Financial Evaluation of Assets

The financial quality of the assets is measured in terms of their potential short
and long term returns, liquidity and risk related characteristics. An estima-
tion of these characteristic by extrapolation of historical data is fraught with
the possibility of measurement and judgmental errors as asset performance is
contingent upon a host of environmental and market related factors. More-
over, the investors are more comfortable in articulating their preferences only
linguistically such as high return, low risk. The vagueness in such expressions
necessitate recourse to fuzzy methodology for determining the financial qual-
ity of the assets under their contemplation. Thus, we employ a Fuzzy-MCDM
method for determining the overall financial quality score of each asset with
respect to the financial criteria. In the following discussion, we present de-
tails of the fuzzy-MCDM method developed by Lee [79]. We first present
some basic definitions and concepts as introduced in Bector and Chandra [6];
Zimmermann [130].

Definition 9.1 (Fuzzy number). Fuzzy set Ã in X ⊂ R, the set of real
numbers, is a set of ordered pairs Ã = {(x, μÃ(x)) : x ∈ X}, where x is the
generic element of X and μÃ(x) is the membership function or grade of mem-
bership, or degree of compatibility or degree of truth of x ∈ X which maps
x ∈ X on the interval [0, 1].

Definition 9.2 (α-level cut). Let Ã be a fuzzy set in X. The crisp set Aα
of elements that belong to the fuzzy set Ã at least to the degree α ∈ [0, 1] is
called the α-level cut (α-level set) of fuzzy set Ã and is given by Aα = {x ∈
X|μÃ(x) ≥ α}.
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Definition 9.3 (Lower and upper α-level cuts). If Ã be a fuzzy number,
the α-level sets Aα can be written as Aα = [AL

α,A
R
α ]. AL

α and AU
α are called

lower and upper α-level cuts and are defined as AL
α = infμÃ(x)≥α(x) and AU

α =
supμÃ(x)≥α(x), respectively. Here, inf and sup are used to find the minimum

and maximum elements of the α-level cuts, respectively.

Definition 9.4 (Extended fuzzy preference relation). For two fuzzy
numbers Ã and B̃, the extended fuzzy preference relation F(Ã, B̃) is defined
by the membership function

μF(Ã, B̃) =
∫ 1

0
((Ã − B̃)L

α + (Ã − B̃)U
α )dα (9.1)

Remark 9.1. If Ã = (l1,m1, n1) and B̃ = (l2,m2, n2) are two triangular fuzzy
numbers then

μF(Ã, B̃) = (l1 + 2m1 + n1 − l2 − 2m2 − n2)/2.

It may be noted that μF(Ã, B̃) ≥ 0 if and only if (l1+2m1+n1−l2−2m2−n2) ≥ 0.

The following proposition provides some important properties of the ex-
tended fuzzy preference relation.

Proposition 9.1. For any three fuzzy numbers Ã, B̃ and C̃, the following
statements hold true for the extended fuzzy preference relation F:

(i) F is reciprocal, i.e., μF(B̃, Ã) = −μF(Ã, B̃).
(ii) F is additive, i.e., μF(Ã, B̃) + μF(B̃, C̃) = μF(Ã, C̃).
(iii) F is transitive, i.e., μF(Ã, B̃) ≥ 0 and μF(B̃, C̃) ≥ 0 ⇒ μF(Ã, C̃) ≥ 0.

Definition 9.5 (Preference intensity function). The preference intensity
function of one fuzzy number Ã over another fuzzy number B̃ is defined as

Q(Ã, B̃) =

⎧⎪⎪⎨⎪⎪⎩
μF(Ã, B̃) , if μF(Ã, B̃) ≥ 0 ,
0 , otherwise.

(9.2)

Further, the following operational laws of two triangular fuzzy numbers
Ã1 = (l1,m1, u1) and Ã2 = (l2,m2, u2) hold true :

• Fuzzy number addition

Ã1 ⊕ Ã2 = (l1,m1, u1) ⊕ (l2,m2, u2) = (l1 + l2,m1 + m2, u1 + u2).

• Fuzzy number multiplication

Ã1 ⊗ Ã2 = (l1,m1, u1) ⊗ (l2,m2, u2) = (l1 × l2,m1 ×m2, u1 × u2)
for l1, l2,m1,m2, u1, u2 > 0.
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• Fuzzy number division

Ã1 � Ã2 = (l1,m1, u1) � (l2,m2, u2) = (l1/u2,m1/m2, u1/l2)
for l1, l2,m1,m2, u1, u2 > 0.

• Fuzzy number reciprocal

Ã−1 = (l,m, u)−1 = (1/u, 1/m, 1/l) for l,m, u > 0.

Since ‘quality’ is a subjective phenomenon, therefore, any discussion of as-
set quality must factor in investor preferences. For example, investors differ
in terms of their relative preferences for short term versus long term returns,
liquidity over risk or risk over return. Accordingly, each investor would typ-
ically (a) show distinct preference for the asset allocation criteria and (b)
indicate the perceived quality of the various assets on each criterion. From
this information, it becomes possible to measure the advantage and disad-
vantage of each asset over the rest on each of the financial criteria used. The
advantage score of the asset when multiplied by the weight of each criterion
leads to a measure of the asset’s fuzzy strength whereas the disadvantage
score of the asset when multiplied by the weight of each criterion leads to a
measure of its fuzzy weakness. The FP score of the asset is an aggregate of
the asset’s relative performance derived from its fuzzy strength as well as its
fuzzy weakness. Note that by the strength of the asset based on fuzzy weak-
ness, we mean how much an asset is preferred over the other assets based on
the fuzzy weakness scores and thus, this preference could also be considered
as its strength. It may be possible that an asset does not perform well in
comparison with some other asset(s) on the basis of its fuzzy strength score;
but, after combining its fuzzy weakness score as well, the performance of the
asset may become more acceptable.

We assume that there are n assets under evaluation against m criteria. Let
the indices i and k denotes the assets under consideration and the index j
denotes the evaluation criteria. Let fuzzy number Ãij be rating of the i-th
asset on the j-th criterion and fuzzy number w̃j be the weight of the j-th
criterion. Let J be the set of benefit criteria (i.e., larger the value is, the
better the asset is) and J′ be the set of negative criteria (i.e., smaller the
value is, the better the asset is) with J ∪ J′ = {1, . . . ,m} and J ∩ J′ = ∅.

The crisp advantage of the i-th asset relative to all other assets k � i on
the j-th criterion is given as

aij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑

k�i

Q(Ãij, Ãkj) , if j ∈ J ,
∑

k�i

Q(Ãkj, Ãij) , if j ∈ J′ .
(9.3)
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Similarly, the crisp disadvantage of the i-th asset relative to all other assets
k � i on the j-th criterion is given as

dij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑

k�i

Q(Ãkj, Ãij) , if j ∈ J ,
∑

k�i

Q(Ãij, Ãkj) , if j ∈ J′ .
(9.4)

The fuzzy strength of the i-th asset using its crisp advantage on all the m
evaluation criteria is now obtained as

FSi =

m∑

j=1

aijw̃j, (9.5)

and the fuzzy weakness of the i-th asset using its crisp disadvantage on all
the m evaluation criteria is now obtained as

FWi =

m∑

j=1

dijw̃j . (9.6)

The crisp strength of the i-th asset using its fuzzy strength and fuzzy weakness
relative to all other assets k � i is obtained as

Si =
∑

k�i

Q(FSi, FSk) +
∑

k�i

Q(FWk, FWi) (9.7)

and the crisp weakness of the i-th asset using its fuzzy strength and fuzzy
weakness relative to all other assets k � i is obtained as

Ii =
∑

k�i

Q(FSk, FSi) +
∑

k�i

Q(FWi, FWk). (9.8)

The FP score of the i-th asset is now obtained as

Ti =
Si

Si + Ii
, (9.9)

and its normalized value is obtained as

T′i =
Ti

n∑

i=1

Ti

. (9.10)
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9.3 Hybrid Portfolio Selection Models

We assume that the investor allocate his/her wealth among n assets. The
following notation are used in the formulation of the portfolio selection model.

9.3.1 Notation

fi: the normalized FP score of the i-th asset calculated using Fuzzy-MCDM
method ,

ei: the normalized EP score of the i-th asset calculated using Fuzzy-AHP ,

xi: the proportion of the total funds invested in the i-th asset ,

yi: a binary variable indicating whether the i-th asset is contained in the
portfolio, where

yi =

⎧⎪⎪⎨⎪⎪⎩
1, if i-th asset is contained in the portfolio ,

0, otherwise ,

ui: the maximal fraction of the capital allocated to the i-th asset ,

li: the minimal fraction of the capital allocated to the i-th asset .

We consider the following objective function and constraints in the port-
folio selection problem.

9.3.2 Objective Function

Financial Criteria
The objective function using FP scores based on the four key financial criteria
is expressed as

Z(x) =
n∑

i=1

fixi.

9.3.3 Constraints

Ethical Investing Constraint
When the investor chooses the desired ethical level of the portfolio a priori,
an ethical investing constraint may be imposed on the portfolio selection.
The ethical investing constraint using the EP scores is expressed as

n∑

i=1

eixi ≥ β ,
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where 0 ≤ β ≤ max
1≤i≤n

ei is regarded as investor’s choice for a minimum desired

ethical level of the portfolio. The following cases may arise:

(i) if β > max
1≤i≤n

ei, then, no feasible solution can be found and hence no

portfolio is generated,
(ii) if β = max

1≤i≤n
ei, then, there is only one portfolio corresponding to xp = 1

where ep = max
1≤i≤n

ei, i.e., the p-th asset has the maximum EP score,

(iii) if 0 ≤ β ≤ max
1≤i≤n

ei, then, the higher the β-value is, i.e., closer to max
1≤i≤n

ei, the

higher the impact of desired ethical level in the portfolio construction.
The lower the β-value is, i.e., closer to 0, the lower the impact of desired
ethical level in the portfolio construction.

Entropy Constraint
In portfolio selection, the more uniformly the capital is allocated to all the
assets, the more diverse the investment is. A portfolio allocation among n
assets, with properties xi ≥ 0 , i = 1, 2, . . . , n and

∑n
i=1 xi = 1, has the structure

of a proper probability distribution. To handle the issue of diversification, we
use the following concave entropy function proposed by Shannon [109] as a
measure of portfolio diversification which is defined as

E(x) = −
n∑

i=1

xi ln xi .

It may be noted that when xi = 1/n, i = 1, 2, . . . , n, E(x) has its maximum
value ln n. The other extreme case occurs when xi = 1 for one i, and xi = 0
for the rest, then E(x) = 0. Therefore, entropy that provides a good measure
of disorder in a system or expected information in a probability distribution,
can be taken as a measure of portfolio diversification. In order to achieve
desired level of portfolio diversification, we use the following constraint

−
n∑

i=1

xi ln xi ≥ γ , 0 < γ < ln n ,

where gamma (γ) is the preset entropy value given by the investor.

Capital budget constraint on the assets is expressed as

n∑

i=1

xi = 1 .

No short selling of assets is expressed as

xi ≥ 0 , i = 1, 2, . . . , n .
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9.3.4 The Decision Problem

The hybrid portfolio selection problem is now formulated as follows:

P(9.1) max Z(x) =
n∑

i=1

fixi

subject to
n∑

i=1

xi = 1 , (9.11)

xi ≥ 0 , i = 1, 2, . . . , n , (9.12)
n∑

i=1

eixi ≥ β , (9.13)

−
n∑

i=1

xi ln xi ≥ γ . (9.14)

Proposition 9.2. The optimization problem P(9.1) is a convex optimization
problem, i.e., it involves the maximization of a linear function subject to
convex constraints.

Proof. The objective function
∑n

i=1 fixi of the problem P(9.1) is a linear func-
tion which is both convex and concave. The constraint (9.11) is a linear
function and hence it is convex. The constraint (9.12) is also a linear func-
tion and it can be rewritten as −xi ≤ 0 , i = 1, 2, . . . , n, hence, it can
be taken as convex. The constraint (9.13) is a linear function and can be
rewritten as −∑n

i=1 eixi + β ≤ 0, hence, it can also be taken as convex func-
tion. It may be noted that the entropy function E(x) = −∑n

i=1 xi ln xi is a
concave function as mentioned above. Therefore, −E(x) =

∑n
i=1 xi ln xi is a

convex function and thus the constraint (9.14) which can be rewritten as∑n
i=1 xi ln xi + γ ≤ 0 , 0 < γ < ln n is also convex. Hence, the optimization

problem P(9.1) which involves the maximization of a linear function subject
to convex constraints is a convex optimization problem. ��
Note that since the problem P(9.1) is a convex optimization problem, there-
fore, a local max point of P(9.1) is also its global max point.

It is worthy to point out that unlike the model P(9.1), we can also handle
the issue of portfolio diversification by using the following constraints:

• Maximal fraction of the capital that can be invested in a single asset is
expressed as

xi ≤ ui yi , i = 1, 2, . . . , n . (9.15)
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• Minimal fraction of the capital that can be invested in a single asset is
expressed as

xi ≥ li yi , i = 1, 2, . . . , n . (9.16)

• Number of assets held in the portfolio is expressed as

n∑

i=1

yi = h . (9.17)

• Selection or rejection of assets is expressed as

yi ∈ {0, 1} , i = 1, 2, . . . , n . (9.18)

Thus, the hybrid portfolio selection problem may be formulated as the
following mixed integer linear programming problem:

P(9.2) max Z(x) =
n∑

i=1

fixi

subject to

Constraints (9.11-9.13) and (9.15-9.18).

9.4 Numerical Illustration

In this section, we present the results of an empirical study done for an
imaginary socially responsible investor. We have randomly selected 15 assets
listed on NSE, Mumbai, India, for numerical illustrations.

9.4.1 Ethical Screening and Ethical Performance
Scores

By applying negative screens, discussed in Section 9.1, we exclude 5 assets
from the population. For the remaining 10 assets, we calculate the EP scores
using Fuzzy-AHP. The procedure followed is a pair-wise comparison of the
criteria, subcriteria and the assets. For the data in respect of pair-wise com-
parison matrices, we have relied on inputs from the imaginary investor that
are based on the linguistic scale provided in Table 9.1. The computations of
the Fuzzy-AHP procedure are described as follows: At level 2, we determine
the local weights (see Table 9.2) of the three main criteria with respect to the
overall goal of EP score. At level 3, we determine local weights (see Table 9.3)
of the various subcriteria with respect to their parent criterion in the level
2. For example, the subcriteria, RC, RE and EWD are pair-wise compared
with respect to the parent criterion ES. At level 4, we determine the local
weights (see Tables 9.4-9.6) of all the 10 assets with respect to each of the
nine subcriteria of ethical evaluation in the level 3.
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Table 9.2 Pair-wise comparisons of the main criteria in relation to the overall goal

Criteria ES CSR CGBE Local weight

ES 1̃ 5̃−1 3̃−1 (0.0374, 0.1047, 0.4287)
CSR 5̃ 1̃ 3̃ (0.1762, 0.6370, 2.0224)
CGBE 3̃ 3̃−1 1̃ (0.0715, 0.2583, 1.0572

Table 9.3 Pair-wise comparisons of the subcriteria in relation to the main criteria

ES RC RE EWD Local weight

RC 1̃ 3̃−1 7̃−1 (0.0333, 0.0879, 0.3274)
RE 3̃ 1̃ 3̃−1 (0.0693, 0.2426, 0.9574)
EWD 7̃ 3̃ 1̃ (0.2026, 0.6694, 1.9915)

CSR ND OS PS Local weight

ND 1̃ 5̃−1 3̃−1 (0.0374, 0.1047, 0.4287)
OS 5̃ 1̃ 3̃ (0.1762, 0.6370, 2.0224)
PS 3̃ 3̃−1 1̃ (0.0715, 0.2583, 1.0572)

CGBE CR CE DI Local weight

CR 1̃ 7̃−1 9̃−1 (0.0270, 0.0549, 0.1402)
CE 7̃ 1̃ 3̃−1 (0.1167, 0.2897, 0.9542)
DI 9̃ 3̃ 1̃ (0.2232, 0.6554, 1.6316)

These local weights are aggregated in respect of each asset by following
what in terms of the AHP hierarchy may be regarded as a bottom-up process
of successive multiplication. The local weight of an asset in relation to a
subcriterion is multiplied with the local weight of the subcriterion in relation
to its parent criterion, which in turn is multiplied with the local weight of
the parent criterion in relation to the overall goal of EP score. Thus, we
obtain 9 aggregated local weights for each asset. The global weight of an
asset in relation to each main criterion involving all its subcriteria is obtained
by adding the aggregated local weights of the asset in relation to the said
criterion through its subcriteria (columns 2, 3 and 4 of the Table 9.7 presents
the global weights of the assets in respect of the three main criteria). To
calculate the EP score, the global weights of each asset are summed. The
fuzzy EP scores of the 10 assets are listed in column 5 of the Table 9.7.
Finally, using defuzzification process, the crisp EP scores and the normalized
EP scores of the 10 assets are obtained, see columns 6 and 7 of the Table 9.7.
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Table 9.4 Pair-wise comparisons of the alternatives in relation to the subcriteria
RC, RE and EWD

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Local weight

RC
A1 1̃ 3̃ 3̃−1 9̃ 3̃ 1̃ 5̃ 7̃ 5̃ 1̃ (0.06080, 0.15618, 0.48673)

A2 3̃−1 1̃ 7̃−1 3̃ 3̃ 1̃ 3̃ 3̃ 3̃ 3̃−1 (0.02337, 0.07670, 0.26272)

A3 3̃ 7̃ 1̃ 9̃ 5̃ 5̃ 7̃ 9̃ 7̃ 3̃ (0.11970, 0.32046, 0.75532)

A4 9̃−1 3̃−1 9̃−1 1̃ 3̃−1 7̃−1 1̃−1 3̃−1 5̃−1 9̃−1 (0.00759, 0.01747, 0.05261)

A5 3̃−1 3̃−1 5̃−1 3̃ 1̃ 3̃−1 1̃ 3̃ 1̃ 3̃−1 (0.01737, 0.04580, 0.19042)

A6 1̃−1 1̃−1 5̃−1 7̃ 3̃ 1̃ 5̃ 7̃ 5̃ 1̃ (0.04563, 0.12966, 0.33263)

A7 5̃−1 3̃−1 7̃−1 1̃ 1̃−1 5̃−1 1̃ 1̃ 1̃ 7̃−1 (0.01338, 0.02949, 0.10003)

A8 7̃−1 3̃−1 9̃−1 3̃ 3̃−1 7̃−1 1̃−1 1̃ 1̃−1 7̃−1 (0.00971, 0.02689, 0.07377)

A9 5̃−1 3̃−1 7̃−1 5̃ 1̃−1 5̃−1 1̃−1 1̃ 1̃ 5̃−1 (0.01372, 0.03582, 0.10266)

A10 1̃−1 3̃ 3̃−1 9̃ 3̃ 1̃−1 7̃ 7̃ 5̃ 1̃ (0.05136, 0.16152, 0.40066)

RE
A1 1̃ 5̃−1 7̃−1 5̃ 3̃−1 3̃ 3̃ 3̃ 5̃ 3̃−1 (0.02258, 0.06542, 0.19909)

A2 5̃ 1̃ 3̃−1 9̃ 3̃ 9̃ 7̃ 7̃ 9̃ 3̃ (0.08894, 0.22671, 0.54875)

A3 7̃ 3̃ 1̃ 9̃ 3̃ 7̃ 7̃ 9̃ 9̃ 3̃ (0.10995, 0.29209, 0.64458)

A4 5̃−1 9̃−1 9̃−1 1̃ 9̃−1 5̃−1 5̃−1 5̃−1 3̃−1 9̃−1 (0.00614, 0.01185, 0.03229)

A5 3̃ 3̃−1 3̃−1 9̃ 1̃ 7̃ 5̃ 7̃ 7̃ 3̃−1 (0.05131, 0.12765, 0.37502)

A6 3̃−1 9̃−1 7̃−1 5̃ 7̃−1 1̃ 1̃−1 3̃−1 3̃ 7̃−1 (0.01168, 0.02856, 0.07910)

A7 3̃−1 7̃−1 7̃−1 5̃ 5̃−1 1̃ 1̃ 3̃−1 3̃ 7̃−1 (0.01303, 0.03029, 0.09609)

A8 3̃−1 7̃−1 9̃−1 5̃ 7̃−1 3̃ 3̃ 1̃ 3̃ 7̃−1 (0.01493, 0.03971, 0.10913)

A9 5̃−1 9̃−1 9̃−1 3̃ 7̃−1 3̃−1 3̃−1 3̃−1 1̃ 5̃−1 (0.00818, 0.01871, 0.05936)

A10 3̃ 3̃−1 3̃−1 9̃ 3̃ 7̃ 7̃ 7̃ 5̃ 1̃ (0.06027, 0.15901, 0.44051)

EWD
A1 1̃ 3̃−1 5̃−1 1̃ 3̃−1 3̃ 3̃ 5̃ 5̃ 5̃−1 (0.02369, 0.06173, 0.19973)

A2 3̃ 1̃ 3̃−1 3̃ 3̃−1 9̃ 7̃ 7̃ 9̃ 3̃−1 (0.04865, 0.12667, 0.36377)

A3 5̃ 3̃ 1̃ 9̃ 3̃ 9̃ 9̃ 9̃ 9̃ 1̃ (0.11435, 0.27100, 0.61443)

A4 1̃−1 3̃−1 9̃−1 1̃ 9̃−1 5̃−1 5̃−1 5̃−1 3̃−1 9̃−1 (0.00726, 0.01582, 0.04392)

A5 3̃ 3̃ 3̃−1 9̃ 1̃ 7̃ 7̃ 7̃ 7̃ 3̃−1 (0.06491, 0.16749, 0.45316)

A6 3̃−1 9̃−1 9̃−1 5̃ 7̃−1 1̃ 1̃−1 3̃ 3̃ 7̃−1 (0.01369, 0.03534, 0.09012)

A7 3̃−1 7̃−1 9̃−1 5̃ 7̃−1 1̃ 1̃ 3̃ 3̃ 9̃−1 (0.01528, 0.03534, 0.10059)

A8 5̃−1 7̃−1 9̃−1 5̃ 7̃−1 3̃−1 3̃−1 1̃ 3̃−1 7̃−1 (0.00912, 0.01988, 0.06052)

A9 5̃−1 9̃−1 9̃−1 3̃ 7̃−1 3̃−1 3̃−1 3̃ 1̃ 5̃−1 (0.00984, 0.02373, 0.06995)

A10 5̃ 3̃ 1̃ 9̃ 3̃ 7̃ 9̃ 7̃ 5̃ 1̃ (0.08801, 0.24300, 0.53684)
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Table 9.5 Pair-wise comparisons of the alternatives in relation to the subcriteria
ND, OS and PS

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Local weight

ND
A1 1̃ 5̃ 3̃−1 3̃−1 5̃−1 5̃−1 7̃−1 1̃ 3̃−1 3̃−1 (0.01288, 0.03266, 0.13233)

A2 5̃−1 1̃ 9̃−1 5̃−1 9̃−1 9̃−1 7̃−1 5̃−1 7̃−1 7̃−1 (0.00603, 0.01288, 0.03535)

A3 3̃ 9̃ 1̃ 1̃−1 3̃−1 3̃−1 3̃−1 3̃ 1̃ 1̃ (0.02712, 0.06481, 0.27396)

A4 3̃ 5̃ 1̃ 1̃ 5̃−1 3̃−1 5̃−1 3̃ 1̃ 1̃ (0.02600, 0.06873, 0.26716)

A5 5̃ 9̃ 3̃ 5̃ 1̃ 1̃ 3̃−1 5̃ 3̃ 3̃ (0.05806, 0.18192, 0.57692)

A6 5̃ 9̃ 3̃ 3̃ 1̃−1 1̃ 3̃−1 5̃ 3̃ 3̃ (0.04661, 0.17286, 0.49979)

A7 7̃ 7̃ 3̃ 5̃ 3̃ 3̃ 1̃ 7̃ 3̃ 5̃ (0.08152, 0.27765, 0.77560)

A8 1̃−1 5̃ 3̃−1 3̃−1 5̃−1 5̃−1 7̃−1 1̃ 3̃−1 5̃−1 (0.01116, 0.03104, 0.10623)

A9 3̃ 7̃ 1̃−1 1̃−1 3̃−1 3̃−1 3̃−1 3̃ 1̃ 1̃ (0.02349, 0.07873, 0.27396)

A10 3̃ 7̃ 1̃−1 1̃−1 3̃−1 3̃−1 5̃−1 5̃ 1̃−1 1̃ (0.02272, 0.07873, 0.22744)

OS
A1 1̃ 3̃−1 7̃−1 5̃ 3̃−1 1̃ 3̃−1 3̃−1 3̃−1 5̃−1 (0.02156, 0.06138, 0.19525)

A2 3̃ 1̃ 3̃−1 9̃ 1̃ 3̃ 5̃ 5̃ 5̃ 3̃−1 (0.04938, 0.13487, 0.40064)

A3 7̃ 3̃ 1̃ 9̃ 7̃ 9̃ 9̃ 5̃ 5̃ 1̃ (0.12428, 0.26295, 0.64248)

A4 5̃−1 9̃−1 9̃−1 1̃ 9̃−1 3̃−1 3̃−1 5̃−1 5̃−1 9̃−1 (0.00677, 0.01374, 0.03847)

A5 3̃ 1̃−1 7̃−1 9̃ 1̃ 3̃ 7̃ 7̃ 5̃ 3̃−1 (0.04620, 0.13254, 0.32135)

A6 1̃−1 3̃−1 9̃−1 3̃ 3̃−1 1̃ 1̃ 3̃ 3̃ 5̃−1 (0.01731, 0.05095, 0.15541)

A7 3̃−1 5̃−1 9̃−1 3̃ 7̃−1 1̃−1 1̃ 3̃−1 3̃−1 5̃−1 (0.00974, 0.02568, 0.07698)

A8 3̃−1 5̃−1 5̃−1 5̃ 7̃−1 3̃−1 3̃ 1̃ 5̃−1 9̃−1 (0.01173, 0.02867, 0.08378)

A9 3̃−1 5̃−1 5̃−1 5̃ 5̃ 3̃−1 3̃ 5̃ 1̃ 5̃−1 (0.01672, 0.04338, 0.13012)

A10 5̃ 3̃ 1̃−1 9̃ 3̃ 5̃ 5̃ 9̃ 5̃ 1̃ (0.08276, 0.24584, 0.54322)

PS
A1 1̃ 3̃−1 7̃−1 1̃ 3̃−1 1̃ 5̃−1 3̃−1 1̃ 3̃−1 (0.01413, 0.03371, 0.15673)

A2 3̃ 1̃ 3̃−1 3̃ 1̃ 3̃ 3̃−1 1̃ 3̃ 1̃ (0.02951, 0.09299, 0.39115)

A3 7̃ 3̃ 1̃ 7̃ 7̃ 9̃ 3̃ 3̃ 7̃ 3̃ (0.09417, 0.28158, 0.80195)

A4 1̃−1 3̃−1 7̃−1 1̃ 3̃−1 1̃ 7̃−1 5̃−1 1̃ 5̃−1 (0.01155, 0.02943, 0.10711)

A5 3̃ 1̃−1 7̃−1 3̃ 1̃ 3̃ 3̃−1 1̃ 3̃ 1̃ (0.02493, 0.08543, 0.29836)

A6 1̃−1 3̃−1 9̃−1 1̃−1 3̃−1 1̃ 7̃−1 5̃−1 3̃−1 3̃−1 (0.00911, 0.02706, 0.09279)

A7 5̃ 3̃ 3̃−1 7̃ 3̃ 7̃ 1̃ 3̃ 5̃ 3̃ (0.05958, 0.21133, 0.64428)

A8 3̃ 1̃−1 3̃−1 5̃ 1̃−1 5̃ 3̃−1 1̃ 3̃ 1̃ (0.02951, 0.10299, 0.33585)

A9 1̃−1 3̃−1 7̃−1 1̃−1 3̃−1 3̃ 5̃−1 3̃−1 1̃ 3̃−1 (0.01135, 0.03762, 0.13241)

A10 3̃ 1̃−1 3̃−1 5̃ 1̃−1 3̃ 3̃−1 1̃−1 3̃ 1̃ (0.02369, 0.09786, 0.29095)
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Table 9.6 Pair-wise comparisons of the alternatives with respect to the subcriteria
CR, CE and DI

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Local weight

CR
A1 1̃ 3̃ 5̃−1 1̃ 3̃ 1̃ 3̃ 1̃ 3̃−1 5̃−1 (0.02381, 0.06338, 0.22220)

A2 3̃−1 1̃ 9̃−1 3̃−1 1̃ 3̃−1 3̃−1 3̃−1 9̃−1 7̃−1 (0.00955, 0.02150, 0.07909)

A3 5̃ 9̃ 1̃ 5̃ 7̃ 5̃ 7̃ 5̃ 3̃ 1̃ (0.10736, 0.22011, 0.60750)

A4 1̃−1 3̃ 5̃−1 1̃ 3̃ 1̃−1 3̃ 1̃ 3̃−1 3̃−1 (0.01977, 0.06670, 0.19908)

A5 3̃−1 1̃−1 7̃−1 3̃−1 1̃ 3̃−1 3̃−1 5̃−1 9̃−1 9̃−1 (0.00827, 0.02043, 0.06349)

A6 1̃−1 3̃ 5̃−1 1̃ 3̃ 1̃ 3̃ 1̃ 5̃−1 5̃−1 (0.02063, 0.06022, 0.17837)

A7 3̃−1 3̃ 7̃−1 3̃−1 3̃ 3̃−1 1̃ 3̃−1 9̃−1 9̃−1 (0.01122, 0.02989, 0.09777)

A8 1̃−1 3̃ 5̃−1 1̃−1 5̃ 1̃−1 3̃ 1̃ 5̃−1 5̃−1 (0.01848, 0.06338, 0.14808)

A9 3̃ 9̃ 3̃−1 3̃ 9̃ 5̃ 9̃ 5̃ 1̃ 3̃−1 (0.06681, 0.18723, 0.48353)

A10 5̃ 7̃ 1̃−1 3̃ 9̃ 5̃ 9̃ 5̃ 3̃ 1̃ (0.08913, 0.26717, 0.58740)

CE
A1 1̃ 3̃ 5̃−1 5̃ 3̃ 3̃ 1̃ 3̃ 1̃ 3̃−1 (0.03024, 0.09834, 0.31234)

A2 3̃−1 1̃ 9̃−1 1̃ 3̃−1 1̃ 3̃−1 3̃−1 1̃ 5̃−1 (0.01498, 0.03278, 0.12834)

A3 5̃ 9̃ 1̃ 7̃ 7̃ 9̃ 3̃ 9̃ 5̃ 3̃ (0.14840, 0.30837, 0.70838)

A4 3̃−1 1̃−1 7̃−1 1̃ 1̃ 3̃−1 1̃ 1̃ 3̃−1 5̃−1 (0.01576, 0.03752, 0.13273)

A5 3̃−1 3̃ 7̃−1 1̃−1 1̃ 1̃ 3̃−1 1̃ 1̃ 7̃−1 (0.01806, 0.04519, 0.14814)

A6 3̃−1 1̃−1 9̃−1 3̃ 1̃−1 1̃ 1̃ 3̃−1 1̃ 5̃−1 (0.01659, 0.04558, 0.13506)

A7 1̃−1 3̃ 3̃−1 1̃−1 3̃ 1̃−1 1̃ 3̃ 1̃ 7̃−1 (0.02051, 0.07253, 0.17267)

A8 3̃−1 3̃ 9̃−1 1̃−1 1̃−1 3̃ 3̃−1 1̃ 5̃−1 5̃−1 (0.01366, 0.04331, 0.11410)

A9 1̃−1 1̃−1 5̃−1 3̃ 1̃−1 1̃−1 1̃−1 5̃ 1̃ 5̃−1 (0.01884, 0.07073, 0.14336)

A10 3̃ 5̃ 3̃−1 5̃ 7̃ 5̃ 7̃ 5̃ 5̃ 1̃ (0.08779, 0.24564, 0.60357)

DI
A1 1̃ 1̃ 3̃−1 5̃ 1̃ 1̃ 3̃ 5̃ 1̃ 3̃−1 (0.03778, 0.09353, 0.38373)

A2 1̃−1 1̃ 5̃−1 3̃ 3̃−1 1̃ 3̃ 3̃ 3̃−1 5̃−1 (0.01841, 0.06121, 0.20713)

A3 3̃ 5̃ 1̃ 7̃ 3̃ 3̃ 7̃ 7̃ 3̃ 1̃ (0.07569, 0.21050, 0.65396)

A4 5̃−1 3̃−1 7̃−1 1̃ 5̃−1 3̃−1 3̃−1 1̃−1 5̃−1 7̃−1 (0.00831, 0.02275, 0.07436)

A5 1̃−1 3̃ 3̃−1 5̃ 1̃ 1̃−1 1̃ 3̃ 1̃−1 5̃−1 (0.02354, 0.08445, 0.23909)

A6 1̃−1 1̃−1 3̃−1 3̃ 1̃ 1̃ 1̃ 3̃ 3̃−1 3̃−1 (0.02072, 0.06779, 0.24518)

A7 3̃−1 3̃−1 7̃−1 3̃ 1̃−1 1̃−1 1̃ 3̃ 5̃−1 7̃−1 (0.01291, 0.04365, 0.12781)

A8 5̃−1 3̃−1 7̃−1 1̃ 3̃−1 3̃−1 3̃−1 1̃ 3̃−1 9̃−1 (0.00993, 0.02457, 0.09997)

A9 1̃−1 3̃ 3̃−1 5̃ 1̃ 3̃ 5̃ 3̃ 1̃ 5̃−1 (0.03273, 0.11071, 0.34117)

A10 3̃ 5̃ 1̃−1 7̃ 5̃ 3̃ 7̃ 9̃ 5̃ 1̃ (0.08737, 0.28083, 0.68212)



274 9 Ethicality Considerations in Multi-criteria Fuzzy Portfolio Optimization

T
a
b
le

9
.7

G
lo
b
a
l
w
ei
g
h
ts

o
f
th
e
a
ss
et
s

G
lo
b
a
l
w
ei
g
h
t

A
ss
et
s

E
S

C
S
R

C
G
B
E

F
u
zz
y
E
P

D
ef
u
zz
ifi
ed

N
o
rm

a
li
ze
d

sc
o
re

E
P

sc
o
re

E
P

sc
o
re

A
1

(0
.0
0
0
3
,
0
.0
0
7
4
,
0
.3
2
0
5
)
(0
.0
0
0
9
,
0
.0
3
2
6
,
1
.2
4
8
4
)
(0
.0
0
0
9
,
0
.0
2
4
1
,
1
.0
1
0
0
)
(0
.0
0
2
1
0
.0
6
4
1
2
.5
7
8
9
)

0
.6
7
7
3

0
.0
7
9
2

A
2

(0
.0
0
0
6
,
0
.0
1
5
3
,
0
.5
7
2
6
)
(0
.0
0
1
9
,
0
.0
7
0
9
,
2
.5
0
5
5
)
(0
.0
0
0
4
,
0
.0
1
3
1
,
0
.4
9
8
5
)
(0
.0
0
3
0
,
0
.0
9
9
3
,
3
.5
7
6
7
)
0
.9
4
4
6

0
.1
1
0
4

A
3

(0
.0
0
1
3
,
0
.0
2
9
4
,
0
.8
9
5
1
)
(0
.0
0
5
2
,
0
.1
5
7
3
,
4
.5
7
9
8
)
(0
.0
0
2
7
,
0
.0
6
1
8
,
1
.9
3
2
7
)
(0
.0
0
9
2
,
0
.2
4
8
5
,
7
.4
0
7
6
)
1
.9
7
8
5

0
.2
3
1
3

A
4

(0
.0
0
0
1
,
0
.0
0
1
6
,
0
.0
5
8
1
)
(0
.0
0
0
5
,
0
.0
1
5
0
,
0
.6
1
8
0
)
(0
.0
0
0
3
,
0
.0
0
7
6
,
0
.2
9
1
7
)
(0
.0
0
0
9
,
0
.0
2
4
2
,
0
.9
6
7
8
)
0
.2
5
4
3

0
.0
2
9
7

A
5

(0
.0
0
0
6
,
0
.0
1
5
4
,
0
.5
6
7
5
)
(0
.0
0
2
1
,
0
.0
8
0
0
,
2
.4
5
2
3
)
(0
.0
0
0
5
,
0
.0
1
8
0
,
0
.5
7
1
3
)
(0
.0
0
3
3
,
0
.1
1
3
3
,
3
.5
9
1
1
)
0
.9
5
5
3

0
.1
1
1
7

A
6

(0
.0
0
0
2
,
0
.0
0
4
4
,
0
.1
5
6
1
)
(0
.0
0
1
0
,
0
.0
3
6
7
,
1
.2
6
7
3
)
(0
.0
0
0
5
,
0
.0
1
5
7
,
0
.5
8
5
6
)
(0
.0
0
1
7
,
0
.0
5
6
8
,
2
.0
0
9
0
)
0
.5
3
1
1

0
.0
6
2
1

A
7

(0
.0
0
0
2
,
0
.0
0
3
5
,
0
.1
3
9
3
)
(0
.0
0
1
6
,
0
.0
6
3
7
,
2
.3
6
4
7
)
(0
.0
0
0
4
,
0
.0
1
3
2
,
0
.4
0
9
1
)
(0
.0
0
2
2
,
0
.0
8
0
5
,
2
.9
1
3
2
)
0
.7
6
9
1

0
.0
8
9
9

A
8

(0
.0
0
0
1
,
0
.0
0
2
7
,
0
.1
0
6
8
)
(0
.0
0
0
8
,
0
.0
3
0
6
,
1
.1
5
2
8
)
(0
.0
0
0
3
,
0
.0
0
8
3
,
0
.3
0
9
5
)
(0
.0
0
1
2
,
0
.0
4
1
6
,
1
.5
6
9
1
)
0
.4
1
3
4

0
.0
4
8
3

A
9

(0
.0
0
0
1
,
0
.0
0
2
5
,
0
.0
9
8
5
)
(0
.0
0
0
8
,
0
.0
2
9
0
,
1
.0
5
2
8
)
(0
.0
0
0
8
,
0
.0
2
6
7
,
0
.8
0
4
8
)
(0
.0
0
1
7
,
0
.0
5
8
2
,
1
.9
5
6
1
)
0
.5
1
8
6

0
.0
6
0
6

A
1
0

(0
.0
0
0
9
,
0
.0
2
2
6
,
0
.6
9
5
3
)
(0
.0
0
3
0
,
0
.1
2
1
1
,
3
.0
4
1
0
)
(0
.0
0
2
3
,
0
.0
6
9
7
,
1
.8
7
2
6
)
(0
.0
0
6
2
,
0
.2
1
3
4
,
5
.6
0
8
9
)
1
.5
1
0
5

0
.1
7
6
6



9.4 Numerical Illustration 275

9.4.2 Financial Performance Scores

To obtain financial scores of the assets, we use the following four evaluation
criteria:

Short term return (C1); Long term return (C2); Risk (C3); Liquidity (C4).

Here, C1,C2 and C4 are benefit criteria, whereas C3 is a negative criterion.
The data to evaluate the financial performance of the assets in respect of the
four criteria can be obtained from the inputs of the imaginary investor. The
investor preferences were captured using the linguistic variables employed to
represent relative importance and ratings provided in Tables 9.8-9.9, respec-
tively. The data in respect of the weights of these criteria and rating of the
assets are shown in Tables 9.10 and 9.11, respectively.

Table 9.8 Linguistic variables for the relative importance of the criteria

Linguistic variables Fuzzy number

Very low (VL) (0, 0, 0.1)
Low (L) (0, 0.1, 0.3)
Medium low (ML) (0.1, 0.3, 0.5)
Medium (M) (0.3, 0.5, 0.7)
Medium high (MH) (0.5, 0.7, 0.9)
High (H) (0.7, 0.9, 1.0)
Very high (VH) (0.9, 1.0, 1.0)

Table 9.9 Linguistic variables for the performance ratings

Linguistic variables Fuzzy number

Very poor (VP) (0, 0, 1)
Poor (P) (0, 1, 3)
Medium poor (MP) (1, 3, 5)
Fair (F) (3, 5, 7)
Medium good (MG) (5, 7, 9)
Good (G) (7, 9, 10)
Very good (VG) (9, 10, 10)

Table 9.10 The weights of the evaluation criteria

C1 C2 C3 C4

Weight (0.5, 0.7, 0.9) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.3, 0.5,0.7)
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The above data is processed using the Fuzzy-MCDM method. The evalu-
ation procedure followed to arrive at the FP score of each asset is as per the
description given in Section 9.2. The corresponding computational results are
listed in Tables 9.12-9.13. Table 9.14 presents the FP score and its normalized
value for each asset.

Table 9.11 The ratings of the assets

Fuzzy number Normalized fuzzy number

Assets C1 C2 C3 C4 C1 C2 C3 C4

A1 (7, 9, 10) (5, 7, 9) (7, 9, 10) (3, 5, 7) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.3, 0.5, 0.7)
A2 (7, 9, 10) (9, 10, 10) (5, 7, 9) (5, 7, 9) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9)
A3 (9, 10, 10) (9, 10, 10) (5, 7, 9) (3, 5, 7) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7)
A4 (3, 5, 7) (5, 7, 9) (5, 7, 9) (7, 9, 10) (0.3, 0.5, 0.7) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0)
A5 (3, 5, 7) (7, 9, 10) (9, 10, 10) (5, 7, 9) (0.3, 0.5, 0.7) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.5, 0.7, 0.9)
A6 (5, 7, 9) (3, 5, 7) (9, 10, 10) (3, 5, 7) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7) (0.9, 1.0, 1.0) (0.3, 0.5, 0.7)
A7 (7, 9, 10) (7, 9, 10) (7, 9, 10) (5, 7, 9) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9)
A8 (3, 5, 7) (5, 7, 9) (3, 5, 7) (7, 9, 10) (0.3, 0.5, 0.7) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7) (0.7, 0.9, 1.0)
A9 (5, 7, 9) (5, 7, 9) (3, 5, 7) (9, 10, 10) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7) (0.9, 1.0, 1.0)
A10 (7, 9, 10) (7, 9, 10) (3, 5, 7) (7, 9, 10) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.3, 0.5, 0.7) (0.7, 0.9, 1.0)

Table 9.12 The advantage and disadvantage of the assets

Assets Advantage Disadvantage

C1 C2 C3 C4 C1 C2 C3 C4

A1 2.95 0.4 0.4 0 0.2 2.15 3.3 4.4
A2 2.95 3.75 1.8 1.2 0.2 0 1.2 1.6
A3 4.75 3.75 1.8 0 0 0 1.2 4.4
A4 0 0.4 1.8 3.3 4.75 2.15 1.2 0.2
A5 0 2.15 0 1.2 4.75 0.4 4.9 1.6
A6 1.2 0 0 0 1.95 5.75 4.9 4.4
A7 2.95 2.15 0.4 1.2 0.2 0.4 3.3 1.6
A8 0 0.4 4.6 3.3 4.75 2.15 0 0.2
A9 1.2 0.4 4.6 5.1 1.95 2.15 0 0
A10 2.95 2.15 4.6 3.3 0.2 0.4 0 0.2

It may be noted that the FP score of the asset A6 is 0. The asset A6 is
least preferable to the given investor in comparison to the other assets on
the criteria C2, C3 and C4 (see the ratings in the columns 3, 4 and 5 of the
Table 9.11). By considering investor preferences for the asset A6 on all the
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Table 9.13 The strength and weakness of the assets

Assets Fuzzy strength Fuzzy weakness Strength using fuzzy Weakness using fuzzy
strength & fuzzy weakness strength & fuzzy weakness

A1 (2.115, 2.825, 3.455) (5.665, 7.46, 8.71) 19.375 109.75
A2 (6.47, 8.035, 9.045) (1.42, 2.02, 2.5) 126.0475 7.92
A3 (7.01, 8.695, 9.825) (2.16, 3.28, 4.28) 116.445 10.32
A4 (2.61, 3.67, 4.51) (5.21, 6.655, 7.765) 28.75 87.875
A5 (2.295, 2.75, 2.99) (6.645, 8.935, 10.695) 13.025 135.15
A6 (0.6, 0.84, 1.08) (10.9, 13.725, 15.485) 0 252.375
A7 (4.05, 5.175, 6.045) (3.25, 4.31, 5) 62.1575 44.2825
A8 (4.57, 6.19, 7.31) (4.37, 5.575, 6.565) 58.6575 47.7825
A9 (5.71, 7.93, 9.65) (2.91, 3.515, 3.905) 101.65 14.775
A10 (7.62, 10.005, 11.715) (0.52, 0.64, 0.72) 184.125 0

Table 9.14 FP scores of the assets

Assets FP scores Normalized scores

A1 0.1500 0.0280
A2 0.9409 0.1758
A3 0.9186 0.1716
A4 0.2465 0.0461
A5 0.0879 0.0164
A6 0 0
A7 0.5840 0.1091
A8 0.5511 0.1030
A9 0.8731 0.1631
A10 1.0000 0.1868

four criteria, its fuzzy strength turns out to be the least and its fuzzy weakness
becomes the highest in comparison to the other assets (see columns 2 and 3
of the Table 9.13).

9.4.3 Asset Allocation

This stage concerns the choice of combination of the assets to build portfolios
that manage the trade-off between financial goal and ethical goal correspond-
ing to investor preferences.

We use each asset’s normalized FP score (see Table 9.14), EP score (see
Table 9.7), β = 0.1, γ = 1.5 to construct the portfolio selection problem
P(9.1).
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max Z(x) = 0.0280x1 + 0.1758x2 + 0.1716x3 + 0.0461x4 + 0.0164x5

+0x6 + 0.1091x7 + 0.1030x8+ 0.1631x9 + 0.1868x10

subject to

0.0792x1 + 0.1104x2 + 0.2313x3 + 0.0297x4 + 0.1117x5 + 0.0621x6

+0.0899x7 + 0.0483x8+ 0.0606x9 + 0.1766x10 ≥ 0.1 ,
−x1 ln x1 − x2 ln x2 − x3 ln x3 − x4 ln x4 − x5 ln x5 − x6 ln x6

−x7 ln x7 − x8 ln x8 − x9 ln x9 − x10 ln x10 ≥ 1.5 ,
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 = 1 ,
xi ≥ 0 , i = 1, . . . , 10 .

The portfolio selection strategy is obtained by solving the above model us-
ing LINGO 12.0. The corresponding computational results are presented in
Table 9.15. We can see from the results that the capital is allocated compar-
atively more to the assets A2, A3, A9 and A10 whose FP scores are high and
EP scores are within acceptable limits. Also, the portfolio is comparatively
dispersed since all the assets received some proportion of the capital.

Table 9.15 The proportions of the assets in the obtained portfolio

Allocation

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Portfolio 0.00108 0.24061 0.20635 0.0021 0.00071 0.00039 0.02098 0.01678 0.1512 0.3598

Table 9.16 Portfolio selection corresponding to the different preset entropy values
at β = 0.1

Allocation

Entropy Financial A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

γ goal

0.50000 0.18507 0 0.09019 0.03805 0 0 0 0 0 0.00664 0.86512

1.00000 0.18175 0 0.19069 0.11995 0 0 0 0.00012 0.00006 0.04693 0.64225

1.50000 0.17374 0.00108 0.24061 0.20635 0.0021 0.00071 0.00039 0.02098 0.01678 0.1512 0.3598

2.00000 0.15044 0.02573 0.19087 0.1803 0.03288 0.02198 0.0176 0.07726 0.07113 0.16068 0.22157

2.30258 0.10021 0.09967 0.10035 0.10033 0.09975 0.09962 0.09954 0.10004 0.10001 0.10029 0.1004
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If the investor is not satisfied with diversification of the obtained portfolio,
more portfolios can be generated by varying the preset entropy value γ in
the above problem, see the computational results listed in Table 9.16. It can
be seen from the results that when the preset entropy value is increased, the
allocation of the capital becomes more diverse. When the preset entropy value
is 0.5, the capital is only allocated to the four assets, i.e., A2, A3, A9 and A10;
when the preset entropy value is 2.30258, the capital is almost uniformly
allocated to all the 10 assets. This implies that a higher entropy threshold
will ensure a more diversified investment. However, accompanied with more
diversified investment, the achievement level of the financial goal becomes
smaller, i.e., falls from 0.18507 to 0.10021, which is in line with risk-return
trade off.

Further, in order to understand the repercussions of the compromise
between financial and ethical criteria on investment decision, we present sen-
sitivity analysis w.r.t. changes in the β in the above problem. The compu-
tational results are listed in Table 9.17. Note that while investors seek to
maximize the overall financial goal, they also want to be sure of an accept-
able level of ethicality of the portfolio as well. However, subject to a given
level of entropy (thereby portfolio diversification) it can be achieved only up
to a particular level of ethicality after which the portfolio selection problem
becomes infeasible. Thus, the investor can realize the desired level of ethi-
cality by choosing an appropriate level of diversification of the portfolio. In
general, higher the entropy, lower the ethical score of portfolio and vice versa.

9.5 Comments

In this chapter, we have presented the following facts:

• A nonlinear optimization model based on the inputs from Fuzzy-MCDM
and Fuzzy-AHP techniques has been introduced to attain the convergence
of ethicality and financial optimality in portfolio selection.

• Fuzzy-MCDM has been used for determining the overall financial quality
score of each asset with respect to four key financial criteria: short term
return, long term return, risk and liquidity.

• Fuzzy-AHP has been used to measure the EP score of each asset with
respect to the ethical criteria.

• A nonlinear optimization model has been used to obtain portfolios that
reflect investor preferences for financial quality and the desired level of
ethicality in portfolio construction.
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• Portfolio diversification as captured in the entropy constraint function has
been used as the pivot for attaining the convergence of the twin consider-
ations under the contemplation of the investors.

• The computational results based on real-world data have been provided to
demonstrate the effectiveness of the proposed methodology for ethicality
and financial optimality issues in portfolio selection.

• The main advantage of the portfolio selection approach is that if the in-
vestor is not satisfied with the financial quality of the portfolio obtained,
more portfolios can be generated by varying the preset entropy threshold
in the optimization model. Likewise, if the investor is not satisfied with
the ethicality of the portfolio obtained, more portfolios can be generated
by varying the preset ethical threshold in the model.



Chapter 10

Multi-criteria Portfolio Optimization
Using Support Vector Machines and
Genetic Algorithms

Abstract. Given that not all the assets available in the market are appro-
priate for a given investor, it is desirable to stratify these assets into different
classes on the basis of some predefined characteristics. Furthermore, using in-
vestor preferences, one needs to select some good quality assets from a given
class to build an optimal portfolio. The focus of this chapter is to present a
hybrid approach to portfolio selection using investor preferences in terms of
selection of assets from a particular class that suits the given investor-type.
The support vector machine (SVM) with radial basis function kernel is used
to classify the assets into three classes. The optimal portfolio selection is
achieved using a model that is based on four financial criteria: short term
return, long term return, risk, and liquidity. A real coded genetic algorithm
(RCGA) is designed to solve the portfolio selection model.

10.1 Overview of Support Vector Machines

SVMs is a machine-learning technique based on statistical learning theory.
An important property that made SVMs a promising tool is their implemen-
tation of structural risk minimization which aims to minimize a bound on
the generalization error rather than on the empirical error. SVMs attempts
to construct an optimal separating hyperplane by transforming a nonlinear
object into a high dimension feature space and thus gives a good generaliza-
tion performance on a wide range of problems, such as text categorization
[67], pattern recognition [99] and bioinformatics [122]. The details on SVMs
can be found in [14, 22]. The SVMs have been successfully used in several
financial applications such as stock selection, credit rating, time series pre-
diction, insurance claim fraud detection, corporate credit rate prediction and
bankruptcy prediction, see [31, 52, 69, 80, 111, 114, 117].

We briefly describe the basic SVMs concepts for typical two-class classifi-
cation problems. In SVMs technique, the main aim of an SVM classifier is to
determine the decision boundary or hyperplane that optimally separates two

P. Gupta et al., Fuzzy Portfolio Optimization, 283
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classes of input data points. Consider a training set of instance-label pairs
(xi, yi), i = 1, 2, . . . ,m where xi ∈ Rn and yi ∈ {−1,+1}. Suppose we have a sep-
arating hyperplane w.x + b = 0 that separates the positive from the negative
examples, i.e., the two classes. Here,

• w is the normal vector of the hyperplane and b is the bias value.

•
| b |
‖ w ‖ is perpendicular distance from the hyperplane to the origin and ‖ w ‖
is the Euclidean norm of w.

Let d+(d−) be the shortest distance from the separating hyperplane to the
closest positive (negative) example called support vectors. The ‘margin’ of
a separating hyperplane is defined to be d+ + d−. Thus, the margin is the
width that the boundary could have before hitting a data point. With an aim
of minimizing the chances of misclassification, the support vector algorithm
looks for the separating hyperplane with largest margin; thus, resulting in
orientation of the separating hyperplane in such a way as to be as far as
possible from the closest members of both the classes.

1: . + = +1 

2: . + = 1 + = 1. + = 0 

Margin

X1 

X2 

denotes +1

denotes -1

Support Vectors

Fig. 10.1 Linear separating hyperplanes for the separable case

Referring to Fig. 10.1, it can be seen that a SVM is implemented by choos-
ing a scale for the variables w and b so that the training data can be described
by

〈w.xi〉 + b ≥ +1 for yi = +1 , (10.1)

〈w.xi〉 + b ≤ −1 for yi = −1 . (10.2)
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The inequalities (10.1) and (10.2) can be combined into the following set of
inequalities:

yi(〈w.xi〉 + b) − 1 ≥ 0, i = 1, 2, . . . ,m. (10.3)

If we now just consider the points that lie closest to the separating hyperplane,
i.e., the support vectors (shown in circles in Figure 10.1), then the two planes
H1 and H2 on which these points lie can be described by

〈w.xi〉 + b = +1 forH1 , (10.4)

〈w.xi〉 + b = −1 forH2 . (10.5)

For a hyperplane which is equidistant from H1 and H2, d+ = d− =
1

‖ w ‖ and

the margin d++d− =
2

‖ w ‖ . The SVM finds an optimal separating hyperplane

with the maximum margin by solving the following quadratic optimization
problem:

min
w,b

1
2

wT.w

subject to

yi(〈w.xi〉 + b) − 1 ≥ 0, i = 1, 2, . . . ,m. (10.6)

The above problem can be solved by solving the corresponding Lagrangian.
Let the Lagrange multipliers α ∈ Rm, where αi ≥ 0, i = 1, 2, . . . ,m be chosen
to formulate the Lagrangian

LP(w, b, α) =
1
2

wT.w −
m∑

i=1

αi(yi(〈w.xi〉 + b) − 1). (10.7)

We must now minimize LP with respect to w and b. This is equivalent to
solve the ‘dual’ problem: maximize LD subject ∇w,b Lp(w, b, α) = 0 and αi ≥
0, i = 1, 2, . . . ,m. This particular dual formulation of the problem is called the
Wolfe dual [34]. We have ∇w,b Lp(w, b, α) = 0 implies

∂LP

∂w
= 0 ⇒ w =

m∑

i=1

αi yixi , (10.8)

∂LP

∂b
= 0 ⇒

m∑

i=1

αi yi = 0 . (10.9)

Substituting (10.8) and (10.9) in (10.7), the following dual formulation is
obtained
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max
α

LD(α) =
m∑

i=1

αi − 1
2

m∑

i, j=1

αiα j yiyj〈xi.xj〉

subject to

αi ≥ 0, i = 1, . . . ,m , (10.10)
m∑

i=1

αi yi = 0. (10.11)

To find the optimal hyperplane, the dual Lagrangian LD(α) must be max-
imized with respect to α. This is a quadratic optimization problem that
can be solved by using some standard optimization method. The solution
αi, i = 1, 2, . . . ,m for the dual optimization problem determines the param-
eters w∗ and b∗ of the optimal hyperplane. The following optimal decision
hyperplane f (x, α∗, b∗) is obtained along with an indicator decision function
sign[ f (x, α∗, b∗)].

f (x, α∗, b∗) =
m∑

i=1

yiα
∗
i 〈xi.x〉 + b∗ . (10.12)

The above concepts can also be extended to the non-separable case (see Fig-
ure 10.2). The goal is to construct a hyperplane that makes the smallest num-
ber of errors. For this purpose, we introduce the non-negative slack variables
ξi ≥ 0, i = 1, . . . ,m such that

〈w.xi〉 + b ≥ +1 − ξi for yi = +1 ,
〈w.xi〉 + b ≤ −1 + ξi for yi = −1 .

If errors happen to the classification of training data then ξi will be larger

than zero. Thus, a lower

m∑

i=1

ξi is preferred when determining the separating

hyperplane. For this purpose, a penalty parameter C > 0 is added to control
the allowable error ξi and thus the new quadratic optimization problem is
obtained as

min
w,b,ξ

1
2

wT.w + C
m∑

i=1

ξi

subject to

yi(〈w.xi〉 + b) + ξi − 1 ≥ 0, ξi ≥ 0, i = 1, . . . ,m. (10.13)

To solve the above model, we again take recourse to duality theorem. Thus,
we maximize the Lagrangian LD(α) as in the separable case,
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Fig. 10.2 Linear separating hyperplanes for the non-separable case

max
α

LD(α) =
m∑

i=1

αi − 1
2

m∑

i, j=1

αiα j yiyj〈xi.xj〉

subject to

0 ≤ αi ≤ C, i = 1, . . . ,m, (10.14)
m∑

i=1

αi yi = 0. (10.15)

The penalty parameter C, which is now the upper bound on αi, i = 1, 2, . . . ,m,
is determined by the user. Finally, the optimal decision hyperplane is obtained
as in (10.12).

When a linear boundary is inappropriate, the nonlinear SVM can map the
input vector into a high dimensional feature space via a mapping function
Φ, which is also called kernel function. In the dual Lagrange (see (10.10)-
(10.11)), the inner products are replaced by the kernel function as follows:

〈Φ(xi).Φ(xj)〉 = K(xi, xj).
Now, the nonlinear SVM dual Lagrangian LD(α) is obtained as follows:

max
α

LD(α) =
m∑

i=1

αi − 1
2

m∑

i, j=1

αiα j yiyjK(xi, xj)

subject to

Constraints (10.14) − (10.15).
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The above optimization model can be solved using the method for solving
the optimization model in the separable case. Now, the optimal hyperplane
has the following form:

f (x, α∗, b∗) =
m∑

i=1

yiα
∗
i 〈Φ(xi).Φ(x)〉+ b∗

=

m∑

i=1

yiα
∗
i K(xi, x) + b∗.

Depending upon the choice of kernel, the bias b can form an implicit part of
the kernel function. Therefore, if a bias term can be accommodated within the
kernel function then the nonlinear support vector classifier can be obtained
as

f (x, α∗, b∗) =
m∑

i=1

yiα
∗
i 〈Φ(xi).Φ(x)〉 =

m∑

i=1

yiα
∗
i K(xi, x).

The detailed discussion on kernel functions can be found in [14]. Some com-
monly used kernel functions include polynomial, radial basis function (RBF)
and sigmoid kernel, which are given as under.

Polynomial kernel:
K(xi, xj) = (1 + xi.xj)d

RBF kernel:
K(xi, xj) = exp(−γ ‖ xi − xj ‖2)

Sigmoid kernel:
K(xi, xj) = tanh(kxi.xj − δ)

Note that the classification accuracy improves if the kernel parameters in the
above kernel functions are chosen properly.

10.2 Multiobjective Portfolio Selection Model

In this section, we formulate portfolio selection problem as an optimization
problem with multiple objectives assuming that the investor allocate his/her
wealth among n assets that offer random rates of return. We introduce some
notation as follows:

10.2.1 Notation

ri: the expected rate of return of the i-th asset ,

xi: the proportion of the total funds invested in the i-th asset ,
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yi: a binary variable indicating whether the i-th asset is contained in the
portfolio, where

yi =

⎧⎪⎪⎨⎪⎪⎩
1, if i-th asset is contained in the portfolio ,

0, otherwise ,

r12
i : the average performance of the i-th asset during a 12-month period ,

r36
i : the average performance of the i-th asset during a 36-month period ,

rit: the historical return of the i-th asset over the past period t ,

ui: the maximal fraction of the capital allocated to the i-th asset ,

li: the minimal fraction of the capital allocated to the i-th asset ,

Li: the turnover rate of the i-th asset ,

h: the number of assets held in the portfolio ,

T: the total time span .

We consider the following objective functions and constraints in the mul-
tiobjective portfolio selection problem.

10.2.2 Objective Functions

Short Term Return
The short term return of the portfolio is expressed as

f1(x) =
n∑

i=1

r12
i xi ,

where r12
i =

1
12

12∑

t=1

rit , i = 1, 2, . . . , n; rit is determined from the historical

data.

Long Term Return
The long term return of the portfolio is expressed as

f2(x) =
n∑

i=1

r36
i xi ,

where r36
i =

1
36

36∑

t=1

rit , i = 1, 2, . . . , n.
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Risk
The portfolio risk using semi-absolute deviation measure is expressed as

f3(x) = w(x) =
1
T

T∑

t=1

wt(x) =
T∑

t=1

∣∣∣∣∣∣∣

n∑

i=1

(rit − ri)xi

∣∣∣∣∣∣∣
+

n∑

i=1

(ri − rit)xi

2T
.

Liquidity
The portfolio liquidity is expressed as

f4(x) =
n∑

i=1

Lixi .

10.2.3 Constraints

Capital budget constraint on the assets is expressed as

n∑

i=1

xi = 1 .

Maximal fraction of the capital that can be invested in a single asset is ex-
pressed as

xi ≤ ui yi , i = 1, 2, . . . , n .

Minimal fraction of the capital that can be invested in a single asset is ex-
pressed as

xi ≥ li yi , i = 1, 2, . . . , n .

Number of assets held in the portfolio is expressed as

n∑

i=1

yi = h .

No short selling of assets is expressed as

xi ≥ 0 , i = 1, 2, . . . , n .
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10.2.4 The Decision Problem

The multiobjective mixed integer nonlinear programming problem for port-
folio selection is formulated as follows:

P(10.1) max f1(x) =
n∑

i=1

r12
i xi

max f2(x) =
n∑

i=1

r36
i xi

min f3(x) = w(x) =
T∑

t=1

∣∣∣∣∣∣∣

n∑

i=1

(rit − ri)xi

∣∣∣∣∣∣∣
+

n∑

i=1

(ri − rit)xi

2T

max f4(x) =
n∑

i=1

Lixi

subject to
n∑

i=1

xi = 1 , (10.16)

n∑

i=1

yi = h , (10.17)

xi ≤ ui yi , i = 1, 2, . . . , n , (10.18)

xi ≥ li yi , i = 1, 2, . . . , n , (10.19)

xi ≥ 0 , i = 1, 2, . . . , n , (10.20)

yi ∈ {0, 1} , i = 1, 2, . . . , n . (10.21)

10.3 Numerical Illustration

Presented hereunder are the results of an empirical study for which we have
relied on a data set of daily closing prices in respect of 150 assets listed on
the NSE, Mumbai, India.

10.3.1 Asset Classes

We use the following three classes of assets as discussed in Section 7.5.1 of
chapter 7.

(i) Class 1: Liquid assets
Assets in class 1 are categorized as liquid assets since mean value for liquidity
is the highest in this class. This class is typified by low but widely varying
returns.
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(ii) Class 2: High-yield assets
Assets in class 2 are categorized as high-yield ones since they have rather high
returns. On the expected lines of risk-return relationship, these assets also
show high standard deviation. Although, investors may profit from the high
returns, they also have to endure the high risk. These assets have low liquidity
amongst all the three classes indicating that high-yielding investment involves
a longer time horizon.

(iii) Class 3: Less-risky assets
Assets in class 3 are categorized as less-risky assets since compared to other
classes, these assets have the lowest standard deviation for the class. The
return is not high but medium. The liquidity is medium too.

10.3.2 Classification of Assets Using SVM

We use LIBSVM software [16] to perform multiclass SVM experiments. To al-
low for multiclass classification, LIBSVM uses one-against-one approach, see
[16]. We split the data into two subsets: a training set of 60%(data of 90 as-
sets) and a testing set of 40%(data of 60 assets) of the total data (data of 150
assets), respectively. Consider three evaluation indices to perform classifica-
tion, namely, asset returns (the average 36-month performance of the assets),
standard deviation and liquidity. Out of all available kernels for SVM, the
advantage of using the linear kernel SVM is that there are no parameters to
tune except for constant C, but it affects the prediction performance for the
cases where the training data is not separable by a linear SVM [25]. For the
nonlinear SVM, there is an additional parameter, the kernel parameter, to
tune. As discussed in Section 10.1, there are three commonly kernel functions
for nonlinear SVM, namely, the RBF, the polynomial and the sigmoid kernel.
The RBF kernel nonlinearly maps the samples into a higher dimension space
unlike the linear kernel, so it can handle the case when the relation between
class labels and attributes is nonlinear. Furthermore, the linear kernel is a spe-
cial case of RBF. In addition, the sigmoid kernel behaves like RBF for certain
parameters, however, it is not valid under some parameters. The polynomial
kernel takes a longer time in the training stage of SVM and it is reported
to provide worse results than the RBF kernel, see [52, 114]. We, therefore,
use the RBF kernel SVM as the default model. There are two parameters
associated with the RBF kernel, C and γ. It is not known beforehand which
values of C and γ are the best for one problem; consequently, some kind of
model selection (parameter search) approach must be employed. We conduct
a gridsearch to find the best values of C and γ using 10-fold cross validation.
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10-fold cross validation is a technique used to test how well a model adapts
to fresh, previously unseen data. The procedure for 10-fold cross validation
is as follows:

Step 1: Use a random sampling procedure to split the entire training set
into 10 sub-samples. Lets call these samples S1, S2, . . . , S10.

Step 2: As a first step, remove sample S10 from the training set.
Step 3: Train machine learning algorithm using data from samples S1 to

S9.
Step 4: Once the machine has built a model based on data from samples

S1 to S9, it sees how accuratly the model predicts the unseen
data of S10. Error rates are stored by the system.

Step 5: Once the accuracy of predicting the values in S10 is tested, put
S10 back into the training set.

Step 6: Repeat Steps 2 to 5 by removing samples S1, S2, . . . , S9 one at a
time.

At the end of the sequence, the 10 results from the folds can be averaged to
produce a single estimation of the model’s predictive potential. A big advan-
tage of the 10-fold cross validation method is that all observations are used
for both training and validation, and each observation is used for validation
exactly once. This leads to a more accurate way to measure how efficiently
the algorithm has ‘learned’ a concept, based on training data set.

The SVM experiments are conducted with different pairs of (C,γ) and
the one with the best cross validation accuracy is selected. Note that cross
validation procedure can prevent the overfitting problem. It is well estab-
lished that trying exponentially growing sequences of C and γ is a practical
method to identify good parameters, for example, C = 222, 223, . . . , 228, γ =
2−5, 2−3, 2−1, 21. After conducting the grid-search on the training data, we
find that the optimal (C,γ) is (225, 2−3 ) with the cross-validation rate of
97.7528%(see Figure 10.3). Table 10.1 summarizes the results of the grid-
search. After obtaining the optimal (C,γ), the SVM classifier is built for the
training data. The testing data is then input to the SVM classifier and the
prediction accuracy is found to be 91.6666%. The classification confusion ma-
trix containing information about actual and predicted classifications done
by the obtained SVM classifier, is presented in Table 10.2.

The 21 financial assets classified in class 1, 20 financial assets classified in
class 2 and 19 financial assets classified in class 3 comprise the population
for the three classes. We construct a portfolio comprising 7 assets with the
corresponding upper and lower bounds of capital budget allocation. Table
10.3 provides the input data corresponding to the short term return, long
term return, risk and liquidity of assets in classes 1, 2 and 3.
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Best log2 (C) = 25.0      log2 (gamma) = -3.0  accuracy = 97.7528%

C = 33554432.0    gamma = 0.125

22 23 24 25 26 27 28
-5

-4

-3

-2

-1

0

1

log2 (C)

log2 (gamma)

97.5
97

96.5
96

95.5
95

Fig. 10.3 Grid-search using C = 222, 223, . . . , 228, γ = 2−5, 2−3, 2−1, 21

Table 10.1 The results of grid-search

C γ

2−5 2−3 2−1 21

222 93.2584 94.382 93.2584 89.8876
223 94.382 94.382 93.2584 89.8876
224 93.2584 96.6292 93.2584 89.8876
225 95.5056 97.7528 93.2584 89.8876
226 94.382 96.6292 93.2584 89.8876
227 92.1348 96.6292 93.2584 89.8876
228 94.382 96.6292 93.2584 89.8876

Table 10.2 Classification confusion matrix for test data

Actual Predicted

Class 1 Class 2 Class 3

Class 1 20 1 2
Class 2 1 19 1
Class 3 0 0 16

Total 21 20 19
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10.3.3 Real Coded GA to Solve Portfolio Selection
Model

To construct optimum portfolio for a given investor, one needs to pick the
assets from the suitable class as per investor preferences and find the best
combination of assets according to the portfolio selection model P(10.1) dis-
cussed in Section 10.2.4.

Genetic algorithms (GAs) were proposed by Holland [51] and since then
have been well developed and documented in the literature. The financial
application of GA is growing with successful applications in trading system
[21, 24], portfolio selection [19, 76, 83], bankruptcy prediction [70], credit
evaluation [118] and budget allocation [98]. Here, we use RCGA. The ba-
sic difference between the conventional GA and RCGA is how the encoding
of chromosomes is performed. Coding of the variables is essential for an ef-
ficient GA. The RCGA, which uses real numbers for encoding, converges
more quickly toward optima than GA. It also overcomes the difficulty of the
Hamming cliff, which may arise in the conventional GA when the Hamming
distance (which is defined in binary coding in conventional GA) between two
adjacent integers (in decimal code) is very large. In such cases, a large number
of bits must be altered to change an integer to the adjacent one, which causes
a reduction in the efficiency of conventional GA. An overview of conventional
GA is given below.

To solve a problem with GA, an encoding mechanism must first be de-
signed to represent each solution as a chromosome. A fitness function is then
defined to measure the goodness of a chromosome. The GA searches the so-
lution space using a population, which is a set of chromosomes at each gener-
ation. During each generation, the three genetic operators, namely, selection,
crossover and mutation are applied to the population several times to form
a new population. The selection operation forms a parent population that is
used for creating the next generation. Given a crossover rate, the crossover
operation recombines the two selected chromosomes to form offspring. Given
a mutation rate, the mutation operation randomly alters selected positions in
a selected chromosome. The new population is then generated by replacing
some chromosomes in the parent population with the offspring. This process
is repeated until some termination condition, e.g., a maximum number of
generations, is reached.

Following are the details of RCGA used to solve the model P(10.1).

• Chromosome encoding
A gene in a chromosome is characterized by two factors: Locus (i.e., the posi-
tion of the gene located within the structure of chromosome) and allele (i.e.,
the value the gene takes). In the proposed encoding method, the length of
the chromosome is taken to be n, same as the number of available assets
in the class for which optimal portfolio is being obtained. Let the solution
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x = (x1, x2, . . . , xn) be represented by the chromosome Chk which is encoded
as an array, as follows:

Chk = Xk[i] = xi, i = 1, 2, . . . , n, k = 1, 2, . . . , popsize.

Here, popsize defines the number of chromosomes initialized to constitute
population of one generation. In this encoding method, the position of the
gene xi, for i = 1, 2, . . . , n, is used to represent the ID number of the asset
and the gene’s value is used to represent the corresponding proportion of the
total funds invested in the i-th asset. The initialization algorithm to create
first generation of chromosomes of size popsize is as follows:

Step 1: For k = 1 to popsize, repeat Step 2 to Step 4.
Step 2: Randomly select h assets out of the n available assets for initial-

ization to satisfy the cardinality constraint (10.17).
Step 3: For i = 1 to n, repeat Step 4.
Step 4: If the i-th asset has been selected in Step 2, then assign yi = 1

and randomly generate xi ∈ [liyi, uiyi], i.e., xi ∈ [li, ui]; otherwise,
assign yi = 0 and hence xi = 0. Thus, Xk[i] = xi. This step ensures
the constraints (10.18)-(10.21) are satisfied.

• Fitness evaluation
The fitness evaluation function must consider all the desired objective func-
tions and make rational trade-offs among them. The only constraint of the
model P(10.1) that is not incorporated in the chromosome design is the cap-
ital budget constraint (10.16). To design the fitness function, this constraint
is incorporated in the RCGA process by assigning a penalty P to the infeasi-
ble chromosomes. The penalty parameter is used to apply sufficient selective
pressure on the fitness function to avoid infeasible chromosomes. In the case
of no violation of the capital budget constraint, the penalty parameter P will
be zero; it is positive otherwise. It may be noted that if the penalty is too
high or too low, then the problem might become very difficult for the GA
to solve. At the beginning of the search process, a large penalty discourages
the exploration of the infeasible region. Conversely, if the penalty is too low,
significant search time (generations) will be spent exploring the infeasible
region because the penalty will be negligible compared with the objective
function(s). It has been observed in the literature that penalties that are
functions of the distance from feasibility (the completion cost) perform bet-
ter. The selection of appropriate penalty is vital for faster convergence and
more precision. However, it is difficult to determine an appropriate penalty
parameter that is problem specific. We use a static penalty in which the
penalty parameter remains constant during the entire RCGA process. Let

f5(x) =

∣∣∣∣∣∣∣

n∑

i=1

xi − 1

∣∣∣∣∣∣∣
.
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The penalty levied on the infeasible chromosomes is

P =

⎧⎪⎪⎨⎪⎪⎩
104 ∗ f5(x), if f5(x) > 10−3,

0, otherwise.

Since the model P(10.1) is a multiobjective programming problem, we use
weighted sum approach to combine multiple objective functions into a single
composite function. Thus, the resulting fitness function f itk corresponding to
chromosome Chk, where k = 1, 2, . . . , popsize, is defined as weighted sum of the
objective functions of model P(10.1) with a penalty parameter for infeasible
chromosomes as follows:

f itk = w1 f1(x) + w2 f2(x) − w3 f3(x) + w4 f4(x) − P ,

where wj > 0, j = 1, 2, 3, 4 such that

4∑

j=1

wj = 1, is the weight given to the j-th

objective function, highlighting the relative importance of a particular objec-
tive in a given class. The objective is now to find the solution chromosome
Chk corresponding to the optimum (maximum value) of the fitness function
f itk.

• Elitism
To preserve and use the previously determined best solution in subsequent
generations, an elite-preserving operator is often used. In addition to an over-
all increase in performance, there is another advantage of using elitism. In an
elitist GA, the statistics of the population of best solutions cannot degrade
with generations. The elite count (t) indicates the number of individuals that
are guaranteed to be included in the next generation without the selection,
crossover and mutation operations being performed. We use t = 1 to retain
the fittest individual of the current population when constructing the popu-
lation for the next generation.

• Selection
The selection method determines how chromosomes are selected from the cur-
rent population to be considered parents for the crossover operation. The goal
of the selection(reproduction) operator is to choose individuals that, on aver-
age, are more fit than others to pass their genes to the next generation. We
employ 4-player tournament selection as a selection mechanism. Four individ-
uals are randomly selected and the individual with the highest fitness is se-
lected for the parent population. Recall that we already have one member of
the next generation as a result of performing the elitism operation. Let Ch′k,
where k = 2, 3, . . . , popsize, constitute the parent population that will yield the
remaining popsize − 1 members of the next generation after the crossover and
mutation operations are performed. The remaining popsize−1 chromosomes for
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the parent population are generated using the 4-player tournament selection
as follows:

Step 1: For k = 2 to popsize, repeat Step 2 to Step 5.
Step 2: Randomly generate four integers sel1, sel2, sel3, sel4 ∈ [1, popsize].

These represents the selection of chromosomes Chsel1 ,Chsel2 ,Chsel3 ,
Chsel4 for 4-player tournament selection.

Step 3: If f itsel1 ≥ f itsel2 , let m = sel1; otherwise, m = sel2.
Step 4: If f itsel3 ≥ f itsel4 , let t = sel3; otherwise, t = sel4.
Step 5: If f itm ≥ f itt, let Ch′k = Chm; otherwise, Ch′k = Cht.

• Crossover operator
The two parent chromosomes, if selected for mating pool, reproduce two child
chromosomes (offspring) using the crossover operation. The crossover prob-
ability pc ∈ (0, 1) represents the chance that the two selected chromosomes
will crossover. For each potential crossover, a random number between 0 and
1 is generated. If the number of selected chromosomes is odd, then the above
procedure is repeated until one more chromosome is selected or the number
of selected chromosomes becomes even. Standard crossover operators have a
high probability of violating the cardinality constraint (10.17) of the model
P(10.1). Thus, we use the shrinking crossover (SX) operator [19]. SX revises
the two-point crossover by moving the second crossover point leftward until
there are an equal number of selected assets between and including the two
crossover points for both the selected parents and then exchanging the gene
values of the parent chromosomes to produce offspring. The algorithm of the
SX operation is given below:

Step 1: For k = 2 to popsize, repeat Step 2.
Step 2: Randomly generate a real number r from the interval (0, 1). The

chromosome Ch′k is selected as a parent for crossover if r < pc.
Step 3: Denote the selected parents as S1, S2, . . . and divide them into

the following pairs: (S1, S2), (S3, S4), . . ..
Step 4: For each pair of selected parents, e.g., (S1, S2), randomly select

two positions a, b ∈ [1, n]. If a < b then pos1 = a and pos2 = b;
otherwise, pos1 = b and pos2 = a.

Step 5: Until S1 & S2 have an equal number of selected assets between
and including pos1 & pos2, repeat Step 6.

Step 6: pos2 = pos2 − 1.
Step 7: If pos1 = pos2 go to Step 4; otherwise, go to Step 8.
Step 8: For i = pos1 to pos2, repeat Step 9 to Step 11.
Step 9: temp = S1[i].
Step 10: S1[i] = S2[i].
Step 11: S2[i] = temp.

Figure 10.4 depicts the SX operation between two randomly generated
positions, pos1=14 and pos2=18, for the selected parents. Here, pos1=14 cor-
responds to asset A14 having proportions of the total funds x14=0.1463 and
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x14=0.1231 for the first and the second parents, respectively. pos2=18 corre-
sponds to asset A18 having proportions of the total funds x18=0.2749 and
x18=0 for the first and the second parents, respectively. Because these two
positions do not have the same number of selected assets for both the parents,
pos2 is shifted left. Finally, two-point crossover occurs between pos1=14 and
pos2=17 when the number of selected assets between and including the two
positions stated above matches for both the parents.

        A1                      A14              A15           A16             A17             A18           A19    A20 
.0872 ---  .1463 0 .0915 .1187 .2749 0 0   

  
 
   0  --

- 
.1231 .2314 0 .0821 0 0 .09374 

       

 

.0872 --- .1231 .2314 0 .0821 .2749 0 0    

   0 --- .1463 0 .0915 .1187 0 0 .09374 

Crossover 

Parents 

Offspring 

Fig. 10.4 Shrinking crossover operation

It may be noted that even after each crossover operation, the feasibility of
the chromosomes is retained. Note that all the parents that are not selected
for the crossover operation will be retained in the population for the next
generation.

• Mutation operator
Out of several available mutation operators, we use a variant of swap muta-
tion to ensure that the constraints (10.17)-(10.21) of model P(10.1) are not
violated. Given some probability of mutation pm ∈ (0, 1), a chromosome is
selected for the process of mutation. The mutation process is summarized as
follows:

Step 1: Set k = 2.
Step 2: If k <= popsize, go to Step 3; otherwise, stop.
Step 3: Randomly generate a real number r from the interval (0, 1). If

r < pm, select the chromosome Ch′k for mutation and go to Step
4; otherwise, k = k + 1 and go to Step 2.

Step 4: Randomly select two positions, pos1, pos2 ∈ [1, n].

(a) If ypos1 = 0 and ypos2 = 0, k = k + 1 and go to Step 2.
(b) If ypos1 = 0 and ypos2 = 1 then

a. Swap the information about asset allocation, i.e., ypos1 =
1 and ypos2 = 0.
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b. xpos2 = 0 corresponding to ypos2 = 0.
c. Regenerate xpos1 ∈ [lpos1 ypos1 , upos1 ypos1 ], i.e., xpos1 ∈ [lpos1 ,

upos1 ] corresponding to ypos1 = 1.
(c) If ypos1 = 1 and ypos2 = 0 then

a. Swap the information about asset allocation, i.e., ypos1 =
0 and ypos2 = 1.

b. xpos1 = 0 corresponding to ypos1 = 0.
c. Regenerate xpos2 ∈ [lpos2 ypos2 , upos2 ypos2 ], i.e., xpos2 ∈ [lpos2 ,

upos2 ] corresponding to ypos2 = 1.
(d) If ypos1 = 1 and ypos2 = 1 then regenerate xpos1 ∈ [lpos1 ypos1 ,

upos1 ypos1 ], i.e., xpos1 ∈ [lpos1 , upos1 ] and xpos2 ∈ [lpos2 ypos2 , upos2 ypos2 ],
i.e., xpos2 ∈ [lpos2 , upos2 ].

Figure 10.5 depicts the process of modified swap mutation in a selected
chromosome with pos1=14 and pos2=16. Here, in the selected chromosome,
pos1=14 corresponds to asset A14 having a proportion of the total funds
x14=0.1231 and pos2=16 corresponds to asset A16 having a proportion of
the total funds x16=0. This implies that corresponding to the two selected
positions y14 = 1 and y16 = 0. After the information is swapped about the
asset allocation, we get y14=0 and y16=1. Thus, corresponding to y14=0 we
set x14=0 and corresponding to y16=1, we randomly regenerate x14 ∈ [l14, u14]
(for illustration purpose x14 ∈ [0.08, 0.3]) that takes a value x14=0.1753.

        A1                      A14              A15           A16             A17             A18           A19    A20 
 

 
 --
- 

.1231 
 

.2314 
 

0 
 

.0821 
 

.2749 
 

0 
 

0 
 

 

       

 
 

---  
 

.2314 
 

.1753 
 

.0821 
 

.2749 
 

0 
 

0 
 

 
Mutation 

Fig. 10.5 A variant of swap mutation operation

10.3.4 Asset Allocation

In what follows, we present experimental results. The RCGA is coded in C++
on a personal computer with 2.8 GHz Intel Core2Duo CPU and a 4 GB RAM.
The primary attributes of the problem instances solved are summarized in
Table 10.4.

• Class 1
Using the input parameters from Tables 10.3 and 10.4 corresponding to class
1, the multiobjective portfolio selection model is formulated as follows:



302 10 Multi-criteria Portfolio Optimization

Table 10.4 Primary attributes of the problem instances solved

Class 1 Class 2 Class 3

Length of a chromosome 21 20 19
(Number of assets)
Number of assets to be selected (h) 7 7 7
ui ,∀i 0.3 0.3 0.3
li ,∀i 0.08 0.08 0.08
w1 0.2 0.3 0.17
w2 0.25 0.35 0.23
w3 0.2 0.2 0.45
w4 0.35 0.15 0.15

max f1(x) = −0.06077x1 + 0.17239x2 + 0.02755x3 + 0.05613x4 + 0.06638x5

+0.06897x6 + 0.18109x7 + 0.05893x8 − 0.00300x9 + 0.15257x10

+0.14955x11 + 0.14446x12 + 0.05044x13 + 0.09697x14 + 0.00650x15

+0.18838x16 + 0.00488x17 + 0.07629x18 + 0.15397x19

+0.01637x20 − 0.03562x21

max f2(x) = 0.11213x1 + 0.15058x2 + 0.11744x3 + 0.10497x4 + 0.11670x5

+0.10548x6 + 0.20361x7 + 0.17278x8 + 0.09370x9 + 0.11504x10

+0.10050x11 + 0.15531x12 + 0.15601x13 + 0.08175x14

+0.10379x15 + 0.14987x16 + 0.09224x17 + 0.10131x18

+0.22522x19 + 0.12500x20 + 0.14412x21

min f3(x) = (6.46119x1 + 6.20732x2 + 4.90974x3 + 5.806900x4 + 6.29314x5

+5.87325x6 + 6.90162x7 + 6.97952x8 + 6.12055x9 + 4.94361x10

+5.73353x11 + 7.30630x12 + 6.07934x13 + 7.24465x14

+5.74783x15 + 6.09968x16 + 6.00977x17 + 4.46672x18

+7.87304x19 + 5.00413x20 + 6.34961x21)/36
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max f4(x) = 0.00610x1 + 0.00359x2 + 0.00309x3 + 0.00569x4 + 0.00936x5

+0.01679x6 + 0.01149x7 + 0.00633x8 + 0.00184x9 + 0.00243x10

+0.00570x11 + 0.04798x12 + 0.00938x13 + 0.01743x14

+0.00224x15 + 0.01596x16 + 0.01449x17 + 0.01333x18

+0.02748x19 + 0.00266x20 + 0.00080x21

subject to

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13

+x14 + x15 + x16 + x17 + x18 + x19 + x20 + x21 = 1 ,
y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 + y11 + y12 + y13

+y14 + y15 + y16 + y17 + y18 + y19 + y20 + y21 = 7 ,
xi ≤ 0.3yi , i = 1, 2, . . . , 21 ,
xi ≥ 0.08yi , i = 1, 2, . . . , 21 ,
xi ≥ 0 , i = 1, 2, . . . , 21 ,
yi ∈ {0, 1} , i = 1, 2, . . . , 21 .

Using w1 = 0.2, w2 = 0.25, w3 = 0.2 and w4 = 0.35, we obtain the desired port-
folio by employing the RCGA. Note that class 1 is of liquid assets, therefore,
the highest weightage (w4) is given to liquidity objective.

• Class 2
Using the input parameters from Tables 10.3 and 10.4 corresponding to class
2, the multiobjective portfolio selection model is formulated as follows:

max f1(x) = 0.07506x1 + 0.17499x2 + 0.15611x3 + 0.20095x4 + 0.07138x5

+0.33979x6 + 0.27290x7 + 0.07716x8 + 0.14934x9 + 0.11277x10

+0.15108x11 + 0.06771x12 + 0.19231x13 + 0.19926x14

+0.30955x15 + 0.17552x16 + 0.16299x17 + 0.08523x18

+0.11344x19 + 0.15496x20

max f2(x) = 0.16456x1 + 0.19277x2 + 0.21365x3 + 0.21710x4 + 0.19819x5

+0.40086x6 + 0.30831x7 + 0.17448x8 + 0.23202x9 + 0.27857x10

+0.27476x11 + 0.17132x12 + 0.14649x13 + 0.17984x14

+0.34733x15 + 0.29632x16 + 0.18133x17 + 0.229487x18

+0.17929x19 + 0.36700x20

min f3(x) = (7.61839x1 + 4.76400x2 + 5.70491x3 + 6.23081x4 + 6.40035x5

+9.54210x6 + 8.36534x7 + 4.39545x8 + 5.07153x9 + 7.85012x10

+7.07354x11 + 6.24403x12 + 7.71357x13 + 4.66028x14

+8.92113x15 + 6.16019x16 + 5.19704x17 + 7.45273x18

+5.52108x19 + 7.62776x20)/36
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max f4(x) = 0.00489x1 + 0.00031x2 + 0.00125x3 + 0.00123x4 + 0.00133x5

+0.00351x6 + 0.00240x7 + 0.00104x8 + 0.00234x9 + 0.00631x10

+0.00414x11 + 0.00179x12 + 0.00115x13 + 0.00059x14

+0.00104x15 + 0.00084x16 + 0.00008x17 + 0.00046x18

+0.00043x19 + 0.00042x20

subject to

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13

+x14 + x15 + x16 + x17 + x18 + x19 + x20 = 1 ,
y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 + y11 + y12 + y13

+y14 + y15 + y16 + y17 + y18 + y19 + y20 = 7 ,
xi ≤ 0.3yi , i = 1, 2, . . . , 20 ,
xi ≥ 0.08yi , i = 1, 2, . . . , 20 ,
xi ≥ 0 , i = 1, 2, . . . , 20 ,
yi ∈ {0, 1} , i = 1, 2, . . . , 20 .

Using w1 = 0.3, w2 = 0.35, w3 = 0.2 and w4 = 0.15, we obtain the de-
sired portfolio by employing the RCGA. Note that class 2 is of high-yield
assets, therefore, the highest weightages (w1 and w2) are given to return
objectives.

• Class 3
Using the input parameters from Tables 10.3 and 10.4 corresponding to class
3, the multiobjective portfolio selection model is formulated as follows:

max f1(x) = 0.09949x1 + 0.00614x2 + 0.14239x3 + 0.09360x4 + 0.09156x5

+0.11308x6 + 0.15842x7 + 0.15477x8 + 0.10980x9 + 0.10272x10

+0.11486x11 + 0.12789x12 + 0.14324x13 + 0.09095x14 + 0.09319x15

+0.08036x16 + 0.18872x17 + 0.17020x18 + 0.02793x19

max f2(x) = 0.13586x1 + 0.16622x2 + 0.14868x3 + 0.14382x4 + 0.16847x5

+0.14905x6 + 0.10491x7 + 0.19491x8 + 0.15926x9 + 0.14920x10

+0.12071x11 + 0.12385x12 + 0.13537x13 + 0.19162x14 + 0.13501x15

+0.13470x16 + 0.28212x17 + 0.25382x18 + 0.13964x19

min f3(x) = (4.19795x1 + 5.74022x2 + 4.443904x3 + 4.60141x4 + 3.61455x5

+5.45973x6 + 3.82595x7 + 5.41154x8 + 4.78747x9 + 3.42547x10

+4.05060x11 + 4.03797x12 + 3.99987x13 + 3.90462x14 + 4.35063x15

+4.30645x16 + 8.40087x17 + 10.29254x18 + 4.85847x19)/36
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max f4(x) = 0.00412x1 + 0.00088x2 + 0.0050x3 + 0.00201x4 + 0.00251x5

+0.00079x6 + 0.00470x7 + 0.00058x8 + 0.00547x9 + 0.00266x10

+0.00132x11 + 0.00085x12 + 0.00037x13 + 0.00040x14 + 0.00303x15

+0.00201x16 + 0.01378x17 + 0.01216x18 + 0.00066x19

subject to

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13

+x14 + x15 + x16 + x17 + x18 + x19 = 1 ,
y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 + y11 + y12 + y13

+y14 + y15 + y16 + y17 + y18 + y19 = 7 ,
xi ≤ 0.3yi , i = 1, 2, . . . , 19 ,
xi ≥ 0.08yi , i = 1, 2, . . . , 19 ,
xi ≥ 0 , i = 1, 2, . . . , 19 ,
yi ∈ {0, 1} , i = 1, 2, . . . , 19 .

Using w1 = 0.17, w2 = 0.23, w3 = 0.45 and w4 = 0.15, we obtain the desired
portfolio by employing the RCGA. Note that class 3 is of less-risky assets,
therefore, the highest weightage (w3) is given to risk objective.

We perform certain experiments to choose best parameter settings of the
RCGA parameters. We solve the model P(10.1) using different values of the
RCGA parameters. The parameters used and corresponding computational
results are given in Table 10.5. To compare the results, we use the relative
error (RE) index which is defined as follows:

RE = (Maximal fitness - Actual fitness)/Maximal fitness × 100%

where the maximal fitness is the maximum of the fitness values for all the
computational results obtained.

From Table 10.5, we see that the relative error corresponding to each
setting of parameters does not exceed 2%, which demonstrate that the
proposed RCGA is effective at setting the parameters. We use the

Table 10.5 Results corresponding to different settings of the RCGA parameters

pc pm popsize Generation runs Fitness Relative error (%)

0.3 0.05 50 3000 0.045824 1.5702
0.3 0.06 100 5000 0.046243 0.6702
0.35 0.06 50 3000 0.046045 1.0955
0.35 0.07 100 5000 0.045776 1.6733
0.4 0.07 50 5000 0.045906 1.3941
0.45 0.06 50 3000 0.04568 1.8795
0.45 0.07 100 5000 0.046555 0
0.5 0.07 50 3000 0.046434 0.2599
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parameter settings from Table 10.5 that correspond to the maximum
fitness, i.e., popsize = 100, pc = 0.45, pm = 0.07, generation runs = 5000 to run
the RCGA to obtain the optimal portfolio for the three classes. To further
demonstrate the efficiency of the algorithm, we performed 20 runs of RCGA
to check the stability of the solutions obtained. Solution statistics for the 20
runs are reported in Table 10.6. Figures 10.6-10.8 shows the sensitivity of the
maximum fitness attained in each RCGA run for all the three classes. The
best solution out of 20 RCGA runs has been reported in Table 10.7. Table 10.8
present proportions of the assets in the obtained portfolios. A comparison
of the solutions for the three classes listed in Table 10.7 highlights that if
investors are looking for high liquidity, they should invest in class 1 assets, i.e.,
liquid assets. The attainment level of liquidity of the portfolio build from class
1 assets is higher in comparison to class 2 and class 3, but it is accompanied
by a medium risk level. If investors are looking for returns, they should invest
in class 2 assets, i.e., high-yield assets. The attainment level of returns of the
portfolio build from class 2 is higher in comparison to class 1 and class 3, but
that carries a higher risk level too. If investors are looking for safe investment,
they should invest in class 3 assets, i.e., less-risky assets. The attainment level
of risk of the portfolio build from class 3 is lower in comparison to class 1 and
class 2, but that supposes accepting medium level of expected returns.

Table 10.6 Solution statistics for 20 RCGA runs for the various classes

Class

Class 1 Class 2 Class 3

Best Fitness 0.046555 0.153982 0.029875
Average Fitness 0.0463282 0.1532298 0.0297486
Standard Deviation 0.000105604 0.000439727 6.52028E-05
Coefficient of Variation(%) 0.227947185 0.286972182 0.219179529
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Fig. 10.6 Maximum fitness vs. RCGA run for class 1
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Fig. 10.7 Maximum fitness vs. RCGA run for class 2
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Fig. 10.8 Maximum fitness vs. RCGA run for class 3

Table 10.7 Attainment values of the various objectives

Objective Class

Class 1 Class 2 Class 3

Short term return 0.165134 0.269611 0.152307
Long term return 0.181297 0.340519 0.202851
Risk 0.190471 0.232001 0.158369
Liquidity 0.017995 0.002114 0.006025
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10.4 Comments

In this chapter, we have presented the following facts:

• SVMs has been introduced to categorize the financial assets into three pre-
defined classes, based on three financial evaluation indices, namely, return,
risk and liquidity.

• RCGA has been used to solve the multiobjective portfolio selection prob-
lem considering short term return, long term return, risk and liquidity.

• The main advantage of the SVM classifier is that once such a classifier is
obtained, it can then be used to classify any set of randomly chosen assets
into the relevant classes. This provide investors a prima facie information
about the class of the assets and thus help investors to decide the appro-
priate investment alternatives. The investors, then, may pick and choose
from among these alternatives by obtaining the desired portfolio with the
help of RCGA.

• The advantage of using RCGA is that we need not linearize the risk ob-
jective and can solve portfolio selection model P(10.1) in its original form.

• Using the computational results, it has been shown that the approach
discussed here is capable of classifying assets with good accuracy and is
also capable of yielding optimal portfolios for each class of assets based on
the investor preferences regarding the financial criteria used.
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