
[1]

Internet of Things with

Intel Galileo

Employ the Intel Galileo board to design a world of

smarter technology for your home

Miguel de Sousa

BIRMINGHAM - MUMBAI

Internet of Things with Intel Galileo

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1240715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-458-5

www.packtpub.com

www.packtpub.com

Credits

Author

Miguel de Sousa

Reviewers

Marcel Meijer

Carlos Montesinos

Gerardo Fco. Carmona Ruiz

Mudit Uppal

Commissioning Editor

Ashwin Nair

Acquisition Editor

Shaon Basu

Content Development Editor

Merwyn D'souza

Technical Editors

Bhupesh Kothari

Rahul C. Shah

Copy Editor

Swati Priya

Project Coordinator

Neha Bhatnagar

Proofreader

Safis Editing

Indexer

Monica Ajmera Mehta

Production Coordinator

Arvindkumar Gupta

Cover Work

Arvindkumar Gupta

About the Author

Miguel de Sousa is a core engineer and full-stack developer at Muzzley.
He holds an MSc in computing and telecommunications engineering from
ISCTE-IUL Lisbon University Institute, Portugal. He has worked in backend
networking, protocols implementation, and systems integration. As a maker,
over the last 2 years, he has been developing several projects using Raspberry Pi,
Arduino, and Intel Galileo/Edison boards in the field of Internet of Things.

My thanks go to my girlfriend, Vânia, for all her support; my
newborn son, Dinis, who was very very upset with me for having
to share my attention with the book writing process; and my father,
who was always asking me, "Is it ready yet?" I would also like to
thank my colleague, Paulo Adrião (communication designer and
maker), in particular, for producing all the book photos and images;
Pedro Figueiredo (AI lead developer and philosopher), for all his
valuable input and the experiences he shared with me; and Tânia
Rocha (a passionate frontend developer), for the input and help to
develop the visual interfaces for the demos. Thanks to the Intel UK,
Wyliodrin, and Muzzley teams for all the help with equipment,
support, and troubleshooting.

About the Reviewers

Marcel Meijer has been an all-round Microsoft architect and Microsoft cloud
specialist since 2008. He has helped many companies make the jump to successful
Microsoft Cloud/Azure implementations. He has worked at consulting companies in
the past for customers in different verticals. He combines an in-depth knowledge of
both technique and business to make sure that his clients get the optimal solution to
make their business competitive.

He is the chairman of the Software Development Network (SDN), and is also
an editor and event organizer. He is a frequent blogger and a regular speaker
at community events and conferences in the Netherlands. He has been honored
with the Microsoft MVP award for 5 years in a row.

Also, Marcel is very interested in IoT, or as he says, the Internet of Everything.
He possesses many devices, and they are all connected in some way. In the years
to come, the IoT or connected devices will only grow, so it is now the time to get
familiar with this. The possibilities are endless.

Carlos Montesinos is a systems architect expert in Internet of Things and robotics.
He is an electrical and computer engineer. He is passionate about technology,
user experience, and design. Carlos joined Intel in 2008 and he currently leads the
Start-up Initiatives Program at Intel Labs. He focuses on enabling wearable, IoT,
and robotics start-ups in Silicon Valley and around the world. Carlos also conducts
several workshops on to hardware prototyping and connected product development
in San Francisco.

Gerardo Fco. Carmona Ruiz holds a BSc in mechatronics engineering and is
pursuing his MSc in electronics engineering. He works as a department assistant
in the mechatronics and electronics department at the Instituto Tecnologico y de
Estudios Superiores de Monterrey in Guadalajara, Mexico. He enjoys teaching science
and technology and is passionate about mentoring robotics. In his spare time, he likes
woodworking and spending time with his family.

I would like to thank my wife and my son, Santiago, for giving
me the space to complete reviewing this book. They have always
been supportive.

Mudit Uppal is a multidisciplinary creative technologist and a hacker. He comes
has a background in computer science engineering and data visualization, with a
keen eye for design and UX. He's currently pursuing his master's at the University
of California, where he studies human computer interaction, media arts, and
entrepreneurship. He has worked as a creative coder and technologist at companies
such as Wieden Kennedy and SapientNitro/Second Story.

He's an avid fan of making new wearable tools using modern micro-controller
technologies. He's always looking for interesting projects and people to collaborate
with. You can check out his work at http://www.muppal.com/ or find him on
Twitter at @modqhx.

I'd like to thank all the people I've worked with in the past, primarily
in the domain of wearable computing and IoT devices.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt

• Copy and paste, print, and bookmark content

• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

To my mother, who always encouraged me to face new challenges with a smile, and
I did not have the chance to say thank you.

Obrigado, Sãozinha!

[i]

Table of Contents

Preface v

Chapter 1: Introducing Galileo 1

The Internet of Things vision 1

Introducing Intel Galileo 3

Galileo Gen 2 5

A comparison of Galileo with the most popular boards 7

Summary 9

Chapter 2: Rediscovering the Arduino IDE 11

Setting up your board 11

Downloading and installing the IDE 13

Common issues and troubleshooting 17

Updating the board firmware 18
The Arduino IDE 20

Running your first sketches 21
Blinking an LED 22

Fading an LED 24

Using the serial port for debugging 26

Methods and libraries 28
Summary 29

Chapter 3: Monitoring the Board Temperature 31
Booting Galileo from an SD card 32
Getting connected to the Internet 33

Connecting through cable 33

Connecting through Wi-Fi 35
Scanning Wi-Fi networks 37

Connecting to the Internet and testing the Wi-Fi connection 37

Finding your board IP address 38

Table of Contents

[ii]

Reading the board temperature 39

Plotting your temperature data 42

Creating temperature data samples 42

Plotting a chart 43

Summary 48
Chapter 4: Creating a Motion Sensing Light 49

Required equipment 50

Controlling a lightbulb 54

Controlling the relay using a motion sensor 56

Detecting luminosity 59

Using Galileo as a web server 64

Summary 72

Chapter 5: Intel IoT Developer Kit Tools 75

Required equipment 76

IoT Developer Kit components 77

Building the image 78
Booting from the IoT Developer Kit image 80
Setting up the Wi-Fi access 81
The MRAA library 83

Node.js 84

Python 85

C++ 86

The UPM library 87
Summary 89

Chapter 6: Building an Irrigation System 91
Required component 92

Setting up Wyliodrin 93

Using Wyliodrin to read from the sensors 95

Wiring the sensors 96

Reading from your sensors 98

Controlling an irrigation system using sensorial data 103

Making your sensor data available online 103

Creating rules for actuation 108

Summary 112

Chapter 7: Creating Christmas Light Effects 113

Required component 114

Wiring the LED strip 114

Controlling the LED strip 116

Creating a real-time server 117

Building the control page 120

Table of Contents

[iii]

Building the YouTube player page 123
Launching random LED animations 127

Handling the events in the server 129

Summary 130

Chapter 8: The Intel XDK IoT Edition 131
Introducing Intel XDK 131
Creating and deploying an IoT project on Galileo 132

Creating a companion app 135

Summary 139

Chapter 9: Developing an IoT Quiz 141

Required component 142

Creating the Galileo app 143

Coordinating players 145

The game engine 148

Caching the results 151

Using the LCD and buzzer 153

External dependencies 154

Creating the companion app 154

Interface 155

User handlers 155

Game handlers 157

Building the mobile app 158
Running the game 159

Summary 161

Chapter 10: Integrating with Muzzley 163

Wiring the circuit 164

The Muzzley IoT ecosystem 166

Creating a Muzzley app 168

Creating the device integration profile 169
Developing the Galileo bridge 171

Developing the app interface 173

Lighting up the entrance door 178

Summary 182
Index 183

[v]

Preface
As technology is evolving, things that surround us in our daily lives are starting to
have the ability to share data over the Internet. With this evolution, it is no longer
the case that only humans can operate the devices connected to the Internet. These
devices are now able to collect and share sensorial data that can be controlled by
sensor inputs. They also help you power up big data analysis, monitor systems, and
even make devices work together for a common purpose. A new era has begun, the
era of Internet of Things!

Following this vision, Intel presented the Galileo board, a board that packs together
many of the most common components that are usually purchased separately for
most development boards. An Intel Galileo Board can be programmed to read and
control sensors and actuators, being an interesting tool for sensorial data collection.
The possibility of connecting it straight to the Internet using an Ethernet cable or a
wireless card in its mini PCI-express slot enables it to share the collected data over
the Internet. Another great feature is that being hardware and software compatible
with Arduino, it will make you have a very familiar development environment.
If you prefer using other development tools, you can also do that by booting your
board from a custom Linux image.

This book will give you the right tools to help you start developing your own IoT
projects using an Intel Galileo board.

What this book covers
Chapter 1, Introducing Galileo, introduces you to the Intel Galileo boards by explaining
their components, main differences when compared to other boards, and the other
interesting boards for building IoT projects.

Chapter 2, Rediscovering the Arduino IDE, will guide you through the Arduino
IDE from the process of setting up your board to uploading and running your
first sketches.

Preface

[vi]

Chapter 3, Monitoring the Board Temperature, will help you develop your first IoT
project with the Arduino IDE. You'll create and collect temperature data samples
from your own board CPU temperature and plot it to an online chart using Galileo
as a web client.

Chapter 4, Creating a Motion Sensing Light, will show you how to create a web server
with the Arduino IDE and use it to display a web page, allowing you to switch the
lighting system operation mode, which is controlled by motion sensor, either by
luminosity or manually.

Chapter 5, Intel IoT Developer Kit Tools, introduces you to the Intel ecosystem, giving
you an overview of its perks and how you can use its main libraries to read and
control your sensors and actuators in other development languages.

Chapter 6, Building an Irrigation System, will guide you through the process
of monitoring your sensor data using Wyliodrin, and the creation of rules
to control actuators.

Chapter 7, Creating Christmas Light Effects, will teach you how to create remotely
controlled animations using an LED strip and a YouTube player.

Chapter 8, The Intel XDK IoT Edition, will explain how you can use the Intel XDK IoT
Edition IDE to develop Node.js projects for Galileo.

Chapter 9, Developing an IoT Quiz, will help you develop a quiz game played with
mobile devices.

Chapter 10, Integrating with Muzzley, will show you how you can integrate Galileo
in your daily life. You'll be creating a building door unlocking system using your
Galileo board and integrating it with market-available smart devices using the
Muzzley cloud-based ecosystem.

What you need for this book
• An Intel Galileo board (Gen 1 or Gen 2) with the corresponding power supply

• A USB to micro-B cable

• An ethernet cable

• An 8 GB microSD card with adaptor

• Grove Starter Kit Plus sensors kit (Gen 1 or Gen 2)

• A breadboard and jumper wires

• 1k and 10k Ohm resistors

• An LED (5 V max)

Preface

[vii]

• A moisture sensor

• A photocell

• A passive infrared presence sensor

• An HC-SR04 ultrasound sensor

• A digitally addressable LPD8806 LED strip

• A lightbulb with a socket and power plug

• A 220V AC solid state relay, 5 V DC controlled

• An inter communicator with a door unlocker button

• A PC/laptop running Windows, Linux, or Mac OS X with an internal or
external SD card reader

All the software you'll be using in this book is available for free.

Who this book is for
This book is intended for developers, hobbyists, and enthusiasts in general.
Basic background knowledge of computing, electronics, and microcontroller
development with technology such as Arduino or Raspberry Pi boards will make
the learning process easier. Also, an awareness of the basic development concepts
of Arduino and Node.js (JavaScript) will be helpful.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "In the
demos you tested in the previous steps, you've tried only the digitalWrite
and analogWrite methods."

A block of code is set as follows:

socket.on('error', function (error) {

 console.log('Something went wrong!');

});

Preface

[viii]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

exports = module.exports = {};

exports.start = runAnimation;

exports.stop = stopAnimation;

Any command-line input or output is written as follows:

npm install async

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: " To see all
the available libraries, navigate to Sketch | Import Library... on the IDE top menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[ix]

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/Internet_of_Things_with_Intel_

Galileo_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

https://www.packtpub.com/sites/default/files/downloads/Internet_of_Things_with_Intel_Galileo_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Internet_of_Things_with_Intel_Galileo_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Internet_of_Things_with_Intel_Galileo_ColoredImages.pdf

Preface

[x]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introducing Galileo
The Internet of Things (IoT) is a hot topic nowadays. It is a vision where everyday
objects are connected, and share data over the Internet. It is believed that it will have
a huge impact in our lives by changing the way we interact with the things that are
present in our daily lives.

In this context, many development boards have been developed for the makers'
community over the last few years. Most of them required some of the essential
components to be bought separately, such as the Ethernet socket. Intel offered a
different solution packing the most common components together onboard and
putting the Arduino and Linux worlds together, all in one board—the Galileo.

In this chapter, you will be able to understand what the concept of the Internet of
Things is, what a Thing is, and how Galileo may help you develop your Things.

In this chapter, we'll be covering the following topics:

• The Internet of Things vision

• Galileo board and its components

• Galileo Gen 2

• Popular boards comparison

The Internet of Things vision
The Internet of Things concept is neither entirely new nor is a futuristic distant
technology. It is being built today with today's technology, and you can find it
in some of your own home devices, big data clouds, and sensors. It started with
wireless technologies converging progressively with micro-electromechanical
systems (MEMS) and the Internet.

Introducing Galileo

[2]

The initial concept suggested that it were the persons who should share the data.
Today, it can be defined as a network of sensing and actuating devices with the
ability to share information.

The first time the term "Internet of Things" was officially used in a publication back
in 1999, where Kevin Ashton published his vision in the RFID Journal:

You can't eat bits, burn them to stay warm or put them in your gas tank. Ideas and
information are important, but things matter much more. Yet today's information
technology is so dependent on data originated by people that our computers know
more about ideas than things. If we had computers that knew everything there was
to know about things—using data they gathered without any help from us—we
would be able to track and count everything, and greatly reduce waste, loss and
cost. We would know when things needed replacing, repairing or recalling, and
whether they were fresh or past their best. The Internet of Things has the potential
to change the world, just as the Internet did. Maybe even more so.

As you can see, devices sharing data is the real concept behind IoT. Such devices
could either be living or inanimate. A Thing in the IoT context can be a person
wearing a pulse monitor, a dog carrying a tracking device, a garbage bin that notifies
it needs to be emptied, or a thermostat that adjust itself automatically to help you
lower your electricity bills.

IoT assumes that Things must be uniquely identifiable and able to gather data
recurring to sensors. They must also have the ability to communicate and transfer
data over a network. Such data could be used for monitoring purposes, big data
processing, or even to control that same Thing.

Things supporting this machine-to-machine communication are usually known as
smart devices. An example of a smart device is the famous Google Nest thermostat
(https://nest.com/thermostat). Being more than a simple thermostat, it shares
its usage data to help you save on your home's energy, while keeping you cozy. It
can also work together with other smart devices such as some Mercedes-Benz cars
(https://nest.com/works-with-nest/). The car GPS system shares data with the
Nest cloud, making it possible to start heating or cooling your home, based on the
expected arrival time.

https://nest.com/thermostat
https://nest.com/works-with-nest/

Chapter 1

[3]

Introducing Intel Galileo
Intel® Galileo is a development board based on Intel x86 architecture; it was
designed mostly for makers and complies with open source software and hardware
licenses. If you are familiar with the Arduino boards, you'll find this board somewhat
similar; the reason being this board was designed to be hardware and software
compatible with the Arduino shield ecosystem. It combines Intel technology with
support for Arduino shields and libraries. It is even possible to write code using the
same Arduino development environment.

The expansion header is similar to the Arduino ones. It has 14 digital I/O pins
(where six of them can be used as PWM), six analog inputs, a serial port, and an
ICSP header. It supports shields operating at either 3.3 V or 5 V. A jumper on the
board enables voltage translation at the I/O pins from 5 V to 3.3 V, and vice versa,
providing compatibility with the Arduino shields.

Galileo runs over a very light open source Linux OS in its 8 MB flash memory.
However, do take into consideration that Arduino is being emulated using Linux,
and your code will be running in a separate process.

This board includes a 10/100 Ethernet connector port, and if you wish to use Wi-Fi,
you can add a card to the Mini PCIe socket on the back side of the board.

The Galileo Gen 1 board and its components

Introducing Galileo

[4]

Breaking down the board, you can find the following major components:

1. I2C jumper: This jumper allows you to change the I2C address of some
on-board components. You may need to do this if you are using I2C
components that conflict with other components on the board.

2. Ethernet port: This port allows you to connect your board to a wired
network, allowing you to communicate with other devices and also access
the Internet. If you wish to use Wi-Fi, in the backside of the board, you'll
find a Mini PCI Express slot where you can connect your Wi-Fi card. It also
enables another possible storage device, USB host, bluetooth, or GSM card.

3. Serial port: There is a serial port for connecting to the Galileo Linux
command line from your computer. Although this port looks like an
audio jack, it is only used for serial communication.

4. USB client: When developing with the Arduino IDE, you'll need to connect
your USB cable here, so that you can upload your project's code on the board.

5. USB host: Do not mistake this port for the USB client. This one is not
intended to be used to upload your project's code, but to allow you to
connect more peripheral devices, such as webcams and extra storage.

6. Flash memory: This type of memory is persistent and it is where the board
firmware is stored, taking most of the available 8 MB of space.

7. Random Access Memory (RAM): This is where your sketches are stored
while running. Galileo has 512 KB of in-built SRAM and an additional
256 MB of external DRAM. Since it is a volatile type of memory, when
you reboot your board, your sketch will be lost. If you wish to keep it
persistent, you'll need to save it to a microSD card.

8. Arduino expansion header: It has 14 digital I/O pins (IO2-IO13, TX, RX);
all of them can be used as input or output and six of them can be used as
Pulse Width Modulation (PWM) outputs. The RX and TX pins control the
programmable speed UART port. At the bottom-right side of the expansion
header, you'll find six available analog pins with a 12-bit resolution. The pins
at the bottom -left of the board are power pins (IOREF, VIN, RESET, 3.3 V,
5 V, and 2 GND).

9. VIN jumper: This jumper connects the Galileo VIN pin to the 5 V regulator.
When using shields that require more voltage than this, you must pull out
this jumper to avoid damaging the board.

10. IOREF jumper: In order to support 3.3 V shields, you can use this jumper to
change your board voltage level from 5 V to 3.3 V.

11. Reboot button: This button reboots the board, including the OS.

Chapter 1

[5]

12. Intel Quark SoC X1000 Application Processor: This is the board's processor; it
is responsible for processing your code. It is a 32-bit, single core, single-thread,
Pentium (P54C/i586) instruction set architecture (ISA)-compatible CPU. It is
capable of operating at speeds up to 400 MHz.

13. Clock battery power: With this inclusion, you won't need to get the date and
time from the Internet every time you reboot your board. By connecting a 3 V
coin cell battery to the board, you'll be able to keep track of time, even when
the board is powered off.

14. On board LED: This is an on-board LED, directly connected to the pin 13.
You can use it to test and run basic sketches.

15. JTAG header: This is used to debug boards. It should be used with an
in-circuit debugger.

16. Reset button: Pressing this button will restart your code and send the reset
signal to the connected shields. It won't restart the OS.

17. MicroSD card slot: You'll definitely need more space to store your sketches
or other apps. Here, you can insert your microSD card and store your
persistent sketches or even use it to boot an operating system instead of the
on-board one. You'll need to do this if you want additional functionalities,
such as Wi-Fi, since those drivers can't fit in the 8 MB of the board's flash
memory. It can be done using a card up to 32 GB.

18. Power input: This is where you must connect your power adapter. The 5 V,
2A feed is the only official way to power the board. Intel recommends you
power the board through its power supply before connecting it via USB to
your computer, otherwise, you might damage your board.

As you can see, this board is more suitable to work with sensors. The Arduino shield
compatibility, familiar IDE, real-time clock and, possibility of using the PCI express
connector are some of its best features.

Galileo Gen 2
Many makers found the 400 MHz processor a bit slow for their projects, mostly
because of Arduino being emulated with Linux. Intel addressed the community
issues, made some changes to the original board, and presented a new one named
Galileo Gen 2.

Galileo Gen 2 is still powered by the same processor, but its performance has been
considerably increased. The Arduino shields compatibility has also been improved
with 12 GPIOs, now made fully native by being connected directly to the Quark
X1000 SoC, and 12-bit PWM resolution allowing faster and smoother responses.

Introducing Galileo

[6]

This board is a bit bigger than the original one, and the 3.5 mm serial port jack has
been replaced by a six-pin 3.3 V USB TTL UART header, now making it compatible
with the standard FTDI to USB serial cable. Also, the USB host port was replaced
with a full size Type A receptacle 2.0 USB port.

The power regulation system has been changed to accept power supplies from 7 V
to 15 V. The power supply jack isn't the only powering option available; it is now
possible to power this board through the Ethernet cable by connecting it to a Power
over Ethernet (PoE)-enabled Ethernet switch. It is also possible to power it from a
connected shield, as long as the input voltage applied to the Galileo's VIN pin is in
the 7 V – 15 V range:

Intel Galileo Gen 2 board

For the demos in this book, you can either use Galileo or Galileo Gen 2. The projects
will run on both.

Chapter 1

[7]

A comparison of Galileo with the most

popular boards
Along with Galileo, Raspberry Pi and Arduino Yún are very popular boards among
makers. All of them are Linux-embedded and have open source hardware design.

The following is a table with some features of each board:

Features Intel Galileo Arduino Yún Raspberry Pi model B

CPU speed 400 Mhz 400 Mhz 700 Mhz

Memory 256 MB 64 MB (AR9331) and
2.5 KB (ATmega)

512 MB

Internal storage 8 MB 16 MB (AR9331) and
32 KB (ATmega)

-

External storage MicroSD MicroSD SD card

Networking Ethernet and Wi-Fi
(Wi-Fi adapter is
bought separately)

Ethernet and Wi-Fi Ethernet and Wi-
Fi (Wi-Fi dongle is
bought separately)

Video output - - HDMI and 1080p
composite RCA

Audio output - - HDMI and 3.5 mm
audio jack

Digital I/O pins 14 at 3.3 V or 5 V 20 at 5 V 17 at 3.3 V

Analog input 6 (12-bit ADC) 12 (10-bit ADC) -

PWM output 6 7 1

Real-time clock Optional - -

SPI 1 1 2

I2C 1 1 1

Introducing Galileo

[8]

Here's the brief comparison of the boards:

• Arduino Yún: At first glance, we can say that Yún and Galileo have
more in common than with the Raspberry Pi. The number of available
PWM, analog and digital pins make them good boards for projects with
sensors. Arduino Yún is compatible with most Arduino Leonardo shields.
Although Galileo shares a look alike development environment and board
setup, not all the shields are compatible because some of the Arduino
libraries are heavily bound to the Arduino architecture. Galileo runs a
custom Yocto-based Linux in its 8 MB SPI flash by default. To be able to
install stronger tools, it requires to be booted from a microSD card image
provided by Intel. Yún runs an OpenWrt distribution, and has 16 MB of
space available for the entire operating system. It is not possible to boot load
from the microSD card, but is possible to increase its disk space by plugging
in a microSD card and configuring it to become the new Linux file system.
An advantage of Yún is that it already brings Wi-Fi on its board. Galileo
requires connecting a Wi-Fi adapter.

• Raspberry Pi: Raspberry Pi, the board with the biggest community, is the
only board in our table that has video and audio output, making it more
interesting for multimedia projects. However, the lack of analog inputs
makes this board less interesting to work with analog sensors.

Galileo is compatible with Arduino in the way that it can run 3.3 and 5 V shields, but
it has some restrictions because of the Arduino's AVR libraries dependencies. Before
buying a shield, you should check whether it is supported by Galileo.

Some of the advantages of the Galileo board when compared to the mentioned ones
are the possibilities of working with PCI Express mini cards and using a real-time
clock. Besides these, Galileo comes fully ready to work with sensors; this makes it an
interesting tool for data collection.

Like the Raspberry Pi, the possibility of booting from a stronger Linux image makes
it possible for projects developed in some of the most popular languages such as
Python or Node.js (Javascript).

Chapter 1

[9]

Summary
Galileo is a good option if you have a project requiring sensors, monitoring, or device
control. It is an interesting board to develop ambitious projects in the scope of the
Internet of Things, where you can develop your unique Things and make them share
data with each other.

In this chapter, you've learned about the IoT concept, your board components, and
where you should connect what. By now, you may already be able to imagine what
you are able to use and connect to your board.

In the next chapter, you'll get familiar with the Arduino development environment,
learning how you can develop code and run it in your Galileo.

[11]

Rediscovering the

Arduino IDE
In the previous chapter you learned about the Galileo components and its resemblances
to the Arduino development boards, mostly at the hardware level. In this chapter,
we'll approach the software level by exploring the Arduino Integrated Development
Environment (IDE) and learning how to use it to develop simple projects.

In this chapter, you'll learn about:

• Setting up your board

• Using the Galileo Arduino IDE

• Updating the Galileo firmware

• Compiling, uploading, and running simple sketches

• Using basic Arduino output methods

Setting up your board
To be able to use this software, you must first connect your board to a computer so
that you can exchange data with it. You'll need at least a computer, a power supply,
and a USB A to Micro USB Type B cable. The computer that will be used to run the
Arduino IDE must be connected to your board.

The power supply comes already with your Galileo, but the USB cable doesn't and
you will need to get one separately.

The following diagrams will show you how to wire your Galileo and Galileo Gen 2
boards. The first thing to do should be connecting the power supply and keeping the
USB cable ready and unplugged.

Rediscovering the Arduino IDE

[12]

To prevent damaging your board, be sure that whenever you power up
your Galileo your USB cable is disconnected from the board.

As soon as you connect it, you can plug in the USB cable.

Beware that in the Galileo Gen 1 board, you'll find two USB ports,
one tagged as host and the other as client. You must plug in your
cable to the client one.

In the following figures you can also see the Ethernet cable plugged in, but at this
stage it is optional:

Wiring up Intel Galileo

Chapter 2

[13]

The following image is for Galileo Gen 2:

Wiring up the Intel Galileo Gen 2

Downloading and installing the IDE
Having the board ready, let's now install the Arduino IDE on your computer.
Currently, there are three main versions of the Arduino IDE—one maintained by
Intel (Arduino 1.6.0 – Intel 1.04), another by Arduino.cc (Arduino LLC 1.6.4), and
the third one by Arduino.org (Arduino Srl 1.7.3)—appearing after a dispute with
Arduino.cc. All of these versions are forks of the same project, but currently only
Intel and Arduino.cc IDE's most recent versions support the Intel Galileo boards.
Besides having different version numbers, these IDEs are maintained by different
entities, and a higher version from a different entity doesn't necessarily mean a more
recent version.

Rediscovering the Arduino IDE

[14]

You can choose from one of the following versions, which support Intel Galileo:

• Intel custom Arduino IDE 1.6.0 – Intel 1.04 (recommended): This is the Intel
Arduino IDE version supporting their boards out of the box, without the
need to install any support extensions. It is a custom Arduino IDE with the
same functionalities as the original one, but it supports Intel development
boards such as Galileo Gen 1, Galileo Gen 2, and Edison. It is the
recommended version to work with Galileo. You can download this version
at https://communities.intel.com/community/makers/drivers.

• Arduino IDE 1.6.4: This is the Arduino.cc version. It brings some
improvements such as the possibility of adding support to a great range
of development boards, including the Intel ones. To be able to use the Intel
boards with this IDE, you'll need to install an extension. You can download
this version from http://www.arduino.cc/en/Main/Software.

Feel free to download the version you prefer since the code we'll be developing in
this book will run well on both.

After the selected download completes, extract the downloaded compressed
file contents:

For Microsoft Windows 7/8 OS, you need to perform the following steps:

1. You can use 7-Zip (http://www.7-zip.org/) to extract the file contents.
Extract the IDE folder to the root directory of C:.

2. The next thing to do is install the USB drivers. If you downloaded the
Intel IDE version, the drivers come included and should be located at
the C:\arduino-1.6.0+Intel/drivers folder. If you downloaded the
Arduino.cc IDE, you'll need to download the drivers available at http://
downloadmirror.intel.com/24748/eng/IntelGalileoFirmwareUpdater-

1.0.4-Windows.zip and extract its contents. This download includes the
USB drivers and the firmware updater tool.

3. To install the drivers, you must first connect the Galileo to your computer.
Windows will try to install the drivers from online sources, but it will fail.
Open Device Manager from the Windows Control Panel, and under the
Ports (COM & LPT) tab, you'll find your Galileo with the name Gadget Serial:

https://communities.intel.com/community/makers/drivers
http://www.arduino.cc/en/Main/Software
http://www.7-zip.org/
http://downloadmirror.intel.com/24748/eng/IntelGalileoFirmwareUpdater-1.0.4-Windows.zip
http://downloadmirror.intel.com/24748/eng/IntelGalileoFirmwareUpdater-1.0.4-Windows.zip
http://downloadmirror.intel.com/24748/eng/IntelGalileoFirmwareUpdater-1.0.4-Windows.zip

Chapter 2

[15]

Windows device manager without the USB drivers installed

4. Right click on it and select Update Driver Software.... Now, you need to click
on Browse my computer for driver software. If you downloaded the Intel IDE
version, enter the path C:\arduino-1.6.0+Intel/drivers and click on Next.
If you downloaded the Arduino.cc IDE version instead, go to the Galileo
Driver folder you just downloaded and extracted and click on Next.

5. When the drivers are found in the location you provided, you'll be prompted
to install them and you should click on Install.

As soon as the drivers finish installing, you'll be able to find Galileo listed
under the Ports (COM & LPT) section:

6. To start the IDE, double-click on the Arduino icon inside its folder.

Rediscovering the Arduino IDE

[16]

If you need further assistance installing the USB drivers, check
the Intel guides at https://software.intel.com/en-us/
articles/intel-galileo-board-assembly.

For Linux OS, use the following steps:

1. You can extract the folder using the following xz command (the filename may
be different depending on whether you are running a 32-bit or 64-bit Linux):

unxz IntelArduino-1.6.0-Linux64.txz

2. If you don't have xz installed, you can install it with the following command:

$ sudo apt-get install xz-utils

3. If you are running a Debian Linux, Red Hat, Fedora, CentOS, or similar,
use the following command:

$ sudo yum install xz

4. To run the IDE, enter the extracted folder and run this command:

./arduino

For Mac OS X OS, use the following steps:

1. Unzip the application and move it into your Applications folder.

If you already have any of the Arduino IDEs, you can rename the
folder to something more intuitive (for example, galileoIDE),
just make sure there are no spaces in the name of the directory.

2. Double-click on your newly downloaded Arduino application to run the IDE.

3. If you installed the Intel Arduino version, when you run it you'll be asked if
you want to update to the latest version of the Arduino IDE. You must click
on the No option or your IDE will be replaced by the Arduino.cc one.

https://software.intel.com/en-us/articles/intel-galileo-board-assembly
https://software.intel.com/en-us/articles/intel-galileo-board-assembly

Chapter 2

[17]

4. If the installed version was the Arduino.cc IDE 1.6.4, you'll need to add the
Intel boards' support. To do it, click on the IDE Tools top menu and navigate
to Board | Boards Manager.... In the displayed list, locate and click on the
Intel i586 Boards by Intel section and finally click on Install:

Installing the Intel boards support on Arduino 1.6.4

5. When the installation process completes, you can confirm whether
everything went right by navigating to Tools | Board in the top menu
and finding the Galileo boards listed.

6. When it finishes installing, if everything went right, you should see the
INSTALLED tag appearing on the selected section.

7. Now, if you navigate to Tools | Board, you'll find the Galileo boards
appearing in the supported boards list.

Common issues and troubleshooting
The following are some of the commonly faced issues:

• Unable to access serial port in Linux: If you aren't able to access the serial
port, you may need to run the software with the following command:

sudo ./arduino

Rediscovering the Arduino IDE

[18]

• Java missing error: If you get an error related to Java not being found, you
must install it using this command:

sudo apt-get install default-jre

• Language error: If you have an error related to the language not being
supported, you'll need to change the OS language to English. In Linux,
you can start the application with the following command:

LANG=en_US LC_ALL=en_US.utf8 ./arduino

• Linux USB issues: It is recommended to stop or remove the system
service named modem manager because it can conflict with Galileo.
You can discover the process PID using this command:

ps –ef | grep modem*

Kill it with the following command, replacing [PID] with the process
identification number, visible with the preceding command:

kill [PID]

If you are using a Debian distro and wish to remove the process, you can use
this command:

sudo apt-get remove modemmanager

If you are using Red Hat, CentOS, or equivalents, use this command:

yum remove modemmanager

• Other: If you are facing a different issue, check the Intel community support
forums at https://communities.intel.com/community/tech/galileo/
content. If you still can't find any information regarding your issue, open a
new question and the Intel support team will help you.

Updating the board firmware
To update your board firmware, you'll need to download the Intel Firmware updater
tool. If you are running Windows, you should have this tool already. It comes with
the Windows drivers. If you don't have it, or you are running another OS, you can
download it at https://software.intel.com/en-us/iot/hardware/galileo/
downloads. You can find the right download for your OS listed under the Intel®
Galileo On-board Flash Firmware Updater section. Download and extract its
contents. Execute the firmware-updater-1.0.4.exe file by clicking on it, and the
firmware updater interface should be displayed. Ensure you have your Galileo
connected to your computer, and in the updater tool, select the USB port you are
using. In the same firmware updater tool, check the current and target firmware
version. If the current version is lower than the target one, you should update it.

https://communities.intel.com/community/tech/galileo/content
https://communities.intel.com/community/tech/galileo/content
https://software.intel.com/en-us/iot/hardware/galileo/downloads
https://software.intel.com/en-us/iot/hardware/galileo/downloads

Chapter 2

[19]

Before updating your board's firmware, ensure that it is properly
connected to an external power supply and that there are no SD
cards in the SD card reader.

If you need to remove the SD card from the reader, disconnect the USB cable first
and then the power cable. Remove the SD card, power the board, and a couple of
seconds later, connect the USB cable.

Click on the Update Firmware button to start the firmware update process, and you
should see this screen:

Updating the board firmware

The process should take around five minutes to conclude. During the update
process, you can neither power off the board, nor remove the USB cable. Doing this
might damage or even brick your board.

Now that we have our board's setup concluded, let's have a look at the Arduino IDE
to understand how it works.

Rediscovering the Arduino IDE

[20]

The Arduino IDE
The code you write is named sketch. With the Arduino IDE, you'll be able to
compile your sketches and upload them to your Galileo. Open your Arduino IDE,
and you'll find the following environment:

Galileo Arduino IDE

Chapter 2

[21]

Identifying the IDE components, you can find:

• Verify: This button will be your best friend. It will help you compiling your
sketch and troubleshooting any issues or syntax errors.

• Upload: It will verify your code and, if it has no errors, it will upload your
program to the board.

• New: It creates a new sketch.

• Open: This opens an existing sketch.

• Save: It saves your sketch. The saved sketches have the file extension .ino.

• Serial monitor: This opens the serial monitor window, which displays serial
data from Galileo. This monitor window also allows you to send messages to
your board.

• Your sketch: This is where you will write your code.

• Console: It gives feedback about the operations you are doing. If errors
are found when you verify your sketch, they will also be displayed here,
usually in red.

Running your first sketches
Now that we have everything set up, let's try to run some simple sketches to make
you feel more comfortable with the IDE. Here, you'll be testing how to blink and
fade an LED.

In these demos, at least for the fade example, you'll need:

• A small breadboard: This type of solderless circuit allows you to build
electronic circuits without any soldering while being reusable.

• An LED: We'll use a 5 V LED.

• A resistor: Depending on the LED type, color, and manufacturer, different
resistors will be required. To be able to support a wider range of LEDs, let's
use a 1 kΩ resistor. This resistor is represented by the color code brown,
black, red, and silver, and it will help you avoid damaging the LED.

Rediscovering the Arduino IDE

[22]

Blinking an LED
In this example, you'll be blinking an LED repeatedly over time. This is a very simple
demo that is used many times as a test to check whether everything is properly
configured and running:

1. Ensure your Galileo is powered up and the USB cable is connected to
your computer.

2. Open Arduino IDE you had installed in the previous steps. Locate the Tools
tab on the top, click on the Board option and select the board you'll be using
(Galileo or Galileo Gen 2).

3. Next, you need to select a port for your serial communication. In the same
Tools menu, click on the Serial Port option and select your port:

 ° In Mac OS X, the port starts with /dev/cu.usbmodem or /dev/tty.
usbmodem

 ° In Linux, the port should start with /dev/ttyACM

 ° In Windows, it's one of the COM ports

4. Now that you have everything set up, you can open the example sketch by
navigating to File | Examples | 1.Basics | Blink.

You'll now have the Blink sketch in your editor. Now, if you click on the Verify
button, you'll be able to see its result in the console. At the end, it will print
something like this:

Verifying a sketch

This means your sketch has no errors, and that it is occupying 57,967 bytes of the
total 10,000,000 bytes of maximum program storage space available.

Now, by clicking on the Upload button, you'll be able to run the sketch in your
board. If everything went fine, you'll see a Transfer complete message in the
console and an on-board LED blinking every second.

The whole idea behind this demo consists of exporting the pin 13, configuring it as
an output, and then keep doing digital writes from high to low inside a loop.

Chapter 2

[23]

The following code will explain this more clearly:

/*

 Blink

 Turns on an LED on for one second, then off for one second,
repeatedly.

 Most Arduinos have an on-board LED you can control. On the Uno and

 Leonardo, it is attached to digital pin 13. If you're unsure what

 pin the on-board LED is connected to on your Arduino model, check

 the documentation at http://arduino.cc

 This example code is in the public domain.

 modified 8 May 2014

 by Scott Fitzgerald

 */

The pin 13 was selected because it is directly connected to the on-board LED you can
see blinking. If you connect an LED to that I/O, you'll have them both blinking:

// the setup function runs once when you press reset or power the
board

void setup() {

 // initialize digital pin 13 as an output.

 pinMode(13, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage
level)

 delay(1000); // wait for a second

 digitalWrite(13, LOW); // turn the LED off by making the voltage
LOW

 delay(1000); // wait for a second

The sketches always have two main functions—the setup and the loop. The setup
function will only be called once, and it is commonly used for initial configuration.
In this example, you can see the pinMode method being called inside this method,
exporting the LED (connected to pin 13) for the application and setting its direction
as OUTPUT.

Rediscovering the Arduino IDE

[24]

Inside the loop method, you'll find that pin 13 is repeatedly being set from HIGH
to LOW, and vice-versa. Those changes are made using the digitalWrite method,
which is responsible for changing the pin voltage level from 0 V to 5 V and from
5 V to 0 V. The delay method helps the LED keep its state every second (1,000 ms)
after a state change.

Fading an LED
In this example, you'll be able to understand how to fade an LED. Plug in your
resistor, LED, and jumper wires to the breadboard, as shown in the following figure:

The Fade example connection diagram

Chapter 2

[25]

Connect one jumper wire from Galileo pin 9 (digital PWM) to one side of the resistor.
The other side of the resistor should be connected with the anode of the LED (the
longer lead). Finally, the LED cathode (shorter lead) should be connected to the
Galileo ground.

Coming back to the IDE, you'll find this example sketch by navigating to File |
Examples | 1.Basics | Fade. With the example loaded into your sketch, verify
and upload it to your board.

As soon as the upload is complete, you should see the LED fading in and out
repeatedly over time.

In the previous example, you were able to set two LED states, on and off, using
the digitalWrite method. In order to have more states, we will need to use the
analogWrite method. The LED seems to have more than two states. This happens
because analogWrite uses a property named pulse with modulation (PWM). It
accepts values from the range of 0 up to 255:

Looking at the code, we have:/*

 Fade

 This example shows how to fade an LED on pin 9

 using the analogWrite() function.

 This example code is in the public domain.

 */

int led = 9; // the pin that the LED is attached to

Only pins with PWM are supported, Galileo has available the pins 3, 5,
6, 9, 10 and 11.

int brightness = 0; // how bright the LED is

int fadeAmount = 5; // how many points to fade the LED by

// the setup routine runs once when you press reset:

void setup() {

 // declare pin 9 to be an output:

 pinMode(led, OUTPUT);

}

Every loop cycle, the amount of brightness is increased by 5 units until it reaches the
PWM maximum of 255 or decreased by 5 units until it reaches 0:

// the loop routine runs over and over again forever:

void loop() {

 // set the brightness of pin 9:

Rediscovering the Arduino IDE

[26]

 analogWrite(led, brightness);

 // change the brightness for next time through the loop:

 brightness = brightness + fadeAmount;

 // reverse the direction of the fading at the ends of the fade:

 if (brightness == 0 || brightness == 255) {

 fadeAmount = -fadeAmount ;

 }

 // wait for 30 milliseconds to see the dimming effect

 delay(30);

}

Using the serial port for debugging
Sometimes, you need to have a bit more feedback about the operations you are doing,
display some variables values, or just output something so that you can see your code
flow. In such situations, printing to the Galileo serial port can be very helpful.

Using the fade LED demo, we can add some outputs so that we can understand
what's happening.

The Serial.begin(baud_rate) method opens the Galileo serial port and sets
its speed to the specified baud rate. You can then start writing using the Serial.
print() and Serial.println() methods if you wish to change line at the end of
the writing.

In your previous code, you can add the following lines:

/*

 Fade

 This example shows how to fade an LED on pin 9

 using the analogWrite() function.

 This example code is in the public domain.

 */

int led = 9; // the pin that the LED is attached to

int brightness = 0; // how bright the LED is

int fadeAmount = 5; // how many points to fade the LED by

// the setup routine runs once when you press reset:

void setup() {

Chapter 2

[27]

Initialize the serial port and set up the data transfer baud rate to 9600:

 Serial.begin(9600);

 // declare pin 9 to be an output:

 pinMode(led, OUTPUT);

Print a line with a custom message to confirm that it is working:

 Serial.println("Setup is concluded!");

}

// the loop routine runs over and over again forever:

void loop() {

Print the text keeping the "cursor" in the same line:

 Serial.print("Brightness value is ");

Print the brightness value and move the "cursor" to the next line:

 Serial.println(brightness);

 // set the brightness of pin 9:

 analogWrite(led, brightness);

 // change the brightness for next time through the loop:

 brightness = brightness + fadeAmount;

 // reverse the direction of the fading at the ends of the fade:

 if (brightness == 0 || brightness == 255) {

 fadeAmount = -fadeAmount ;

 }

 // wait for 30 milliseconds to see the dimming effect

 delay(30);

Downloading the example code

You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Rediscovering the Arduino IDE

[28]

Verify and upload this code on your board. As soon as it is uploaded, click on
the Serial monitor button, the one with a magnifying glass in the top right corner.
In the serial Monitor window, select the 9600 baud rate, matching the same baud
rate specified in the sketch. You should now be able to see the brightness values
being displayed, as shown in the following screenshot:

The serial output

Methods and libraries
In the demos you tested in the previous steps, you've tried only the digitalWrite
and analogWrite methods. Besides those, there are also the analog methods. On the
Arduino website, you can find a useful Arduino language reference explaining all
the supported methods, constants, operators, and syntax. You can find the Arduino
language reference at http://arduino.cc/en/Reference/HomePage.

The Galileo Arduino IDE already brings some libraries, and it is even possible
to import the libraries developed by the Galileo community. Beware, not all the
Arduino libraries currently work in Galileo. Many of them were developed strictly
for the Arduino architecture, and they require to be ported.

http://arduino.cc/en/Reference/HomePage

Chapter 2

[29]

Some of the many libraries that Intel have made available are:

• Ethernet: This library allows you to connect to the Internet.

• WiFi: This allows you to connect to the Internet using a wireless card. It
brings sketches that help you to configure your Wi-Fi access.

• Wire: This allows you to communicate with I2C devices.

• SPI: This helps you to write to the SPI bus.

• Servo: This helps you to control servos smoothly.

To see all the available libraries, navigate to Sketch | Import Library...
on the IDE top menu.

Summary
Being part Intel's compatibility with the Arduino world, the Arduino IDE is a
very simple and easy-to-use development tool. It allows developers to develop
applications for Galileo, Arduino, and many other boards.

This chapter refers to the first steps of setting up your board, installing a suitable
Arduino IDE supporting Galileo boards, and running some example sketches. By
now, you should already have your IDE installed and ready for the next projects,
having some basic notions on how to use it.

In the next chapter, you will use it to read the Galileo's CPU temperature and plot it
over time. You'll also learn how to use Galileo as a web client.

[31]

Monitoring the Board

Temperature
As you saw in the previous chapter, Arduino Galileo IDE is very simple to use
and by now, you should already know how to compile and upload your sketches
to the board.

One interesting feature of this IDE is that it allows you to execute command-
line operations in the Galileo's Linux shell. This way, it is possible to print useful
information in the Galileo serial connection through the Linux shell, such as the
board IP address, and in this particular use case, your CPU temperature.

In this chapter, we will create a bootable SD card, connect our board to the Internet
using an Ethernet cable or Wi-Fi, read the Galileo CPU internal temperature sensor,
and plot the collected data to an online chart.

Instructions for both wired and wireless connections
will be provided.

In this chapter, we will cover the following topics:

• Burning a Linux bootable image to an SD card

• Booting Galileo from a microSD card

• Connecting to the Internet using a wired or wireless connection

• Using Galileo as a Web Client

• Running Linux shell command-line operations using the Arduino IDE

• Discovering Galileo IP address

Monitoring the Board Temperature

[32]

• Reading from the internal CPU temperature sensor

• Using the Arduino SD library to read from the SD card

• Plotting the gathered temperature data to an online chart

Booting Galileo from an SD card
Booting your board from an SD card brings you many advantages. Besides
allowing you to connect to the Internet from a Wi-Fi connection and have your
application memory increased, it makes your Arduino sketches persistent and
also allows you the possibility of using more interesting development tools and
languages such as Python.

To burn your image, you'll need:

• A FAT32 formatted microSD card. It can be of any size from 1 GB up to
32 GB.

• A computer.

• An SD card adapter (optional).

Let's start by downloading the Clanton image which is available at
https://communities.intel.com/community/makers/drivers;
click on the SD-Card Linux Image link to start your download.

When the download completes, you'll have to extract its contents.

For extracting the downloaded file in Linux OS, use the following steps:

1. If you don't have bzip2 already installed, you should install it by typing
sudo apt-get install bzip2 in your terminal.

2. Extract the file contents using the command bzip2 -cd downloaded_
file.tar.bz2 | tar xvf -, where downloaded_file.tar.bz2 is your
downloaded file.

3. Find the card mounting point by executing the df -h command and then
insert your card in the card reader and execute the same command again.
The new entry in the printed list is your SD card mounting point.

4. Copy the contents of the extracted folder by typing cp -r * /media/
your_mounting_point, with /media/your_mounting_point being the card
mounting point that you've found using the df command.

To extract the downloaded file on Mac, open the downloaded file with your system
compress utility and extract the folder contents to the top of the SD card drive.

https://communities.intel.com/community/makers/drivers

Chapter 3

[33]

To extract the downloaded file in Windows, you can use WinRAR to extract the
downloaded file contents and use the following steps:

1. Insert your card in the card reader.

2. When the extraction finishes, copy the extracted folder contents and paste
them in the top directory of the SD card volume.

Now, you should have your bootable SD card ready and the root of your SD card
will now contain the following files:

SD card contents

With your Galileo powered off, insert the SD card in the board. You'll need to wait
for some time to have the board ready and booted from the SD card.

Now, let's get the board connected to the Internet, so that we can test whether the
Galileo had booted properly.

Getting connected to the Internet
Internet access is a must-have in the IoT world. Galileo brings an Ethernet port
that allows you to connect to a wired network and in its back, there's also a Mini
PCI Express slot where you can attach a Wi-Fi adapter. You are free to choose your
connection type, and in the next section, you'll find everything you need to connect
your Galileo to the Internet.

Connecting through cable
Connecting to the Internet using the Galileo Ethernet port is pretty simple. All you'll
need is an Ethernet cable. Plug one side of the cable to the Galileo and the other side
to your network using an available port in your router. You'll be connected right
away when you power on your board.

Monitoring the Board Temperature

[34]

Now, let's test whether you have the Internet access by running a simple Web
Client sketch:

1. Power your board with the Ethernet cable plugged in.

2. Open the Arduino IDE and connect your computer to the Galileo using the
serial cable.

3. In the Examples menu, select the WebClient example inside the Ethernet tab
(File | Examples | Ethernet | WebClient).

This is a simple sketch that acts as a Web Client and requests Google to search for the
term—Arduino.

Since this example was originally an Arduino demo, we may need to add the
following two lines of code at the top of the sketch's setup method to ensure
that the network interface is up, and that the board had enough time to start
and obtain an IP address:

void setup() {

 system("ifup eth0");

 delay(3000);

 // Open serial communications and wait for port to open:

 Serial.begin(9600);

 …

If you want to read more about the ifup command, you can find
more information about it at http://www.linux-tutorial.
info/modules.php?name=ManPage&sec=8&manpage=ifup.

http://www.linux-tutorial.info/modules.php?name=ManPage&sec=8&manpage=ifup
http://www.linux-tutorial.info/modules.php?name=ManPage&sec=8&manpage=ifup

Chapter 3

[35]

Compile and upload the sketch to your board, and open the serial monitor so that
you can read the Google server response:

Google server response

Looking at the serial monitor window, you should see the raw HTML response to
your request. If you find a response status written in the response (highlighted in the
figure), you can consider yourself connected. It doesn't have to be exactly a status
code 302 Found; as long as it is written in the debugger, it means that your request
reached their servers, and was successfully replied.

Connecting through Wi-Fi
The examples we will cover in this book can work with both cable or wireless Internet
connections. If you prefer connecting to the Internet using Wi-Fi, you'll need:

• MicroSD card: The Wi-Fi drivers require a considerable amount of memory
that won't fit Galileo's available flash memory. You'll need to boot your
board using a Linux image. If you haven't burned your bootable Linux image
to a microSD card yet, you should do it (instructions are available in the
Booting Galileo from an SD card section explained earlier in this chapter).

Monitoring the Board Temperature

[36]

• A Wi-Fi adapter: Your SD card Linux image already supports some adapters
(supporting both Wi-Fi and Bluetooth), but any Mini PCI Express Wi-Fi card
whose drivers exist for Linux should work if you install them. In this book,
we'll be using an Intel Centrino Wireless-N 135 card. This wireless card is
supported by default.

If you prefer using a different one, you may find its
drivers at https://wireless.wiki.kernel.org/
en/users/Drivers/iwlwifi.

• Antennas: If your Wi-Fi module requires antennas, you'll need to
connect at least one to it (http://uk.mouser.com/ProductDetail/TE-
Connectivity/2118060-1/?qs=kOrxwh0XC022OgMI%252bdyLgA==).

With the Galileo powered off, connect your Wi-Fi adapter to the PCI-E slot located in
the backside of the board. In this example, we are using an Intel Centrino Wireless-N
135 card, which can be seen in the following image:

In order to connect your board through Wi-Fi, perform the following steps:

1. Attach the adapter bracket to the mini PCI-E wireless adapter using the
screws provided.

2. Insert your Wi-Fi adapter in the Galileo's PCI-E slot.

3. Pull the bottom part of the adapter, until the retention latches are locked
inside the holes of the bracket.

https://wireless.wiki.kernel.org/en/users/Drivers/iwlwifi
https://wireless.wiki.kernel.org/en/users/Drivers/iwlwifi
http://uk.mouser.com/ProductDetail/TE-Connectivity/2118060-1/?qs=kOrxwh0XC022OgMI%252bdyLgA==
http://uk.mouser.com/ProductDetail/TE-Connectivity/2118060-1/?qs=kOrxwh0XC022OgMI%252bdyLgA==

Chapter 3

[37]

4. Also, if your adapter requires antennas, attach them to the respective slots.

5. If you have the Ethernet cable connected, disconnect it and you can now
power the board on.

If you are using a different Wi-Fi adapter, you may need to install its drivers.

For more help on installing drivers, refer to http://www.malinov.
com/Home/sergey-s-blog/intelgalileo-addingwifi.

Scanning Wi-Fi networks
Open your Arduino IDE and open the sketch ScanNetworks located in File |
Examples | WiFi | ScanNetworks. Just like in the previous wired example,
let's add the following system command to the beginning of the setup method
to ensure that the wlan0 network interface is up and running:

system("ifup wlan0");

Upload it to your Galileo and open the serial monitor. This sketch scans all the
available networks in the board's range and prints them into the serial connection.
You'll be able to find your network listed in the serial monitor window.

Connecting to the Internet and testing the Wi-Fi

connection
Now, let's test the Wi-Fi connection for the Internet access. Open the sketch Wi-Fi
Web Client located in File | Examples | WiFi | WifiWebClient. At the top of the
sketch, you can find the following lines of code:

char ssid[] = "yourNetwork"; // your network SSID (name)

char pass[] = "secretPassword"; // your network password (use for
WPA, or use as key for WEP)

You need to replace yourNetwork by your network SSID; if your network is visible
to everyone, you should select the SSID that was listed in the Wi-Fi scanner sketch.
You must also replace secretPassword by your network access password.

http://www.malinov.com/Home/sergey-s-blog/intelgalileo-addingwifi
http://www.malinov.com/Home/sergey-s-blog/intelgalileo-addingwifi

Monitoring the Board Temperature

[38]

Also, at the top of your setup method, add the lines below to make sure your
network interface is ready:

system("ifup wlan0");

delay(3000);

This sketch will configure your Wi-Fi network access and, like the Ethernet Web
Client sketch for the cabled connection, it will try to request a Google search. Upload
the sketch to your board, open the serial monitor, and if everything went well, you
should see the replied raw HTML; this means that you are properly connected.

Finding your board IP address
Now that you have your board connected, let's find the Galileo IP address. You are
free to choose either a wired or a wireless connection, as long as your Galileo has the
Internet connection.

There are different ways to discover your board's IP address. One of them is using
the Linux ifconfig command (http://ss64.com/bash/ifconfig.html). It
will print your Internet adapters and its properties. With the help of the system
command, you'll be able to execute Linux instructions from the Arduino IDE. This is
a special Galileo command that instructs your Arduino code to execute a command
line instruction in the Linux shell. It only takes one parameter—a string with your
instruction. Let's create a new sketch:

void setup() {

 delay(1000);

 system("ifconfig -a > /dev/ttyGS0");

}

void loop() {}

http://ss64.com/bash/ifconfig.html

Chapter 3

[39]

Compile and upload the sketch to your board, and open the serial monitor. This
sketch executes the Linux ifconfig command, outputting the Galileo network
interfaces to the serial port. Standard output and error will be redirected to /dev/
ttyGS0, which is the device Galileo uses to display information in the serial monitor:

Finding your IP address for a wired connection

In the serial monitor, you'll find all your network interfaces listed. Your wired
connection can be read from the eth0 interface and the Wi-Fi connection from
the wlan0 interface.

Reading the board temperature
Now that you've found your IP address, let's access the board via SSH. Connect your
computer to the same network as Galileo. If you are using Linux or Mac OS X, type
the following command in your command line, replacing the IP address with the one
you've found in the previous step:

$ ssh root@192.168.1.71

Monitoring the Board Temperature

[40]

If you are prompted for the password during the connection
process, leave the field empty and press Enter.

If you are using Windows, you should download PuTTY (http://www.putty.org/),
select the SSH option, insert the Galileo IP address, and click on the Open button:

Connecting to the board through SSH using PuTTY

If everything went well, you should now be connected to Galileo via SSH, and see
the following shell prompt:

root@clanton:~$

This way, you can now confirm that your bootable image is working fine.

http://www.putty.org/

Chapter 3

[41]

Now, let's read the CPU temperature value. As you know, everything in Linux is a
file, and the temperature value is no exception. You'll find it in the path /sys/class/
thermal/thermal_zone0/temp. Running the cat command (http://ss64.com/
bash/cat.html), you'll be able to read the Galileo Quark SoC temperature. To do
this, run the following command in the SSH shell:

root@clanton:~$ cat /sys/class/thermal/thermal_zone0/temp

The command returns the current read value of the Galileo CPU temperature in Celsius:

Reading internal temperature value using PuTTY

To obtain the real temperature value, you should divide the read value by 1000,
so that we can read it as 67 degree Celsius. This is an expected value, so don't get
alarmed; Galileo CPU temperature is usually considerably high. Coming back to
the Arduino IDE, you can now read the temperature in the serial console using a
system call.

Now, let's try capturing the integer value of the temperature every second by
running the following sketch:

void setup() {

 Serial.begin(9600);

 delay(1000);

 Serial.println("Started capturing");

}

void loop() {

 Serial.println("reading..");

 system("echo $((`cat /sys/class/thermal/thermal_zone0/temp` / 1000))
> /dev/ttyGS0");

 delay(1000);

}

http://ss64.com/bash/cat.html
http://ss64.com/bash/cat.html

Monitoring the Board Temperature

[42]

This sketch will run a Linux instruction that retrieves the internal temperature
value, divide it by 1000, and output the resulting integer part to the serial port.
After uploading the sketch, you should see the temperature values appearing
on your serial monitor.

Plotting your temperature data
Now, let's use everything you've learned so far to create temperature data samples
and use them to draw an online chart. In this example, we will be using Plotly. It is
a very useful online tool that allows you to create online charts using an API. Using
a free plan, we are able to create unlimited number of public and up to ten private
charts. The whole idea of this demo is to capture the temperature values each second
during a minute and use the gathered data to create a chart.

Creating temperature data samples
With the system command, we were able to print the temperature values to the
serial port. This is the right tool to print the data to our serial port, but to be able to
use it, we'll need to assign that same data to vars. One way to do this is combining
our system calls with the Arduino SD library methods. We need to change the
temperature output from the serial port to a path where the SD library can read it.
To do so, we can use the following system call:

system("echo $((`cat /sys/class/thermal/thermal_zone0/temp` /
1000)) > /media/realroot/sample.tmp");

This will print the integer part of the read temperature to the path /media/
realroot (which is the SD card path), to the file named sample.tmp.

Now, to read from /media/realroot/sample.tmp, we must use the SD library.
Using this library, we'll open the sample file and assign its contents to a String
variable. In the following sketch, we'll output the temperature to a file and assign it
to a String:

#include <SD.h>

void setup() {

 Serial.begin(9600);

 delay(3000); //Give it some time so we can read the prints

 //Read, calculate and store the temperature value in the SD card

Chapter 3

[43]

 system("echo $((`cat /sys/class/thermal/thermal_zone0/temp` /
1000)) > /media/realroot/sample.tmp");

 //start the SD card

 SD.begin();

 //check if the file exists. It will search inside/media/realroot

 if (SD.exists("sample.tmp")) {

 //Open the File

 File myFile = SD.open("sample.tmp");

 if (myFile) {

 String value;

 while (myFile.available()) {

 value += (char)myFile.read();

 }

 myFile.close();

 //Remove whitespaces

 value.trim();

 Serial.println(value);

 }

 }

}

void loop() {}

In the serial connection window, you should see the temperature value, which the file
contains, printed. This time, the temperature was printed from an Arduino variable
and not just outputted directly to the serial port using a command-line instruction. If
we use this process in loops, we'll be able to collect multiple samples of data.

Plotting a chart
Now that we found out how to collect temperature samples, let's have a look at
the Plotly (https://plot.ly/) website to discover how we can use it to plot the
temperature over time.

First thing to do is to create an account. Click on the CREATE ACCOUNT button.
You can register by filling in your name, e-mail, and password or using your
favourite social platform account. Now, if you click on the API libraries link, you'll
find out that there's an Arduino library available, but unfortunately, it has specific
Arduino architecture dependencies that won't run in Galileo. Luckily, we have access
to the API Protocol documentation listed below on the same page.

https://plot.ly/

Monitoring the Board Temperature

[44]

Plotly has two APIs—a REST API and a Streaming API. The REST API allows us to
style and draw online charts with simple HTTP per request/response model, while
the Streaming API offers the possibility of updating our charts in real time. In this
demo, we will only be using the REST API to plot the Galileo's temperature changes
during one minute. If you click on the REST API link, you'll be able to see the two
available endpoints—one to create a new account, and the other one to create,
modify and style graphs. Click on the last endpoint and you'll discover the required
query string parameters. So, we'll need to include the following fields in the request:

• username: The username you used when creating the Plotly account.

• API key: You can find it in the API settings, inside the settings menu.

• origin: The type of request we want. We'll stick with the plot type.

• args: This is where we define the X and Y chart data.

• kwargs: These are the other options, such as the filename and chart layout.

The response to the expected request should have a 200 status code, bringing in the
payload, a JSON object containing the chart filename and access URL, error (if exists),
warning (if exists), and an optional message. Having all this information, we need to
configure our Web Client to create such type of requests.

We need to print the following request to the Web Client socket after connecting to
Plotly servers:

POST /clientresp HTTP/1.1

Host: plotly.ly

User-Agent: Galileo/0.0.1

Content-Length: (needs to be calculated)

version=2.3&origin=plot&platform=Galileo&un=my_username&key=my_api
_key&args={"x":[my_collected_x_values],"y":[my_collected_y_values]
,"type":"scatter","mode":"lines+markers","visible":true}&kwargs={"
filename":"galileo_temperature","fileopt":"overwrite","style":{"ty
pe":"line"},"layout":{"title":"Galileo CPU
Temperature"},"world_readable": true}

Now that we have everything we need, let's join the temperature samples gathered
with the Plotly Web Client to collect data and plot our chart. Data will be collected
sensibly every second for a minute.

You can download the code for this chapter from the
official Packt Publishing website.

Chapter 3

[45]

Open the Arduino IDE and navigate to File | Open and then select the _6_Wired_
TemperatureChart.ino file from the _6_Wired_TemperatureChart folder.

Replace MY_USERNAME with your Plotly username, MY_API_KEY with your Plotly API
key, and the MAC address with the one you can find printed in your Ethernet socket.
Using an Ethernet connection and your bootable image starts the Galileo board, and
uploads the sketch you had just opened.

If you have a look at the code, at the end of setup, we are executing a system
command with the touch instruction (http://ss64.com/bash/touch.html). This
Linux instruction can be used to create a new empty file. If the file doesn't exist by
the time this sketch is executed, it will be created when the sketch starts writing read
temperatures, ensuring that the file exists.

The loop method is split in two parts. Every time a temperature is read, it is added
to a String that will contain all the gathered samples. When the counter reaches its
limit from 0 to 60 seconds, it will post a request to the Plotly API.

Looking at your serial monitor, you'll see printed the x and y values that are
being collected. After posting the data to the Plotly API, you should see a similar
response printed:

Obtaining the chart URL

http://ss64.com/bash/touch.html

Monitoring the Board Temperature

[46]

Looking at the response, you'll find a JSON key named URL. This URL is where your
chart is displayed. Use a web browser to open it and you'll see a chart with your
board temperature over one minute of time.

Since your sketch is now persistent because you are using an SD card image, give
your Galileo a rest and power it off for 10 minutes. After that time, it should be
cooler, so power it on again. The sketch will start automatically. Give your board
about a minute to collect the data and plot the chart. After that time, reload your
chart web page:

Galileo's temperature increasing

You should now see a different chart with your board's temperature increasing
over time.

Chapter 3

[47]

In this demo, we've used the Ethernet cable connection to connect with Plotly
servers. If you wish, you can use a Wi-Fi connection instead. To do this, you'll
need to use the Wi-Fi client instead, replacing the beginning of the sketch with
the following code:

#include <SD.h>

#include <WiFi.h>

char ssid[] = "yourNetwork"; // your network SSID (name)

char pass[] = "secretPassword"; // your network password (use for
WPA, or use as key for WEP)

int status = WL_IDLE_STATUS;

WiFiClient client;

String username = "MY_USERNAME";

String api_key = "MY_API_KEY";

String temperaturesY = "[";

String timesX = "[";

int seconds = 0;

void setup() {

 system("ifup wlan0");

 delay(1000);

 Serial.begin(9600);

 while (status != WL_CONNECTED) {

 Serial.print("Attempting to connect to SSID: ");

 Serial.println(ssid);

 // Connect to WPA/WPA2 network. Change this line if using open
or WEP network:

 status = WiFi.begin(ssid, pass);

 // wait 10 seconds for connection:

 delay(10000);

 }

 Serial.println("Connected to wifi");

 Serial.println("Starting SD card...");

 if (!SD.begin()) {

 Serial.println("SD card failed to start!");

 return;

 }

 Serial.println("SD card started successfuly");

Monitoring the Board Temperature

[48]

 delay(5000);

 system("touch /media/realroot/sample.tmp");

}

…

As a challenge, you can always extend this demo to use the Plotly Streaming API and
enable real-time updates in your chart, making the data collection step much lighter,
allowing the board to plot for a huge time amount.

Summary
Galileo can connect to the Internet using its Ethernet or Wi-Fi adapter. To do so,
you've learned how to build and boot the board from a bigger Linux image through
an SD card, which uses Wi-Fi drivers and makes sketches persist when the board
reboots. Also, you've learned how to execute Linux commands from the Arduino
IDE, finding your IP address, and reading the CPU temperature. You used the SD
library to be able to collect temperature samples, and finally created a Web Client
that is able to plot charts.

In the next chapter, you'll learn how to develop a motion sensing light using the
Arduino IDE.

[49]

Creating a Motion

Sensing Light
In many public buildings, house gardens, or even common spaces such as restrooms,
we can find lights that are triggered on when motion or presence is detected. These
kinds of systems aim to save electricity by turning the lights on only when they are
needed, not giving the chance of someone forgetting to turn them off.

In this chapter, we will create our own energy saving lighting system. We'll control a
single AC powered lightbulb using a solid state relay, which will be operated by the
Galileo considering sensorial data. You'll learn how to use the Arduino IDE to read
digital and analog data from sensors. Finally, we'll build a web server to serve a web
page, allowing you to control the whole system with it.

In this chapter, we will cover the following topics:

• Reading analog and digital inputs with the Arduino IDE

• Learning how to use a PIR sensor for motion detection

• Learning how to use a photoresistor to detect luminosity

• Controlling a solid state relay considering the collected data from sensors

• Using Galileo as a web server

• Controlling the whole system using a web page served by Galileo

Creating a Motion Sensing Light

[50]

Required equipment
This project will require some electronic and electrical equipment. We'll be building
not only DC, but also AC circuits.

If you don't feel comfortable building the circuits yourself,
please seek the help of someone more experienced to ensure
that the circuits are built properly and are safe to use.

To be able to complete all the steps in this chapter, besides the Galileo board, you'll
need the following material:

• A lightbulb, a lightbulb socket, and a power plug:

In this example, we'll be using an E27 lightbulb (220 V-240 V, 20 W, 160 mA)
with the correspondent socket and a power plug. We'll be using a European
C-type plug, supporting 220 V. If you want to use another type of plug,
socket, or lightbulb, be sure that they are compatible, otherwise you'll
need to do some adjustments to the circuits.

Chapter 4

[51]

• A Passive infrared motion sensor:

For the motion detection, we'll be using a generic HC-SR501 Passive Infrared
(PIR) motion sensor supporting 5 V. This type of sensor can detect motion by
measuring heat changes in its surroundings.

If you need to purchase one, visit http://www.amazon.
com/Great-Deal-HC-SR501-Infrared-Raspberry/
dp/B00M1H7KBW.

http://www.amazon.com/Great-Deal-HC-SR501-Infrared-Raspberry/dp/B00M1H7KBW
http://www.amazon.com/Great-Deal-HC-SR501-Infrared-Raspberry/dp/B00M1H7KBW
http://www.amazon.com/Great-Deal-HC-SR501-Infrared-Raspberry/dp/B00M1H7KBW

Creating a Motion Sensing Light

[52]

• A photoresistor and a 10 kΩ resistor:

The photoresistor is a special type of resistor with a photoconductive property.
The resistor value changes depending on the amount of light it is exposed to. It
is a cheap option and a great addition to obtain input on the day's luminosity.
You'll also need a resistor for the circuit. We'll use a 10 kΩ resistor, which is
represented by the colors: brown, black, orange, and gold.

If you need to purchase a photoresistor and a 10 kΩ resistor, you
can order them at http://www.ebay.com/itm/3-x-Light-
Photosensitive-Detector-Sensor-Switch-LDR-3-x-10k-
Resistor-Arduino-/181585094020?hash=item2a4750a584.

http://www.ebay.com/itm/3-x-Light-Photosensitive-Detector-Sensor-Switch-LDR-3-x-10k-Resistor-Arduino-/181585094020?hash=item2a4750a584
http://www.ebay.com/itm/3-x-Light-Photosensitive-Detector-Sensor-Switch-LDR-3-x-10k-Resistor-Arduino-/181585094020?hash=item2a4750a584
http://www.ebay.com/itm/3-x-Light-Photosensitive-Detector-Sensor-Switch-LDR-3-x-10k-Resistor-Arduino-/181585094020?hash=item2a4750a584

Chapter 4

[53]

• A solid state relay, four two-core cable and Y terminals:

To be able to control a 220 V lightbulb, we'll need to use a relay. A relay is a
switch that is electrically controlled. It uses an electromagnet to mechanically
pull two connections together and close that circuit. In this particular case,
we will be using a solid state relay. It is also a switch, but it doesn't contain
mechanical parts. Besides having a bigger lifetime than the electromechanical
relay, it is safer to operate, considerably faster, but more expensive. We'll
need one solid state relay (http://www.amazon.com/Bessky-TM-White-
Controller-24-380V/dp/B00HIU8TSK) that can handle 220 V AC, being
operated by 5 V DC. We'll also need a two-core cable (http://www.ebay.
com/itm/2-Core-6A-Black-Power-Cable-0-75mm-Electric-Flexible-

Mains-Car-Wire-/360465655261) long enough to connect the lightbulb
socket to the relay and power plug. Using Y terminals (http://www.amazon.
com/Absolute-USA-ST1210Y-Insulated-Connectors/dp/B00M4CZZJI)
in the cables that will be connected to the relay will help make the wiring
process easier and safer.

http://www.amazon.com/Bessky-TM-White-Controller-24-380V/dp/B00HIU8TSK
http://www.amazon.com/Bessky-TM-White-Controller-24-380V/dp/B00HIU8TSK
http://www.ebay.com/itm/2-Core-6A-Black-Power-Cable-0-75mm-Electric-Flexible-Mains-Car-Wire-/360465655261
http://www.ebay.com/itm/2-Core-6A-Black-Power-Cable-0-75mm-Electric-Flexible-Mains-Car-Wire-/360465655261
http://www.ebay.com/itm/2-Core-6A-Black-Power-Cable-0-75mm-Electric-Flexible-Mains-Car-Wire-/360465655261
http://www.amazon.com/Absolute-USA-ST1210Y-Insulated-Connectors/dp/B00M4CZZJI
http://www.amazon.com/Absolute-USA-ST1210Y-Insulated-Connectors/dp/B00M4CZZJI

Creating a Motion Sensing Light

[54]

• A breadboard and some jumper wires:

A small breadboard and a couple of male/male hookup wires will help you
connect your sensors to the Galileo.

If you need to purchase them, you can find them at http://www.
amazon.com/microtivity-IB401-400-point-Experiment-
Breadboard/dp/B004RXKWDQ.

Controlling a lightbulb
Before starting to wire the circuit, keep in mind that you'll be using 220 V AC and
there's a risk of electrocution. It can be very dangerous to use high voltages if some
precautions aren't taken into consideration.

During the whole wiring process, ensure that your circuit is not connected to the
wall socket.

http://www.amazon.com/microtivity-IB401-400-point-Experiment-Breadboard/dp/B004RXKWDQ
http://www.amazon.com/microtivity-IB401-400-point-Experiment-Breadboard/dp/B004RXKWDQ
http://www.amazon.com/microtivity-IB401-400-point-Experiment-Breadboard/dp/B004RXKWDQ

Chapter 4

[55]

Always keep your circuit disconnected from the wall socket
when wiring or changing the circuit.

Isolate the AC part of the circuit. It is the best way to avoid touching exposed
wires accidently.

Be extremely careful when wiring the AC component of the circuit.
Use the Y terminals to connect the wires to the relay and do not let
there be any exposed wire that you may accidently touch.

If you have any doubt or you are not sure what to do, ask a more experienced person
for help.

If you want to read more about solid state relay safety precautions,
visit at http://www.omron.com/ecb/products/pdf/
precautions_ssr.pdf.

Keeping this in mind, let's start assembling our circuit:

Wiring the solid state relay to the Galileo and the lightbulb socket

The blue wire in the diagram represents the neutral. You should connect it to the
neutral connector of the lightbulb socket, which should be located at the bottom
of the bulb socket. Connect the other end of the wire to the power plug.

http://www.omron.com/ecb/products/pdf/precautions_ssr.pdf
http://www.omron.com/ecb/products/pdf/precautions_ssr.pdf

Creating a Motion Sensing Light

[56]

The two brown wires in the diagram represent the hot. Connect the first brown cable
between the lightbulb socket's hot connector and the relay connector number 2, in
the AC component of the relay. Connect the second brown cable between the power
plug and the relay connector number 1, also in the AC part of the relay.

Grab your Galileo board. Connect one jumper wire from pin 13 to the solid state
relay connector number 3 (plus sign) in the DC component and the Galileo's ground
to the relay's connector 4 (minus sign).

Be sure that you have your circuit similar to the preceding schematic image,
especially the AC components.

You'll need to be extremely careful when using the circuit. Don't ever
touch it when the power plug is connected to the wall socket. If you
need to do adjustments, first disconnect it from the wall socket.

With your AC circuit disconnected from the wall socket, open the Arduino IDE. To
test our circuit, let's use the Blink sketch. Open the sketch by navigating to File |
Examples | Basics | Blink. As you've seen earlier, this sketch changes the pin status
to its complement every second. Since this pin is now connected to the solid state
relay, setting the pin value to HIGH will activate the relay, turning the lightbulb on.
Setting the pin value to LOW will deactivate the relay, turning the lightbulb off.

In the sketch code, confirm that you are using pin 13:

int led = 13;

Connect your power plug to a wall socket and upload the sketch to your Galileo.
You should now see your lightbulb blinking. The relay only supports the on and
off status; don't try to fade the lightbulb as it won't work.

Controlling the relay using a motion

sensor
A simple way to detect motion is using a PIR sensor. This sensor measures infrared
light radiation emitted by the objects in its range. By detecting changes in the amount
of radiation, it can detect motion.

Before starting to do the changes in the circuit, disconnect
your AC plug from the wall socket.

Chapter 4

[57]

Using the relay circuit from the previous step and having the AC plug disconnected
from the socket, add the following connections:

Wiring a PIR motion detection sensor to Galileo

Your PIR sensor should have three pins. Be sure to connect its VCC pin to the Galileo's
5 V pin, the GND pin to the Galileo's ground, and the OUT pin to the Galileo's pin
2. Whenever the sensor detects motion, we'll be able to read the value HIGH on the
Galileo's pin 2. When the sensor stops detecting, we'll be able to read LOW.

Open the Arduino IDE, power on your Galileo (just the Galileo, not the lightbulb
plug), and upload the following code:

// Pin where we will read the sensor data

int pir_data_pin = 2;

// Pin which we will use to control the relay

int relay_pin = 13; // Initializing PIR status as low

Creating a Motion Sensing Light

[58]

int last_pir_status = LOW;

void setup() {

 pinMode(relay_pin, OUTPUT);

 // Set pin as input so we can read it

 pinMode(pir_data_pin, INPUT); digitalWrite(pir_data_pin,
LOW);

 Serial.begin(9600);

 Serial.print("Calibrating sensor ");

 //Give the sensor 20 seconds to warm up and calibrate

 for(int i = 0; i < 20; i++){

 Serial.print(".");

 delay(1000);

 }

 Serial.println("Sensor ready!");

 }

// Set relay status

void setLightbulbStatus(int status) {

 digitalWrite(relay_pin, status);

}

void loop(){

 if(digitalRead(pir_data_pin) == HIGH){

 // If transition is from LOW to HIGH

 //motion was detected, activate the relay

 if (last_pir_status == LOW) {

 Serial.println("Motion detected");

 // Activate the relay

 setLightbulbStatus(HIGH);

 // Set status to the current one

 last_pir_status = HIGH;

 }

 } else {

 // If transition is from HIGH to LOW

 //motion stopped being detected, deactivate the relay

 if (last_pir_status == HIGH){

Chapter 4

[59]

 Serial.println("Motion stopped");

 // Deactivate the relay

 setLightbulbStatus(LOW);

 // Set status to the current one

 last_pir_status = LOW;

 }
 }

 delay(50);

}

Because of the way this kind of sensor works (heat), when the Galileo is powered,
we first need to let the sensor calibrate with its surroundings for at least 20 seconds.
After this, the PIR should be ready. Open the serial monitor, and every time you
move you should see the triggered event printed and the on-board LED turning on
when motion is detected and turning off when motion stops being sensed.

If you are struggling to trigger the sensor, you will find two potentiometers in it.
One tagged as Sx and another as Tx. The Sx potentiometer allows you to adjust the
sensor's sensibility, while the Tx allows you to adjust the output time. Use a Philips
screwdriver to adjust them until you start obtaining more responsiveness. Having a
look at the code, in the loop method, we are filtering the transitions from HIGH to
LOW, and vice versa.

This way, we will be able to manipulate the relay properly, turning the lightbulb
on/off when there is the correspondent transition. Plug in the lightbulb plug to the
wall socket and with the Galileo powered on, upload the sketch. Wait for the sensor
calibration to finish, and then give it a try by waving at the sensor. Combining the
PIR logic with the preceding relay control code, the lightbulb will be turned on when
motion is detected.

Detecting luminosity
In the previous step, you saw how to use a PIR motion sensor to control a relay.
That is interesting when it's dark, but during the daylight you'll have a waste of
energy with the lightbulb being turned on. Keeping this in mind, let's improve our
lighting circuit to only let the lightbulb turn on when the incident amount of light
(luminosity) is low. To do so, we'll add a photoresistor to our circuit.

Creating a Motion Sensing Light

[60]

Photoresistors are light-dependent resistors. The incisive amount of light will define
the resistor value. By using them, we are able to understand when it is night or day
by setting the threshold values. Unplug your bulb plug from the wall socket and let's
do some changes in our circuit. In the following figure, you can see how you must
connect the photoresistor to the Galileo:

Wiring a photoresistor to Galileo

One side of the photoresistor should be connected to the 5 V pin. To the other side,
we must connect the resistor and wire it to the Galileo's pin A0 using a jumper wire.
To close the circuit, we must connect the end of the resistor to the Galileo's ground.

Chapter 4

[61]

Now that you have seen how you should wire it, let's add the photoresistor to our
lighting circuit. Our circuit should look similar to the following:

Complete wiring diagram with bulb, relay, PIR sensor and photoresistor

Open the Arduino IDE and let's find out what we can read from the A0 pin by
uploading the following sketch; do not plug the AC power plug to the wall socket yet:

// To this pin is connected the photoresistor and a 10K pulldown
resistor

int photoresistor_pin = 0;

// The analog reading from the sensor divider

int photoresistor_reading;

void setup(void) {

 Serial.begin(9600);

}

void loop(void) {

 // Read from the analog pin A0

Creating a Motion Sensing Light

[62]

 Photoresistor_reading = analogRead(photoresistorPin);

 Serial.print("PhotoValue reading = ");

 // the raw analog reading

 Serial.println(photoresistor_reading);

 delay(100);

}

The Galileo pins from A0 to A5 are analog pins. To read its values, we must use the
analogRead method. This method maps input voltages between 0 and 5 volts into
integer values between 0 and 1023.

Opening the serial monitor of the IDE, you'll see a lot of numbers scrolling in the
range of 0-1023. Covering the photoresistor will result in the read values going lower
and exposing it to light will make the values increase. Those values you see printed
can be interpreted as the amount of light.

This is a raw read value related to the amount of light and is not
directly related to lumens or any other kind of light measurement unit.

All we need to do here is to set a threshold and compare it with the amount of
light that is read. If the read value is below threshold, we can consider this scenario
acceptably dark to turn on our lightbulb. Let's give it a try. Connect the power plug
to the wall socket and upload the following sketch to your Galileo:

// PIR variables

int pir_data_pin = 2;

int last_pir_status = LOW;

// Relay variables

int relay_pin = 13;

// Photoresistor variables

int photoresistor_pin = 0;

int photoresistor_value;

// Define your threshold value

int light_treshold = 400;

void setup() {

 pinMode(relay_pin, OUTPUT);

 // Set pin as input so we can read it

 pinMode(pir_data_pin, INPUT);

 digitalWrite(pir_data_pin, LOW);

 Serial.begin(9600);

Chapter 4

[63]

 Serial.print("Calibrating sensor ");

 //Give PIR sensor 20 seconds to warm up and calibrate

 for (int i = 0; i < 20; i++) {

 Serial.print(".");

 delay(1000);

 }

 Serial.println("Sensor ready!");

}

void setLightBulbStatus(int status) {

 digitalWrite(relay_pin, status);

}

// returns true if "dark"

boolean isDark() {

 photoresistor_value = analogRead(photoresistor_pin);

 Serial.print("Ammount of light = ");

 Serial.println(photoresistor_value);

 return (photoresistor_value < light_treshold);

}

void controlLightWithMotionSensor() {

 if (digitalRead(pir_data_pin) == HIGH) {

 if (last_pir_status == LOW) {

 Serial.println("Motion start");

 setLightBulbStatus(HIGH);

 last_pir_status = HIGH;

 }

 } else {

 if (last_pir_status == HIGH) {

 Serial.println("Motion stopped");

 setLightBulbStatus(LOW);

 last_pir_status = LOW;

 }

 }

}

void loop(){

 //When is dark, check if motion was detected

 if (isDark()) {

 controlLightWithMotionSensor();

 }

 delay(50);

}

Creating a Motion Sensing Light

[64]

In this sketch, we changed a couple of things to help make it easier to read. We
moved the code that controls the lightbulb using the motion sensor inside the
void method controlLightWithMotionSensor.

In the loop method, we will now be repeatedly calling the isDark verifier.
We are testing whether the raw amount of light value that is being read is
below our threshold. The motion sensor will only control the light when
that condition is fulfilled.

Using Galileo as a web server
So far, we were able to control our lightbulb using sensors. Now, let's try to display
our sensorial data in a web page. To do so, we will use the Galileo as a web server
and use some common web technologies.

A web server is an application capable of serving, storing, and processing web pages
in the Internet or a local network. Browsers are user agents that communicate with
web servers through the HTTP protocol, requesting pages' content and displaying
it. Typically, a page content contains an HTML document, including images, CSS
stylesheets, and client-side JavaScript code. The web server should reply to such
requests with the requested web page content, if available, and the user is allowed
to access that same content.

Make sure your board has Internet access, either through Wi-Fi or a wired
connection. The web server we'll create will only be available in your local network.
The first thing we must do is to discover our Galileo's IP address by running the
sketch we've already used in the Finding your board IP address section in Chapter 3,
Monitoring the Board Temperature.

Open the Arduino IDE. If you are connecting to the Internet using a wired
connection, open the WebServer example located in File | Examples | Ethernet
| WebServer. If you chose to use the wireless connection, open WiFiWebServer
instead, located in File | Examples | WiFi | WiFiWebServer.

Both sketches will be launching a web server that will be listening to client requests
(which will be made by our browser) and it will respond to all of them with an HTML
page printing the values read from all the analog pins at the time the request was made.

At the beginning of your sketch, you'll need to do the following initial configuration:

• Ethernet connection: Replace the MAC and IP addresses with your
own values:

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

IPAddress ip(192,168,1,177);

Chapter 4

[65]

• Wi-Fi connection: Assign your network SSID and password to the
correspondent variables:

char ssid[] = "yourNetwork"; // your network SSID
(name)

char pass[] = "secretPassword"; // your network password

Remove the AC plug from the wall socket, as we won't need it now. Upload
the sketch you have just opened and, in your preferred browser, type http://,
followed by your Galileo IP address (for example, http://192.168.1.177).

In the browser, behind the scenes you'll be doing a GET request to the server with the
IP address you inserted and to the root path ("/") of the Galileo server.

While receiving the HTTP request, the Galileo web server should respond with a
200 OK status code and the web page HTML content, where you should see the read
values from the analog printed. In the displayed pin A0 output, you will find the
value that was read from the photoresistor at that particular time.

With this sketch, you were able to display all the analog pins' values read at the
request time. To obtain more updated values, you would need to refresh the page
constantly because the printed values in the web page will never be updated without
a new request. To be able to update the read values on the website, we can use AJAX
(Asynchronous JavaScript and XML) requests to fetch data periodically and update
the web page fields using JavaScript. Such type of operation is known as polling.

Now, let's turn our attention to the web page we want to be served. We want it to
be able to not only display the lightbulb status, but also to control it. We'll need one
box that represents the light status; three buttons, one for each operation; and a span
where we'll be placing the updated values.

You can refer to http://jsfiddle.net/ as it will help you
edit the HTML, CSS and JavaScript components easily. Put the
components on the right boxes and press the Run button to be
able to view the output of the web page.

The following HTML and CSS styling rules should provide the basic structure
we'll need:

<!DOCTYPE html>

<html>

 <head>

 <title>My homemade lighting system</title>

 <style type="text/css">

 .bulb {

 width: 200px;

http://jsfiddle.net/

Creating a Motion Sensing Light

[66]

 height: 200px;

 border: 1px solid black;

 background-color: white;

 }

 .button {

 padding: 15px;

 margin-bottom: 5px;

 border: 1px solid;

 width: 60px;

 text-align: center;

 cursor: pointer;

 }

 </style>

 </head>

 <body>

 <div id="lightbulb1" class="bulb"></div>

 <p>Mode: Unknown</p>

 <div class="button">ON</div>

 <div class="button">OFF</div>

 <div class="button">AUTO</div>

 </body>

</html>

This page will be served to you by the Galileo and will be displayed in your browser.
This is a very simple structure with very poor styling just to fit our needs. Feel free to
improve it.

If you want to learn more about using CSS, take a look at
http://www.w3schools.com/css/ and for HTML,
visit http://www.w3schools.com/html/.

Now that we have the page structure and style, let's add some logic to this web page
using JavaScript. We need to develop a client method that will be executed by your
browser, polling the Galileo's web server.

We'll need to make the web server respond to the following requests:

• GET lightbulb_status: This endpoint will return the lightbulb status

• POST status_manual_on: This will force the lightbulb to turn on and ignore
the motion detector/photoresistor values

http://www.w3schools.com/css/
http://www.w3schools.com/html/

Chapter 4

[67]

• POST status_manual_off: This will force the lightbulb to turn off, ignoring
the motion detector/photoresistor values

• POST status_auto: This will use the motion detector circuit input to control
the lightbulb automatically

To poll the Galileo web server, we'll be using the AJAX. This is a web development
technique that we can use to allow our browser to perform asynchronous requests
(in the background) to our web server. This client-side code will be served by the
Galileo web server, but it will be running in the browser.

If you want to learn more about it, take a look at
http://www.w3schools.com/ajax/.

Now, let's take a look on how we can use it to accomplish our objective:

function getLightbulbStatus() {

 // Create a new AJAX request

 var request = new XMLHttpRequest();

 //Do not let the AJAX request be cached by adding unique nocache
id

 var noCache = "&nocache=" + Math.random() * 1000000;

 /** Handle the ready state value changes

 0: request not initialized

 1: server connection established

 2: request received

 3: processing request

 4: request finished and response is ready ready */

 request.onreadystatechange = function () {

 // If response is ready and status code is 200 OK

 if (request.readyState == 4 && request.status == 200 &&
request.responseText != null) {

 // If lightbulb is on

 if (request.responseText.trim() == '1') {

 document.getElementById("lightbulb").style.
backgroundColor="yellow
";

 } else {

http://www.w3schools.com/ajax/

Creating a Motion Sensing Light

[68]

 document.getElementById("lightbulb").style.
backgroundColor="white"
;

 }

 }

 }

 request.open("GET", "lightbulb_status" + noCache, true);

 request.send();

 // Repeat itself in 800ms

 setTimeout(getLightbulbStatus, 800);

 }

function setBulbModeStatus(mode_status) {

 // Create a new AJAX request

 var request = new XMLHttpRequest();

 // Do not let browser cache the request

 var noCache = "&nocache=" + Math.random() * 1000000;

 request.onreadystatechange = function () {

 // If response is ready and status code is 200 OK

 if (request.readyState == 4 && request.status == 200 &&
request.responseText != null) {

 document.getElementById("light_mode").innerHTML =
request.status;

 }

 }

 request.open("POST", mode_status + noCache, true);

 request.send();

 }

Having a look at the preceding code, we'll have two types of requests. One for
polling the lightbulb status handled by the getLightbulbStatus method, and the
other for setting the lightbulb operating mode, handled by the setBulbModeStatus
method. Every time a request to obtain the lightbulb status is made and a response is
obtained, a new timer will be launched. When this timer expires, a new request will
be made again, repeating this process forever. The request to change the lightbulb
operating mode will only happen whenever a button is pressed.

Chapter 4

[69]

In the HTML buttons, we can define the action to be called on a click event by the
following code:

<div id="status_manual_on" class="button"
onclick="setBulbModeStatus(this.id)">ON</div>

<div id="status_manual_off" class="button"
onclick="setBulbModeStatus(this.id)">OFF</div>

<div id="status_auto" class="button"
onclick="setBulbModeStatus(this.id)">AUTO</div>

The AJAX script must be included in the served HTML document, inside <script>
tags, and preferentially, in the <head> section so that it can be loaded before the
events that will require it.

Going back to the server side, we'll need to have a method that will handle those
AJAX requests:

void handleResponse (EthernetClient client) {

 // Replying to the client, informing it is a successful request

 client.println("HTTP/1.1 200 OK");

 client.println("Content-Type: text/html");

 client.println("Connection: keep-alive");

 client.println();

 // if the AJAX request is a GET lightbulb_status

 if (request.indexOf("lightbulb_status") > -1) {

 client.println(digitalRead(relay_pin));

 // if the AJAX request is to turn the lightbulb on

 } else if (request.indexOf("status_manual_on") > -1){

 // Activate the relay

 setLightBulbStatus(HIGH);

 client.println("Manual");

 // if the AJAX request is to turn the lightbulb off

 } else if (request.indexOf("status_manual_off") > -1){

 // Deactivate the relay

 setLightBulbStatus(LOW);

 client.println("Manual");

 // if the AJAX request is to control the lightbulb using the
sensors

 } else if (request.indexOf("status_auto") > -1){

 int last_pir_status = LOW;

 setLightBulbStatus(LOW);

Creating a Motion Sensing Light

[70]

 client.println("Motion Detection");

 // Any other request will be responded with our webpage

 } else {

 printWebPage(client);

 }

}

Every time the loop method reads a valid and complete request, it will call the
handleResponse method, which will search for patterns in the requested URL.
Whenever a match is made with the help of the indexOf method, it will process the
correspondent request. If it is a lightbulb_status request, we'll be reading the
current relay pin status. If it is a status_manual_on/off request, it will operate the
relay, and if it is a status_auto request, the lightbulb will start being controlled by
the sensors. When no match pattern is found, the default web page will be served.

Now that you are a bit more familiarized with the concepts behind this approach,
let's see it in action.

To Download the code files of this chapter, visit the official
website of Packt Publishing.

Open the sketch (using the Arduino IDE) _5_Wired_Polling.ino from the _5_
Wired_Polling folder if you are using a wired Internet connection, or _5_WiFi_
Polling.ino from the _5_WiFi_Polling folder if you are using a Wi-Fi connection.

Keep your circuit connected to the Galileo, but the lightbulb
disconnected from the wall socket.

Upload the sketch to your board and open the serial monitor. The PIR sensor will
be calibrating for about 20 seconds. When it is ready, you'll be able to read Sensor
ready! in the serial monitor. Connect your computer to the same network as the
Galileo. Open your browser and in the URL bar type http://galileo_ip_address,
replacing galileo_ip_address with your board's IP address. After pressing Enter,
the Galileo will serve you the following web page:

Chapter 4

[71]

The webpage served by your Galileo

This interface allows you to set the lightbulb status ON and OFF manually or to
change its operation mode to auto, where the lightbulb status will change using the
photoresistor and PIR sensor inputs. Click on AUTO and try firing the sensor. You may
need to change your light_treshold variable in the sketch to be more permissive.

Creating a Motion Sensing Light

[72]

When the sensor detects motion and the incident light is below the defined
threshold, the rectangle in the top of the page turns yellow. This change is a result of
our polling, repeatedly requesting the light status. Note that the onboard LED will
also turn on, since we are controlling the relay with the pin 13 and it will be changing
its status a little bit before the website's light representation. When a lightbulb status
change happens, we won't have an immediate response because we are not being
directly informed by the server. Instead, we are asking the Galileo repeatedly what
its current status is. The responsiveness will increase a bit if we decrease the time
between the requests, but will also put more weight on our server. You can use
two modes to turn the lightbulb on—manual or using motion detection. You have
already seen what the motion detection mode does. The manual mode will ignore
the sensor code and just turn on/off lightbulb when you click on the buttons. If you
use the browser developer tools for the network requests monitoring, you'll see a lot
of AJAX requests being made in the background. We are querying the Galileo every
800 milliseconds to give us the lightbulb status.

Now, let's plug the lightbulb plug to the wall socket and give it a try testing the
created operation modes. A better option to make the system more responsive could
be using server notification, possibly using web sockets. With a bit of tweaking and
further development, you can add more lightbulbs to the system or even control
other devices using relays.

Summary
As you were able to test by yourself, Galileo can be used as a small web server,
being able to deliver web pages and callable endpoints. This type of server can be
used to allow controlling actuators or display values that are read from the sensors
in a local network.

You learned how to use a relay to control a lightbulb. Adjusting the code a bit,
you will be able to control your own home lights from a computer or even a mobile
device web browser. Besides lightbulbs, relays can be used to control devices such as
power outlets or any other devices that have an on and off status.

Using a motion sensor and a photoresistor, you were able to understand how to
make the relay actuate based on motion detection and incident light. Although
we are used to see motion detection sensors heavily bounded to common
spaces' lighting systems, such as entrance halls, it can also be used as a trigger in
surveillance or intrusion alarm systems. Photoresistors can also have many more
applications. An example can be a gardening watering system, which can use the
light information to decide when the lawn should be watered.

Chapter 4

[73]

While developing a web server to monitor and control the whole system, you came
in contact with some basic web development concepts—building a simple webpage
and styling it. Using AJAX, you learned how to use short polling, being able to
update your web page elements without having to reload them, but with the cost of
some delay. In the chapters ahead, you'll be able to explore other technologies that
will help you increase your systems responsiveness.

In the next chapter, we'll be leaving the Arduino IDE and we will start exploring the
Linux side of the Galileo and Intel Development Kit, discovering what it brings and
how it can help you build more complex IoT projects.

[75]

Intel IoT Developer Kit Tools
So far, you have learned how to develop projects for your Galileo board using
the Arduino IDE. If you were already familiar with Arduino boards, you certainly
noticed some resemblances developing between both the boards. Although very
simple and intuitive to use, it can get complex when you want to develop bigger and
more ambitious projects. Also, many developers aren't that keen on developing their
projects using the Arduino C/C++ language.

In this chapter, we'll have a look at other available development tools and languages
by exploring some of the features that the Intel® IoT Developer Kit pack provides.
Being a complete hardware and software solution, it offers way more tools for your
IoT projects than the Arduino IDE, also allowing you to develop your projects in
other languages and the possibility of using a cloud-based IoT analytics system.

By the end of this chapter, you'll have some notions of what you can use to help you
develop your projects by learning how to manipulate your board I/O pins, and extract
meaningful data from your sensors using your favorite development language.

In this chapter, you'll learn about:

• The Intel® IoT Developer Kit concept

• Setting up and booting from your IoT Developer Kit image

• Reading from Galileo I/O pins using the Intel MRAA library

• Using the Intel UPM library to read meaningful data from sensors

• Creating and using Node.js, Python, and C++ apps to read data from sensors

Intel IoT Developer Kit Tools

[76]

Required equipment
In this and the upcoming chapters, we'll be using the Grove Starter Kit Plus—Intel
IoT edition sensors. It is a set of sensors that are officially compatible with both
Intel Galileo and Intel Edison. For Galileo, there are two kits available. One for Gen
1 (http://www.seeedstudio.com/depot/Grove-starter-kit-plus-Intel-
IoT-Edition-for-Intel-Galileo-Gen-1-p-1977.html) and another for Gen 2
(http://www.seeedstudio.com/depot/Grove-starter-kit-plus-Intel-IoT-
Edition-for-Intel-Galileo-Gen-2-p-1978.html). Pick the right one for the
board you are using.

For this chapter, we'll need:

• Base Shield V2: It is an expansion header containing multiple Grove
connectors. It allows us to connect multiple Grove sensors to it, allowing
us to keep using the expansion header:

http://www.seeedstudio.com/depot/Grove-starter-kit-plus-Intel-IoT-Edition-for-Intel-Galileo-Gen-1-p-1977.html
http://www.seeedstudio.com/depot/Grove-starter-kit-plus-Intel-IoT-Edition-for-Intel-Galileo-Gen-1-p-1977.html
http://www.seeedstudio.com/depot/Grove-starter-kit-plus-Intel-IoT-Edition-for-Intel-Galileo-Gen-2-p-1978.html
http://www.seeedstudio.com/depot/Grove-starter-kit-plus-Intel-IoT-Edition-for-Intel-Galileo-Gen-2-p-1978.html

Chapter 5

[77]

• Light sensor: Just like the photoresistor we used in the previous chapter,
it also detects the intensity of the incident light by decreasing its resistance
value when the incident amount of light increases. With the increase in the
incident light, the sensor resistance decreases. The main difference is that this
sensor packs all the components together and is compatible with the Intel®
IoT Developer Kit libraries.

IoT Developer Kit components
Intel® IoT Developer Kit is a complete solution for creating IoT applications for the
Intel® Galileo and Intel® Edison boards. It is mainly comprised of:

• Hardware components: The hardware components refer to the development
board (Intel® Galileo Gen 1, Intel® Galileo Gen 2, and Intel® Edison),
sensors, and actuators.

• Software image: The Galileo IoT Developer Kit image is a Yocto-embedded
Linux-based operating system. It's a bootable image that also includes some
of the available Wi-Fi and Bluetooth drivers, but unlike the image we used
earlier, it supports a wide range of Linux tools such as the GCC toolchain
(http://elinux.org/Toolchains) and libraries such as MRAA (https://
github.com/intel-iot-devkit/mraa) and UPM (https://github.com/
intel-iot-devkit/upm). This image also supports the Git-distributed
version control system (https://git-scm.com/), making it possible to push
and pull your code to or from online repositories such as GitHub (https://
github.com). The redis client (http://redis.io/) is another interesting tool
that was made available, allowing developers to use a simple key value cache
and storage system. This image also supports code development in C++,
Python, and Node.js.

http://elinux.org/Toolchains
https://github.com/intel-iot-devkit/mraa
https://github.com/intel-iot-devkit/mraa
https://github.com/intel-iot-devkit/upm
https://github.com/intel-iot-devkit/upm
https://git-scm.com/
https://github.com
https://github.com
http://redis.io/

Intel IoT Developer Kit Tools

[78]

• IDE and programming language: You can develop your applications using
different Integrated Development Environments. Besides the Arduino IDE,
you can use Wyliodrin, the Intel® XDK IoT Edition, and the Eclipse IDE.
Wyliodrin (https://www.wyliodrin.com) allows you to develop from a
web browser using Visual Programming, Python, and Node.js. The Intel®
XDK IoT Edition (https://software.intel.com/en-us/html5/xdk-iot)
allows you to develop your onboard apps using JavaScript (Node.js) and
the possibility of building mobile companion apps for your projects. Finally,
there is the popular Eclipse IDE, recommended by Intel®, to be used in your
C++ projects.

• Cloud analytics: For getting your data online, you have now the Intel®
IoT cloud analytics (https://dashboard.us.enableiot.com) available,
where you'll be able to store and analyze the data that is collected by your
sensors. It also allows you to create rules that will trigger alerts based on the
analyzed data.

Building the image
Let's start by building the IoT Developer Kit image. For this, you'll only need a
computer with an SD card reader and a blank 4 GB microSD card. Feel free to
pick the SD card size up to the maximum supported size of 32 GB.

Download the latest image version from http://iotdk.intel.com/images/iot-
devkit-latest-mmcblkp0.direct.bz2. Once the download finishes, enter the
downloaded file folder. Depending on the operating system you are using, follow
the following correspondent instructions to build your bootable image:

• Linux: On a Linux platform, go through the following steps to extract and
build an image:

1. Extract the image file by using the bunzip2 tool. Open the terminal,
navigate to the downloaded file folder, and type the following
command:

bunzip2 iot-devkit-latest-mmcblkp0.direct.bz2

2. Use the sudo fdisk –l command to locate your SD card in the file
system. If you are not sure which one it is, execute the command with
and without the SD card placed in the reader. It will be the entry that
only appears once after executing both the commands (for example,
/dev/sdb1).

3. With the SD card in the reader, execute the sudo umount /dev/
sdb1, command where /dev/sdb1 is the device you found using the
command in the previous step.

https://www.wyliodrin.com
https://software.intel.com/en-us/html5/xdk-iot
https://dashboard.us.enableiot.com
http://iotdk.intel.com/images/iot-devkit-latest-mmcblkp0.direct.bz2
http://iotdk.intel.com/images/iot-devkit-latest-mmcblkp0.direct.bz2

Chapter 5

[79]

4. Finally, copy the image to the SD card with the sudo dd if=iotdk-
galileo-image of=/dev/sdb1 command. The if part of the
command is the path to the target image you wish to copy and the of
part is where you wish to paste it, with /dev/sdb1 being the path to
the device you found in step 2.

If you require further assistance for formatting or creating your
image from a Linux computer, check out Intel's official guide at
https://software.intel.com/en-us/programming-
blank-sd-card-with-yocto-linux-image-linux.

• Windows: On a Windows platform, refer to the following steps to extract
and build an image:

1. Extract the file using either 7-Zip (http://www.7-zip.org/) or
WinRAR (http://www.win-rar.com/).

2. Install the Win32 Disk Imager (http://sourceforge.net/
projects/win32diskimager/). Insert your SD card in the card
reader and open it. You may need to run it as an administrator.

In the app, add the path to the extracted file by clicking on the folder
icon. By default, Win32 Disk Imager will only list Disk Images (*.img,
*.IMG) files. You'll need to click on it and select *.* to be able to see
all the files. Then, select the file you just extracted and click on Open.
Now, select the SD card drive name and click on the Write button.

If you require further assistance for formatting or creating your
image from a Windows computer, check out Intel's official guide
at https://software.intel.com/en-us/programming-
blank-sd-card-with-yocto-linux-image-windows.

• Mac OS: On a Mac OS, go through the following steps to extract and build
an image:

1. Double click on the downloaded file and extract the image file.

2. Insert your SD card in the card reader and find its system path by
using the diskutil list command. If you are not sure which one
it is, execute the command with and without the SD card inserted in
the reader and take note of the line that doesn't repeat in the result of
both the commands (for example, /dev/disk1).

https://software.intel.com/en-us/programming-blank-sd-card-with-yocto-linux-image-linux
https://software.intel.com/en-us/programming-blank-sd-card-with-yocto-linux-image-linux
http://www.7-zip.org/
http://www.win-rar.com/
http://sourceforge.net/projects/win32diskimager/
http://sourceforge.net/projects/win32diskimager/
https://software.intel.com/en-us/programming-blank-sd-card-with-yocto-linux-image-windows
https://software.intel.com/en-us/programming-blank-sd-card-with-yocto-linux-image-windows

Intel IoT Developer Kit Tools

[80]

3. Unmount the SD card by using the diskutil unmountDisk disk1
command, where disk1 is your SD card path.

4. Finally, copy the image to the SD card with the sudo dd if=iot-
devkit-latest-mmcblkp0.direct of=/dev/disk1 command. The
if part of the command is the path to the target image you wish to
copy and the of part is where you wish to paste it, with /dev/disk1
being the path to the device you found in step 2. When it finishes,
execute the diskutil eject disk1 command to eject your card,
replacing disk1 with your own device once more.

If you require further assistance for formatting or creating
your image using Mac OS X, check out Intel's official guide at
https://software.intel.com/en-us/programming-
blank-sd-card-with-yocto-linux-image-os-x.

Booting from the IoT Developer Kit image
Now that you have your Developer Kit image, insert it in the Galileo SD card reader
and connect it to the Internet by using an Ethernet cable. Power your board on and
wait for it to start from the bootable card.

Now, we need to find the Galileo's IP address. Like the Clanton image, this one can
also be used with the Arduino IDE. To find your IP address, you can use the Arduino
sketch used in the Finding your board IP address section in Chapter 3, Monitoring the
Board Temperature. Upload the sketch using the Arduino IDE and find the IP address
printed in the serial monitor. Now, let's access the board from your computer. If you
are using Mac OS or Linux, you can execute the ssh root@my_galileo_ip_address
command from a terminal. In Windows, you should use PuTTY, select the option
SSH, and in the Host Name (or IP address) field, type root@my_galileo_ip_
address. Replace my_galileo_ip_address with the one your board is using.

If everything went right, you should now see the shell displaying the following
command line:

root@galileo:~#

https://software.intel.com/en-us/programming-blank-sd-card-with-yocto-linux-image-os-x
https://software.intel.com/en-us/programming-blank-sd-card-with-yocto-linux-image-os-x

Chapter 5

[81]

Check the image version by executing this command:

cat /etc/version

Checking the IoT Developer Kit image version

Your version doesn't need to be exactly the same as the preceding one. As long as it
is a more recent version, it should work fine.

Setting up the Wi-Fi access
As mentioned earlier, all the projects we will be developing can use either a wired or
wireless connection to access the Internet. To use a wireless connection from Linux,
we'll have to do some configurations. With your board powered off, attach your Wi-Fi
adapter just like we did it in the Connecting through Wi-Fi section in Chapter 3, Monitoring
the Board Temperature. Power your Galileo on with the Ethernet cable attached and
access it through SSH just like the we did it in the preceding section.

In the SSH shell, type lspci -k | grep -A 3 -i "network". Your Wi-Fi adapter
should be printed, as shown in the following screenshot:

Intel® Centrino Wireless-N 135 was found

If your board doesn't appear printed, you'll need to install its drivers.

Intel IoT Developer Kit Tools

[82]

This image is installed with the embedded connection manager connman, allowing
you to easily set up your wireless connection. In the SSH shell, type in the connmanctl
command and follow these steps:

1. Type enable wifi to activate your Wi-Fi adapter. The successful response
to this instruction should print in the Wi-Fi enabled shell. If you type
technologies, you'll be able to see the Wi-Fi connection displayed:

2. Scan the Wi-Fi networks in range by using the scan wifi command.
To print all the available networks, type services. You'll find your
wired connection and all the wireless networks in range:

3. In the previous step, you were able to list the Wi-Fi networks in range.
In front of the network SSID, you'll find the network ID. In order to make
your board autoconnect to your preferred network, you'll have to execute
the config network_id –autoconnect true –ipv4 dhcp command,
replacing network_id with the desired wireless network key.

4. To be able to connect to a secured network, you'll have to enable the connection
agent. To do so, type agent on, and you'll see Agent registered printed.

5. Finally, connect to your selected network by using the connect network_id
command, where network_id is the Wi-Fi network ID (not the SSID). You'll
be prompted for your network password.

Chapter 5

[83]

The MRAA library
Galileo IoT Developer Kit image brings a very useful library named MRAA
(https://github.com/intel-iot-devkit/mraa). It is a low-level skeleton for the
I/O communication, helping you stay away from the GPIOs direct manipulation,
which can be harmful if you don't know what you are doing. Like the Arduino
methods to control or read from the board pins, this library offers similar methods,
comprising the following submodules:

• Aio: This contains the methods to read values from the board analog pins
and change the ADC resolution

• Gpio: This contains the methods to read and write to digital pins

• I2c: This contains the methods to communicate using I2c

• Pwm: This contains the methods to handle the pulse with modulation signals

• Spi: This enables the Spi bus

• Uart: This enables the UART

If you want to read more about the library's I/O capabilities, visit
https://software.intel.com/en-us/articles/internet-of-
things-using-mraa-to-abstract-platform-io-capabilities.

Let's test this library by reading an analog light sensor. Grab your Grove sensors kit
and connect the light sensor to the Base Shield V2 A0 connector using the 26AWG
Grove cable and attach it to your Galileo board expansion header.

https://github.com/intel-iot-devkit/mraa
https://software.intel.com/en-us/articles/internet-of-things-using-mraa-to-abstract-platform-io-capabilities
https://software.intel.com/en-us/articles/internet-of-things-using-mraa-to-abstract-platform-io-capabilities

Intel IoT Developer Kit Tools

[84]

In the Base Shield, you'll find a switch, allowing you to use the shield in 3.3 V or
5 V mode. For this example, make sure it is set to 5 V.

Coming back to the Galileo SSH terminal, let's now create a new folder named
chapter5 to accommodate our test project files. To do so, execute the mkdir
chapter5 command. Enter the directory by typing cd chapter5. Since everything in
Linux is a file, you'll be able to get a sneak peek into the A0 pin input value by typing
cat./sys/bus/iio/devices/iio:device0/in_voltage0_raw. The outputted
value should be in the range of 0 to 4095 (12 bit resolution). Although both Intel®
Galileo boards provide 12 bit Analog-to-Digital Converter (ADC) resolution on
the analog pins, when using the MRAA library, the default ADC resolution will
be of 10 bits, allowing us to read values in the range of 0 to 1023.

Let's take a look at how we can use this library to read from the light sensor using
different development languages.

Node.js
In your Galileo SSH session, create and edit a new file using the vi editor by
typing vi mraaTest.js. Press I to enter the insertion mode and copy and
paste the following Node.js script:

// Import the library

var m = require('mraa');

console.log('MRAA Version: ' + m.getVersion());

// Export pin A0

var analogPin = new m.Aio(0);

// Read the analog pin raw value

function readValue() {

 var value = analogPin.read();

 console.log(value);

}

// Keep reading from the sensor every second (1000 milliseconds)

setInterval(readValue, 1000);

Chapter 5

[85]

To be able to use the MRAA library in your code, the first thing you need to do is
to load it and assign it to a variable by using var m = require('mraa'). After
exporting the pin A0 with new Aio(0), we are able to start reading the sensor
values. Using the setInterval method, we are able to keep reading from the sensor
by calling the readValue method every second. This method reads the input value
from the analog pin. You can leave the insertion mode by pressing the Esc key. Save
the file and leave the editor by typing :wq, followed by Enter.

Now, let's run the script we just created by executing the node mraaTest.js
command in the Galileo SSH session. In your terminal, you'll see the raw read
values being printed. To stop the script, press Ctrl + C (or cmd + C if you are
using an Apple keyboard).

The documentation for the MRAA Node.js API can be found at http://iotdk.
intel.com/docs/master/mraa/node/modules/mraa.html, and taking a look at
the Aio section, you'll find the setBit method, which will allow you to change the
ADC bit resolution. If you wish to have more sensibility while reading data from
your sensor, you can change the ADC resolution to use 12 bits by adding the line
analogPin.setBit(12), after exporting the pin A0. If you run the script again with
the same light conditions, you'll see a considerable change in the read values.

Python
Now, let's try doing the same using Python. In your shell, type vi mraaTest.py.
Type I to enter insert mode and copy and paste the following Python code:

Import the MRAA and time libraries

import time

import mraa

print (mraa.getVersion())

Export the A0 pin

x = mraa.Aio(0)

Keep reading from sensor every second

while 1:

 print (x.read())

 time.sleep(1)

http://iotdk.intel.com/docs/master/mraa/node/modules/mraa.html
http://iotdk.intel.com/docs/master/mraa/node/modules/mraa.html

Intel IoT Developer Kit Tools

[86]

Using import mraa, we are able to load the library in our code. To export the analog
pin A0, we need to create a new Aio(0) object. Having the pin exported, we can read
its value by calling the read method. Using the time library, we can keep reading in
loop for every 1 second.

Leave the insertion mode by pressing the Esc key. Save the script and leave the editor
by typing :wq, followed by Enter. Now, let's run it by executing the python mraaTest.
py. command, and you'll have the raw read values printed in the terminal. Changing
the incident light will also change the outputted values. To exit the process, press Ctrl
+ C (or cmd + C).

You can find the MRAA Python API documentation at http://iotdk.
intel.com/docs/master/mraa/python/.

C++
If you prefer, you can just use the C++ library. In your shell, type vi mraaTest.cpp.
Press I to enter the insert mode and copy and paste the following code (https://
github.com/intel-iot-devkit/mraa/blob/master/examples/c%2B%2B/Blink-

IO.cpp):

// Import the MRAA library

#include "mraa.hpp"

int main () {

 // Declare vars

 uint16_t adc_value;

 mraa::Aio* a0;

 // Export pin A0

 a0 = new mraa::Aio(0);

 // Keep reading from sensor every second

 while(1) {

 adc_value = a0->read();

 fprintf(stdout, "%d\n", adc_value);

 sleep(1);

 }

}

http://iotdk.intel.com/docs/master/mraa/python/
http://iotdk.intel.com/docs/master/mraa/python/
https://github.com/intel-iot-devkit/mraa/blob/master/examples/c%2B%2B/Blink-IO.cpp
https://github.com/intel-iot-devkit/mraa/blob/master/examples/c%2B%2B/Blink-IO.cpp
https://github.com/intel-iot-devkit/mraa/blob/master/examples/c%2B%2B/Blink-IO.cpp

Chapter 5

[87]

Similar to the previous examples, you'll also have to import the MRAA library to
your code and then export the analog pin by creating a new analog pin object on
calling new mraa::Aio(0). The read method will allow you to obtain the sensor
data and when it is used in a while(1) loop together with the sleep method,
it allows us to keep reading the sensor data every second.

Leave the insertion mode by pressing the Esc key. Save the script and leave the
editor by typing :wq, followed by Enter. Using C++ , you'll need to compile your
code by typing g++ -std=c++0x mraaTest.cpp -o mytest –lmraa in to the
Galileo terminal. When it finishes compiling, you can run it by executing ./mytest.

To exit the process, press Ctrl + C (or cmd + C).

As you were able to see, this library provides a great level of abstraction,
making it simpler to manipulate the Linux GPIOs. If you wish to have a
look at more examples, you can find them at https://github.com/
intel-iot-devkit/mraa/blob/master/examples.

The UPM library
The UPM (https://github.com/intel-iot-devkit/upm) library also comes with
the IoT Developer Kit image and acts as a repository for sensors using the MRAA
library. With the MRAA library, we were able to read data from the sensor connected
to the Galileo analog pin, but the extracted data by itself isn't useful for us. UPM
brings a module for Grove sensors, making it possible for us to extract the values
that can make sense to us, such as lux values.

While MRAA provides us with low-level methods to read and control the I/O pins,
this library makes the development using sensors easier. It supports a list of sensors
(http://iotdk.intel.com/docs/master/upm/modules.html), making many
useful methods available to facilitate controlling or extracting data from them.

Using the circuit that we just used to test MRAA and the Grove sensors UPM
library (libupm-grove), let's see how we can use the UPM library to obtain lux units
from the Light sensors. Inside the chapter5 folder, create a new file and edit it by
typing viupmTest.js in the Galileo SSH terminal. Copy and paste the following
example (https://github.com/intel-iot-devkit/upm/blob/master/examples/
javascript/grovelight.js) and let's take a look at it:

// Load JavaScript UPM Grove module

var groveSensor = require('jsupm_grove');

// Create the light sensor object using Analog IO pin 0

https://github.com/intel-iot-devkit/mraa/blob/master/examples
https://github.com/intel-iot-devkit/mraa/blob/master/examples
https://github.com/intel-iot-devkit/upm
http://iotdk.intel.com/docs/master/upm/modules.html
https://github.com/intel-iot-devkit/upm/blob/master/examples/javascript/grovelight.js
https://github.com/intel-iot-devkit/upm/blob/master/examples/javascript/grovelight.js

Intel IoT Developer Kit Tools

[88]

var light = new groveSensor.GroveLight(0);

// Read the input and print the raw value and a rough lux value

function readLightSensorValue() {

 console.log(light.name() + " raw value is " + light.raw_value() +

 ", which is roughly " + light.value() + " lux");

}

// Repeat the readLightSensorValue method every second

setInterval(readLightSensorValue, 1000);

To have a list of all the sensors available and find the right library to use, we'll
have to check the Node.js UPM library documentation, which is available at
http://iotdk.intel.com/docs/master/upm/node/. In the APIs section, you'll
find listed all the supported sensors. Expanding the other tab, you'll find listed
the grove module. This module contains the Grove sensors APIs documentation.
Clicking on GroveLight will display the documentation for the sensor we are using.

To be able to use this library, we need to load the grove module first by requiring it
with require('jsupm_grove'). With the module loaded, we need to create a new
Grove sensor that has the subtype GroveLight and using the pin A0. Now, we can
use the sensor methods:

• name: This returns the sensor name

• raw_value: This returns the pin's raw read value

• value: This returns the read value converted in to lux units

Creating a read interval of 1 second, we'll be printing the name, the raw read value,
and the correspondent lux value in loop.

Leave the insertion mode by pressing the Esc key. Save the script and leave the editor
by typing :wq, followed by Enter. Run the script on Galileo by typing node upmTest.
js and you should now see something similar to this printed in the terminal:

Light Sensor raw value is 209, which is roughly 2 lux

Stop the process by pressing Ctrl + C (or cmd + C).

http://iotdk.intel.com/docs/master/upm/node/

Chapter 5

[89]

Like MRAA, you can also use this library in other programming languages:

• Python: You can find the Python UPM modules documentation at
http://iotdk.intel.com/docs/master/upm/python. If you want to
try the Python GroveLight demo, you can use the example provided at
https://github.com/intel-iot-devkit/upm/blob/master/examples/

python/grovelight.py. You'll be able to run it using the command python
grovelight.py in the Galileo terminal.

• C++: The C++ UPM modules documentation can be found at http://iotdk.
intel.com/docs/master/upm/modules.html. If you want to try the C++
GroveLight demo, use the example provided at https://github.com/
intel-iot-devkit/upm/blob/master/examples/c%2B%2B/grovelight.

cxx. You'll be able to compile it using the instruction g++ -std=c++0x
grovelight.cxx -o grovelight -lupm-grove -I /usr/include/upm.
To run, execute the./grovelight command in the Galileo terminal.

Summary
As an alternative to developing using the Arduino IDE, there are many more
IDEs and tools that are ready to work with Galileo and that will make your life as
a developer much easier. Intel® IoT Developer Kit packs a hardware and software
solution, allowing you to use other programming languages such as Python or Node.
js in your Galileo boards. In this chapter, you had an overview of the IoT Developer
Kit components and its concept. You created the Developer Kit bootable image,
which we will use in the following chapters and learn how to to use the UPM and
MRAA libraries by creating a simple demo to extract data from a Grove light sensor
using different programming languages.

In the next chapter, we'll be using this image tools and libraries to build a small
meteorological station.

http://iotdk.intel.com/docs/master/upm/python
https://github.com/intel-iot-devkit/upm/blob/master/examples/python/grovelight.py
https://github.com/intel-iot-devkit/upm/blob/master/examples/python/grovelight.py
http://iotdk.intel.com/docs/master/upm/modules.html
http://iotdk.intel.com/docs/master/upm/modules.html
https://github.com/intel-iot-devkit/upm/blob/master/examples/c%2B%2B/grovelight.cxx
https://github.com/intel-iot-devkit/upm/blob/master/examples/c%2B%2B/grovelight.cxx
https://github.com/intel-iot-devkit/upm/blob/master/examples/c%2B%2B/grovelight.cxx

[91]

Building an Irrigation System
Now that you have your Intel® IoT Developer Kit image built and ready to be used,
let's start building some more interesting projects.

One of the fields which is expected to suffer a great and positive impact with IoT
is the farming industry. With the rise of the world's population and therefore, the
greater food demands, farmers will have to search for new methods to increase their
productivity. The Internet of Things can bring more precision and input to help
automate all the agricultural operations. It can optimize the crop yields by providing
real-time data, allowing farmers to easily identify issues in the fields at an early
stage. In between many more applications, it can help them with pest control or even
assist in the plantation growing process with automated systems such as irrigation.

In this context, you'll learn how to use sensor's inputs to help you in monitoring
and watering your own house plants. We'll start by building a real-time chart using
Wyliodrin to help you understand how temperature, light, and soil moisture sensors
react to environmental changes. Then we'll harvest the sensors' data inputs and send
them to the Intel IoT cloud-based analytics system, where we'll monitor them and
create watering actuation rules based on the collected data.

In this chapter, you'll learn:

• Setting up your SD card image to enable Wyliodrin

• Reading data from sensor using Wyliodrin's visual programming

• Using Wyliodrin to create a real-time sensorial data chart over time

• Collecting and sending sensors' data to a cloud-based analytics system

• Using Intel® IoT cloud analytics to define actuation rules based on the
collected data

• Implementing an actuation behavior

Building an Irrigation System

[92]

Required component
To be able to complete all the chapter steps, besides the Galileo board, breadboard,
and, wires, we'll use some of the sensors contained in the Grove Starter Kit, plus
– Intel IoT edition. We'll also use a generic analog soil moisture sensor that is not
contained in the mentioned kit:

Grove sensors used in the project

We'll be using a Grove LED, Grove Temperature, and Grove Light sensors. These
sensors are there in the Grove starter kit plus – Intel IoT edition. To be able to
connect the sensors to your board, you'll need to use the Grove Base Shield V2 and
the 26AWG Grove cables contained in this kit. If you prefer, you can use other type
of sensors, but if they don't have a UPM module available (http://iotdk.intel.
com/docs/master/upm/modules.html), you'll only be able to use them with the
MRAA library. Let's take a look at these Grove sensors:

• Grove Temperature: The Grove temperature sensor is a thermistor-based
sensor. It is an analog sensor that allows us to obtain the ambient temperature.

• Grove LED: The Grove LED sensor is an LED circuit already using a
protective resistor. You can use a different LED (also included in the kit) of
multiple colors with this circuit. You'll have to connect an LED to the sensor
base circuit. Remember that the longer lead should be connected to the + side
of the connector, and the shorter lead to the - side. We'll be using this module
to simulate a sprinkler or water pump and be able to have a visual feedback
about its status.

• Grove Light: This is the sensor we used in the previous chapter to test the
libraries. As you were able to see, it is light sensitive.

http://iotdk.intel.com/docs/master/upm/modules.html
http://iotdk.intel.com/docs/master/upm/modules.html

Chapter 6

[93]

• Besides the Grove sensors: We'll also use an FC-28 Soil Moisture sensor
(http://www.ebay.com/itm/Soil-Humidity-Moisture-Detection-
Sensor-Module-Arduino-w-Dupont-Wires-kits-SWTG-/231560321363).
It is an interesting sensor that allows us to get some valuable information
when there's a soil water shortage or the opposite. This is how an FC-28
Soil Moisture sensor looks:

An FC-28 soil moisture sensor.

You can use any sensor of this kind, as long as it accepts an input voltage of
5 V. This one in specific has a digital and an analog output, providing us a
low and a high level, or a more precise output using analog values. These
sensor resistance values will decrease when the water exposure increases.

Setting up Wyliodrin
Working with the vi editor in a Galileo's shell can be very stressful if you are
beginning with Linux development, and want to check how your sensors work.

In this chapter, we'll have a closer look at the Wyliodrin development tool and what
it can offer us. It is an online editor that makes it possible to build our applications
just by dragging, dropping, and attaching components, just like Legos. It can also be
used just as a simple editor for Python or JavaScript code. All the code is developed
using its website, and it will be pushed to Galileo when you want to run it. Another
great feature is that it allows you to build customizable dashboards and charts fed
by your own data signals. This development tool is not entirely free, but you can use
most of its resources with a nonpaying account. It is a really nice tool to help you
debug and understand how your sensors work.

http://www.ebay.com/itm/Soil-Humidity-Moisture-Detection-Sensor-Module-Arduino-w-Dupont-Wires-kits-SWTG-/231560321363
http://www.ebay.com/itm/Soil-Humidity-Moisture-Detection-Sensor-Module-Arduino-w-Dupont-Wires-kits-SWTG-/231560321363

Building an Irrigation System

[94]

Let's set up our image to allow Wyliodrin to connect to it:

1. Open Wyliodrin's website (https://www.wyliodrin.com/) in your
computer's browser, and sign in with your preferred account. You can use
your Facebook, Google, or GitHub account. As soon as you sign in, see your
dashboard; all the projects you create will be listed there.

2. The next thing to do should be adding your Galileo board to your account.
In the top-left corner of your dashboard page, locate the Add new board
button. Click on the button, and you'll be asked to name and identify your
board. Feel free to name it as you wish, but in the Gadget: selection box,
select Intel Galileo. Once you do it, press the Next button:

Identifying your board

3. At this step, you can set up your board's Wi-Fi connection. If you
prefer using Wi-Fi, check the Use Wireless box and fill in your network
details. If you just use a cabled connection, press the Submit button. All
the following steps will now be displayed on your screen. Following
those guidelines, you'll need to insert the SD card, containing the Intel IoT
Developer Kit image, in a computer with an SD card reader. If you didn't
create the image in the previous chapter, you'll have to do it now. Close the
modal window by clicking on any place outside it.

4. Close to the Add new board button, you'll find the board you just added,
listed. There should also be a sprocket symbol. Click on it and select the option
Download wyliodrin.json. Your board configuration file will be downloaded:

Downloading wyliodrin.json file

https://www.wyliodrin.com/

Chapter 6

[95]

5. With the SD card in your computer's card reader, paste the downloaded file
to its root directory, having the exact name, that is, wyliodrin.json:

Paste the downloaded file in the root of the SD card

6. Eject the SD card from your computer and place it in your Galileo. Connect the
Ethernet cable (if not using Wi-Fi) and plug it in. Wait a couple of seconds, and
in your dashboard, you'll see your board status appearing as Online:

Board successfully detected

Now you are ready to start developing your apps using Wyliodrin.

If you are having troubles activating your board, you can
find the official tutorial at https://www.wyliodrin.com/
wiki/boards_setup/arduinogalileo.

Using Wyliodrin to read from the sensors
Now that your Galileo is connected to your Wyliodrin account, let's understand how
to use it to extract data from our sensors. We'll be using the Visual programming
language to print the raw read values to our console and use them to create a
real-time chart with all the sensors' inputs.

Let's start by wiring the circuit.

https://www.wyliodrin.com/wiki/boards_setup/arduinogalileo
https://www.wyliodrin.com/wiki/boards_setup/arduinogalileo

Building an Irrigation System

[96]

Wiring the sensors
Using the Grove sensors, you'll need to attach the Grove Base Shield V2 to the
Galileo expansion header. This type of sensor has its own 26AWG Grove cables.
With Galileo's power off, and using the Grove cables, connect the Grove Temperature
sensor to the shield A0 connector, the Grove Light sensor to the A1 connector, and the
Grove LED to the D8 connector.

If you prefer using other sensors that aren't part of the Grove
kit, you'll be able to use them as long as they can work with 5 V.
Connect them to the Galileo Arduino expansion header pins using
the same pins that the Grove sensors are using. For the LED, you
can use digital pin 8 as well, but remember to add a protective
resistor (1 KΩ should be fine) to its circuit, just like we used earlier
in in the Fading an LED subsection under the Running your first
sketches section in Chapter 2, Rediscovering the Arduino IDE.

Now, only the Moisture sensor is missing. Having a look at the sensor, it should
bring an adapter. On one of its sides, you'll find two connectors, one with a + sign
and the other with – sign. In your sensor, locate the two connectors with the + and
– signs, and connect them accordingly.

In the opposite side of the adapter, you'll find four pins. Connect the adapter VCC
pin to Galileo's 5 V pin and the adapter GND pin to the Galileo's ground pin. The
two remaining pins allow you to obtain both digital and analog value readings.
Connect the adapter analog connector A0 to Galileo's analog pin A2. The remaining
adapter pin A0 won't be used, but it lets you read a value 1 when the read values are
above a threshold or 0 when they are below. The threshold can be adjusted using the
adapter potentiometer. The following figure shows how the circuit should look:

Chapter 6

[97]

Wiring the sensors

Building an Irrigation System

[98]

Reading from your sensors
Back to your browser, in your Wyliodrin dashboard, click on Create new application
to create a new app. Fill in your application title and as language, select New project
– Visual programming. In the next step, you can press the Submit button, since we
won't use any extra components.

Now in the editor, let's start by reading from the Moisture sensor, which is connected
to the analog pin A2.

Similar to the previous examples, we need to have a loop to help us keep reading
periodically. On the left-hand side of the project, click on Program, then on Loops,
and finally, on the first option, Repeat every 1 seconds do. Drag the block and
position it anywhere in your sketch. This will be the main loop cycle we'll be
using to extract the sensor's data every second.

To read from the analog pin, we can use an analogRead block located inside the Pin
Access selector. Set the pin number to 2 so that we can read from A2. To be able to
output the read values, you should add a Print on screen block ,which can be found
inside Program | Screen and keyboard, and put the analogRead block inside.

You can find the Visual language documentation at https://www.
wyliodrin.com/wiki/languages/visual.

Put both the print blocks inside the loop block to keep reading and printing
every second.

Visual programming blocks to print read data in the console

On the left-hand side of your window, you'll find your Galileo in a list, with the title
Run application on. Click on your board name in order to upload the code, and you
should now be noticing the read values being printed in the app console.

https://www.wyliodrin.com/wiki/languages/visual
https://www.wyliodrin.com/wiki/languages/visual

Chapter 6

[99]

Printing read values from the Moisture sensor

Taking a look at the Visual programming analogRead block documentation
(https://www.wyliodrin.com/wiki/languages/visual#analog_read), you'll
find that this block maps the read values between 0 and 255. To stop running the
code in Galileo, press the Stop button and close the modal window by clicking on
the close symbol.

Now, instead of outputting the read values to the console, let's try outputting them
as a signal to Wyliodrin. This service allow us to create real-time charts that can be
fed straight from our sensors. Click on the Dashboard link located in the top-right
corner of the window, and let's give it a try.

On the right-hand side of the window, you'll find many chart types listed.
Scroll down a bit and add a Spline Line chart. Click on the chart settings button
(sprocket icon), name the signal moisture_signal and the chart as Moisture.

Setting up a Wyliodrin chart

https://www.wyliodrin.com/wiki/languages/visual#analog_read

Building an Irrigation System

[100]

Click on the X button to save and exit.

Getting back to the editor by clicking the Dashboard link again, let's now emit
signals with the read values to fill the chart we have just created inside the section
Signals; you'll find the Send signal with value block, which can be used to send
data to the chart. Replace the print block with this one and replace the value with
the analogRead block, as shown in the following figure:

Visual programming blocks to feed a chart with the sensor data

This way, we'll be sending the read data straight to the chart, feeding it every second.
Running your application again, you'll see the chart being filled with the read data
over time.

Soil Moisture sensor response to water

Chapter 6

[101]

Use a glass of water and wet your Moisture sensor a bit. You'll see the chart values
decreasing. The more amount of water you apply to this type of sensor, the more
conductive it will be. Its resistivity values are higher when it is dry. The values
displayed in the chart refer to the read voltage values at Galileo's analog pin, mapped
from 0 to 255. Reading a value of 255 means we are receiving 5 V at the Galileo pin.

So far, we were able to read from the Soil Moisture sensor. Now, let's add the
remaining sensors to our real-time chart:

1. Create two more Send signal blocks and place them inside the loop.

2. Add one analogRead to each of the new Send signal blocks in the
value field.

3. Name the temperature signal as temperature_signal and set the
analogRead block pin as 0.

4. Name the light signal as light_signal and set the analogRead block
pin as 1.

Now you should be able to send all the sensors' values to the Wyliodrin charts, and
your blocks should look similar to this:

Sending all sensors data to charts

Building an Irrigation System

[102]

Click on the Dashboard button and let's add the new signals to the chart. Edit the
Spline Line chart and click on the + button to add the remaining sensors. Give each
of the line a color to help you in identifying them and name your chart as well.

Adding more signals to the chart

Now you'll be able to plot the line chart with the three sensors' data and in real time.
Run the applications, and let's take a look at the chart:

Sensors behaviour

Chapter 6

[103]

If you are using the same signal colors, you should have the raw soil moisture
values in black, the raw light values in yellow, and the raw temperature values in
red. Expose your Light sensor to more or less light, and observe the changes in the
real-time chart. If you heat or try placing the temperature sensor in another place,
you'll most likely find different values being plotted as well.

You'll notice that the temperature and light sensors' values will increase when
the temperature and incident light increase, while the Moisture sensor will have a
different behavior with the printed values decreasing when water is applied to it.

Controlling an irrigation system using

sensorial data
Now that we are able to understand the sensors' behavior, let's use them to help us
creating a lawn watering system. To help us on our task, we'll be using the Intel IoT
cloud-based analytics. This is a free service for developers, allowing real-time data
acquisition and analysis. We'll be able to collect our sensors' data, analyze it, and
create actuation rules based on the given inputs.

To simulate the irrigation system working, we'll be recurring to an LED. We won't
be controlling a real irrigation system, but with these instructions, you'll be able to
easily adapt this example to a real life situation.

Making your sensor data available online
Let's start by taking a look at the enableiot website and create a user account:

1. Open the https://dashboard.us.enableiot.com/ link with your favorite
browser and create an account by providing your e-mail and password.

2. Go to your e-mail inbox and look for the e-mail Intel just sent you. Follow the
included link to finish creating your account, and you'll be asked to add an
account name. Give your account a name to finish the registration process.

By the end of the account creation process, you should be seeing the analytics
dashboard displaying the account global status, and with no registered devices.

https://dashboard.us.enableiot.com/

Building an Irrigation System

[104]

To communicate with the analytics servers and to be able to exchange data with your
Galileo board, you have two main options available:

• REST API: This allows us to communicate directly with the Intel® cloud
using the HTTP protocol. It can be used for sending or requesting data
on behalf of a specific account and device. You can read more about it at
https://github.com/enableiot/iotkit-api/wiki/Api-Home.

• iotkit-agent: This is comprised of the iotkit-admin and iotkit-agent. The first
one is a command-line wrapper for some useful REST API requests, while the
iotkit-agent is an agent that runs as a daemon in your Galileo. It allows us to
locally communicate with it, using TCP or UDP packets and by its turn, the
agent itself, will also communicate with the analytics servers in your behalf. To
read more about it, refer to https://github.com/enableiot/iotkit-agent.

Since the IoT Developer Kit image already brings the iotkit-agent installed and
running as a daemon, we'll be using it to communicate with the analytics servers.

Make sure your board has Internet access, and the IoT Developer Kit bootable image
in the Galileo SD card reader. Connect to it through SSH and check whether your
system date is correct by typing the date command. If the date is not right, set the
right one using date -s "YYYY-MM-DD HH:MM:SS", replacing YYYY with the year, MM
with the month, DD with the day, HH with the hour, MM with the minutes, and SS with
the seconds:

1. Also, make sure you are using the latest iotkit-agent version running the
following command:

root@galileo:~# npm update -g iotkit-agent

2. The update process will take several minutes to conclude. Once it finishes,
you can check whether the agent is able to connect with analytics servers by
executing the following command:

root@galileo:~# iotkit-admin test

3. The command will produce the following output, confirming that not only
the agent is running, but that it was also able to reach and connect with the
analytics servers:

Testing agent's connectivity

https://github.com/enableiot/iotkit-api/wiki/Api-Home
https://github.com/enableiot/iotkit-agent

Chapter 6

[105]

If you are connecting behind a firewall with a proxy, you may need to add the
configuration to your agent, using the iotkit-admin proxy «proxy server»
«proxy port» command.

The next step is activating our Galileo device:

1. In the analytics website, visit the account section by clicking on the
menu icon located in the top-left side of the web page and then on
the Account option.

2. In this section, you'll be able to generate an Activation Code by clicking
on the renew icon. Each time you generate one, it will only be valid for an
hour. If you let the code expire without activating your board, you'll have
to generate a new one.

3. Click on the eye icon to see the activation code and copy it.

4. To ensure that you have a clean environment, in the SSH shell, type the
iotkit-admin initialize command.

5. Finally, to activate the board, run the iotkit-admin activate
«activation_code» command, replacing «activation_code»
with the generated code.

You can confirm that everything went right by checking the Devices section in the
analytics website. The device you had just activated should appear listed. Clicking
on its Id will show you all the details and allow you to make some changes, such as
in the board name.

With the device activated, we should now register our components. Components can
be sensors with observations over time or actuators that can be remotely controlled.

Once again, navigate to the analytics website Account section, but now click
on the Catalog separator. You'll find three default component types displayed:
Temperature, Humidity, and Power. These types are used to identify and group
sensors/actuators with the common properties.

The Grove Temperature sensor and Grove LED actuator can respectively match with
the temperature.v1.0 and powerswitch.v1.0 existing types, but the Light sensor and
the Moisture sensor will need new component types.

For the Light sensor, we'll have to create a new type. Click on Add new Catalog Item
and fill in the following information to create the light type:

Component
Name

Type Data Type Format Unit of measure Display

light Sensor Number Integer lux Time Series

Building an Irrigation System

[106]

For the Soil Moisture sensor, we can create a new version of the existing Humidity
type. Click on the listed humidity.v1.0 component type and then on New Version.
Fill in the form with the following information:

Type Data Type Format Unit of measure Display

Sensor Number Integer Raw ADC value Time Series

To be able to register our components with these new types in the agent, we'll have
to restart it using the following command:

root@galileo:~# systemctl restart iotkit-agent

Now, let's register our sensors and actuators by executing the following commands
in the SSH shell:

• iotkit-admin register grove-temperature temperature.v1.0: This
command will register the Temperature sensor with the type temperature.v1.0

• iotkit-admin register sprinkler powerswitch.v1.0: This command
will register the LED actuator with the name sprinkler and type
powerswitch.v1.0

• iotkit-admin register grove-light light.v1.0: This command will
register the Grove Light sensor with the new type light

• iotkit-admin register moisture-sensor humidity.v1.1: This
command will register the Moisture Sensor with the new version of
humidity type

To confirm that all the components were registered successfully, in the SSH shell,
type the following command:

root@galileo:~# iotkit-admin components

All the registered components will be displayed in the terminal:

Registered components

Chapter 6

[107]

Now we are ready to start sending data to the analytics cloud.

Download this chapter's source code from the Packt website. You can download it
straight to your board using the command wget «code_url» and then extract the
compressed files using Unzip. Use the command unzip «compressed_filename».
zip to extract its contents. Inside the _3_Collecting_data folder, you'll find the
index.js file. Let's take a look at it.

In this file, we are using UDP packets to communicate with the local agent. The agent
will be listening on port 41234.

The first thing we need to do is to initialize our sensors:

var temperatureSensor = new upm.GroveTemp(0);
var lightSensor = new upm.GroveLight(1);
var moistureSensor = new mraa.Aio(2);
var sprinkler = new upm.GroveLed(8);

For the Grove sensors and actuators, we are able to use the UPM Grove library to
extract lux and temperature units, or have available methods to control the Grove
LED. The Moisture sensor doesn't have a UPM module available, and we'll have to
extract its value using the MRAA lib.

To help us writing our sensors observations, we had created a method named
sendObservation, accepting a sensor identification and the read value. This method
will send a UDP packet to the local agent, making him/her send the observation to
the analytics servers:

function sendObservation(name, value){
 var msg = JSON.stringify({
 n: name,
 v: value
 });

 var sentMsg = new Buffer(msg);
 console.log("Sending observation: " + sentMsg);
 client.send(sentMsg, 0, sentMsg.length, options.client.port,
options.client.host);
};

To keep extracting and sending our sensors' data to the agent, we use a setInterval
loop, repeating the whole process every five seconds:

setInterval(function () {

 sendObservation('grove-temperature', temperatureSensor.value());

 sendObservation('grove-light', lightSensor.value());

 sendObservation('moisture-sensor', moistureSensor.read());

}, 5000);

Building an Irrigation System

[108]

Make sure the iotkit-agent is running using the systemctl status iotkit-agent
command. Look at the command output, and if the service is not tagged as Active
(running), you'll have to start it by running the systemctl start iotkit-agent
command. Now let's see what this code will really produce. Run it with the node
index.js command, and you'll be able to see in the terminal the values that are
being sent to the agent.

Open the Intel analytics website and in the menu, select the Charts option. Tick your
device and then the All tick box inside the Component section so that you can watch
all the sensors' data being used to build a chart. Click on the refresh button and change
the chart refresh date to 5 seconds. Wait a bit, and you'll see the chart being drawn:

Chart with the captured sensors data

Every five seconds, the chart will be updated with the new sensors' measurements.
You'll have a specific scale for each metric. If you are not able to see any data in the
chart, check the agent logs with the tail –f /tmp/agent.log command. If you are
not able to access the log file, it is possible that your agent is not running.

Now that we have our data available online, let's now learn how to use it to control
the sprinkler.

Creating rules for actuation
The iotkit-agent not only is capable of sending data online, but is also capable of
doing actuation requests for our board. To be able to receive this type of request,
our Galileo agent must be using the MQTT protocol when communicating with the
analytics servers. In the Galileo SSH session, type iotkit-admin protocol mqtt to
ensure that the agent is using it.

Chapter 6

[109]

When an action is triggered, the analytics cloud will send a MQTT message to the
Galileo agent. The agent will then send a UDP packet to the localhost port 41235.

Edit the index.js file located inside the downloaded folder _4_Collecting_and_
actuating. If you notice, this piece of code contains the code used in the previous
example for data collection, but now is also listening to UDP connections on port 41235:

server.on("message", function (msg, rinfo) {

 console.log("server got: " + msg + " from " +
rinfo.address + ":" + rinfo.port

 // Ignore messages unless they are local

 if(rinfo.address != "127.0.0.1") return;

 var js = JSON.parse(msg);

 var component = js.component;

 var command = js.command;

 var argvArray = js.argv;

 // Ignore requests that are not for sprinkler actions

 if (component !== 'sprinkler') return;

 for(var i = 0; i < argvArray.length; i++) {

 var name = argvArray[i].name;

 var value = argvArray[i].value;

 if (value === '1') {

 sprinkler.on();

 setTimeout(function () {

 sprinkler.off();

 }, 5000);

 }

 if (value === '0') sprinkler.off();

 }

});

Whenever a valid actuation message arrives, we'll check whether it is a sprinkler
component. The target values will be contained inside the argvArray array variable.
Whenever we receive a value of 1, we will turn the sprinkler (LED) on for 5 seconds.
If we receive the value 0, the sprinkler will turn off. Run this code using the node
index.js command.

Building an Irrigation System

[110]

In the analytics website menu, select the option Control. Here, we are able to define
the commands that will be sent to our board's agent. Select your device and the
sprinkler component by ticking the respective check boxes. Now in the Add action
section, select Led(0,1) as the Parameter name, select the value 1 for the Parameter
value, and select mqtt as Transport Type. Click on the Add action button and then
on Save as complex command to save this request. Name the actuation command as
Turn sprinkler ON. The saved request will appear at the top of the web page inside
the Complex commands section. In this section, click on the command you just
created, scroll to the bottom of the page, and press Send. If everything went right,
your LED should now be turned on, confirming that you were able to control it from
the Internet.

Now, let's create a new complex command to turn the sprinkler (LED) off. Once
again, head to the Add action section and repeat the steps we used to create the
previous complex command, this time setting the Parameter value as 0. Add the
action and save the complex command as Turn sprinkler OFF. Like earlier,
a new button will appear at the top of the page, referring the new command.
Click on it and then on Send to turn the LED off.

At this point, we are able to collect sensors' data and control our sprinkler remotely.
Now, let's create a rule triggered by the collected data that will be able to control
the sprinkler:

1. In the analytics website menu, click on the Rules option and then on the
Add a rule button.

The first form will let you configure the rule details. Give your rule a
suggestible name like Start irrigation by filling the Rule Name text
field and select a Priority level. In the Notifications type selection area,
depending on the selected notification type, you'll be able to receive an
e-mail and an actuation request or have a specific URL being called when the
rule is triggered. Select the Email option to add it and select your e-mail from
the selection list. Click again on the Notifications type selection list and now
select the Actuation option. On the right-hand side of the page, a new form
will appear, allowing you to select the actuation command. Select the Turn
sprinkler ON command.

Click on Next to move to the Devices form.

2. In this new screen, you'll be able to select the board you want to use. Since
you should only have one being displayed, tick your device checkbox to
select it from the list and click on Next.

Chapter 6

[111]

3. Now at the Conditions step, we can define our rule triggers. Let's add some
basic conditions so that we can test triggering the action.

In the Monitored Measure section, we can select the sensor we want to use in
the rule. Select the grove-light monitored measure, and taking a look at the
sensors charts, we can observe that the current lux value for this room is of
1 lux. Set the trigger condition to use the basic condition >= 1. This will make
the rule trigger when the analytics servers receive a light value above 1 lux.
Now, let's add two more conditions for the remaining sensors. Click on the +
button located in the top-right corner of the web page to get more conditions
and in the Add conditions select box, select the option All conditions are
satisfied to create an intersection rule with the new condition.

Select the grove-temperature sensor and add the basic condition between,
setting the values 0 to 40. Click again on the + sign to add a condition for the
Soil Moisture sensor. Select the sensor and add the basic condition <= 500.

Ticking the Enable Automatic Reset checkbox will allow this rule to be
triggered again without acknowledging the received notification. Tick this
box and click on the Done button when you finish it.

Now, let's test it. In your Galileo SSH terminal, navigate to the _4_Collecting_
and_actuating folder and run the code with the node index.js command. To
be able to trigger the rule you just created, you'll have to be in the 0 – 40 degree
Celsius temperature range, have more luminosity than 1 lux, and must have the
moisture sensor wet. Try to bring these three conditions together, and after about
half a minute, the actuation request will arrive in your board, turning the sprinkler
(LED) on. You'll be able to read the message in the console. The sprinkler will be on
for 10 seconds, and then Galileo will turn it off. Since we've also defined the e-mail
actuation in the rule, if you open your e-mail, you'll have a new notification from the
Intel IoT analytics website.

A quick Internet research about how you should irrigate certain types of plants
will help you create rules for a real system. For instance, grass usually is irrigated
at dawn and noon (light sensor), and when the temperature (temperature sensor) is
very high, the irrigation cycle is skipped. Also, you won't want to add more water to
the plants if they have already enough moisture (Soil Moisture sensor).

Using this rules system, you can not only start the watering process, but also stop it
only when certain conditions are gathered.

This is just a basic example with learning purposes. If you wish to create
a real sprinkler system, you'll need to isolate your circuit from water
and replace your LED with a relay connected to a water pump.

Building an Irrigation System

[112]

Summary
In this chapter, you were able to see a simple idea about how IoT can help the
agriculture sector. We created a small irrigation system that actuates based on
the gathered information from the sensors.

With sensors being a key part of this project, we started by studying them and
understanding their behavior with environmental changes. After understanding how
the sensors work, we were able to understand what they are able to do in this sector.
We've collected data from our sensors and made it online, so that it could be analyzed
by a rules system. By defining rules, we were able to trigger the irrigation process.

In the next chapter, we'll have a different topic; we'll create a Christmas animation
with light and music.

[113]

Creating Christmas

Light Effects
In the previous chapter, we were able to control an irrigation system based on the
gathered sensorial data. In this chapter, we'll create a different type of project. Using
a digitally-addressable LED strip and the YouTube IFrame Player API, we'll create
our own Christmas lighting animations with music videos and light effects. We'll
use the Socket.IO real-time engine to control all the animations from a web page that
can be used from a mobile device's web browser. You'll learn how to control an LED
strip, create basic light animations, and play music videos along with them.

In this chapter, we'll learn:

• Wiring and controlling an LPD8806 LED strip

• Building simple asynchronous LED animations

• Creating a basic control page

• Using the YouTube IFrame API to control a video playlist

• Coordinating animations using the Socket.IO real-time engine

Creating Christmas Light Effects

[114]

Required component
For this chapter, we'll also be using the Intel IoT Dev Kit bootable image. Besides the
Galileo board and its wiring requirements along with an Internet connection, you'll
need to have an LPD8806 LED strip (http://www.adafruit.com/product/306).

The LPD8806 LED strip

This type of LED strip is a digitally-addressable colored strip. It is not a cheap
component, but will help you achieve some real, nice colored and glowing effects.
Feel free to choose the length of your strip, but note that long strips will require
you to use an external 5 V power supply unit. Using a 5 V, 2 Amperes power
supply should be enough for powering a 1 m strip (http://www.adafruit.com/
products/276).

Wiring the LED strip
The LPD8806 LED strip is a digitally-addressable RGB LED strip that can receive
instructions using the SPI protocol. This type of strip is one of the most customizable
available as you can control the colors of each of the available LEDs individually
using 21 bit colors per LED.

Galileo is great for this task since it has a native SPI controller (only actuates as
master) available. This way, you don't need to bit-bang the GPIO pins, simulating
the hardware behavior through software, which consumes more CPU usage when
compared to the hardware option.

http://www.adafruit.com/product/306
http://www.adafruit.com/products/276
http://www.adafruit.com/products/276

Chapter 7

[115]

Common serial ports communicate asynchronously since there is no control over
data transmission as the same transfer rates are being used. The SPI controller works
differently. Being a synchronous data bus, it uses two different lines—one for data
and the other for a clock signal. The clock signal will tell the receiver when it should
start looking at the transmitted data. This is an interesting protocol since it can be
used with simple shift registers, just like our LED strip.

Taking a look at the LED strip, you'll find four wire connectors: 5V, GND, CI, and
DI. Each of these (input) connectors require to have a wire attached to it and you
may have to solder them. Visit https://learn.adafruit.com/digital-led-
strip/wiring if you need help for doing this.

On the opposite side of the strip, you'll find four other connectors, but those ones
are used for output and won't be necessary unless you want to add more LEDs to
your strip.

Having in mind your strip length, you may need to consider powering it from an
external 5V power source. If you are using a strip containing only a couple of LEDs,
you should be able to power it straight from the Galileo's 5V pin, as displayed in the
following figure:

Powering a small LED strip from Galileo

The DI connector refers to the data line input and should be connected to Galileo's
pin 10, while the CI (clock input) connector should be connected to Galileo's pin 13.

https://learn.adafruit.com/digital-led-strip/wiring
https://learn.adafruit.com/digital-led-strip/wiring

Creating Christmas Light Effects

[116]

If you are using a short strip, connect the 5V and GND strip connectors to the
Galileo's 5V and GND pins, respectively. If you are using a longer strip, you should
power it from an external 5V power supply, sharing Ground with the Galileo, as
displayed in the following figure:

Powering the LED strip from an external power source

If your board keeps freezing, especially when trying to display
the white color, you'll definitely need to use an external power
supply unit to power your LED strip.

Controlling the LED strip
Now that we've finished wiring the LED strip to the Galileo board properly, let's see
how we can control it by filling it all red.

For this project, we'll be using Node.js and the LPD8806 UPM library.

You can find the LPD8806 UPM library Node.js documentation at
http://iotdk.intel.com/docs/master/upm/node/classes/
lpd8806.html. Under the Methods tab, you'll find all the available
methods.

This library uses the MRAA library SPI module (http://iotdk.intel.com/docs/
master/mraa/node/classes/spi.html) and provides a simple way to interact
with the strip, abstracting the SPI writing process. It works by filling an array of
pixels with color information and writing it to the SPI bus. You can set up each LED
individually using the setPixelColor(pixelPosition, Red, Green, Blue)
method and actually write to the strip using the show()method.

http://iotdk.intel.com/docs/master/upm/node/classes/lpd8806.html
http://iotdk.intel.com/docs/master/upm/node/classes/lpd8806.html
http://iotdk.intel.com/docs/master/mraa/node/classes/spi.html
http://iotdk.intel.com/docs/master/mraa/node/classes/spi.html

Chapter 7

[117]

Let's try creating a simple script to make the strip completely red. Connect to your
Galileo using SSH and create a new folder named chapter7.

Inside the new folder type vi test.js, enter the insertion mode using the key I and
paste the following script:

var LPD8806 = require('jsupm_lpd8806').LPD8806;

console.log('Setting all leds red…');

var stripLength = 30;

var chipSelect = 0;

// The second parameter is the CS (chip select).

var ledstrip = new LPD8806(stripLength,chipSelect);

// Set each led full red. Max accepted value per color component is 255

for (var i = 0; i != ledstrip.getStripLength(); ++i) {

 ledstrip.setPixelColor(i, 255, 0, 0);

}

ledstrip.show();

console.log('The strip should now be all red!');

Change the stripLength variable to the number of LEDs your strip contains and the
The chipSelect variable can be set to 0 since this type of strip doesn't have a chip
select (CS) pin. After initializing the strip by creating a new LPD8806 object, you can
check the strip length using the getStripLength method.

To run this piece of code, type in the node fullRed.js SSH console. If everything
went right, you should now see your strip all colored red. Looping the entire strip
and setting the right RGB color, we are able to fill it red. Using the show method, we
make it all visible.

Creating a real-time server
Now let's create a real-time web server to allow us to control the strip from a web
page that can be accessed from any browser. We'll be building two web pages: one
to control the strip and another to play YouTube videos from a playlist.

Creating Christmas Light Effects

[118]

To enable real-time communication, we'll be using the Socket.IO real-time engine.
In the SSH shell and inside the project folder, install the Socket.IO Node.js module
using the npm install socket.io command. The operation will install some
dependencies and will take a couple of minutes to conclude.

Socket.IO allows us to exchange real-time messages between our web pages and
our server.

Intel Galileo

HTTP server

Controls.html

socker.io.client socker.io.client

YoutubePlayer.html

socket.io.server

Galileo will run the server, while the browsers will run the clients. Clients will
connect to the server and bidirectional communication channels will be established
between each of them.

Create a new file, name it index.js, and paste the following code:

var fs = require('fs');

var routesViews = {

 '/player': 'youtubePlayer.html',

 '/controls': 'controls.html'

};

var handler = function (request, response) {

 var view = routesViews[request.url];

 if (!view) {

 response.writeHeader(401, {"Content-Type": "text/html"});

Chapter 7

[119]

 response.write('Page does not exist');

 response.end();

 } else {

 fs.readFile(view, function (err, html) {

 if (err) {

 throw err;

 }

 response.writeHeader(200, {"Content-Type": "text/html"});

 response.write(html);

 response.end();

 });

 }

};

var app = require('http').createServer(handler);

var io = require('socket.io')(app);

app.listen(8080);

console.log('Listening..');

As mentioned previously, we'll be serving two pages from two different endpoints.
We'll be serving the YouTube player from /player and the controls page from
/controls. Those files will be scripted in separate files, but we'll be loading and
serving them from here. To do so, we'll use the filesystem Node.js library fs.

This library is already included with Node.js and doesn't
require to be installed separately.

The next thing we are doing is creating an HTTP server and a handler to deal with
the incoming requests. The purpose of this handler is to answer the requester with
the requested page or with a not found error when the request is unknown. When
one of our web pages is requested, the handlers will read the correspondent HTML
page from the correspondent HTML file and write it in the response, which will be
parsed by the browsers.

For the real-time server, we are assigning our HTTP server to the Socket.IO object
and finally, starting to listen for the requests on port 8080.

Creating Christmas Light Effects

[120]

Building the control page
Starting with the control page, we'll build it using HTML, jQuery (https://jquery.
com/), and also Bootstrap (http://getbootstrap.com/) for a little help on styling.

We'll build a simple page where we will make three buttons available: one for play,
one for next, and the last one for stop.

Inside your project folder (chapter7), create the web page using the vi controls.
html command and paste the following code:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-
scale=1">

 <title>Animation Controls</title>

 <link href="http://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/css/
bootstrap.min.css" rel="stylesheet">

 <script src="https://cdnjs.cloudflare.com/ajax/libs/socket.
io/1.3.5/socket.io.min.js"></script>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.1.3/
jquery.min.js"></script>

 </head>

 <body>

 <script>

 var socket = io('http://192.168.1.79:8080');

 </script>

 <div class="container-fluid" style="text-align: center;">

 <div class="page-header">

 <h1>Animation controls</h1>

 </div>

 <div class="row" style="margin-top: 50px;">

 <div class="col-xs-12" style="margin-top: 30px;">

 <button type="button" class="btn btn-primary btn-lg" data-
target-action="play">

 <span class="glyphicon glyphicon-play" aria-
hidden="true"> Play

 </button>

https://jquery.com/
https://jquery.com/
http://getbootstrap.com/

Chapter 7

[121]

 </div>

 <div class="col-xs-12" style="margin-top: 30px;">

 <button type="button" class="btn btn-primary btn-lg" data-
target-action="next">

 <span class="glyphicon glyphicon-step-forward" aria-
hidden="true"> Skip

 </button>

 </div>

 <div class="col-xs-12" style="margin-top: 30px;">

 <button type="button" class=""btn btn-danger btn-lg" data-
target-action="stop">

 <span class="glyphicon glyphicon-stop" aria-
hidden="true"> Stop

 </button>

 </div>

 </div>

<div class="row" style="bottom:0;position: absolute;">

 Current status

 <span id="stopped" class="glyphicon glyphicon-stop" aria-
hidden="true">

 <span style = "display: none;" id="playing" class="glyphicon
glyphicon-play" aria-hidden="true">

 </div>

 </div>

 <script>

 $(".btn").on("click", function(){

 var action = $(this).data("target-action");

 socket.emit('action', action);

 });

 socket.on('status', function (data) {

 if (data === 'playing') {

 $('#stopped').hide();

 $('#playing').show();

 }

 if (data === 'stopped') {

 $('#stopped').show();

 $('#playing').hide();

 }

Creating Christmas Light Effects

[122]

 });

 </script>

 </body>

</html>

In the <head> tags, you'll find included the source references to jQuery, Bootstrap,
and the Socket.IO client libraries; they are all being imported from a Content
Delivery Network (CDN), so you don't have to download them.

The var socket will hold the Socket.IO client. It will be connecting to the Galileo's
server when running var socket = io('http://ip_address:8080'). You'll need
to replace ip_address with your board IP address.

As you can see in the preceding HTML, we are building three buttons. Each of these
buttons has a special tag named data-target-action. In the later part of the code
snippet, we are adding an action listener to all the elements having the class btn. By
clicking on any of these buttons, the action will be collected from the special data tag
and will be emitted to the Socket.IO server under a namespace.

At the bottom of the page, we are adding a current status display, showing a glyph
icon, depending on whether an animation is running or not. To receive the real-time
updates, we need to listen for a specific event. On this page, we will be listening for
the status event. When an animation starts var data, it will be equal to playing
and when it stops it, it will be equal to stopped. These definitions are created by us.

The following is a table that explains the emitted and listened events in this page:

Events Data values Description

action play (emitted) Emitted when user presses the Play button. Will be
emitted to start an animation.

next (emitted) Emitted when user presses the Skip button. Will be
emitted to jump to the next animation.

stop (emitted) Emitted when user presses the Stop button. Will be
emitted to stop an animation.

status playing (listened) This event will be received when an animation starts.

stopped (listened) This event will be received when an animation stops.

This is the protocol we will be using to emit and receive messages in this page. To
have a look at the page design, save your code and exit the editor by typing ":wq"
out of the insertion mode (press Esc if on insertion mode).

Chapter 7

[123]

Run the server by typing node index.js. When you see Listening.. printed in the
shell, open a browser in your mobile phone (connected to the same network as the
Galileo) and type the address: http://my_ip_address:8080/controls.html.
Replace my_ip_address with your Galileo IP address. You should now see the
following web page:

The animation control web page

So far, you'll be able to watch the page that is being served by Galileo, but you won't
be able to interact with it yet.

Building the YouTube player page
This page will incorporate a YouTube player with a loaded playlist. We'll be using
the controls.html web page to emit actions on the animations, and this page will
answer to some of these actions. As with the controls page, we'll need to use the
Socket.IO client.

For the YouTube player, we will be using their IFrame API (https://
developers.google.com/youtube/iframe_api_reference).

https://developers.google.com/youtube/iframe_api_reference
https://developers.google.com/youtube/iframe_api_reference

Creating Christmas Light Effects

[124]

Create a new file under the chapter7 folder using the vi youtubePlayer.html
command and paste the following code:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-
scale=1">

 <title>Music Video</title>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/socket.
io/1.3.5/socket.io.min.js"></script>

 </head>

 <body>

 <div id="player"></div>

 <script>

 var socket = io('http://192.168.1.79:8080');

 //Setting up player

 var tag = document.createElement('script');

 tag.src = "https://www.youtube.com/iframe_api";

 var firstScriptTag = document.getElementsByTagName('script')[0];

 firstScriptTag.parentNode.insertBefore(tag, firstScriptTag);

 var player;

 function onYouTubeIframeAPIReady() {

 player = new YT.Player('player', {

 height: '390',

 width: '640',

 playerVars: {

 listType: 'playlist',

 list: 'PL-m5kL-HEfO7Q80ewJW4Gl-JeV2aw-1Q_'

 },

 events: {

 'onReady': onPlayerReady,

 'onStateChange': onPlayerStateChange

 }

 });

 }

 function onPlayerReady(event) {

 console.log('Video ready');

 }

 function onPlayerStateChange(change) {

Chapter 7

[125]

 // Video started

 if (change.data === 1) socket.emit('video', 'started');

 // Video ended

 if (change.data === -1 || change.data === 0) socket.emit('video',
'stopped');

 }

 socket.on('video', function(msg){

 console.log('message: ' + msg);

 if (msg === 'play') player.playVideo();

 if (msg === 'stop') player.stopVideo();

 if (msg === 'next') player.nextVideo();

 });

 </script>

 </body>

</html>

The first thing to do is to replace the address that the Socket.IO client will be
connecting to. Replace it with your Galileo IP address.

Moving to the YouTube player, as you can see in their documentation, we need
to have a listener for the event that fires when the IFrame API is ready. With it,
we can configure many parameters, such as the video width and height or the
video/playlist to be loaded:

 function onYouTubeIframeAPIReady() {

 player = new YT.Player('player', {

 height: '390',

 width: '640',

 playerVars: {

 listType: 'playlist',

 list: 'PL-m5kL-HEfO7Q80ewJW4Gl-JeV2aw-1Q_'

 },

 events: {

 'onReady': onPlayerReady,

 'onStateChange': onPlayerStateChange

 }

 });

 }

Creating Christmas Light Effects

[126]

Feel free to change the playlist if you wish. You can do it by replacing the player var
list with the target playlist ID.

It also allows us to declare some event listeners. We will be using the onStateChange
event to emit the Socket.IO events, while reporting the current status of the video.
Inside this event listener, we will receive the value "1" when the video is playing
and "-1" or "0" when it is not ready or the video has stopped/ended.

The following are the events we will be emitting and listening to on this page:

Namespace Data values Description

video play (listened) When this event is received, the playlist will start
playing.

next (listened) When this event is received, the current video from the
playlist will be skipped.

stop (listened) When this event is received, the player will stop playing.

started (emitted) This event will be emitted when a video starts.

stopped (emitted) This event will be emitted when a video stops.

Starting your server and opening the URL http://my_galileo_ip_address:8080/
player.html in your computer browser will display to you an embedded YouTube
player with a loaded playlist:

The YouTube player webpage

Chapter 7

[127]

Launching random LED animations
The one thing that we'll want to do while the videos are playing is to play a random
LED animation. To do so, we'll create a new file and develop some methods to help
us handle those animations.

The idea is to have a method to stop and set the strip off and the other to select a
couple of colors and play an animation, switching between those colors randomly.

To control the LED strip, we will use the lib UPM jsupm_lpd8806 and to loop
between the strip LEDs, we will need to use the async module, which will provide
us with asynchronous loops. Together with the setTimeout method, this will help
us keep the process non-blocking.

Firstly, let's start by installing the async module by typing npm install async
inside the project folder (chapter7). When it finishes installing, create a new file
by typing vi animations.js and paste the following code:

var LPD8806 = require('jsupm_lpd8806').LPD8806;

var async = require('async');

var stripLength = 30;

var ledstrip = new LPD8806(stripLength, 0);

var run = false;

// Obtain a random number between a min and max

function getRandomInt(low, high){

 return Math.floor(Math.random() * (high - low) + low);

}

//Obtain 5 different colors

function getRandomColours() {

 var colours = [];

 for(var i = 0; i != 5; ++i) {

 var r = getRandomInt(0, 255);

 var g = getRandomInt(0, 255);

 var b = getRandomInt(0, 255);

 colours.push({

 red: r,

 green: g,

 blue: b

 })

 }

 return colours;

Creating Christmas Light Effects

[128]

}

// Runs animation by switching between the selected set of colours

function runAnimation() {

 run = true;

 var animationColourSet = getRandomColours();

 console.log('animation colours', animationColourSet);

 async.whilst(

 function () {

 // Repeat while run === true

 return run === true;

 },

 function (callback) {

 var colour = animationColourSet[getRandomInt(0,4)];

 fillStripWithColour(colour, callback);

 },

 function (err) {

 console.log('Animation stopped');

 }

);

}

// Stop animation and set leds off

function stopAnimation() {

 run = false;

 fillStripWithColour({red: 0, green: 0, blue: 0});

}

// Fill strip with a color

var fillStripWithColour = function (colour, callback) {

 for(var i = 0; i != stripLength; ++i) {

 ledstrip.setPixelColor(i, colour.red, colour.green, colour.blue);

 }

 ledstrip.show();

 setTimeout(callback, 300);

}

exports = module.exports = {};

exports.start = runAnimation;

exports.stop = stopAnimation;

Chapter 7

[129]

This code will make two methods available publicly:

• start: This selects five random colors and plays an animation by switching
between set colors

• stop: This stops the current animation that is running and sets the strip off

In this example, we will only be using a simple light effect. If
you wish to create and use more complex effects, take a look at
the example available at https://github.com/muzzley/
muzzley-intel-iot-led-strip. There, you'll find more
ideas for light animations and how to accomplish them.

Handling the events in the server
Now that we have animations and our web pages ready, let's handle the emitted
events in our server:

• When the user presses the Play button in the controls web page, it will
emit an event, requesting the animation to start. When the server receives
this event, it needs to notify the player to start. By its turn, the player, on
changing the status to playing, will emit its current status, which must be
captured by the server and used to play the LED strip animation.

• When the user presses the Stop button in the controls web page, the
server will receive it and will notify the player to stop playing the video.
When the player status changes, the server will be notified to stop the
LED strip animation.

• When the Skip button is pressed in the controls web page, the server stops
the LED animation immediately and notifies the player to skip to the next
playlist video. On changing the player status, the server will be notified to
start the LED animation again.

Edit your index.js file by typing vi index.js and paste the following code to the
end of the file:

io.on('connection', function (socket) {

 socket.on('action', function (data) {

 if (data === 'play') io.sockets.emit('video', 'play');

 if (data === 'stop') io.sockets.emit('video', 'stop');

 if(data === 'next') {

 animation.stop();

 // Broadcast to all connected sockets

 io.sockets.emit('video', 'next');

 }

https://github.com/muzzley/muzzley-intel-iot-led-strip
https://github.com/muzzley/muzzley-intel-iot-led-strip

Creating Christmas Light Effects

[130]

 });

 socket.on('video', function (data) {

 if (data === 'started') {

 animation.start();

 // Broadcast to all connected sockets

 io.sockets.emit('status', 'playing');

 }

 if (data === 'stopped') {

 animation.stop();

 // Broadcast to all connected sockets

 io.sockets.emit('status', 'stopped');

 }

 });

});

Now we should be able to handle all the events and coordinate all the system.
On receiving an event, we'll reply using io.sockets.emit(), which allows
us to emit an event to all the connected sockets.

On the top of the file, we also need to import the animations file to be able to use it
by requiring it and assigning it to a var:

var animation = require('./animations');

Now we are ready to test the whole system. Start the server with the command node
index.js. On the same network as Galileo, open a browser in your computer with
the URL http://my_ip_address:8080/player and another one in your mobile
phone with the URL http://my_ip_address:8080/controls.

Using the control web page in your mobile phone, you'll be able to start, stop, or skip
the animations along with the music videos.

Summary
In this chapter, we learned how to obtain bidirectional real-time interaction using
Galileo. We started to wire and control an LPD8806 LED strip from our board and
progressively created a server to handle the requests and the real-time events.
Together using the YouTube IFrame Player, we were able to coordinate animations
from the Galileo while being controlled from a web page.

In the next chapter, we'll explore the Intel® XDK IoT Edition development
environment, and see how we can use it to create applications for Intel® Galileo.

[131]

The Intel XDK IoT Edition
So far, you have seen the three different tools to develop your connected
applications: the Arduino IDE, Wyliodrin, and vi. In this chapter, we will approach
a more complete solution, the Intel XDK IoT Edition. It is an end-to-end IoT
development solution. It allows you to not only develop Node.js IoT applications,
but also to easily deploy them in your board and install all the required external
packages. It also allows you to create companion mobile apps by making design, test,
and deployment tools available. In this chapter, we'll have a look at the main features
this IDE provides and how we can use it to run an example app.

In this chapter, you'll learn about:

• Installing Intel XDK IoT Edition and connecting your development board

• Understanding the platform perks and tools

• Developing and running an IoT app on the Galileo board

• Developing a companion app and using it from your mobile devices

Introducing Intel XDK
The Intel XDK is an interesting development platform. It allows you to create, debug,
and run tools for JavaScript applications. It is a complete development solution and a
great help when developing your Intel Galileo projects.

This platform helps you develop your IoT projects faster. It can also help you in
debugging and running your projects straight on to Galileo. It already contains
many useful examples using the Grove Starter Kit sensors. It also has a strong mobile
component through the companion apps. To use it, you'll just need to have a basic
knowledge of JavaScript and HTML5.

Intel XDK IoT Edition

[132]

Let's install and take a look at it. Visit https://software.intel.com/en-us/
html5/xdk-iot, select your operating system in the green box, and download
it. let's take a look at the various ways to be taken into account when installing
this software on different OSes:

• Windows: Right click on the downloaded file and select Run as
administrator. After the installation is complete, you'll need to install the
Bonjour Print Services. It enables Intel XDK IoT Edition to automatically
detect the boards connected to your network. To do so, visit https://
support.apple.com/kb/DL999?locale=en_US. Download and install it.

• Linux: Open a terminal and navigate to your downloads folder. Extract the
files using the tar zxvf downloaded_file_name command. Navigate to the
extracted folder and type ./install.

• Mac OS: Extract the installer by clicking on the .dmg file you just
downloaded. Install the XDK by double-clicking on the extracted .pkg file.

Run the Intel XDK IoT Edition. You'll need to have a developer account in order to
use it. Click on Need to sign up for an account? and fill in the form to create one.
Log in with your credentials.

Creating and deploying an IoT project on

Galileo
In the new project view, on the left-hand side under the INTERNET OF THINGS
EMBEDDED APPLICATION tab, you'll find two options: Templates and Import
Your Node.js Project. Click on the Templates option, and you'll see a list of
project templates.

We'll be using the Touch Notifier template. Click on it and then on the Continue
button. The next thing to do is name your project. Feel free to name it as you wish,
but we'll be naming it iot-doorbell.

https://software.intel.com/en-us/html5/xdk-iot
https://software.intel.com/en-us/html5/xdk-iot
https://support.apple.com/kb/DL999?locale=en_US
https://support.apple.com/kb/DL999?locale=en_US

Chapter 8

[133]

As soon as the project has downloaded and opened, you'll have the following
workspace:

The IoT app editor

Here you can find the following key options:

Serial number Features

1 Project selector

2 Development mode

3 Help

4 Settings

5 Twitter feed

6 Account options

7 File options

8 Code editor

9 Project files

10 Web services integration

11 Board selection

12 App log

Intel XDK IoT Edition

[134]

Serial number Features

13 SSH Terminal

14 Serial Terminal

15 Upload app

16 Build app

17 Stop app

18 Run app

19 Debug app

20 Deployment manager

21 Clear console

22 Toggle console

23 File stats and errors

This demo app consists of a touch sensor that will trigger a buzzer. In the project files
(point 9 in the preceding list), click on main.js. Looking at the code (point 8), you'll
see that this app runs a server with Socket.IO to enable real-time message exchanges.
Whenever the touch sensor is pressed, the buzzer will make some noise and the
connected Socket.IO clients will also be notified. For this demo, we'll be using two
sensors from the Grove Starter Kit: the buzzer and the touch sensor.

With your Galileo powered off, connect the Grove base shield to it, connecting the
buzzer to D6 and the touch sensor to D2:

The IoT demo app wiring

Chapter 8

[135]

Insert your IoT Dev Kit image into the SD card slot and power on your Galileo.

Now it's time to connect our board to the XDK. In the IoT device selector (point
11), you should see your board listed after powering up. If your Galileo is not
displayed in the list, select the [+] Add Manual Connection option. For this, you'll
need to know your device's IP address. You can run a Wyliodrin shell and execute
the ifconfig command in order to find it. Once you know your IP address, insert
it in the pop-up window in the Address: field and click on the Connect button. If
everything went right, you'll see a pop-up window saying Connected.

All the project library dependencies and versions can be found in the package.json
file. If you click on the file, you'll find the Socket.IO dependency added to our project.

Install the project dependencies by clicking on the build button (point 16). This
process takes some time to conclude, and you can follow what's happening by
looking at the app logs (point 12). You'll just need to build it once, unless you add
new external dependencies to the project. Whenever you make changes in your files,
you'll just need to save (inside point 7 in the preceding list, click on File | Save),
upload (point 15), and run the project (point 18).

When the installation is complete, run the project by clicking on the Run button
(point 18). At this point, your project is running on your Galileo board. The touch
sensor won't be read without the existence of a Socket.IO client connection, and to
do so, we'll create a companion app.

Creating a companion app
Click on the project selector (point 1) and choose + New Project. Under the HTML5
COMPANION HYBRID MOBILE OR WEB APP tab, click on Samples and Demos
and then on General. On the right-hand side of the window, you'll find two options:
Standard HTML5 and HTML5 + Cordova. Click on the second one and choose the
Touch Notifier companion app project. Name your companion app project. We'll be
naming it doorbell-mobile.

Intel XDK IoT Edition

[136]

Now you'll see that your workspace has changed a bit:

The companion app development workspace

Here you can find the following key components:

Options Features

A Emulate app

B Test app

C Debug app

D Profiling

E Build mobile app

F Run mobile app

G App interface editor

H Connected mobile devices

As you can see, there are many options available. Let's start by testing the emulation
(point A in the preceding list) option by clicking on it. Here, you are able to select a
mobile device and the display orientation, using it as a real device when interacting
with your IoT app.

Chapter 8

[137]

By now you should see the first HTML page displayed on your screen:

Emulating the companion app

Enter your board's IP address and in the port number, insert 1337, which is
the port your IoT app server is listening to. Now you can finally press the touch
sensor connected to Galileo. Touch it and you'll hear the buzzer ringing and see
the emulated app displaying a message to check your door.

Now let's test it using a real mobile device. Grab your smartphone or tablet and
install the Intel App previewer from one of the popular app stores.

In the XDK, click on the TEST tab (point B), and you'll be asked if you want to
push your files to the testing server. If you do so, you'll have your app available
right away inside the Intel App previewer. Another option is to just scan the
displayed QR code.

Open the Intel App previewer on your mobile device and log in with your developer
account credentials. If you pushed the app files to the test server, you'll find your app
listed under the Server Apps tab. If you didn't push your files, click on the camera
button on the top-right of the app and scan the displayed QR code.

Intel XDK IoT Edition

[138]

The companion app should now be running on your device. Insert the IP address and
the app server port (1337), and you'll find your app waiting for the buzzer to ring:

Running the companion app as a mobile app

Try pressing the touch sensor and take a look at your mobile device. It should be
displaying the message you saw earlier.

Chapter 8

[139]

Summary
The Intel XDK IoT Edition is a powerful and complete tool that allows Galileo
developers to easily create IoT applications. Besides making the development
fast, it easily connects with the mobile world.

In this chapter, we had a small walkthrough of its main features by creating
a doorbell ring notifier, which notifies the user's mobile device when the ring
is played.

In the next chapter, we'll be using this development tool to create a more complex
example—developing an IoT quiz game and using mobile companion apps to play it.

[141]

Developing an IoT Quiz
Now that you are a bit more familiar with the Intel XDK IoT Edition, let's use it to
build a more complex project. In this chapter, we will be using everything we've
learned so far to develop a project from scratch. Combining the perks of real-time
communication with actuators, we'll create an IoT multiplayer quiz, a simple game
served by Intel Galileo and played on mobile devices.

In this chapter, you'll learn about:

• Using an LCD and a buzzer to improve the game experience

• Using a key value storage system to cache data

• Coordinating multiple remote devices using a Galileo board

• Building a mobile app

Developing an IoT Quiz

[142]

Required component
For this project, besides the Intel Galileo board, power supply unit, and the Grove
base shield, you'll need the following components:

• Grove LCD RGB Backlight: It is a part of the Grove Starter Kit Plus, and is
a 16 x 2 LCD screen. It brings more functionalities than most typical LCD
screens. Besides allowing us to print two rows of 16 characters at most, the
backlight can also be RGB customizable.

Grove LCD RGB Backlight

It also supports user-defined characters and communicates using the I2C
protocol (https://learn.sparkfun.com/tutorials/i2c) through only
two IOs.

You can find more details about this component at
http://www.seeedstudio.com/depot/Grove-LCD-
RGB-Backlight-p-1643.html.

https://learn.sparkfun.com/tutorials/i2c
http://www.seeedstudio.com/depot/Grove-LCD-RGB-Backlight-p-1643.html
http://www.seeedstudio.com/depot/Grove-LCD-RGB-Backlight-p-1643.html

Chapter 9

[143]

• Grove Buzzer: This is the same buzzer we used in the previous chapter. It is
also a part of the Grove Starter Kit Plus.

Grove Buzzer

It can be connected to a digital output to simply emit sound, or it can be
connected to a PWM output and play different tones.

You can find more details about this component at http://www.
seeedstudio.com/depot/Grove-Buzzer-p-768.html.

Creating the Galileo app
In this project, we will be using the aforementioned components to improve the
game experience. We'll use the LCD screen to display game information such as
the Galileo IP address, which will be used to pair the mobile devices with the game
or the current questions round. The buzzer will be used to notify the users that the
game or a new question round has just started.

http://www.seeedstudio.com/depot/Grove-Buzzer-p-768.html
http://www.seeedstudio.com/depot/Grove-Buzzer-p-768.html

Developing an IoT Quiz

[144]

You should connect them to your board by referring to the following image:

First, attach the base shield to your board. Connect the LCD screen to the I2C
connector, just like in the preceding image, and the buzzer to the digital connector D4.

Connect your Galileo to the Internet using an Ethernet cable connection or you may
use a wireless connection.

With the basic setup finished, download the game source files from the Packt
Publishing website (http://www.packtpub.com/support). Open the Intel XDK and
then open the IoT-quiz project by navigating to PROJECTS | Open an Intel XDK
project and selecting the file IoT-quiz.xdk inside the project folder.

http://www.packtpub.com/support

Chapter 9

[145]

This app will run in Galileo and handle the players' connections, cache their results,
and coordinate the LCD and buzzer according to the game stage. Let's take a deeper
look at the concepts behind this game.

Coordinating players
The player's coordination will be done using the Socket.IO real-time engine. The
first thing we should do is define the messages we will be exchanging between the
server (Galileo) and clients (mobile devices). Here, we'll create four main stages after
a client connects. In the following image, we can find four different colored stages.
The first stage (green) is registering new players in the game, the second stage (blue)
is the questions being presented and answered, the third stage (orange) is displaying
the correct answer, and the fourth stage (red) is displaying the high scores.

Socket.io.server

Intel Galileo Mobile device

Socket.io client time

1

2

3

4

5

6

From the preceding diagram, you can observe the flow in the following manner:

1. Player requests to join the game.

2. Server replies with a success true/false.

3. Server sends the question and answer options to the mobile devices (clients).

4. Client selects the answer and informs the server.

5. Server sends the right answer to the clients.

6. Server sends the game results to the clients.

Developing an IoT Quiz

[146]

Keeping this in mind, in the main.js file, you'll find the Socket.IO server being set
up and listening for new connections:

var app = http.createServer(function (req, res) {

 'use strict';

 res.writeHead(200, {'Content-Type': 'text/plain'});

 res.end('<h1>Hello world from Intel IoT platform!</h1>');

}).listen(1337);

var io = require('socket.io')(app);

//Attach a 'connection' event handler to the server

io.on('connection', function (socket) {

 …

 socket.on('error', function (error) {

 …

 });

 //Attach a 'disconnect' event handler to the socket

 socket.on('disconnect', function () {

 …

 });

});

Every time a connection is successfully established, Galileo will be waiting for a
client to send the registration message to join the game. If the game hasn't started yet,
the new player will be added to a player list, and the server will confirm the client
through a callback that he/she was successfully registered:

socket.on('register_player', function (player, callback) {

 if (game.isGameRunning()) return callback(null, {success:
 false, message: 'Game already started. Try again later'});

 // Add the player to the game

 game.registerPlayer(player.name, socket);

 // Replying to mobile device, game registration request

 callback(null, {success: true});

 // If is the first player to join, launch a timer to start the
 game

 if (game.players.length === 1) {

Chapter 9

[147]

 console.log('Game will start in Xs');

 startGameTimer = setTimeout(game.start, 3000);

 }

 });

The returned message will be using the following parameters:

• Error: If an error is present, it should be sent using the callback's
first parameter

• Message: The message structure should be {success: true/false,
message: 'optional'}

To help us keep track of players' data and easily exchange data messages, we
are using a custom object that we have named Player. This object has a name, a
connection socket, and a unique ID, referring to the socket ID. It can emit events to
a specific client, such as the questions, correct answer, and game scores:

function Player (options) {

 this.name = options.name;

 this.socket = options.socket;

 this.id = options.socket.id;

}

// Send scores to player

Player.prototype.displayScores = function (scores) {

 this.socket.emit('scores', {gameScore: scores});

};

// Display the question answer

Player.prototype.showCorrectAnswer = function (correctAnswer) {

 this.socket.emit('display_right_answer', {correctAnswer:
 correctAnswer});

};

// Send question to player and return the answer

Player.prototype.sendQuestion = function (question, timeout,
 roundNumber, callback) {

 this.socket.emit('question', {question: question, timeout:
 timeout, round: roundNumber}, callback);

};

module.exports = Player;

Developing an IoT Quiz

[148]

The game engine
The game engine can be found in the game.js file located inside the lib folder.
Game and players' data will be handled here:

var players = [];

var questions, roundNumber = null;

var gameRunning = false;

All the players joining and leaving the game will be added or removed from
the players' array. The var gameRunning value will indicate whether the game is
already running or not. The vars questions and roundNumber values will store
the game questions and the current question round number, respectively.

Game questions will be stored in a static JSON file, containing an array of questions.
This file is named questions.json. You can add or change questions as long as the
question structure is kept:

[

 {

 "id": 1,

 "question": "Which one is an Internet of Things
 major concern?",

 "answers": {

 "A": "Security",

 "B": "Too many devices connected to the Internet",

 "C": "Sedentarism",

 "D": "Not enought storage available in the world"

 },

 "correctAnswer": "A"

 },

 {

 "id": 2,

 "question": "What can you sense when using this
 Grove sensor?",

 "url": "http://www.seeedstudio.com/depot/bmz_cache/
 9/9b57087d562b65bcd9d77059b16061eb.image.530x397.jpg",

 "answers": {

 "A": "Light",

 "B": "Temperature",

 "C": "Moisture",

 "D": "Sound"

 },

 "correctAnswer": "D"

 }

]

Chapter 9

[149]

The first one is a text only question and the second one a question with an image.

Whenever there's a single player connected, a countdown timer will start. Other
players who want to join the current game will need to do it during this countdown.
When the time limit is reached, the game starts by calling the following method,
which can be found in the game.js file:

exports.start = function () {

 gameRunning = true;

 roundNumber = 1;

 // Load questions from a JSON file

 fs.readFile(''/home/root/.node_app_slot/questions.json'',
 ''utf8'', function (err, data) {

 if (err) throw err;

 questions = JSON.parse(data);

 async.whilst(

 function () {

 // While round number is not the last one and there are
 connected players, keep playing

 return (roundNumber <= questions.length &&
 players.length > 0);

 },

 // Start next question round

 nextQuestionRound,

 // When all rounds end

 function () {

 for (var i = 0; i != players.length; ++i) {

 players[i].displayScores(scores);

 }

 gameRunning = false;

 }

);

 });

};

Developing an IoT Quiz

[150]

In game.js, we can also find the preceding method, which is responsible to start
the game. The game status control variable will be checked as true and the round
number will be set to the first one. The game starts by loading all the questions from
the JSON file. Galileo will then asynchronously keep on processing the question
rounds until it cycles all the questions or all the players leave the game.

To accomplish this, we used the async library
(https://github.com/caolan/async).

The async.whilst method will lock every nextQuestionRound(callback) function
until its callback is called:

function nextQuestionRound(callback) {

 // Send the round question to all players

 async.each(players, function (player, playerDone) {

 // Set a maximum time to wait for the question answer

 var questionTimer = setTimeout(function () {

 console.log(''ANSWER was not answered'');

 return playerDone();

 }, 15000);

 // Question and options to send to the mobile device

 var roundQuestion = {

 question: questions[roundNumber-1].question,

 answers: questions[roundNumber-1].answers,

 url: questions[roundNumber-1].url

 }

 player.sendQuestion(roundQuestion, 15000, roundNumber,
 function (err, answer) {

 // Cancel the timer since the question was answered

 clearTimeout(questionTimer);

 // Evaluate question

 if (answer !== questions[roundNumber-1].correctAnswer) {

 // If answer is wrong, return and release

 return playerDone();

 }

 // If answer is correct, increase score and return and
 release

 scores.increaseScore(player.name, playerDone);

 });

https://github.com/caolan/async
https://github.com/caolan/async

Chapter 9

[151]

 },

 // When all players are done in current round

 function () {

 for (var i = 0; i != players.length; ++i) {

 players[i].showCorrectAnswer(questions[roundNumber-
 1].correctAnswer);

 }

 setTimeout(function () {

 ++roundNumber;

 callback();

 }, 3000);

 });

}

This method is our game core. Here, we'll be using the async.each method to
asynchronously loop the game participants in parallel. Each participant will be
sent the game round question. Each player's answer is expected to be returned in
15 seconds or it will be considered unanswered. The playerDone callback will be
called every time a player finishes "his move" in the current round. It will be called
when a player answers the question correctly or incorrectly, or it will be called if the
player doesn't answer the question at all.

When all the playerDone callbacks are called for all the players, the correct answer
will be displayed to all the players for 3 seconds. Then the round number will
increase by one unit and, on returning the round callback, a new round will be
processed in the previous async.whilst loop.

Caching the results
Every time a player answers a displayed question correctly, his score will
increase by one unit. We'll keep this data structurally cached using Redis.
The Intel IoT Dev Kit image already comes with it installed, so you'll be ready
to use it. Redis is a key-value cache and storage system, where you can store
your data by type (http://redis.io/).

http://redis.io/
http://redis.io/

Developing an IoT Quiz

[152]

Inside lib/storage.js, you can find the methods for our small storage system that
use the Redis Node.js client (https://github.com/mranney/node_redis). We'll use
sorted sets to store our data (http://redis.io/commands#sorted_set). Having a
set key, we can add multiple members with an associated score. Here, we will use
the players' IDs as members and their current scores as member scores:

var redis = require('redis');

var storage = redis.createClient();

// Key where we'll be storing our game score data

var storageKey = 'iot-quiz:scores';

exports = module.exports = {};

exports.increaseScore = function (playerKey, callback) {

 storage.zincrby(storageKey, 1, playerKey, callback);

};

// Get total correct answers

exports.getScores = function (callback) {

 storage.zrevrange(storageKey, 0, -1, 'WITHSCORES', function
 (err, score) {

 return callback(err, score);

 });

}

exports.clear = function (callback) {

 storage.del(storageKey, callback);

};

The clear method will be used every time a new game starts to clear the last game's
scores, if they exist. Whenever a player answers a question correctly, we'll increase
its score using the zincrby method (http://redis.io/commands/ZINCRBY).

To retrieve stored data, we can list it by score. Using the zrevrange method
(http://redis.io/commands/zrevrange) will return us an array of members
in descending order, starting with the player IDs that have the best scores. The
WITHSCORES option will also include the player scores in the results, returning the
score value in the array. This will be used to display the game scores at the end of
the game.

https://github.com/mranney/node_redis
http://redis.io/commands#sorted_set
http://redis.io/commands/ZINCRBY
http://redis.io/commands/zrevrange

Chapter 9

[153]

Using the LCD and buzzer
Pretty much like in the previous chapter's example, we will use a buzzer to help
improve the game experience. Using the MRAA library, we'll export and use
GPIO 4, where the buzzer should be connected:

var mraa = require("mraa");

var buzzer_pin = new mraa.Gpio(4);

buzzer_pin.dir(mraa.DIR_OUT);

buzzer_pin.write(0);

exports = module.exports = {};

exports.playBuzzer = function (time) {

 buzzer_pin.write(1);

 setTimeout(function () {

 buzzer_pin.write(0);

 }, time);

}

When a game starts or whenever a new question is displayed, the buzzer will make
some noise for some short time interval. Although we are just using the buzzer to
alert the players, if you prefer, you can use fancy sounds and create melodies using
the buzzer UPM module (http://iotdk.intel.com/docs/master/upm/node/
classes/buzzer.html).

The Grove LCD will be controlled using the UPM library. It will be useful to display
the Galileo IP address and the rounds status:

var LCD = require(''jsupm_i2clcd'');

var os = require(''os'');

var myLCD = new LCD.Jhd1313m1(0, 0x3E, 0x62);

exports = module.exports = {};

exports.printRound = function (roundNumber, total) {

 myLCD.clear();

 myLCD.setCursor(0,0);

 myLCD.write("Current round:");

 myLCD.setCursor(1,0);

 var roundInfo = roundNumber + "/" + total;

 myLCD.write(roundInfo);

};

http://iotdk.intel.com/docs/master/upm/node/classes/buzzer.html
http://iotdk.intel.com/docs/master/upm/node/classes/buzzer.html

Developing an IoT Quiz

[154]

External dependencies
Some Node.js libraries dependencies are already installed in the Developer Kit
image, but the ones that aren't have to be included in the package.json file:

{

 "name": "IoT-Quiz",

 "description": "A quiz served by Galileo and played with mobile
devices",

 "author": "Miguel Sousa <r.miguel.f.sousa@gmail.com>",

 "version": "0.0.1",

 "main": "main.js",

 "engines": {

 "node": "">=0.10.0""

 },

 "dependencies": {

 "async": "0.9.x",

 "redis": "0.12.x"

 }

}

The preceding JSON file contains our project description and libraries dependencies
with version. When you press the XDK build project button, this file will be read and
the dependencies written on it will be installed.

Creating the companion app
Now, let's take a look at the mobile project. From the PACKT publishing
downloaded code, open the project IoT-Quiz_client.xdk, located inside
the folder with the same name.

This project contains the mobile companion app, built using HTML5 and Cordova,
and also with the help of the Intel App Framework (http://app-framework-
software.intel.com/api.php).

http://app-framework-software.intel.com/api.php

Chapter 9

[155]

Interface
Using the drag and drop visual editor, we created the following page structure:

Each of the following "pages" were built for specific game events:

• #mainpage: This is the landing page. This view displays the form to insert
the Galileo Socket.IO server IP address.

• #join_game: In this view, we'll enter our name. After submitting it, we'll join
the game or be alerted that the game has already started.

• #waiting_players: It is displayed while a player is waiting for the game
to start.

• #question_view: Here, questions and answer options will be displayed.

• #scores: This last page lists the players' game scores.

All the HTML content is located in the index.html file. The editor-generated
stylesheets can be found inside the css/index/styles folder.

User handlers
User handlers, by default, are located in scripts/index_user_scripts.js. Here,
we'll define the click behavior for each of the following buttons:

• Connect button: This button will make the mobile device connect to the
Galileo server. If the device connects successfully, the next UI page will be
loaded. In order to move to the Insert name page, we are using Intel's App
Framework, $.ui.loadContent. If the connection fails, an alert box will
be displayed:

$(document).on("click", "#connect_button", function (evt) {

 $('#connecting-loader').show();

Developing an IoT Quiz

[156]

 var ipAddress = $('#ip_address').val();

 connect(ipAddress, function (err) {

 $('#connecting-loader').hide();

 if (err) {

 alert('Failed to connect');

 } else {

 $.ui.loadContent("#join_game", false, false,
 "slide");

 }

 });

 });

• Submit name button: In the second view, we'll find the submit name button.
Clicking on this button will result in sending the player name to the Galileo
server and obtaining a confirmation whether or not the player is participating
in the game. If there's a game already going on, the player will be notified
and disconnected. If the player joins the game successfully, he will be moved
to the waiting players view:

 $(document).on("click", "#submit_name_button", function (evt)
{

 var playerName = $('#player_name').val();

 socket.emit('register_player', {name: playerName}, function
(err, response) {

 if (err || !response || !response.success) {

 alert('Game already started. Try again later..');

 disconnect();

 return;

 }

 $.ui.loadContent("#waiting_players", false, false, "slide");

 });

 });

• Answer question button: When a question is displayed, this will be the event
attached to each possible answer. The submitted answer will be retrieved by
collecting the data-answerkey element contained in every answer option
and matching the answer code:

 $('.question-answer').click(function(evt) {

 $(this).css('background-color', 'red');

 var answer = $(this).data("answerkey");

 answerQuestion(answer);

 });

Chapter 9

[157]

Game handlers
The game handlers can be found inside the app.js file, located at www/js.
These handlers process receive socket events from Galileo.

After a socket connection is successfully established, the client will listen for three
main events:

• Display question: This event will make the mobile client clear and display
the round question and possible answers. It will start a figurative countdown
timer and assign the callback to another variable so that it can be called when
the player answers the question:

socket.on("question", function (message, callback) {

 clearQuestion();

 $.ui.unblockUI();

 $.ui.loadContent("#question-view", false, false,
 "slide");

 currentQuestion = message.question;

 selectedAnswer = null;

 startTimer(message.timeout);

 setQuestionDisplay(message.question, message.round);

 answerReply = callback;

 });

• Display right answer: When this event is received, the client will highlight
the correct answer in green:

 socket.on("display_right_answer", function (message) {

 stopTimer();

 $('#answer-'+ message.correctAnswer).css('background-
 color', '#98FB98');

 if (message.correctAnswer !== selectedAnswer) {

 $('#answer-'+selectedAnswer).css('background-
 color', '#ec8287');

 }

 });

• Display game scores: When this event is received, the scores list will be
displayed. The score variables is a Redis array result. It contains mixed
value types, player IDs, and player scores:

 socket.on('scores', function (scores) {

 $.ui.loadContent("#scores", false, false, "slide");

 for (var i = 0; i != scores.gameScore.length; ++i) {

 if (i%2 === 0) {

 var place = i + 1;

Developing an IoT Quiz

[158]

 $('#scores-list').append(''<li class="widget
 uib_w_22" data-uib="app_framework/listitem"
 data-ver="1">'+place+'. '+scores.gameScore[i]+'
 ('+scores.gameScore[i+1]+')'+'');

 }

 }

 setTimeout(function () {

 socket.disconnect();

 $.ui.unblockUI();

 }, 5000);

 });

 }catch(e) {

 alert(e);

 }

}

Building the mobile app
To build the mobile app, at the top of the XDK, click on the Build tab. Here, you'll
find multiple platforms available. Feel free to build the Windows 8 Phone app
(https://software.intel.com/en-us/xdk/docs/tut-build-win8phone) or iOS
(https://software.intel.com/en-us/xdk/docs/tut-build-binary-ios), but
here, we will only be doing it for Android.

If you have access to an Android device, select the Android legacy hybrid app build.

You'll be shown a build page containing many options for your build, such as
required plugins or even icons images. For this demo, no plugins are necessary to
install. Configure the app build as you wish and when you are ready, click on Build
App Now. As soon as the app is built, check your e-mail; your app will be there. If
you wish to, you can send it to multiple e-mail accounts. Allow your mobile device
to install apps from unknown sources, open your e-mail in the device, and download
the file that was sent to you. Click on it to install it.

https://software.intel.com/en-us/xdk/docs/tut-build-win8phone
https://software.intel.com/en-us/xdk/docs/tut-build-binary-ios

Chapter 9

[159]

Running the game
Open the IoT Quiz project and make sure the project is running on Galileo and
with all the dependencies installed. Select your device from the devices list or add
it manually if it's not listed. Upload the code to Galileo and press the Install/Build
button. Run the app by clicking on the Run button. The Galileo IP address should
now be displayed on the LCD screen.

Open the Emulate tab in your XDK and the mobile app you just downloaded in
order to have two clients. Insert the IP address in both devices:

Inserting the IP address

Next, insert the name:

Inserting players name

Developing an IoT Quiz

[160]

As soon as the game countdown timer finishes, the buzzer will sound and both
devices will receive the first question. When all the devices finish answering the
question, the correct answer will be displayed:

Try to answer all the questions until the final round. When all the questions
are answered, the scores will be displayed. Then the game will end and all the
players will be disconnected. If you want to play again, you'll have to repeat the
registration process.

Chapter 9

[161]

Summary
In this chapter, we built a more complex project with the help of Intel tools.

We've created an IoT Quiz multiplayer game, played on mobile devices and
served by a Galileo board. Galileo provided the game information to an LCD and
used a buzzer to alert players for new questions being displayed. Also, with the help
of a storage system, we were able to keep our data stored and organized, ready to be
displayed on request.

In the next chapter, we'll go a bit further and integrate a device with an IoT cloud.

[163]

Integrating with Muzzley
One identified issue regarding IoT is that there will be lots of connected devices and
each one speaks its own language, not sharing the same protocols with other devices.
This leads to an increasing number of apps to control each of those devices. Every
time you purchase connected products, you'll be required to have the exclusive
product app, and, in the near future, where it is predicted that more devices will be
connected to the Internet than people, this is indeed a problem, which is known as
the basket of remotes.

Many solutions have been appearing for this problem. Some of them focus on
creating common communication standards between the devices or even creating
their own protocol such as the Intel Common Connectivity Framework (CCF). A
different approach consists in predicting the device's interactions, where collected
data is used to predict and trigger actions on the specific devices. An example using
this approach is Muzzley. It not only supports a common way to speak with the
devices, but also learns from the users' interaction, allowing them to control all
their devices from a common app, and on collecting usage data, it can predict users'
actions and even make different devices work together.

In this chapter, we will start by understanding what Muzzley is and how we
can integrate with it. We will then do some development to allow you to control
your own building's entrance door. For this purpose, we will use Galileo as a bridge
to communicate with a relay and the Muzzley cloud, allowing you to control the
door from a common mobile app and from anywhere as long as there is Internet
access. Finally, you'll learn how to use the Muzzley app to define rules and make
the homemade system communicate with the existing connected devices available
in stores.

Integrating with Muzzley

[164]

In this chapter, you'll learn about:

• Setting up a Muzzley app and profile

• Integrating with Muzzley

• Building your own control interface

• Controlling your building's entrance door with Muzzley

• Using Muzzley workers to make different devices work together

Wiring the circuit
In this chapter, we'll be using a real home AC inter-communicator with a building
entrance door unlock button and this will require you to do some homework. This
integration will require you to open your inter-communicator and adjust the inner
circuit, so be aware that there are always risks of damaging it.

If you don't want to use a real inter-communicator, you can replace it by an LED or
even by the buzzer module we used in the previous chapter. If you want to use a
real device, you can use a DC inter-communicator, but in this guide, we'll only be
explaining how to do the wiring using an AC inter-communicator.

The first thing you have to do is to take a look at the device manual and check
whether it works with AC current, and the voltage it requires. If you can't locate
your product manual, search for it online.

In this chapter, we'll be using the solid state relay we previously used in Chapter 4,
Creating a Motion Sensing Light. This relay accepts a voltage range from 24 V up to
380 V AC, and your inter-communicator should also work in this voltage range.

Like we used in the earlier chapters, you'll also need some electrical wires and
electrical wires junctions.

Chapter 10

[165]

Wire junctions and the solid state relay

This equipment will be used to adapt the door unlocking circuit to allow it to be
controlled from the Galileo board using a relay.

The main idea is to use a relay to close the door opener circuit, resulting in the door
being unlocked. This can be accomplished by joining the inter-communicator switch
wires with the relay wires. Use some wire and wire junctions to do it, as displayed in
the following image:

Wiring the circuit

Integrating with Muzzley

[166]

The building/house AC circuit is represented in yellow, and S1 and S2 represent the
inter-communicator switch (button). On pressing the button, we will also be closing
this circuit, and the door will be unlocked. This way, the lock can be controlled both
ways, using the original button and the relay.

Before starting to wire the circuit, make sure that the inter-communicator
circuit is powered off. If you can't switch it off, you can always turn
off your house electrical board for a couple of minutes. Make sure
that it is powered off by pressing the unlock button and trying to open
the door.

If you are not sure of what you must do or don't feel comfortable doing
it, ask for help from someone more experienced.

Open your inter-communicator, locate the switch, and perform the changes
displayed in the preceding image (you may have to do some soldering).

The Intel Galileo board will then activate the relay using pin 13, where you should
wire it to the relay's connector number 3, and the Galileo's ground (GND) should be
connected to the relay's connector number 4.

Beware that not all the inter-communicator circuits work the
same way and although we try to provide a general way to
do it, there're always the risk of damaging your device or
being electrocuted. Do it at your own risk.

Power on your inter-communicator circuit and check whether you can open the door
by pressing the unlock door button.

If you prefer not using the inter-communicator with the relay, you can always
replace it with a buzzer or an LED to simulate the door opening. Also, since
the relay is connected to Galileo's pin 13, with the same relay code, you'll have
visual feedback from the Galileo's onboard LED.

The Muzzley IoT ecosystem
Muzzley is an Internet of Things ecosystem that is composed of connected devices,
mobile apps, and cloud-based services. Devices can be integrated with Muzzley
through the device cloud or the device itself:

Chapter 10

[167]

It offers device control, a rules system, and a machine learning system that predicts
and suggests actions, based on the device usage.

The mobile app is available for Android, iOS, and Windows phone. It can pack all
your Internet-connected devices in to a single common app, allowing them to be
controlled together, and to work with other devices that are available in real-world
stores or even other homemade connected devices, like the one we will create in
this chapter.

Muzzley is known for being one of the first generation platforms with the ability to
predict a users' actions by learning from the user's interaction with their own devices.

Human behavior is mostly unpredictable, but for convenience, people end up
creating routines in their daily lives. The interaction with home devices is an example
where human behavior can be observed and learned by an automated system.

Muzzley tries to take advantage of these behaviors by identifying the user's
recurrent routines and making suggestions that could accelerate and simplify
the interaction with the mobile app and devices. Devices that don't know of each
others' existence get connected through the user behavior and may create synergies
among themselves.

Integrating with Muzzley

[168]

When the user starts using the Muzzley app, the interaction is observed by a profiler
agent that tries to acquire a behavioral network of the linked cause-effect events.
When the frequency of these network associations becomes important enough, the
profiler agent emits a suggestion for the user to act upon. For instance, if every time a
user arrives home, he switches on the house lights, check the thermostat, and adjust
the air conditioner accordingly, the profiler agent will emit a set of suggestions
based on this. The cause of the suggestion is identified and shortcuts are offered for
the effect-associated action. For instance, the user could receive in the Muzzley app
the following suggestions: "You are arriving at a known location. Every time you
arrive here, you switch on the «Entrance bulb». Would you like to do it now?"; or
"You are arriving at a known location. The thermostat «Living room» says that the
temperature is at 15 degrees Celsius. Would you like to set your «Living room» air
conditioner to 21 degrees Celsius?"

When it comes to security and privacy, Muzzley takes it seriously and all the collected
data is used exclusively to analyze behaviors to help make your life easier.

This is the system where we will be integrating our door unlocker. In this chapter,
we will integrate our device with the Muzzley cloud using Galileo as a bridge
(gateway) to communicate between the lock and this ecosystem. Galileo will answer
Muzzley requests and will act on the unlocking system, unlocking the entrance door.

Creating a Muzzley app
The first step is to own a Muzzley developer account.

If you don't have one yet, you can obtain one by visiting
https://muzzley.com/developers, clicking on the
Sign up button, and submitting the displayed form.

To create an app, click on the top menu option Apps and then Create app. Name
your App Galileo Lock and if you want to, add a description to your project.

https://muzzley.com/developers

Chapter 10

[169]

As soon as you click on Submit, you'll see two buttons displayed, allowing you to
select the integration type:

Muzzley allows you to integrate through the product manufacturer cloud or directly
with a device. In this example, we will be integrating directly with the device. To do
so, click on Device to Cloud integration.

Fill in the provider name as you wish and pick two image URLs to be used as
the profile (for example, http://www.bestsquarefeet.com/wp-content/
uploads/2013/01/Commercial1.jpg) and channel (for example, http://png-2.
findicons.com/files/icons/949/token/256/lock.png) images.

We can select one of two available ways to add our device: it can be done using UPnP
discovery or by inserting a custom serial number. Pick the device discovery option
Serial number and ignore the fields Interface UUID and Email Access List; we will
come back for them later. Save your changes by pressing the Save changes button.

Creating the device integration profile
To be able to communicate under a common language, we'll need to define the
hierarchical structure of our device components and the respective properties. In this
integration, we will only have a door lock, which will be our only type of component.
The only information we need to exchange about this type of component will be the
door status, and this will be our only property.

On the app details web page, in the top-left corner, you'll find the Profile Spec
option. Click on it, and let's create our integration profile.

On this page, you'll find a section named Component #1. This is where we'll define
our first and only component. Click on the arrow to expand the component section
and insert the key door-lock in the ID field. This ID should be a suggestive key
name since it will identify the lock component type. Fill in the label with the name
of the component, and pick any name that will help you remember the type of
component that you are creating.

http://www.bestsquarefeet.com/wp-content/uploads/2013/01/Commercial1.jpg
http://www.bestsquarefeet.com/wp-content/uploads/2013/01/Commercial1.jpg
http://png-2.findicons.com/files/icons/949/token/256/lock.png
http://png-2.findicons.com/files/icons/949/token/256/lock.png

Integrating with Muzzley

[170]

Now let's define the properties. Expand the Property #1 section and set lock-status
as the property ID, also giving this property a Label. Scrolling down, you'll find two
more fields: IO and Components. The field IO represents the type of actions you will
allow to be performed on this property. This property can be readable (r), writable
(w), or subscribable (s). Allow all by typing rws. The property components is a
components array referring to the components that you want to have on this property.
Insert ["door-lock"] to associate this property with our door-lock component.

If you click on the JSON button in front of the Profile Spec section, you should see
the following profile object:

{

 "components": [

 {

 "id": "door-lock",

 "label": "Building Lock",

 "classes": ""

 }

],

 "properties": [

 {

 "id": "lock-status",

 "label": "Lock Status",

 "classes": "",

 "schema": "",

 "schemaExtension": "",

 "isTriggerable": false,

 "isActionable": false,

 "controlInterfaces": [],

 "triggers": [],

 "actions": [],

 "io": "rws",

 "onChange": false,

 "rateLimit": 0,

 "components": "[\"door-lock\"]"

 }

]

}

Save the profile, and let's start building the Galileo bridge.

Chapter 10

[171]

Developing the Galileo bridge
Open the Intel XDK IoT Edition. Navigate to Projects | Start a new project and
then select Templates | Blank template under the INTERNET OF THINGS
EMBEDDED APPLICATION tab to create a new blank project.

To help you connect to Muzzley, let's use the muzzley-bridge-node library
(https://github.com/v0od0oChild/muzzley-bridge-node). Although not an
official library, it packs most of the Muzzley device-to-cloud features together and
will help you with connecting and exchanging messages. Open the package.json file
and add the line "muzzley-bridge-node": "latest" inside the dependencies key
to allow this library to be installed in Galileo when you press the editor build button.

Create a new file and name it config.js. In this file, we will add all the keys and IDs
we'll need to use. Copy and paste the following structure into the new config file:

var config = {};

config.account = {

 profileId: '',

 serialNumber: 'galileo-bridge-12345',

 appToken: ''

}

config.bridgeComponents = [

 {

 id: 'lock-1',

 type: 'door-lock',

 label: 'Building door lock1'

 }

];

module.exports = config;

Open the App Details lock in the Muzzley website, and there you'll find the
profileId and appToken displayed. Use them to fill in the config.account
data with your own keys. The serialNumber field is a unique ID that you'll
need to set in order to identify this Galileo bridge.

To help us with the Galileo pin operations, we're creating the lock.js file, where
we'll have all the pin manipulation logic. Create the file and copy the following code:

var mraa = require('mraa');

exports = module.exports = {};

var processingRequest = false;

https://github.com/v0od0oChild/muzzley-bridge-node

Integrating with Muzzley

[172]

var processTimer;

var pin = new mraa.Gpio(13);

pin.dir(mraa.DIR_OUT);

// Unlock the door

exports.unlockDoor = function () {

 if (processingRequest === true) return;

 processingRequest = true;

 pin.write(1);

 processTimer = setTimeout(stopUnlockingDoor, 4000);

};

// Stop unlocking the door

exports.stopUnlockingDoor = function () {

 clearTimeout(processTimer);

 pin.write(0);

 var processingRequest = false;

};

Since the relay will keep opening the door when active, here we'll have two main
methods: unlockDoor and stopUnlockingDoor. The first method will order Galileo
to set pin 13 to HIGH, which will activate the relay, close the door-unlocking circuit,
and unlock the door. For security reasons, we are adding two control variables—
proccessingRequest and processTimer. The processingRequest variable will
ensure that only one user at a time will be able unlock the door and the processTimer
will ensure that after 4 seconds, the door-unlocking system will stop whether there is
Internet access or not. When a user unlocks the door, other unlocking requests for the
same lock will be discarded. If the stopUnlockingDoor method is called, the timer
will be cleared and the Galileo will be available for more unlock door requests.

Now, let's create our integration skeleton by pasting the following code into the
main.js file:

// Dependencies

var muzzleyBridge = require('muzzley-bridge-node');

var lock = require('./lock');

var config = require('./config');

// Connect and subscribe to the configured Muzzley channel

muzzleyBridge.connect(config.account, config.bridgeComponents,
function (err, channel) {

 console.log('Device connected to Muzzley');

 // When a request to read the lock status arrives

Chapter 10

[173]

 channel.on('readRequest', function (user, message, callback) {

 console.log(message);

 });

 // When a request to change the lock status arrives

 channel.on('writeRequest', function (user, message) {

 console.log(message);

 if (message.property === 'status' && message.value === true) {

 }

 if (message.property === 'status' && message.value === false) {

 lock.stopUnlockingDoor();

 }

 });

});

On connecting to Muzzley, we will receive a communication channel. We can
publish and read from the subscribed component properties. We are able to
publish the lock changes or perform some local actions when we receive a request.

Requests can be of two types: read or write. A read request indicates that a person
allowed to be subscribed to this channel, most likely a mobile device, is requiring to
obtain the value of a specific component property. In this situation, it would refer to
the lock-status of the door-lock.

When receiving a write request, we will receive a command that is trying to change
the value of a specific property and, in this scenario, the value of the lock-status
property. This write requests will be responsible for changing the door lock status
by manipulating the Galileo pins.

Build your project, upload it to Galileo, and run it using the Intel XDK. Uploading
the project using this IDE will make the app to run persistently. Even when the
board is rebooted, the app will restart automatically.

Developing the app interface
Heading back to the Muzzley web page, we'll now create the interface that will
control the door unlocking system. In the top menu, you'll find the option Widgets;
click on it and select Create Widget. Name your interface and click on Submit.
From the widget selection menu, select the one you just created, tick the Is interface
checkbox, and save it. Select the same widget once again, and in the left menu,
you'll find the option Editor. Click on it to be able to edit and develop your custom
interface. You'll find three text inputs, one for HTML, one for CSS, and the other one
for JavaScript.

Integrating with Muzzley

[174]

Starting with the HTML, let's create a main container with a button on it by copying
the following lines into the HTML editor:

<div class="container">

 <div id="open-button">UnLock</div>

</div>

Now let's take care of the styling. We'll make the displayed text not selectable
using the option user-select. We'll add a background-color property to the main
container and add some styling for the button press and release custom classes,
making the button change color on press and on release. Copy and paste the
stylesheet below into the CSS editor:

body {

 height: 100%; width: 100%; margin: 0; padding: 0;

 font-family: 'Open Sans', sans-serif;

 background-color: #fff;

}

* {

 box-sizing: border-box;

 -webkit-box-sizing: border-box;

 -moz-box-sizing: border-box;

 -webkit-tap-highlight-color: rgba(0, 0, 0, 0);

 -webkit-touch-callout: none;

 -webkit-user-select: none;

 -khtml-user-select: none;

 -moz-user-select: none;

 -ms-user-select: none;

 -ms-touch-action: none;

 user-select: none;

 -webkit-tap-hightlight-color: transparent;

}

.container{

 width: 100%;

 height: 100%;

 background-color: #efefef;

 display: table;

}

#open-button {

 width: 100px;

 height: 100px;

 border: 2px solid black;

Chapter 10

[175]

 margin-top: 50%;

 border-radius: 100%;

 display:table;

 margin: 0 auto 0 auto;

 background-color: #27ae60;

}

#open-button span{

 display: table-cell;

 vertical-align:middle;

 margin: 0 auto;

 width: 100%;

 text-align: center;

}

#open-button.down{

 background-color: #fec504;

 -moz-transition: all .5s ease-out;

 -webkit-transition: all .5s ease-in;

 -o-transition: all .5s ease-in;

 transition: all .5s ease-in;

}

#open-button.up{

 background-color: #27ae60;

 -moz-transition: all .5s ease-out;

 -webkit-transition: all .5s ease-in;

 -o-transition: all .5s ease-in;

 transition: all .5s ease-in;

}

To add all the actions to our interface, we'll need to use a bit of JavaScript. We'll
be using it to identify and process the browser touch events, communicate with
Muzzley, set the interface size to full screen, and set the button classes to make it
change its colors. To identify the press and release events, we'll need to test the
events against our browser since each browser has its own event.

The Muzzley client will be running in the interface. When the event muzzley.
ready fires, we'll subscribe the interface to the Muzzley channel. As soon as we are
subscribed, we can start sending and receiving messages.

If you want to read more about the Muzzley JS library, visit
https://github.com/muzzley/muzzley-client.

https://github.com/muzzley/muzzley-client

Integrating with Muzzley

[176]

Copy the code below to the JavaScript editor:

var channel, EVENT_START, EVENT_RELEASE;

// Find the touch events for this browser

if('ontouchstart' in window) {

 EVENT_START = 'touchstart';

 EVENT_RELEASE = 'touchend';

} else if (window.navigator.pointerEnabled) {

 EVENT_START = 'pointerdown';

 EVENT_RELEASE = 'pointerup';

} else if (window.navigator.msPointerEnabled) {

 EVENT_START = 'MSPointerDown';

 EVENT_RELEASE = 'MSPointerUp';

} else {

 EVENT_START = 'mousedown';

 EVENT_RELEASE = 'mouseup';

}

// When Muzzley loads

muzzley.ready(function (options) {

 if(!options || !options.channels) {

 return alert('There is no channels data');

 }

 // Obtain the channel information

 // Indexing to 0 since there's only one channel (One Galileo running
this profile)

 channel = options.channels[0];

 // Subscribe to the channel

 var subscription = muzzley.subscribe({

 namespace: 'iot',

 payload: {

 profile: channel.profileId,

 channel: channel.remoteId

 }

 });

});

// When document finishes loading, set interface to full height

$(document).ready(function() {

Chapter 10

[177]

 $('body').css('height', window.innerHeight+'px');

 var margin = (window.innerHeight*.5) –

 ($('#open-button').height()*.5);

 $('#open-button').css('margin-top', margin+'px');

});

// Publish a Muzzley write request to set the lock-status property

function writeLockStatus(lockStatus) {

 var data = {

 namespace: 'iot',

 payload: {

 io: 'w',

 profile: channel.profileId,

 channel: channel.remoteId,

 property: channel.id,

 component: channel.components[0],

 data: {value: lockStatus}

 }

 };

 muzzley.publish(data);

}

 // On touch, add the button class responsible to change the button
color

 // and publish Muzzley request

 $('#open-button').on(EVENT_START, function(){

 $('#open-button').removeClass();

 $('#open-button').addClass('down');

 writeLockStatus(true);

});

// On touch stop change color back and publish Muzzley request

$('#open-button').on(EVENT_RELEASE, function() {

 $('#open-button').removeClass();

 $('#open-button').addClass('up');

 writeLockStatus(false);

});

Integrating with Muzzley

[178]

Save the interface changes and click on the Apps option in the site's top menu. Edit
the app you created before, and in the Interface UUID option, select the interface
you just created. This app is private and in order to use it, you'll need to add the user
e-mails you want in the app's Email Access list option, separating multiple entries
with commas.

Beware that the added e-mail addresses must be the ones that will
be used in the Muzzley mobile app. So, if you're logging in as a
Facebook user, you'll need to add that account e-mail address.

Now you'll be able to give the app a test drive. Install the Muzzley app in your
mobile device and log in. Clicking on the app's + button will list all the public
profiles and your private ones. Locate the profile you created in the beginning of
this chapter and click on it. You'll be asked for the device's serial number. Insert the
serialNumber you defined before in the device config file.

After adding the channel, you'll find it listed under the default category. Click on it
and then try pressing the interface button to unlock the door. To do this, you must
have Internet access (you can use mobile Internet, such as 3G).

Check the onboard LED while you unlock the door from the app. The onboard LED
should light up every time you unlock the door from the Muzzley app.

Lighting up the entrance door
Now that we can unlock our door from anywhere using the mobile phone with an
Internet connection, a nice thing to have is the entrance lights turn on when you
open the building door using your Muzzley app.

To do this, you can use the Muzzley workers to define rules to perform an action
when the door is unlocked using the mobile app. To do this, you'll need to own
one of the Muzzley-enabled smart bulbs such as Philips Hue, WeMo LED Lighting,
Milight, Easybulb, or LIFX. You can find all the enabled devices in the app profiles
selection list:

Chapter 10

[179]

If you don't have those specific lighting devices but have another type of connected
device, search the available list to see whether it is supported. If it is, you can use
that instead.

Add your bulb channel to your account. You should now find it listed in your
channels under the category Lighting. If you click on it, you'll be able to control
the lights.

To activate the trigger option in the lock profile we created previously, go to the
Muzzley website and head back to the Profile Spec app, located inside App Details.
Expand the property lock status by clicking on the arrow sign in the property
#1 - Lock Status section and then expand the controlInterfaces section. Create
a new control interface by clicking on the +controlInterface button. In the new
controlInterface #1 section, we'll need to define the possible choices of label-values
for this property when setting a rule. Feel free to insert an id, and in the control
interface option, select the text-picker option. In the config field, we'll need to
specify each of the available options, setting the display label and the real value that
will be published. Insert the following JSON object:

{"options":[{"value":"true","label":"Lock"},
 {"value":"false","label":"Unlock"}]}.

Integrating with Muzzley

[180]

Now we need to create a trigger. In the profile spec, expand the trigger section.
Create a new trigger by clicking on the +trigger button. Inside the newly created
section, select the equals condition. Create an input by clicking on +input,
insert the ID value, insert the ID of the control interface you have just created
in the controlInterfaceId text field. Finally, add the [{"source":"selection.
value","target":"data.value"}].path to map the data.

Open your mobile app and click on the workers icon. Clicking on Create Worker
will display the worker creation menu to you. Here, you'll be able to select a channel
component property as a trigger to some other channel component property:

Chapter 10

[181]

Select the lock and select the Lock Status is equal to Unlock trigger. Save it and
select the action button. In here, select the smart bulb you own and select the
Status On option:

After saving this rule, give it a try and use your mobile phone to unlock the door.
The smart bulb should then turn on. With this, you can configure many things in
your home even before you arrive there. In this specific scenario, we used our door
locker as a trigger to accomplish an action on a lightbulb. If you want, you can do the
opposite and open the door when a lightbulb lights up a specific color for instance.
To do it, similar to how you configured your device trigger, you just have to set up
the action options in your device profile page.

Integrating with Muzzley

[182]

Summary
In this chapter, we performed an integration with the Muzzley IoT ecosystem. We
started by adding a relay to a lock inter-communicator circuit, allowing Galileo to
control the circuit. We used Galileo as a bridge to connect to a local door circuit and
the Muzzley platform. We were able to remotely unlock the door using a mobile
phone with Internet access. Finally, we made our custom device work together with
a connected bulb by defining a rule.

Everyday objects that surround us are being transformed into information
ecosystems and the way we interact with them is slowly changing. Although IoT is
growing up fast, it is nowadays in an early stage, and many issues must be solved in
order to make it successfully scalable. By 2020, it is estimated that there will be more
than 25 billion devices connected to the Internet.

This fast growth without security regulations and deep security studies are leading
to major concerns regarding the two biggest IoT challenges—security and privacy.
Devices in our home that are remotely controllable or even personal data information
getting into the wrong hands could be the recipe for a disaster.

In this book, you were able to learn about the basics of IoT and its concepts. You
were also taught how to use some of the best available tools while showing you
some IoT use cases and projects. By now, you should be ready to start creating
your own projects.

[183]

Index

Symbols

7-Zip

URL 14

A

Analog-to-Digital Converter (ADC) 84

Antennas

URL 36

Arduino.cc IDE

libraries 14

Arduino IDE

about 20, 21

libraries 28

methods 28

Arduino IDE 1.6.4

URL 14

Arduino Yún 8

async library

URL 150

B
board

firmware, updating 18, 19
IP address, finding 38, 39
setting up 11, 12

temperature, reading 39-41

Bootstrap

URL 120

buzzer UPM module

URL 153

C

cat command

URL 41

C++ GroveLight demo

URL 89

Christmas lighting animations

control page, building 120-123

creating 113

events, handling 129, 130

LPD8806 LED strip, controlling 116, 117

LPD8806 LED strip, wiring 114-116

random LED animations,

launching 127-129

real-time server, creating 117-119

reference link 129

required components 114

YouTube player page, building 123-126

circuit

wiring 164-166

Clanton

URL 32

Common Connectivity

Framework (CCF) 163

companion app

creating 135-138, 154

game handlers 157

interface 155

user handlers 155, 156

Content Delivery Network (CDN) 122

control page

building 120-123

[184]

emitted events 122

listened events 122

D

drivers

URL 37

G

Galileo

booting, from SD card 32, 33

comparing, with boards 7, 8

using, as web server 64-72

Galileo App

buzzer, using 153

creating 143, 144

external dependencies 154

game engine 148-151

LCD, using 153

players, coordinating 145-147

results, caching 151, 152

Galileo Gen 2 5, 6

GCC toolchain

URL 77

GitHub

URL 77

Grove Buzzer

URL 143

Grove sensors

FC-28 Soil Moisture sensor 93

Grove LED sensor 92

Grove Light 92

Grove Temperature 92

Grove Starter Kit Plus

URL 76

I

I2C protocol

URL 142

ifconfig command
URL 38

IFrame API

URL 123

ifup command

URL 34

Integrated Development Environment (IDE)

downloading 13-17

installing 13-15

issues 17, 18

troubleshooting 17, 18

Intel

App Framework, URL 154

official guide, URL 79, 80
Intel custom Arduino IDE 1.6.0 14

Intel Galileo, components

Arduino expansion header 4

clock battery power 5

ethernet port 4

flash memory 4
I2C jumper 4

IOREF jumper 4

JTAG header 5

MicroSD card slot 5

on-board LED 5

power input 5

Random Access Memory (RAM) 4

reboot button 4

reset button 5

serial port 4

USB client 4

USB host 4

VIN jumper 4

Intel IoT Developer Kit

equipments, requisites 76

image, booting from 80, 81

image, building 78-80

Wi-Fi access, setting up 81, 82

Intel IoT Developer Kit, components

about 77

Cloud analytics 78

hardware components 77

IDE and programming language 78

software image 77

[185]

Intel IoT Developer Kit image, building

about 78-80

on Linux 78, 79

on Mac OS 79, 80

on Windows 79

Intel IoT Developer Kit, requisites

Base Shield V2 76

Light sensor 77

Intel XDK IoT Edition

about 131

companion app, creating 135-138

creating, in Galileo 132-135

deploying, in Galileo 132-135

on Linux 132

on Mac OS 132

on Windows 132

URL 78, 132

Internet access

about 33

cable, connecting through 33-35

Wi-Fi, connecting through 35, 36

Internet of Things (IoT) 1, 2

IoT cloud analytics

URL 78

iotkit-agent 104

IoT Quiz

components, requisites 142, 143

Galileo App, creating 143

game, running 159, 160

mobile app, building 158

irrigation system

actuation rules, creating 108-111

components, requisites 92, 93

controlling, sensorial data used 103

sensor data, making available

online 103-108

J

jQuery

URL 120

L

LED

blinking 22, 23

fading 24, 25

LED animations, launching 127-129

Lib MRAA, Intel IoT Developer Kit

about 83, 84

Node.js API, URL 85

Python API, URL 86

URL 116

using, in C++ 86, 87

using, in Node.js 84, 85

using, in Python 85

library I/O capabilities

URL 83

Lib UPM, Intel IoT Developer Kit

about 87, 88

URL 87

using, in C++ 89

using, in Python 89

lightbulb

controlling 54-56

Linux GPIOs

URL 87

LPD8806 LED strip

controlling 116, 117

URL 114

wiring 114-116

LPD8806 UPM library

URL 116

luminosity

detecting 59-64

M

Mercedes-Benz cars

URL 2

micro-electromechanical systems (MEMS) 1

MicroSD card 35

Motion Sensing Light

creating 49

[186]

equipments, requisites 50-54

lightbulb, controlling 54-56

luminosity, detecting 59-64

relay, controlling 56-59

MRAA. See Lib MRAA,

Intel IoT Developer Kit

Muzzley

about 166-168

app, creating 168, 169

app interface, developing 173-178

device integration profile, creating 169, 170
entrance door, lighting up 178-181

Galileo bridge, developing 171-173

JS library, URL 175

muzzley-bridge-node library, URL 171

URL 168

N

Nest thermostat

URL 2

Node.js UPM library

URL 88

P

photoresistor

URL 52

Plotly 42

Power over Ethernet (PoE)-enabled

Ethernet switch 6

PuTTY

URL 40

Python GroveLight demo

URL 89

R

Raspberry Pi 8

real-time server

creating 117-119

redis client

URL 77

Redis Node.js client

URL 152

relay

controlling, motion sensor used 56-59

S

SD card

Galileo, booting from 32, 33

sensorial data

used, for controlling irrigation system 103

sensors, Wyliodrin

reading from 98-102

wiring 96

sketches

LED, blinking 22, 23

LED, fading 24, 25

running 21

serial port for debugging, using 26-28

T

temperature data

chart, plotting 43-48

plotting 42

samples, creating 42, 43

touch instruction

URL 45

U

UPM module

URL 92

W

web server

Galileo, using as 64-72

Wi-Fi

access, setting up 81, 82

connecting through 35-37

connection, testing 37

networks, scanning 37

[187]

Wi-Fi adapter 36

Win32 Disk Imager

URL 79

Windows 8 Phone app

URL 158

WinRAR

URL 79

Wyliodrin

about 91

sensors, reading from 98-103

sensors, wiring 96

setting up 93-95

URL 94

used, for reading from sensors 95

Y
YouTube player page

building 123-126

emitted events 126

listened events 126

Z

zincrby method

URL 152

zrevrange method

URL 152

Thank you for buying

Internet of Things with Intel Galileo

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Internet of Things with the

Arduino Yún
ISBN: 978-1-78328-800-7 Paperback: 112 pages

Projects to help you build a world of smarter things

1. Learn how to interface various sensors and
actuators to the Arduino Yún and send this
data in the cloud.

2. Explore the possibilities offered by the
Internet of Things by using the Arduino Yún
to upload measurements to Google Docs,
upload pictures to Dropbox, and send live
video streams to YouTube.

3. Learn how to use the Arduino Yún as the
brain of a robot that can be completely
controlled via Wi-Fi.

Cloning Internet Applications

with Ruby
ISBN: 978-1-84951-106-3 Paperback: 336 pages

Make your own TinyURL, Twitter, Flickr, or
Facebook using Ruby

1. Build your own custom social networking,
URL shortening, and photo sharing websites
using Ruby.

2. Deploy and launch your custom high-end
web applications.

3. Learn what makes popular social networking
sites such as Twitter and Facebook tick.

Please check www.PacktPub.com for information on our titles

Building a Rich Internet
Application with Vaadin [Video]
ISBN: 978-1-78328-892-2 Duration: 02:19 hours

Easily create powerful, modern web apps with this
rich Java framework

1. An iterative approach to building Vaadin
applications, taking you from first steps
to a complete app.

2. Use navigation and CSS to create a complete
web application.

3. Learn how to develop custom widgets and
components with Vaadin.

ExtGWT Rich Internet Application

Cookbook
ISBN: 978-1-84951-518-4 Paperback: 366 pages

80 recipes to build rich Java web apps on the robust
GWT platform, with Sencha ExtGWT

1. Take your ExtGWT web development skills to
the next level.

2. Create stunning UIs with several layouts and
templates in a fast and simple manner.

3. Enriched with code and screenshots for easy
and quick grasp.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Galileo
	The Internet of Things vision
	Introducing Intel Galileo
	Galileo Gen 2
	A comparison of Galileo with the most popular boards
	Summary

	Chapter 2: Rediscovering the
Arduino IDE
	Setting up your board
	Downloading and installing the IDE
	Common issues and troubleshooting

	Updating the board firmware
	The Arduino IDE
	Running your first sketches
	Blinking an LED
	Fading an LED
	Using the serial port for debugging

	Methods and libraries
	Summary

	Chapter 3: Monitoring the Board Temperature
	Booting Galileo from an SD card
	Getting connected to the Internet
	Connecting through cable
	Connecting through Wi-Fi
	Scanning Wi-Fi networks
	Connecting to the Internet and testing the Wi-Fi connection

	Finding your board IP address
	Reading the board temperature
	Plotting your temperature data
	Creating temperature data samples
	Plotting a chart

	Summary

	Chapter 4: Creating a Motion
Sensing Light
	Required equipment
	Controlling a lightbulb
	Controlling the relay using a motion sensor
	Detecting luminosity
	Using Galileo as a web server
	Summary

	Chapter 5: Intel IoT Developer Kit Tools
	Required equipment
	IoT Developer Kit components
	Building the image
	Booting from the IoT Developer Kit image
	Setting up the Wi-Fi access
	The MRAA library
	Node.js
	Python
	C++

	The UPM library
	Summary

	Chapter 6: Building an Irrigation System
	Required component
	Setting up Wyliodrin
	Using Wyliodrin to read from the sensors
	Wiring the sensors
	Reading from your sensors

	Controlling an irrigation system using sensorial data
	Making your sensor data available online
	Creating rules for actuation

	Summary

	Chapter 7: Creating Christmas
Light Effects
	Required component
	Wiring the LED strip
	Controlling the LED strip
	Creating a real-time server
	Building the control page
	Building the YouTube player page
	Launching random LED animations
	Handling the events in the server
	Summary

	Chapter 8: The Intel XDK IoT Edition
	Introducing Intel XDK
	Creating and deploying an IoT project on Galileo
	Creating a companion app
	Summary

	Chapter 9: Developing an IoT Quiz
	Required component
	Creating the Galileo app
	Coordinating players
	The game engine
	Caching the results
	Using the LCD and buzzer
	External dependencies

	Creating the companion app
	Interface
	User handlers
	Game handlers

	Building the mobile app
	Running the game
	Summary

	Chapter 10: Integrating with Muzzley
	Wiring the circuit
	The Muzzley IoT ecosystem
	Creating a Muzzley app
	Creating the device integration profile
	Developing the Galileo bridge
	Developing the app interface
	Lighting up the entrance door

	Summary

	Index

