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Foreword

The technologies of wireless communications have been changed drastically in recent

years. The rapidly growing wave of wireless data is pushing against the boundary

of wireless communication system’s performance. Such pervasive and exponentially

increasing data present imminent challenges to all aspects of wireless communication

system’s design, and the future wireless communications will require robust intelligent

algorithms for different services in different scenarios. Contributions are needed

from multidisciplinary fields to enhance wireless system, such as computer science,

mathematics, control and many other science disciplines. The combined efforts from

scientists from different disciplines are important for the success of the wireless

communication industry.

In such an era of big data where data mining and data analysis technologies are

effective approaches for wireless system evaluation and design, the applications of

machine learning in wireless communications have received a lot of attention recently.

Machine learning provides feasible and new solutions for the complex wireless com-

munication system design. It has been a powerful tool and popular research topic with

many potential applications to enhance wireless communications, e.g. radio channel

modelling, channel estimation and signal detection, network management and per-

formance improvement, access control, resource allocation. However, most of the

current researches are separated into different fields and have not been well orga-

nized and presented yet. It is therefore difficult for academic and industrial groups

to see the potentialities of using machine learning in wireless communications. It is

now appropriate to present a detailed guidance of how to combine the disciplines of

wireless communications and machine learning.

In this book, present and future developments and trends of wireless communica-

tion technologies are depicted based on contributions from machine learning and other

fields in artificial intelligence. The prime focus of this book is given in the physical

layer and network layer with a special emphasis on machine-learning projects that are

(or are close to) achieving improvements in wireless communications. A wide vari-

ety of research results are merged together to make this book useful for students and

researchers. There are 13 chapters in this book, and we have organized them as follows:

● In Chapter 1, an overview of machine-learning algorithms and their applications

are presented to provide advice and references to fundamental concepts accessible

to the broad community of wireless communication practitioners. Specifically,

the materials are organized into three sections following the three main branches

of machine learning: supervised learning, unsupervised learning and reinforce-

ment learning (RL). Each section starts with an overview to illustrate the major
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concerns and ideas of this branch. Then, classic algorithms and their last develop-

ments are reviewed with typical applications and useful references. Furthermore,

pseudocodes are added to provide interpretations and details of algorithms. Each

section ends by a summary in which the structure of this section is untangled and

relevant applications in wireless communication are given.
● In Chapter 2, using machine learning in wireless channel modelling is presented.

First of all, the background of the machine-learning-enabled channel modelling is

introduced. Then, four related aspects are presented: (i) propagation scenario clas-

sification, (ii) machine-learning-based multipath component (MPC) clustering,

(iii) automatic MPC tracking and (iv) deep-learning-based channel modelling.

The results in this chapter can provide references to other real-world measurement

data-based channel modelling.
● In Chapter 3, the wireless channel prediction is addressed, which is a key issue

for wireless communication network planning and operation. Instead of the

classic model-based methods, a survey of recent advances in machine-learning

technique-based channel prediction algorithms is provided, including both batch

and online methods. Experimental results are provided using the real data.
● In Chapter 4, new types of channel estimators based on machine learning are

introduced, which are different from traditional pilot-aided channel estimators

such as least squares and linear minimum mean square errors. Specifically, two

newly designed channel estimators based on deep learning and one blind estimator

based on expectation maximization algorithm are provided for wireless commu-

nication systems. The challenges and open problems for channel estimation aided

by machine-learning theories are also suggested.
● In Chapter 5, cognitive radio is introduced as a promising paradigm to solve the

spectrum scarcity and to improve the energy efficiency of the next generation

mobile communication network. In the context of cognitive radios, the necessity

of using signal identification techniques is first presented. A survey of signal

identification techniques and recent advances in this field using machine learn-

ing are then provided. Finally, open problems and possible future directions for

cognitive radio are briefly discussed.
● In Chapter 6, the fundamental concepts that are important in the study of com-

pressive sensing (CS) are introduced. Three conditions are described, i.e. the null

space property, the restricted isometry property and mutual coherence, that are

used to evaluate the quality of sensing matrices and to demonstrate the feasibility

of reconstruction. Some widely used numerical algorithms for sparse recovery are

briefly reviewed, which are classified into two categories, i.e. convex optimiza-

tion algorithms and greedy algorithms. Various examples are illustrated where

the CS principle has been applied to WSNs.
● In Chapter 7, the enhancement of the proposed IEEE 802.11p Medium Access

Control (MAC) layer is studied for vehicular use by applying RL. The purpose

of this adaptive channel access control technique is enabling more reliable, high-

throughput data exchanges among moving vehicles for cooperative awareness

purposes. Some technical background for vehicular networks is presented, as

well as some relevant existing solutions tackling similar channel sharing prob-

lems. Finally, some new findings from combining the IEEE 802.11p MAC with
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RL-based adaptation and insight of the various challenges appearing when

applying such mechanisms in a wireless vehicular network are presented.
● In Chapter 8, the advantage of applying machine-learning-based perceptual

coding strategies in relieving bandwidth limitation is presented for wireless

multimedia communications. Typical video coding standards, especially the state-

of-the-art high efficiency video coding (HEVC) standard, as well as recent

research progress on perceptual video coding, are included. An example that

minimizes the overall perceptual distortion is further demonstrated by mod-

elling subjective quality with machine-learning-based saliency detection. Several

promising directions in learning-based perceptual video coding are presented to

further enhance wireless multimedia communication experience.
● In Chapter 9, it is argued that the state-of-the-art HEVC standard can be used for

saliency detection to generate the useful features in compressed domain. There-

fore, this chapter proposes to learn the video saliency model, with regard to HEVC

features. First, an eye-tracking database is established for video saliency detec-

tion. Through the statistical analysis on our eye-tracking database, we find out

that human fixations tend to fall into the regions with large-valued HEVC fea-

tures on splitting depth, bit allocation and motion vector (MV). In addition, three

observations are obtained with the further analysis on our eye-tracking database.

Accordingly, several features in HEVC domain are proposed on the basis of split-

ting depth, bit allocation and MV. Next, a kind of support vector machine is

learned to integrate those HEVC features together, for video saliency detection.

Since almost all video data are stored in the compressed form, the proposed

method is able to avoid both the computational cost on decoding and the storage

cost on raw data. More importantly, experimental results show that the proposed

method is superior to other state-of-the-art saliency detection methods, either in

compressed or uncompressed domain.
● In Chapter 10, deep learning is incorporated for indoor localization based on

channel state information (CSI) with commodity 5GHz Wi-Fi. The state-of-the-

art deep-learning techniques are first introduced, including deep autoencoder

networks, convolutional neural networks and recurrent neural networks. The CSI

preliminaries and three hypotheses are further introduced, which are validated

with experiments. Then a deep-learning-based algorithm is presented to leverage

bimodal CSI data, i.e. average amplitudes and estimated angle of arrivals, in both

offline and online stages of fingerprinting. The proposed scheme is validated with

extensive experiments. Finally, several open research problems are examined for

indoor localization based on deep-learning techniques.
● In Chapter 11, the reinforcement-learning-based wireless resource allocation is

presented. First the basic principle of stochastic approximation is introduced,

which is the basis of the RL. Then how to formulate the wireless resource alloca-

tion problems via three forms of Markov decision process (MDP) is demonstrated,

respectively, namely finite-horizon MDP, infinite-horizon MDP with discount

cost and infinite-horizon MDP with average cost. One of the key knowledge to

solve MDP problem is the system state transition probability, which might be

unknown in practice. Hence, finally it is shown that when some system statistics

are unknown, the MDP problems can still be solved via the method of RL.
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● In Chapter 12, by integrating information theory with the principle of effective

capacity, an energy efficiency optimization problem is formulated with statistical

QoS guarantee in the uplink of two-tier small cell networks. To solve the problem,

a Q-learning mechanism based on Stackelberg game framework is introduced, in

which a macro-user acts as a leader, and knows all small-cell-users’ transmit

power strategies, while the small-cell-users are followers and only communi-

cate with the microcell base station not with other small-cell base stations. In

a formulated Stackelberg game procedure, the macro-user selects the transmit

power level based on the best responses of the small-cell-users. Then those small-

cell-users find their best responses. And in order to improve the self-organizing

ability of femtocell, based on the non-cooperative game framework, a Boltzmann

distribution-based weighted filter Q-learning algorithm (BDB-WFQA) based on

Boltzmann distribution is proposed to realize power allocation. The simulation

results show the proposed distributed Q-learning algorithm has a better perfor-

mance in terms of convergence speed while providing delay QoS provisioning.

The proposed BDB-WFQA algorithm increases the achievable effective capac-

ity of macro-users and a better performance compared with other power-control

algorithm.
● In Chapter 13, the open Jackson queuing network models are used to model

the macroscopic level vehicular mobility. The proposed simple model can accu-

rately describe the vehicular mobility and then further predict various measures

of network-level performance like the vehicular distribution, and vehicular-level

performance like average sojourn time in each area and the number of sojourned

areas in the vehicular networks. Model validation based on two large-scale urban

city vehicular motion traces reveals that such a simple model can accurately pre-

dict a number of system metrics interested by the vehicular network performance.

Moreover, two applications are proposed to illustrate the proposed model is effec-

tive in the analysis of system-level performance and dimensioning for vehicular

networks.

The goal of this book is to help communications system designers gain an

overview of the pertinent applications of machine learning in wireless communi-

cations, and for researchers to assess where the most pressing needs for further work

lie. This book can also be used as a textbook for the courses dedicated for machine-

learning-enabled wireless communications. With contributions from an international

panel of leading researchers, this book will find a place on the bookshelves of

academic and industrial researchers and advanced students working in wireless com-

munications and machine learning. We hope that the above contributions will form an

interesting and useful compendium on applications of machine learning in wireless

communications.

Prof. Ruisi He

State Key Laboratory of Rail Traffic Control and Safety

Beijing Jiaotong University, China

and

Prof. Zhiguo Ding

School of Electrical and Electronic Engineering

The University of Manchester, UK



Chapter 1

Introduction of machine learning

Yangli-ao Geng1, Ming Liu1, Qingyong Li1, and Ruisi He2

Machine learning, as a subfield of artificial intelligence, is a category of algorithms

that allow computers to learn knowledge from examples and experience (data), with-

out being explicitly programmed [1]. Machine-learning algorithms can find natural

patterns hidden in massive complex data, which humans can hardly deal with manu-

ally. The past two decades have witnessed tremendous growth in big data, which makes

machine learning become a key technique for solving problems in many areas such

as computer vision, computational finance, computational biology, business deci-

sion, automotive and natural language processing (NLP). Furthermore, our life has

been significantly improved by various technologies based on machine learning [2].

Facial-recognition technology allows social media platforms to help users tag and

share photos of friends. Optical character recognition technology converts images

of text into movable type. Recommendation systems, powered by machine learning,

suggest what films or television shows to watch next based on user preferences. Infor-

mation retrieval technology supports a search engine to return most related records

after users input some keywords. NLP technology makes it possible to filter out spam

from massive e-mails automatically. Self-driving cars that rely on machine learning

to navigate are around the corner to consumers.

In wireless communications, when you encounter a complex task or problem

involving a large amount of data and lots of variables, but without existing formula or

equation, machine learning can be a solution. Traditionally, machine-learning algo-

rithms can be roughly divided into three categories: supervised learning, unsupervised

learning and reinforcement learning (RL). In this chapter, we present an overview of

machine-learning algorithms and list their applications, with a goal of providing use-

ful advice and references to fundamental concepts accessible to the broad community

of wireless communications practitioners.

1.1 Supervised learning

Let us begin with an example to explain the basic idea of supervised learning. Imag-

ine that you are a weatherman and have access to historical meteorological data

1School of Computer and Information Technology, Beijing Jiaotong University, China
2State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, China
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(e.g. temperature, wind speed and precipitation for the past days). Now, given today’s

meteorological data, how to predict the weather of the next day? A natural idea is

to explore a rule from the historical meteorological data. Specifically, you need to

observe and analyse what the weather was under the meteorological data of the last

day. If you are fortunate enough to find a rule, then you will make a successful pre-

diction. However, in most cases, the meteorological data is too big to analyse for

humans. Supervised learning would be a solution to this challenge.

In fact, what you try to do in the above example is a typical supervised learning

task. Formally, supervised learning is a procedure of learning a function f (·) that maps

an input x (meteorological data of a day) to an output y (weather of the next day) based

on a set of sample pairs T = {(xi, yi)}n
i=1 (historical data), where T is called a training

set and yi is called a label. If y is a categorical variable (e.g. sunny or rainy), then the

task is called a classification task. If y is a continuous variable (e.g. probability of

precipitation), then the task is called a regression task. Furthermore, for a new input

x0, which is called a test sample, f (x0) will give the prediction.

In wireless communications, an important problem is estimating the channel

noise in a MIMO wireless network, since knowing these parameters are essential

to many tasks of a wireless network such as network management, event detection,

location-based service and routing [3]. This problem can be solved by using supervised

learning approaches. Let us consider the circumstances for the linear channel with

white added Gaussian noise MIMO environments with t transmitting antennas and r

receiving antennas. Assume the channel model is z = Hs + u, where s ∈ R
t , u ∈ R

r

and z ∈ R
r denote signal vector, noise vector and received vector, respectively. The

goal in the channel noise estimation problem is to estimate u given s and z. This

problem can be formulated as r regression tasks, and the target of the kth regression

task is to predict uk for 1 ≤ k ≤ r. In the kth regression task, a training pair is

represented as {[sT , zk ]T , uk}. We can complete these tasks using any regression model

(will be introduced later in this chapter). Once the model is well trained, uk can be

predicted when a new sample [s̄T , z̄k ]T comes. In this section, we will discuss three

practical technologies of supervised learning.

1.1.1 k-Nearest neighbours method

The k-nearest neighbours (k-NNs) method is a basic supervised learning method

which is applicable to both classification and regression tasks. Here, we will focus

on the classification since the regression shares similar steps with the classification.

Given a training set T = {(xi, yi)}n
i=1 and a test sample x0, the task is to predict the

category of x0 under the instruction of T . The main idea of k-NN is that first search

k-NNs of x0 in the training set and then classify x0 into the category which is most

common among the k-NNs (the majority principle). Particularly, if k = 1, x0 is simply

assigned to the class of its nearest neighbour.

Figure 1.1(a) shows an illustration for the main idea of k-NN. From Figure 1.1(a),

we observe that there are seven samples in the training set, four of which are labelled

as the first class (denoted by squares) and the others are labelled as the second

class (denoted by triangles). We intend to predict the category of a test sample
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(denoted by a circle) using the k-NN method. When k = 3, as shown in Figure 1.1(b),

the test sample will be assigned to the first class according to the majority principle.

When k = 1, as shown in Figure 1.1(c), the test sample will be assigned to the second

class since its nearest neighbour belongs to the second class. A formal description of

k-NN is presented in Algorithm 1.1.

The output of the k-NN algorithm is related to two things. One is the distance

function, which measures how near two samples are. Different distance functions will

lead to different k-NN sets and thus different classification results. The most com-

monly used distance function is the Lp distance. Given two vectors x = (x1, . . . , xd)T

and z = (z1, . . . , zd)T , the Lp distance between them is defined as

Lp(x, z) =
(

d
∑

i=1

|xi − zi|p
)1/p

. (1.1)

(a) (b) (c)

Figure 1.1 An illustration for the main idea of k-NN. (a) A training set there

consists of seven samples, four of which are labelled as the first class

(denoted by squares) and the others are labelled as the second class

(denoted by triangles). A test sample is denoted as a circle. (b) When

k = 3, the test sample is classified as the first class. (c) When k = 1,

the test sample is assigned as the second class

Algorithm 1.1: k-NN method

Input: number of neighbours k , training set T = {(xi, yi)}n
i=1, test sample x0

Output: label of test sample y0

1 Find the k-NN set of x in T and denote the set by Nk (x0);

2 Determine the label of x according to the majority principle, i.e.

y0 = arg max
1≤c≤m

∑

xi∈Nk (x0)

I (yi = c),

where I (yi = c) equals 1 if yi = c and 0 otherwise;
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When p equals 2, the Lp distance becomes the Euclidean distance. When p equals 1,

the Lp distance is also called the Manhattan distance. When p goes to ∞, it can be

shown that

L∞(x, z) = max
i

|xi − zi|. (1.2)

Another useful distance is the angular distance, which is defined as

DA(x, z) =
arccos

(

xT z/(‖x‖‖z‖)
)

π
. (1.3)

As its name suggests, the angular distance measures the included angle between two

vectors, and thus it is independent of the length of the vectors. This property makes

the angular distance useful in the situation that we only concern the proportion of each

component of features. Readers can refer to [4] for more information about distances.

The other factor affecting the result of the algorithm is the value of k . As shown

in Figure 1.1, different values of k may lead to different results. The best choice of

k depends upon the data. Generally, smaller values of k can generate more accurate

result for a high-quality training set, but it is sensitive to noises. In other words, the

output for a test sample may be severely affected by the noise samples near to it. In

contrast, larger values of k reduce the effect of noise on the classification but make

boundaries between classes less distinct [5]. In practice, one popular way of choosing

the empirically optimal k is via cross validation [6].

The k-NN algorithm is easy to implement by computing the distance between

the test sample and all training samples, but it is computationally intensive for a

big training set. The acceleration strategy for searching k-NNs can be found in [7].

Some theoretical results about k-NN have been presented in [8,9]. References [10,11]

demonstrate two applications of the k-NN method to fall detection via wireless sensor

network data and energy enhancements for smart mobile devices, respectively.

1.1.2 Decision tree

Decision tree is a supervised learning model based on a tree structure, which is used

for both classification and regression tasks. It is one of the most popular models

in supervised learning due to its effectiveness and strong interpretability. As shown

in Figure 1.2, a decision tree consists of three parts: internal nodes, leaf nodes and

branches. Among them, each internal node defines a set of if–then rules; each leaf

node defines a category (or a target value for a regression task), and branches deter-

mine the topology structure of the tree. To predict the category (or target value) for a

given test sample, we should find a path from the root node to a leaf node following

the steps below. Starting from the root node, chose a branch according to that which

rules the test sample meet in each internal node. Then go to the next node along the

branch. Repeat the above two steps until arriving at a leaf node, then the category

(target value) is given by this leaf node.

For a given training set {(xi, yi)}n
i=1, we say a decision tree affirms it if the tree out-

puts a correct prediction yi for any xi (i = 1, . . . , n). Given a training set, there may

exist tremendous trees affirming it. However, only a few of them will achieve good

performance on test samples (we call these trees effective trees), but we cannot afford
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Internal node

Leaf node

Figure 1.2 Decision tree structure

to enumerate all trees to find an effective tree. Thus, the key problem is how to con-

struct an effective tree in a reasonable span of time. A variety of methods have been

developed for learning an effective tree, such as ID3 [12], C4.5 [13] and classifica-

tion and regression tree (CART) [14]. Most of them share a similar core idea that

employs a top-down, greedy strategy to search through the space of possible decision

trees. In this section, we will focus on the common-used CART method and its two

improvements, random forest (RF) and gradient boosting decision tree (GBDT).

1.1.2.1 Classification and regression tree

CART [14] is a recursive partitioning method to build a classification or regression

tree. Different from other methods, CART constraints the tree as a binary tree, which

means there are only two branches in an internal node. In each internal node, a test

sample will go down the left or right branch according to whether it meets the rule

defined in the node or not.

Constructing CARTs share a similar process. The only difference between them

is the partition criterion in each internal node. For a classification tree, the partition

criterion is to minimize the Gini coefficient. Specifically, given a training set T of n

samples and k categories, with ni samples in the ith category, the Gini coefficient of

T is defined as

Gini(T ) =
k
∑

i=1

ni

n

(

1 − ni

n

)

= 1 −
k
∑

i=1

(ni

n

)2

, (1.4)

where n =
∑k

i=1 ni. In the root node, CART will find a partition rule to divide a

training set T into two partitions, say T1 and T2, which minimizes the following

function:

|T1|
|T | Gini(|T1|) + |T2|

|T | Gini(T2). (1.5)
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The similar steps will be carried out recursively for T1 and T2, respectively, until a

stop condition meets.

In contrast, a regression tree is to predict continuous variables and its partition

criteria is usually chosen as the minimum mean square error. Specifically, given a

training set T = {(xi, yi)}n
i=1, a regression tree will divide T into T1 and T2 such that

the following equation is minimized:
∑

(xi ,yi)∈T1

(yi − m1)
2 +

∑

(xj ,yj )∈T2

(

yj − m2

)2
, (1.6)

where mj = (1/|Tj|)
∑

(xi ,yi)∈Tj
yi ( j = 1, 2). For clarity, we summarize the construct-

ing process and the predicting process in Algorithms 1.2 and 1.3, respectively.
By using Algorithm 1.2, we can construct a decision tree. However, this tree is so

fine that it may cause overfitting (i.e. it achieves perfect performance on a training set

but bad predictions for test samples). An extra pruning step can improve this situation.

The pruning step consists of two main phases. First, iteratively prune the tree from the

leaf nodes to the root node and thus acquire a tree sequence Tree0, Tree1, . . . , Treen,

where Tree0 denotes the entire tree and Treen denotes the tree which only contain

Algorithm 1.2: CART constructing tree

Input: training set T = {(xi, yi) ∈ R
d+1}n

i=1, stop number s

1 if |T | < s then

2 node.left = NULL, node.right = NULL;

3 if the task is classification then

4 set node.y as the category which is most common among T ;

5 if the task is regression then

6 node.y = 1

|T |
∑

yi∈T yi

7 return node;

8 v̂ = ∞;

9 for j = 1 to d do

10 if the task is classification then

11 v̄, p̄ = minp
|T1(p)|

|T | Gini(|T1(p)|) + |T2(p)|
|T | Gini(T2(p));

12 if the task is regression then

13 v̄, p̄ = minp

∑

(xi ,yi)∈T1(p) (yi − m1)
2 +

∑

(xj ,yj )∈T2(p)

(

yj − m2

)2
;

14 where T1(p) = {(xi, yi)|xi[j] ≤ p}, T2(p) = {(xi, yi)|xi[j] > p};
15 if v̄ < v̂ then

16 v̂ = v̄, node.dim = j, node.p = p̄;

17 node.left = Constructing Tree(T1(node.p));

18 node.right = Constructing Tree(T2(node.p));

19 return node;



Introduction of machine learning 7

Algorithm 1.3: CART predicting

Input: test sample x0, root node node

Output: prediction y0

1 if node.left = NULL and node.right = NULL then

2 return node.y;

3 if x0[node.dim] ≤ node.p then

4 return Predicting(x0, node.left);

5 else

6 return Predicting(x0, node.right);

the root node. Second, select the optimal tree from the sequence by using the cross

validation. For more details, readers can refer to [14]. References [15–17] demonstrate

three applications of CART in wireless communications.

1.1.2.2 Random forest

As discussed in Section 1.1.2.1, a tree constructed by the CART method has a risk

of overfitting. To meet this challenge, Breiman proposed the RF model in [18]. As

its name suggests, RF consists of many trees and introduces a random step in its

constructing process to prevent overfitting.

Suppose we are given a training set T . To construct a tree Treej, RF first generates

a training subset Tj by sampling from T uniformly and with replacement (Tj has

the same size with T ). Then, a construction algorithm will be carried out on Tj.

The construction algorithm is similar to the CART method but introduces an extra

random step. Specifically, in each internal node, CART chooses the optimal feature

from all d features, but RF first randomly select l features from all d features and

then chooses the optimal feature from the l features. The above construction process

will be repeated m times and thus a forest (which contains m trees) is constructed.

For a classification task, the output is determined by taking the majority vote in m

trees. For a regression task, the output is the mean of m outputs. The whole process

is summarized in Algorithm 1.4. In wireless communications, RF has been applied

in many fields, such as indoor localization [19] and device-free fall detection [20].

1.1.2.3 Gradient boosting decision tree

GBDT [21] is a special case of the famous boosting method [22] based on a tree

structure. Specifically, the model of GBDT is represented as a sum of some CART

trees, i.e.:

fm(x) =
m
∑

j=1

Treej(x; �j), (1.7)
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Algorithm 1.4: Random forest

Input: training set T = {(xi, yi) ∈ R
d+1}n

i=1, number of trees m, number of

categories k , test sample x0

Output: prediction y0

/* training */

1 for j = 1, . . . , m do

2 Tj ← ∅;

3 for i = 1, . . . , n do

4 randomly select a train sample (x, y) from T ;

5 Tj ← Tj ∪ {(x, y)};
6 based on Tj, construct a decision tree Treej using randomized CART;

/* testing */

7 if the task is classification then

8 y0 = arg max
1≤c≤k

m
∑

j=1

I (Treej(x0) = c);

9 if the task is regression then

10 y0 = 1

m

m
∑

j=1

Treej(x0);

where Treej(x; �j) denotes the jth tree with parameter of �j. Given a training set

{(x1, y1), . . . , (xn, yn)}, the goal of GBDT is to minimize:

n
∑

i=1

L( fm(xi), yi), (1.8)

where L(·, ·) is a differentiable function which measures the difference between fm(xi)

and yi and is chosen according to the task.

However, it is often difficult to find an optimal solution to minimize (1.8). As a

trade-off, GBDT uses a greedy strategy to yield an approximate solution. First, notice

that (1.7) can be written as a recursive form:

fj(x) = fj−1(x) + Treej(x; �j) ( j = 1, . . . , m), (1.9)

where we have defined f0(x) = 0. Then, by fixing the parameters of fj−1, GBDT finds

the parameter set �j by solving:

min
�j

n
∑

i=1

L( fj−1(xi) + Treej(xi; �j), yi). (1.10)
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Replacing the loss function L(u, v) by its first-order Taylor series approximation with

respect to u at u = fj−1(xi), we have

n
∑

i=1

L( fj−1(xi) + Treej(xi; �j), yi)

≈
n

∑

i=1

[

L( fj−1(xi), yi) + ∂L( fj−1(xi), yi)

∂fj−1(xi)
Tree(xi; �j)

]

.

(1.11)

Notice that the right side is a linear function with respect to Tree(xi; �j) and its value

can decrease by letting Tree(xi; �j) = −(∂L( fj−1(xi), yi)/∂fj−1(xi)). Thus, GBDT

trains Tree(·, �j) by using a new training set
{

(xi, −(∂L( fj−1(xi), yi)/(∂fj−1(xi))))
}n

i=1
.

The above steps will be repeated for j = 1, . . . , m and thus a gradient boosting tree is

generated.

GBDT is known as one of the best methods in supervised learning and has been

widely applied in many tasks. There are many tricks in its implementation. Two

popular implementations, XGboost and LightGBM, can be found in [23] and [24],

respectively. References [25] and [26] demonstrate two applications of GBDT in

obstacle detection and quality of experience (QoE) prediction, respectively.

1.1.3 Perceptron

A perceptron is a linear model for a binary-classification task and is the foundation

of the famous support vector machine (SVM) and deep neural networks (DNNs).

Intuitively, it tries to find a hyperplane to separate the input space (feature space)

into two half-spaces such that the samples of different classes lie in the different half-

spaces. An illustration is shown in Figure 1.3(a). A hyperplane in R
d can be described

by an equation wT x + b = 0, where w ∈ R
D is the normal vector. Correspondingly,

0 0.5 1 1.5 2
0

0.5

1

1.5

2
Positive sampleHyperplane

wTx + b = 0

wTx + b < 0

wTx + b > 0

Negative sample

(a) (b)

+1

xd

x2

x1
w1

w2

wd

b

wTx + b

Figure 1.3 (a) An illustration of a perceptron and (b) the graph representation of a

perceptron
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Algorithm 1.5: Perceptron learning

Input: training set {(x1, y1), . . . , (xn, yn)}, learning rate η ∈ (0, 1]

Output: parameters of perceptron w, b

1 randomly initialize w, b;

2 flag = True;

3 while flag do

4 flag = False;

5 for i = 1, . . . , n do

6 if yi(w
T xi + b) < 0 then

7 w = w + ηyixi;

8 b = b + ηyi;

9 flag = True;

wT x + b > 0 and wT x + b < 0 represent the two half-spaces separated by the hyper-

plane wT x + b = 0. For a sample x0, if wT x0 + b is larger than 0, we say x0 is in the

positive direction of the hyperplane, and if wT x0 + b is less than 0, we say it is in the

negative direction.

In addition, by writing wT x + b = [xT , 1] · [wT , b]T =
∑d

i=1 xiwi + b, we can

view [xT , 1]T , [wT , b]T and wT x + b as the inputs, parameters and output of a per-

ceptron, respectively. Their relation can be described by a graph, where the inputs

and output are represented by nodes, and the parameters are represented by edges,

as shown in Figure 1.3(b). This graph representation is convenient for describing the

multilayer perceptron (neural networks) which will be introduced in Section 1.1.3.3.

Suppose we have a training set T = {(x1, y1), . . . , (xn, yn)}, where xi ∈ R
d and

yi ∈ {+1, −1} is the ground truth. The perceptron algorithm can be formulated as

min
w∈Rd ,b∈R

L(w, b) � −
N
∑

i=1

yi(w
T xi + b), (1.12)

where wT x + b = 0 is the classification hyperplane, and yi(w
T xi + b) > 0 implies

that the ith sample lie in the correct half-space. Generally, the stochastic gradient

descent algorithm is used to obtain a solution to (1.12) and its convergence has been

shown in [27]. The learning process is summarized in Algorithm 1.5.

1.1.3.1 Support vector machine

SVM is a binary-classification model. SVM shares a similar idea with the perceptron

model, i.e. find a hyperplane to separate two classes of training samples. In general,

there may be several hyperplanes meeting the requirement. A perceptron finds any

one of them as the classification hyperplane. In contrast, SVM will seek the one that

maximizes the classification margin, which is defined as the distance from the hyper-

plane to the nearest training sample. As shown in Figure 1.4(a), three hyperplanes

which can separate the two classes of training samples are drawn in three different
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Figure 1.4 (a) Three hyperplanes which can separate the two classes of training

samples and (b) the hyperplane which maximizes the classification

margin

styles, and each of them can serve as a solution to the perceptron. However, as shown

in Figure 1.4(b), only the hyperplane which maximizes the classification margin can

serve as the solution to SVM.

According to the definition of the classification margin, distance from any train-

ing sample to the classification hyperplane should be not less than it. Thus, given

the training set {(xi, yi)}n
i=1, the learning of SVM can be formulated as the following

optimization problem:

max
w∈Rd ,b∈R

γ

s.t. yi

(

wT xi

‖w‖ + b

‖w‖

)

≥ γ (i = 1, . . . , n)

(1.13)

where
(

(wT xi/‖w‖) + (b/‖w‖)
)

can be viewed as the signed distance from xi to the

classification hyperplane wT x + b = 0, and the sign of yi

(

(wT xi/‖w‖) + (b/‖w‖)
)

denotes whether xi lies in the right half-space. It can be shown that problem (1.13)

is equivalent to

min
w∈Rd ,b∈R

1

2
‖w‖2

s.t. yi

(

wT xi + b
)

− 1 ≥ 0 (i = 1, . . . , n).

(1.14)

Problem (1.14) is a quadratic programming problem [28] and can be efficiently solved

by several optimization tools [29,30].

Note that both the perceptron and SVM suppose that the training set can be

separated linearly. However, this supposition is not always correct. Correspondingly,

the soft-margin hyperplane and the kernel trick have been introduced to deal with
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the non-linear situation. Please refer to [31] and [32] for more details. In addi-

tion, SVM can also be used to handle regression tasks, which is also known as

support vector regression [33]. SVM has been widely applied in many fields of wire-

less communications, such as superimposed transmission mode identification [34],

selective forwarding attacks detection [35], localization [36] and MIMO channel

learning [3].

1.1.3.2 Logistic regression

First of all, we should clarify that logistic regression is a classification model and

its name is borrowed from the field of statistics. Logistic regression can be binomial

or multinomial depending on whether the classification task is binary or multi-class.

We will introduce the binomial case followed by the multinomial case.

Recall that in a perceptron, a hyperplane wT x + b = 0 is learned to discriminate

the two classes. A test sample x0 will be classified as positive or negative according

to whether wT x0 + b is larger than 0 or wT x0 + b is less than 0. Sometimes, however,

we want to know the probability of a test sample belonging to a class. In the example

shown in Figure 1.5(a), though both x1 and x2 are classified as the positive class, we

are more confident that x2 is the positive sample since x2 is farther from the decision

hyperplane than x1 (i.e. wT x2 + b is larger than wT x1 + b). The sample x3 is classified

as the negative sample since wT x3 + b is less than 0.

From the above example, we can infer that the sign of wT x + b decides the class

of x, and |wT x + b| gives the confidence level of the decision. However, the value

of wT x + b can be any one of (−∞, ∞) but we want a probability value. A nature

idea is that find a monotone increasing function g : (−∞, ∞) �→ (0, 1) such that
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Figure 1.5 (a) A decision hyperplane wT x + b = 0 and three samples: x1 (blue

square), x2 (red triangle) and x3 (purple cross). (b) The graph of

function g(t) � (exp(t)/(1 + exp(t))) and the probability of x1, x2 and x3

belong to the positive class
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g(wT x + b) represents the probability of x belonging to the positive class. Thus, by

choosing g(t) � (exp (t)/(1 + exp (t))), we get the model of logistic regression:

P{ y = 1|x} =
exp

(

wT x + b
)

1 + exp
(

wT x + b
) . (1.15)

P{ y = 1|x} denotes the probability of x belonging to the positive class, and corre-

spondingly 1 − P{ y = 1|x} is the probability of x belonging to the negative class. As

shown in Figure 1.5(b), by the above transformation, the probability of x1, x2 and x3

belonging to the positive class are around 0.6, 0.85 and 0.2, respectively.

Given a training set {(xi, yi)}n
i=1, the parameters w and b of the binomial

logistic regression model can be estimated by the maximum likelihood estimation.

Specifically, its log-likelihood is written as

L(w, b) = log

⎛

⎝

∏

yi=1

exp
(

wT xi + b
)

1 + exp
(

wT xi + b
) ·

∏

yi=−1

(

1 −
exp

(

wT x + b
)

1 + exp
(

wT x + b
)

)

⎞

⎠

=
∑

yi=1

(

wT xi + b
)

−
n

∑

i=1

log
(

1 + exp
(

wT xi + b
))

.

(1.16)

Because there is no closed-form solution to the problem of maximizing (1.16), the

gradient descent method and the quasi-Newton method are generally used to obtain

a numerical solution.

Following the binomial logistic regression, we can deduce the multinomial case.

For a k-classification task, the multinomial logistic regression model are given by

P( y = j|x) =
exp

(

wT
j x + bj

)

∑k

i=1 exp
(

wT
i x + bi

)
( j = 1, . . . , k), (1.17)

where P( y = j|x) denotes the probability of x belonging to the jth class. The parameter

set {(wi, bi)}k
j=1 can also be estimated by using the maximum likelihood estimation.

Another name of multinomial logistic regression is softmax regression, which is often

used as the last layer of a multilayer perceptron that will be introduced in the next

section. Logistic regression has been applied to predict device wireless data and

location interface configurations that can optimize energy consumption in mobile

devices [11]. References [37], [38] and [39] demonstrate three applications of logis-

tic regression to home wireless security, reliability evaluation and patient anomaly

detection in medical wireless sensor networks, respectively.

1.1.3.3 Multilayer perceptron and deep learning

A multilayer perceptron is also known as a multilayer neural network, which is also

called a DNN when the number of layers is large enough. As shown in Figure 1.6(a), a

multilayer perceptron is a perceptron with three or more layers rather than two layers

in the original perceptron. The leftmost and rightmost layers are called an input layer

and an output layer, respectively. Notice that the output layer can have more than one



14 Applications of machine learning in wireless communications

(a)

–3 –2

g
(t

)
t

–1 0 1 2 3
–1

X

x1

x2 y2

y1

z

z = g(w2y + b2)

yi = g(w1ix + b1i)

xd

yh

+1 +1

0

1

T

T

2

3

Sigmoid
Tanh
ReLU

(b)

Figure 1.6 (a) A simple neural network with three layers, where g(·) is a non-linear

activation function and (b) the curves of three commonly used

activation functions

node though we only use one for simplicity in this example. The middle layer is called

a hidden layer, because its nodes are not observed in the training process. Similar to

a Markov chain, the node values of each layer are computed only depending on the

node values of its previous layer.

Because the original perceptron is just a linear function that maps the weighted

inputs to the output of each layer, the linear algebra shows that any number of lay-

ers can be reduced to a two-layer input–output model. Thus, a non-linear activation

function g : R �→ R, which is usually monotonously increasing and differentiable

almost everywhere [40], is introduced to achieve a non-linear mapping. Here, we list

some commonly used activation functions in Table 1.1, and their curves are shown

in Figure 1.6(b). Notice that the sigmoid function is just a modification of the prob-

ability mapping (1.15) used in logistic regression. As shown in Figure 1.6(b), the

hyperbolic tangent (tanh) function shares similar curve trace with the sigmoid func-

tion except the output range being (−1,1) instead of (0, 1). Their good mathematical

properties make them popular in early research [41]. However, they encounter dif-

ficulties in DNNs. It is easy to verify that limt→∞ g′(t) = 0 and |g′(t)| is a small

value in most areas of the domain for both of them. This property restricts their use

in DNNs since training DNNs require that the gradient of the activation function is

around 1. To meet this challenge, a rectified linear unit (ReLU) activation function is

proposed. As shown in Table 1.1, the ReLU function is piece-wise linear function and

saturates at exactly 0 whenever the input t is less than 0. Though it is simple enough,

the ReLU function has achieved great success and became the default choice in

DNNs [40].

Now, we will have a brief discussion about the training process of the multi-

layer perceptron. For simplicity, let us consider the performance of a regression task
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Table 1.1 Three commonly used activation functions

Name Abbreviation Formula Range

Sigmoid Sigmoid g(t) = 1/(1 + e−t) (0, 1)
Hyperbolic tangent Tanh g(t) = ((et − e−t)/(et + e−t)) (−1, 1)
Rectified linear unit ReLU g(t) = max(0, t) [0, +∞)

by using the model shown in Figure 1.6(a). For convenience, denote the parame-

ters between the input and hidden layers as a matrix W1 =
(

ŵ11, . . . , ŵ1h, ŵ1h+1

)

∈
R

(d+1)×(h+1), where ŵ1i =
(

wT
1i, b1i

)T ∈ R
d+1 and ŵ1h+1 = (0, 0, . . . , 1)T . Similarly,

the parameters between the hidden and output layers are denoted as a vector w2 =
(w21, . . . , w2h, w2h+1)

T ∈ R
h+1, where w2h+1 = b2. Let x = (x1, . . . , xd , 1)T ∈ R

d+1,

y = (y1, . . . , yh, 1)T ∈ R
h+1 and z denote the input vector, the hidden vector, and the

output scalar, respectively. Then the relations among x = (x1, . . . , xd , 1)T ∈ R
d+1,

y = (y1, . . . , yh, 1)T ∈ R
h+1 and z can be presented as

y = g(WT
1 x),

z = g(wT
2 y),

(1.18)

where the activation function g will act on each element for a vector as input. Suppose

we expect that the model outputs z̄ for the input x, and thus the square error is given

by e = (1/2)(z − z̄)2. We decrease this error by using the gradient descent method.

This means that ∂e/∂W1 and ∂e/∂w2 need to be computed. By the gradient chain

rule, we have

∂e

∂z
= (z − z̄),

∂e

∂w2

= ∂e

∂z

∂z

∂w2

= (z − z̄)g′(wT
2 y + b2)y,

(1.19)

and

∂e

∂W1

= ∂e

∂z

∂z

∂y

∂y

∂W1

, (1.20)

where we have omitted the dimensions for simplicity. Thus, to compute ∂e/∂W1,

we first need to compute:

∂z

∂y
= g′(wT

2 y)w2,

∂y

∂W1

=
{

∂yi

∂W1

}h+1

i=1

=
{

g′(wT
1ix) · xeT

i

}h+1

i=1
,

(1.21)



16 Applications of machine learning in wireless communications

where ei ∈ R
h+1 denotes the unit vector with its ith element being 1. By plugging

(1.21) into (1.20), we have

∂e

∂W1

= ∂e

∂z

∂z

∂y

∂y

∂W1

= (z − z̄)g′(wT
2 y + b2)w2 ⊙

{

g′(wT
1ix) · xeT

i

}h+1

i=1

= (z − z̄)g′(wT
2 y + b2)

h+1
∑

i=1

w2ig
′(wT

1ix) · xeT
i

(1.22)

Thus, we can update the parameters by using the gradient descent method to

reduce the error. In the above deduction, what we really need to calculate are just

∂e/∂z, ∂z/∂w2, ∂z/∂y and ∂y/∂W1. As shown in Figure 1.7(a), we find these terms

are nothing but the derivatives of the node values or the parameters of each layer with

respect to the node values of the next layer. Beginning from the output layer, ‘multiply’

them layer by layer according to the chain rule, and then we obtain the derivatives of

the square error with respect to the parameters of each layer. The above strategy is the

so-called backpropagation (BP) algorithm [42]. Equipped with the ReLU activation

function, the BP algorithm can train the neural networks with dozens or even hundreds

of layers, which constitutes the foundation of deep learning.

In the model shown in Figure 1.6(a), we can observe that every node of the input

layer is connected to every node of the hidden layer. This connection structure is

called fully connection, and the layer which is fully connected (FC) to the previous

layer is called the FC layer [42]. Supposing that the number of nodes of two layers

are m and n, then the number of parameters of fully connection will be m × n, which

will be a large number even when m and n are moderate. Excessive parameters will

slow down the training process and increase the risk of overfitting, which is especially

serious in DNNs. Parameter sharing is an effective technology to meet this challenge.

A representative example using the parameter sharing technology is convolution neu-

ral networks (CNNs), which are a specialized kind of neural networks for processing

a
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x1
y1

y2

yh

zw2W1

x2

xd

+1

(a) (b)
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f

Figure 1.7 (a) The derivatives of each layer with respect to its previous layer and

(b) an example of the convolution operation performed on vectors
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data that has a known grid-like topology [43], such as time-series data and matrix data.

The name of CNNs comes from its basic operation called convolution (which has a

little difference from the convolution in mathematics). Though convolution operation

can be performed on vectors, matrices and even tensors with arbitrary order, we will

introduce the vector case here for simplicity.

To perform the convolution operation on a vector x ∈ R
d , we first need a kernel,

which is also a vector k ∈ R
l with l ≤ d. Let x[i : j] denotes the vector generated by

extracting the elements from the ith position to the jth position of x, i.e. x[i : j] �
(

xi, xi+1, . . . , xj

)T
. Then the convolution of x and k is defined as

x ⊛ k �

⎛

⎜

⎜

⎜

⎝

〈x[1 : l], k〉
〈x[2 : l + 1], k〉

...

〈x[d − l + 1 : d], k〉

⎞

⎟

⎟

⎟

⎠

= ŷ ∈ R
d−l+1, (1.23)

where 〈·, ·〉 denotes the inner product of two vectors. See Figure 1.7(b) for an example

of convolution. The convolution operation for matrices and tensors can be defined

similarly by using a matrix kernel and a tensor kernel, respectively. Based on the

convolution operation, a new transformation structure, as distinct from the fully

connection, can be built as

y = g (x ⊛ k), (1.24)

where k is the parameter that needs to be trained. The layer with this kind of trans-

formation structure is called the convolution layer. Compared with the FC layer, the

number of parameters has dramatically decreased for the convolution layer. Further-

more, the size of the kernel is independent to the number of nodes of the previous

layer.

It should be noted that we can set several kernels in a convolution layer to generate

richer features. For example, if we choose the convolution layer with M kernels as the

hidden layer in example shown in Figure 1.6(a), then m features will be generated as

g (x ⊛ (k1, . . . , km)) = (g (x ⊛ k1) , . . . , g (x ⊛ km)) = (y1, . . . , ym) . (1.25)

Similarly, we can continue to transform (y1, . . . , ym) by using more convolution layers.

In addition to the convolution operation, another operation widely used in CNNs

is the max-pooling operation. As a kernel is needed in the convolution operation,

the max-pooling operation needs a window to determine the scope of the operation.

Specifically, given a vector x ∈ R
d and a window of size l with d being divisible by

l, the max-pooling operation to x with the window is defined as

max-pooling(x, l) �

⎛

⎜

⎜

⎜

⎝

max {x[1 : l]}
max {x[l + 1 : 2l]}

...

max {x[d − l + 1 : d]}

⎞

⎟

⎟

⎟

⎠

= ŷ ∈ R
d
l . (1.26)
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See Figure 1.8(a) for an example of max-pooling. The max-pooling operation for

matrices and tensors can be defined similarly by using windows with different dimen-

sions. Other layers such as normalization layers and average-pooling layers [44], we

do not detail here to stay focused.

Generally, a neural network may be constructed by using several kinds of layers.

For example, in a classical architecture, the first few layers are usually composed

alternate of the convolution layer and the max-pooling layer, and the FC layer is often

used as the last few layers. A simple example of architecture for classification with a

convolution network is shown in Figure 1.8(b).

The recent 10 years have witnessed earthshaking development of deep learning.

The state-of-the-art of many applications has been dramatically improved due to its

development. In particular, CNNs have brought about breakthroughs in processing

multidimensional data such as image and video. In addition, recurrent neural net-

works [42] have shone light on sequential data such as text and speech; generative

anniversary networks [45] are known as a class of models which can learn a mimic

distribution from the true data distribution to generate high-quality artificial samples,

such as images and speeches; deep RL (DRL) [46] is a kind of tool to solve control and

decision-making problems with high-dimensional inputs, such as board game, robot

navigation and smart transportation. Reference [42] is an excellent introduction to

deep learning. More details about the theory and the implementation of deep learning

can be found in [43]. For a historical survey of deep learning, readers can refer to [47].

Many open-source deep-learning frameworks, such as TensorFlow and Caffe, make

neural networks easy to implement. Readers can find abundant user-friendly tutorials

from the Internet. Deep learning has been widely applied in many fields of wireless

communications, such as network prediction [48,49], traffic classification [50,51],

modulation recognition [52,53], localization [54,55] and anomaly detection [56–58].

Readers can refer to [59] for a comprehensive survey of deep learning in mobile and

wireless networks.

max(a,b)

max(c,d)

max(e, f )

Max-pooling (
c

d

a

b

e

f

, ) =

(a) (b)

Fully connected layer (output)

Fully connected layer

Max-pooling layer

Convolution layer Data flow

Convolution layer

Input

Max-pooling layer

Figure 1.8 (a) An example of max-pooling to x ∈ R
6 with a window of size 2 and

(b) an simple example of architecture for classification with

convolutional network
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1.1.4 Summary of supervised learning

In this section, we have discussed supervised learning. The main task of supervised

learning is to learn a function that maps an input to an output based on a training

set, which consists of examples of input–output pairs. According to whether the

predicted variable is categorical or continuous, a supervised learning task is called a

classification or regression task.

As shown in Figure 1.9, three popular technologies and their improvements have

been introduced in this section.Among them, the k-NNs method has the simplest form.

The k-NN method does not need explicit training steps and is very easy to implement.

In most cases, it can give a not-bad result. However, if your target is high accuracy, then

the latter two technologies will be better choices. Decision tree is a kind of supervised

learning algorithms based on tree structures. CART is known as an effective method

to construct a single tree. To acquire a better performance, RF constructs many trees

by using a randomized CART, and then a final prediction will be given by integrating

predictions of all trees. GBDT is a boosting method based on CART, and it is known as

one of the best methods in supervised learning. A perceptron is a linear classification

model as a foundation of SVM, logistic regression and multilayer perceptron. SVM

improves the performance of the perceptron by maximizing the classification margin.

Logistic regression is more robust to outliers than SVM and can give the probability of

a sample belongs to a category. Multilayer perceptron is a perceptron with multilayers,

which is also known as deep learning when the number of layers is large enough. Deep

learning, as a heavy tool in machine learning, can have millions of parameters and

Supervised

learning 

k-Nearest neighbour

method 

Decision tree

Perceptron

Support vector

machine 

Logistic regression

Multilayer

perceptron and deep

learning  

Classification and

regression tree 

Random forest

Gradient boosting

decision tree 

Figure 1.9 Structure chart for supervised learning technologies discussed in this

chapter
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Table 1.2 Summary of applications of supervised learning in wireless

communications

Method Function Application in
wireless communications

k-Nearest Classification/Regression Fall detection [10]
neighbours method Energy enhancements [11]

Classification and Classification/Regression Improving congestion control [15]
regression tree Monitoring animal behaviour [16]

Intrusion detection [17]
Gradient boosting Classification/Regression Indoor localization [19]

decision tree Fall detection [20]
Random forest Classification/Regression Obstacle detection [25]

QoE prediction [26]
Support vector Classification/Regression Transmission mode identification [34]

machine Attack detection [35]
Localization [36]
MIMO channel learning [3]

Logistic regression Classification Home wireless security [37]
Reliability evaluation [36]
Patient anomaly detection [39]
Energy enhancements [11]

Multilayer perceptron Classification/Regression Network prediction [48,49]
and deep learning Traffic classification [50,51]

Modulation recognition [52,53]
Localization [54,55]
Anomaly detection [56–58]

cost huge amount of computing resources for training. As a reward, it is state-of-the-

art method for most machine-learning tasks. Furthermore, many technologies from

hardware to software have been applied to accelerate its training stage. In Table 1.2,

we summarize the applications of supervised learning in wireless communications.

Zhang et al. [59] conduct a comprehensive survey regarding deep learning in wireless

communications. Readers can refer to [8] for more advanced approaches of supervised

learning.

1.2 Unsupervised learning

Unsupervised learning is a process of discovering and exploring for investigating

inherent and hidden structures from data without labels [60]. Unlike supervised learn-

ing where a training set {(xi, yi)}n
i=1 is provided, we have to work with an unlabelled

data set {xi}n
i=1 (there is no yi) in unsupervised learning. Three common unsupervised

learning tasks are clustering, density estimation and dimension reduction. The goal

of clustering is to divide samples into groups (called clusters) such that the samples

in the same cluster are more similar to each other than to those in different clusters.
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Rather than defining classes before observing the test data, clustering allows us to

find and analyse the undiscovered groups hidden in data. From Sections 1.2.1–1.2.4,

we will discuss four representative clustering algorithms. Density estimation aims to

estimate the distribution density of data in the feature space, and thus we can find the

high-density regions which usually reveal some important characteristics of the data.

In Section 1.2.5, we will introduce a popular density-estimation method: the Gaus-

sian mixture model (GMM). Dimension reduction pursues to transform the data in a

high-dimensional space to a low-dimensional space, and the low-dimensional repre-

sentation should reserve principal structures of the data. In Sections 1.2.6 and 1.2.7,

we will discuss two practical dimension-reduction technologies: principal component

analysis (PCA) and autoencoder.

1.2.1 k-Means

k-Means [61] is one of the simplest unsupervised learning algorithms which solve

a clustering problem. This method only needs one input parameter k , which is the

number of clusters we expect to output. The main idea of k-means is to find k optimal

points (in the feature space) as the representatives of k clusters according to an evalu-

ation function, and each point in the data set will be assigned to a cluster based on the

distance between the point to each representative. Given a data set X =
{

xi ∈ R
d
}n

i=1
,

let Xi and ri denote the ith cluster and the corresponding representative, respectively.

Then, k-means aims to find the solution of the following problem:

min
ri , Xi

k
∑

i=1

∑

x∈Xi

‖x − ri‖2

s.t.

k
⋃

i=1

Xi = X

Xi

⋂

Xj = ∅ (i �= j).

(1.27)

Notice that
∑

x∈Xi
‖x − ri‖2 measures how dissimilar the points in ith cluster to the

corresponding representative, and thus the object is to minimize the sum of these

dissimilarities.

However, the above problem has been shown to be an NP-hard problem [62],

which means the global optimal solution cannot be found efficiently in general cases.

As an alternative, k-means provides an iterative process to obtain an approximate

solution. Initially, it randomly selects k points as initial representative. Then it alter-

nately conducts two steps as follows. First, partitions the all points into k clusters in

which each point is assigned to the cluster with the nearest representative. Second,

take the mean points of each cluster as the k new representatives, which reveals the

origin of the name of k-means. The above steps will be repeated until the clusters

remain stable. The whole process is summarized in Algorithm 1.6.

Let us checkout the correctness of k-means step by step. In the first step, when

fixing k representatives, each point is assigned to the nearest representative and thus

the object value of (1.27) will decrease or remain unchanged. In the second step,
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Algorithm 1.6: K-means algorithm

Input: dataset
{

xi ∈ R
d
}n

i=1
, number of clusters k

Output: clusters X1, . . . , Xk

1 randomly select k points r1, . . . , rk as representatives;

2 repeat

/* the first step */

3 for i = 1 to k do

4 Xi ← ∅;

5 for j = 1 to n do

6 î = arg min
1≤i≤k

‖xj − ri‖2;

7 Xî ← Xî ∪ {xj};
/* the second step */

8 for i = 1 to k do

9 ri ←
∑

x∈Xi

x

|Xi | ;

10 until X1, . . . , Xk do not change;

by fixing the k clusters, we can find the optimal solutions to the sub-problems of

(1.27), i.e.:

arg min
r∈Rd

∑

x∈Xi

‖x − r‖2 =
∑

x∈Xi
x

|Xi|
(i = 1, . . . , k). (1.28)

Thus, the value of object function will also decrease or remain unchanged in the

second step. In summary, the two steps in k-means will decrease the object value or

reach convergence.

Because k-means is easy to implement and has short running time for low-

dimensional data, it has been widely used in various topics and as a preprocessing

step for other algorithms [63–66]. However, three major shortcomings are known for

the original k-means algorithm. The first one is that choosing an appropriate k is a non-

trivial problem. Accordingly, X -means [67] and G-means [68] have been proposed

based on the Bayesian information criterion [69] and Gaussian distribution. They can

estimate k automatically by using model-selection criteria from statistics. The second

one is that an inappropriate choice for the k initial representatives may lead to poor

performance. As a solution, the k-means++ algorithm [70] augmented k-means with

a simple randomized seeding technique and is guaranteed to find a solution that is

O(log k) competitive to the optimal k-means solution. The third one is that k-means

fails to discover clusters with complex shapes [71]. Accordingly, kernel k-means [72]

was proposed to detect arbitrary-shaped clusters, with an appropriate choice of the

kernel function. References [73], [74] and [75] present three applications of k-means
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in collaborative signal processing, wireless surveillance systems and wireless hybrid

networks, respectively.

1.2.2 Density-based spatial clustering of applications with noise

k-Means is designed to discover spherical-shaped clusters. Though kernel k-means

can find arbitrary-shaped clusters with an appropriate kernel function, there is no

general guidelines for how to choose an appropriate kernel function. In contrast,

density-based clustering algorithms are known for the advantage of discovering

clusters with arbitrary shapes. In this section, we will introduce the most famous

density-based clustering algorithm named DBSCAN (density-based spatial clustering

of applications with noise).

DBSCAN [76] was proposed as the first density-based clustering algorithm in

1996. The main idea of DBSCAN can be summarized as three steps. First, DBSCAN

estimates the density of each point x by counting the number of points which belong

to the neighbourhood of x. Second, it finds core points as points with high density.

Third, it connects core points that are very close and their neighbourhood to form

dense regions as clusters. Next, we will detail the three steps.

To define density, DBSCAN introduces the concept of ε-neighbourhood, where

ε is a user-specified parameter. Given a data set X = {xi}n
i=1, the ε-neighbourhood of

a point x denoted by Nε(x) is defined as

Nε(x) = {xi|xi ∈ X , dist(x, xi) ≤ ε} , (1.29)

where dist(·, ·) can choose any distance function according to the application. Then,

the density of x, denoted by ρ(x), is defined as the number of points belonging to the

neighbourhood of x, i.e.:

ρ(x) = |Nε(x)|. (1.30)

After the density being defined, DBSCAN introduces another user-specified

parameter MinPts to find core points. Specifically, if the density of a point x is not

less than MinPts, then x is called a core point. Furthermore, the set consisting of all

core points is denoted by O � {x ∈ X |ρ(x) ≥ MinPts}.
To form clusters, DBSCAN defines the connected relation between core points.

For two core points x and y, we say they are connected if there exists a core-point

sequence 〈x ≡ z1, . . . , zt ≡ y〉 such that zi+1 ∈ Nε(zi) for 1 ≤ i < t and {zi}t
i=1 ⊂ O.

An illustration is shown in Figure 1.10(a). Notice that the connected relation can be

verified as an equivalence relation on the set O. Thus, DBSCAN uses this equiv-

alence relation to divide core points into equivalence classes. Suppose that core

points are divided into k equivalence classes O1, . . . , Ok , where
⋃k

i=1 Oi = O and

Oi

⋂

Oj = ∅ for i �= j. These equivalence classes constitute the skeleton of clusters.

Then, DBSCAN forms the clusters C1, . . . , Ck by letting:

Ci = Nε(Oi) �
⋃

x∈Oi

Nε(x) (i = 1, . . . , k). (1.31)
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Figure 1.10 (a) An illustration for the connected relation, where the two core

points x and y are connected and (b) an illustration for clusters and

outliers. There are two clusters and seven outliers denoted by

four-pointed stars

Notice that there may exist some points which do not belong to any clusters, that is,

X \
(

⋃k

i=1 Ci

)

�= ∅. DBSCAN assigns these points as outliers because they are far

from any normal points. An illustration is shown in Figure 1.10(b).

To this end, we have presented the three main steps of DBSCAN. Algorithm 1.7

summarizes the details of DBSCAN. Let the number of points be n = |X |. Finding

the ε-neighbourhood for points is the most time-consuming step with computational

complexity of O(n2). The other steps can be implemented within nearly linear com-

putational complexity. Thus, the computation complexity of DBSCAN is O(n2). The

neighbour searching step of DBSCAN can be accelerated by using spatial index tech-

nology [60] and groups method [77]. DBSCAN can find arbitrary-shaped clusters

and is robust to outliers. However, the clustering quality of DBSCAN highly depends

on the parameter ε and it is non-trivial to find an appropriate value for ε. Accordingly,

the OPTICS algorithm [78] provides a visual tool to help users find the hierarchical

cluster structure and determine the parameters. Some applications of DBSCAN in

wireless sensor networks can be found in [79–83].

1.2.3 Clustering by fast search and find of density peaks

In 2014, Rodriguez and Laio proposed a novel-density-based clustering method,

named Fast search-and-find of Density Peaks (FDP) [84]. FDP has received extensive

attention due to its brilliant idea and the capacity to detect clusters with complex point

distribution. As a density-based clustering algorithm, FDP shares similar steps with
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Algorithm 1.7: DBSCAN

Input: dataset X = {xi}n
i=1, ε, MinPts

Output: clusters C1, . . . , Ck , outliers set A

1 for i = 1 to n do

2 find Nε(xi);

3 ρ(xi) = |Nε(xi)|;
4 define O � {x ∈ X |ρ(x) ≥ MinPts};
5 k = 0;

6 repeat

7 k = k + 1;

8 randomly select a core point o from O;

9 use the depth-first-search algorithm to find the set

Ok � {x ∈ O|x is connected to o};
10 define Ck � Nε(Ok );

11 O = O\Ok ;

12 until O = ∅;

13 define A � X \
(

⋃k

i=1 Ci

)

;

DBSCAN, that is, estimating density, finding core points and forming clusters. How-

ever, there are two differences between them. First, FDP detects core points based on

a novel criterion, named delta-distance, other than the density. Second, FDP forms

cluster by using a novel concept, named higher density nearest neighbour (HDN),

rather than the neighbourhood in DBSCAN. Next, we will introduce the two novel

concepts followed by the details of FDP.

To begin with, FDP shares the same density definition with DBSCAN.

Specifically, given a data set X = {xi}n
i=1, the density of a point x is computed as

ρ(x) = |Nε(x)|, (1.32)

where Nε(x) denotes the ε-neighbourhood of x (see (1.29)). After computing the

density, FDP defines the HDN of a point x, denoted by π (x), as the nearest point

whose density is higher than x, i.e.:

π (x) � arg min
y∈X ,ρ(y)>ρ(x)

dist(y, x). (1.33)

Specially, for the point with the highest density, its HDN is defined as the farthest

point in X . Then, FDP defines the delta-distance of a point x as

δ(x) = dist(x, π (x)). (1.34)

Note that the delta-distance is small for most points and only much larger for a point

being either a local maxima in the density or an outlier because the HDN of a outlier

may be far from it. In FDP, a local maxima in the density is called a core point.
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Figure 1.11 (a) A simple data set distributed in a two-dimensional space. There

are two clusters and three outliers (denoted by green ‘x’). The core

point of each cluster is denoted by a pentagram. (b) The decision

graph corresponding to the example shown in (a), which is the plot

of δ as a function of ρ for all points

This observation is illustrated by a simple example shown in Figure 1.11.

Figure 1.11(a) shows a data set distributed in a two-dimensional space. We can find

that there are two clusters, and the core point of each cluster is denoted by a penta-

gram. In addition, three outliers are shown by green ‘×’. Figure 1.11(b) shows the

plot of δ as a function of ρ for all points. This representation is called a decision graph

in FDP. As shown in the decision graph, though the density of the ordinary points

(the blue dots) fluctuates from around 20 to 120, the low δ values situate them in the

bottom of the graph. The outliers have higher δ values than the ordinary points, but

they locate in the left of the graph due to their low densities. In contrast, the two core

points, which have higher densities and much larger δ values, locate in the top-right

area of the ρ–δ plane.

Thus, by using the decision graph, core points and outliers can be found visually.

FDP recognizes the cluster number as the number of core points. After that, each

remaining point is assigned to the same cluster as its HDN. An illustration is shown in

Figure 1.12. There are three core points and thus three clusters, and different clusters

are distinguished by different colours.

To this end, we have presented the main steps of FDP. The detail of FDP is

summarized in Algorithm 1.8. The clustering quality of FDP is largely dependent

on the parameter ε, and it is non-trivial to choose an appropriate ε. To reduce this

dependence, one can use the kernel density [85] instead of (1.32). Compared with

DBSCAN, FDP is more robust to the clusters with various densities, and they have the

same time complexity of O(n2). In addition, FDP provides a brilliant idea, the HDN.

Many algorithms have been proposed inspired by this idea, such as [86–90]. Refer-

ences [91] and [92] present two applications of FDP to optimal energy replenishment

and balancing the energy consumption in wireless sensor networks, respectively.
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Figure 1.12 An illustration for assigning remaining points. The number in each

point denotes its density. The HDN of each point is specified by an

arrow. The three core points are denoted by pentagrams

Algorithm 1.8: FDP

Input: dataset X = {xi}n
i=1, ε

Output: clusters C1, . . . , Ck , outliers set A

1 for i = 1 to n do

2 find Nε(xi);

3 ρ(xi) = |Nε(xi)|;
4 for i = 1 to n do

5 find π (xi) = arg miny∈X ,ρ(y)>ρ(x) dist(y, x);

6 δ(xi) = dist(xi, π (xi));

7 draw the decision graph, that is, the plot of δ as a function of ρ for all points;

8 Find core point O set and outlier set A by using the decision graph visually;

9 Suppose O = {o1, . . . , ok};
10 Create clusters C1 = {o1}, . . . , Ck = {ok};
11 for x ∈ X \(O ∪ A) do

12 assign x to a cluster according to π (x);

1.2.4 Relative core merge clustering algorithm

In real applications, clusters within a data set often have various shapes, densities

and scales. To detect clusters with various distributions, Geng et al. proposed a

RElative COre MErge (RECOME) clustering algorithm [90]. The core of RECOME is

a novel density measure, i.e. relative k-NN kernel density (NKD) (RNKD). RECOME

recognizes core samples with unit RNKD and divides noncore samples into atom

clusters by using the HDN relation as mentioned in Section 1.2.3. Core samples and
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their corresponding atom clusters are then merged through α-reachable paths on a

k-NNs graph. Next, we will introduce RNKD followed by the details of RECOME.

The RNKD is based on an NKD. For a sample x in a data set X = {xi}n
i=1, the

NKD of x is defined as

ρ(x) =
∑

z∈Nk (x)

exp

{

−dist(x, z)

σ

}

, (1.35)

where Nk (x) denotes the k-NNs set of x in X , and σ is a constant which can be

estimated from the data set. NKD enjoys some good properties and allows easy

discrimination of outliers. However, it fails to reveal clusters with various densities.

To overcome this shortcoming, RNKD is proposed with the definition of:

ρ∗(x) = ρ(x)

max
z∈Nk (x)∪{x}

{ρ(z)} . (1.36)

Intuitively, RNKD is a ratio of densities of two neighbouring samples, and thus it

is robust to the change of density since the densities of two neighbouring samples

are always at the same level. Figure 1.13 shows a comparison between NKD and

RNKD for a simple data set. We can observe that RNKD successfully detects three

dense clusters and five sparse clusters which NKD fails to reveal. For more detailed

discussions about RNKD, readers can refer to [90].

From the definition of RNKD, we know that a sample with unite RNKD has a

local maximal density. Thus, the samples with unite RNKD are good candidates for

cluster centres and are called core samples in RECOME. In particular, the set of core

samples is denoted by O � {x|x ∈ X , ρ∗(x) = 1}.
Inspired by the idea from FDP, RECOME defines a directed graph G = (X , A)

with the arc set A = {〈x, π (x)〉|x ∈ X \O}, where π (x) was defined in (1.33). It can be

shown that, starting from any noncore sample and following the arcs, a core sample

will be reached eventually. In fact, G consists of many trees with disjoint samples,

(a) (b)

Figure 1.13 (a) The heat map of NKD for a two-dimensional data set. (b) The heat

map of RNKD for a two-dimensional data set. Figures are quoted

from [90]
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and each tree is rooted at a core sample (similar to the relation shown in Figure 1.12).

Furthermore, a core sample and its descendants in the tree are called an atom cluster

in RECOME. Atom clusters form the basis of final clusters; however, a true cluster

may consist of several atom clusters. This happens when many local maximal exist

in one true cluster. Thus, a merging step is introduced to combine atom clusters into

true clusters.

RECOME treats each core sample as the representative of the atom cluster that it

belongs to and merges atom clusters by merging core samples. To do that, it defines

another graph with undirected edges, k-NN graph, as

Gk = (X , E), E = {〈x, z〉|x ∈ Nk (z) ∧ z ∈ Nk (x)}. (1.37)

Furthermore, on the k-NN graph, two samples x and z are called α-connected if there

exists a path 〈x, w1, . . . , ws, z〉 in Gk such that ρ∗(wi) > α for i = 1, . . . , s, where

α is a user-specified parameter. It can be verified that the α-connected relation is

an equivalence relation on the core sample set. RECOME divides core samples into

equivalence classes by using this relation. Correspondingly, atom clusters associated

with core samples in the same equivalent class are merged into a final cluster. For

clarity, we summarize the details of RECOME in Algorithm 1.9.

In RECOME, there are two user-specified parameters k and α. As discussed

in [90], the clustering quality of RECOME is not sensitive to k , and it is recom-

mended to tune k in the range [
√

n/2,
√

n]. On the other hand, the clustering result

of RECOME largely depends on parameter α. In particular, as α increases, cluster

granularity (i.e. the volume of clusters) decreases and cluster purity increases. In [90],

authors also provide an auxiliary algorithm to help users to tune α fast. RECOME

has been shown to be effective on detecting clusters with different shapes, densities

and scales. Furthermore, it has nearly linear computational complexity if the k-NNs

of each sample are computed in advance. In addition, readers can refer to [93] for an

application to channel modelling in wireless communications.

1.2.5 Gaussian mixture models and EM algorithm

In this section, we will introduce GMM, which is used for density estimation. In

machine learning, the goal of density estimation is to estimate an unobservable

underlying probability density function, based on a finite observed data set. Once

a probability density function is obtained, we can learn a lot of valuable information

based on it. GMM has been widely used for density estimation due to its simple form

but strong capacity in data representation. Next, we will introduce the formulation of

GMM followed by the estimation for parameters of GMM.

As the name suggests, the distribution of GMM can be written as a weighted

linear combination of several Gaussian distributions. Specifically, the probability

density of a vector x ∈ R
d is given by

f (x) =
k
∑

i=1

φiN (x|μi, �i), (1.38)
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Algorithm 1.9: RECOME clustering

Input: dataset X = {xi}n
i=1, parameters k , α

Output: clusters C1, . . . , Ct

1 for i = 1 to n do

2 find Nk (xi);

3 ρ(xi) =
∑

z∈Nk (xi)

exp
{

− dist(xi ,z)

σ

}

;

4 for i = 1 to n do

5 ρ∗(xi) = ρ(xi)

max
z∈Nk (xi )∪{xi}

{ρ(z)} ;

6 find O � {x|x ∈ X , ρ∗(x) = 1};
7 for x ∈ X \O do

8 find π (x) � arg min
y∈X ,ρ(y)>ρ(x)

dist(y, x);

9 construct directed graph G = (X , A), where A = {〈x, π (x)〉|x ∈ X \O};
10 for o ∈ O do

11 find atom cluster Co = {o} ∪ {x|x is connected to o in G};
12 construct k-NN graph Gk = (X , E), where E = {〈x, z〉|x ∈ Nk (z) ∧ z ∈ Nk (x)};
13 t = 0;

14 repeat

15 t = t + 1;

16 randomly select a core sample o from O;

17 use the depth-first-search algorithm to find set

Ot � {x ∈ O|x is α-connected to o in Gk};
18 define Ct =

⋃

x∈Ot
Cx;

19 O = O\Ot ;

20 until O = ∅;

where φ1, . . . , φk are non-negative with
∑k

i=1 φi = 1, and

N (x|μi, �i) = 1

(2π)d/2

1

|
i|1/2
exp

{

−1

2
(x − μi)

T �−1
i (x − μi)

}

(1.39)

is the Gaussian distribution with mean vector μi and covariance matrix �i. Parameter

k controls the capacity and the complexity of GMM. Considering a two-dimensional

data set shown in Figure 1.14(a), Figure 1.14(b) shows the fitted distribution by using

GMM with k = 5, where we observe that only a fuzzy outline is reserved and most

details are lost. In contrast, Figure 1.14(c) shows the case for k = 20, where we

find the fitted distribution reflects the main characteristic of the data set. In fact, by

increasing k , GMM can approximate any continuous distribution to some desired

degree of accuracy. However, it does not mean that the larger k is better, because a

large k may lead to overfitting and a huge time cost for the parameter estimation.

In most cases, k is inferred experientially from the data.
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Figure 1.14 (a) A two-dimensional data set, (b) the fitted distribution by using

GMM with k = 5 and (c) the fitted distribution by using GMM with

k = 20

Now, we discuss the parameter estimation for GMM. Given a data set {xj}n
j=1, the

log-likelihood of GMM is given by

L =
n

∑

j=1

ln f (xj) =
n

∑

j=1

ln

(

k
∑

i=1

φiN (xj|μi, �i)

)

. (1.40)

Thus, the maximum likelihood estimation is to solve:

max
{φi},{μi},{�i}

L

s.t. �i ≻ 0 (i = 1, . . . , k),

φi ≥ 0 (i = 1, . . . , k),

k
∑

i=1

φi = 1.

(1.41)
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where �i ≻ 0 means that �i should be a positive semi-definite matrix. Unfortunately,

there is no effective ways to find the global optimal solution to (1.41). Next, we

will introduce the expectation–maximization (EM) algorithm to find an approximate

solution to (1.41).

1.2.5.1 The EM algorithm

The EM algorithm is an iterative method to solve the problem of maximum likelihood

estimation for the model which depends on unobserved latent variables. To explain

the meaning of latent variables, let us consider the aforementioned GMM. Samples

obeying the distribution of GMM can be generated by the following two steps:

1. Randomly select one from the k Gaussian models with the probability that

P{the ith model being chosen} = φi (i = 1, . . . , k).

2. Supposing that the zth model is selected in the first step, then generate a sample

x by using the zth Gaussian model.

By the above steps, we know that the joint probability distribution of (z, x) is given

by p(z, x) = φzN (x|μz, �z). However, in the parameter-estimation of GMM, what we

are given is only the value of x, and the value of z is unobservable to us. Here, z is

called a latent variable.

Now, let us consider the maximum likelihood estimation of a model with latent

variables. Supposing that an observable sample set X = {xj}n
j=1 is given and the cor-

responding latent sample set Z = {zj}n
j=1 is unobservable to us, the goal is to estimate

the parameter set θ of a probability distribution p(x|θ ). Notice that we regard Z as a

random variable since it is unknown to us. By denoting p(X |θ ) =
∏n

j=1 p(xj|θ ), the

problem of maximum likelihood estimation can be written as

max
θ

ln p(X |θ ) ≡ ln
∑

Z

p(X , Z |θ ). (1.42)

However, solving (1.42) is usually a difficult problem since the unknown Z . As

an alternative, the EM algorithm can generate an approximate solution by using an

iterative process. Initially, it initializes the parameter set θ to some random values θ̄ .

Then, the following two steps will be alternately executed until convergence.

1. E-step: Compute the expectation of ln p(X , Z |θ ) with respect to Z with the

distribution p(Z |X , θ̄ ), that is,

EZ |X ,θ̄ ln p(X , Z |θ ) =
∑

Z

p(Z |X , θ̄ ) ln p(X , Z |θ ). (1.43)

2. M-step: Update the parameter θ̄ by the solution of maximizing (1.43), that is,

θ̄ = arg max
θ

∑

Z

p(Z |X , θ̄ ) ln p(X , Z |θ ). (1.44)

Finally, the resulting θ̄ will be the estimated parameter set. Here, we do not discuss

the correctness of the EM algorithm to stay focused. Readers can refer to [94] for

more details.
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1.2.5.2 The EM algorithm for GMM

We are ready to apply the EM algorithm to solve the parameter-estimation problem for

GMM. As mentioned in Section 1.2.5.1, let zj be a latent variable which denotes the

index of the Gaussian model that generates xj. To begin with, initialize the parameters

φi, μi, �i to some random values φ̄i, μ̄i, �̄i for i = 1, . . . , k .

In the E-step, we first need to compute:

p(zj = l|xj, θ̄ ) = φ̄lN (xj|μ̄l , �̄l)
∑k

i=1 φ̄iN (xj|μ̄i, �̄i)
. (1.45)

Since p(zj = l|xj, θ̄ ) is a constant in an iteration, we denote it as γjl for simplicity.

Then, compute the exception:

EZ |X ,θ̄ ln p(X , Z |θ ) =
∑

Z

p(Z |X , θ̄ ) ln p(X , Z |θ )

=
n

∑

j=1

∑

zj

p(zj|xj, θ̄ ) ln p(xj, zj|θ )

=
n

∑

j=1

k
∑

l=1

p(zj = l|xj, θ̄ ) ln (φlN (xj|μl , �l))

=
n

∑

j=1

k
∑

l=1

γjl ln (φlN (xj|μl , �l)).

(1.46)

In the M-step, we need to solve:

max
{φl },{μl },{�l }

n
∑

j=1

k
∑

l=1

γjl

(

ln φl − 1

2
ln |�l| − 1

2
(xj − μl)

T �−1
l (xj − μl)

)

s.t. �l ≻ 0 (l = 1, . . . , k),

φl ≥ 0 (l = 1, . . . , k),

k
∑

l=1

φl = 1,

(1.47)

where we have omitted unrelated constants. By using the Karush–Kuhn–Tucker

conditions [28], the optimal solution to (1.47) is given by

φl = nl

n
,

μl = 1

nl

n
∑

j=1

γjlxj,

�l = 1

nl

n
∑

j=1

γjl(xj − μl)(xj − μl)
T ,

(1.48)
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Algorithm 1.10: The EM algorithm for GMM

Input: dataset X = {xj}n
j=1, number of Gaussian models k

Output: estimated parameters {φ̄l}k
l=1, {μ̄l}k

l=1, {�̄l}k
l=1

1 randomly initialize {φ̄l}k
l=1, {μ̄l}k

l=1, {�̄l}k
l=1;

2 repeat

/* E-step */

3 for l = 1 to k do

4 for i = 1 to n do

5 γjl = φ̄lN (xj |μ̄l ,�̄l )
∑k

i=1 φ̄iN (xj |μ̄i ,�̄i)
;

6 nl =
∑n

j=1 γjl;

/* M-step */

7 for l = 1 to k do

8 φ̄l = nl

n
;

9 μ̄l = 1
nl

∑n

j=1 γjlxj;

10 for l = 1 to k do

11 �̄l = 1

nl

∑n

j=1 γjl(xj − μ̄l)(xj − μ̄l)
T ;

12 until convergence;

where we have defined nl =
∑n

j=1 γjl . We conclude the whole procedure in

Algorithm 1.10.

In addition to fitting the distribution density of data, GMM can also be used for

clustering data. Specifically, if we regard the k Gaussian models as the ‘patterns’ of

k clusters, then the probability that a sample xi comes from the lth pattern is given by

p(zj = l|xj) = φlN (xj|μ̄l , �̄l)
∑k

i=1 φiN (xj|μ̄i, �̄i)
. (1.49)

Thus, l∗ � arg maxl p(zj = l|xj) gives the index of the cluster that xj most likely

belongs to. Furthermore, low p(zj = l∗|xj) may imply that xj is an outlier. Reference

[95] shows a diffusion-based EM algorithm for distributed estimation of GMM in

wireless sensor networks. References [96] and [97] present two applications of GMM

in target tracking and signal-strength prediction, respectively.

1.2.6 Principal component analysis

In real applications, we usually encounter data with high dimensionality, such as

speech signals or digital images. In order to handle such data adequately, we need to

reduce its dimensionality. Dimension reduction is a process of transforming original

high-dimensional data into low-dimensional representation which reserve meaningful

characteristics of the data. Among all dimension-reduction methods, PCA is the most
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Figure 1.15 (a) A three-dimensional data set, (b) the points are distributed near a

two-dimensional plane and (c) projection of the points onto the plane

popular one. PCA can be derived from the perspectives of both geometry and statistics.

Here we will focus on the former perspective since it meets our intuition better.

To begin with, let us consider a three-dimensional data set as shown in

Figure 1.15(a). Though all points lie in a three-dimensional space, as shown in

Figure 1.15(b), they are distributed near a two-dimensional plane. As shown in Fig-

ure 1.15(c), after projecting all points onto the plane, we can observe that, in fact,

they are distributed in a rectangle. In this example, we find that the low-dimensional

representation captures the key characteristic of the data set.

Reviewing the above example, the key step is to find a low-dimensional plane

near all points. In PCA, this problem is formalized as an optimization problem by

using linear algebra. Specifically, given a data set {xi ∈ R
d}n

i=1, PCA intends to find

a t-dimensional (t < d) plane1 that minimizes the sum of the square of the distance

between each point and its projection onto the plane. Formally, a t-dimensional plane

can be described by a semi-orthogonal matrix B = (b1, . . . , bt) ∈ R
d×t (i.e. BT B = I)

and a shift vector s ∈ R
d . By linear algebra, {Bz|z ∈ R

t} is a t-dimensional subspace.

1A formal name should be affine subspace. Here we use ‘plane’ for simplicity.
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s
b1

O

B = (b1, b2)

{s + Bz│z ∈ R2}
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Figure 1.16 A two-dimensional plane {s + Bz|z ∈ R
2} in R

3

Then, we shift the subspace by s and get a plane {s + Bz|z ∈ R
t}. An illustration is

shown in Figure 1.16. Furthermore, for any point x ∈ R
d , the projection of it to the

plane is given by

s + BBT (x − s). (1.50)

Correspondingly, the distance from x to its projection is given by
∥

∥(I − BBT )(x − s)
∥

∥.

Thus, denoting the data matrix as X = (x1, . . . , xn) ∈ R
d×n, the goal of PCA is

to find the optimal solution to

min
s,B

n
∑

i=1

∥

∥(I − BBT )(xi − s)
∥

∥

2

s.t. BT B = I.

(1.51)

By taking gradient with respect to s, the optimal s is given by μ = (1/n)
∑n

i=1 xi.

Replacing s by μ, we still need to solve:

min
B

n
∑

i=1

∥

∥(I − BBT )(xi − μ)
∥

∥

2

s.t. BT B = I.

(1.52)

Noticing that

∥

∥(I − BBT )(xi − μ)
∥

∥

2 = ‖xi − μ‖2 − (xi − μ)T BBT (xi − μ), (1.53)

(1.52) is equivalent to

max
B

n
∑

i=1

(xi − μ)T BBT (xi − μ) = Tr
(

X̄T BBT X̄
)

= Tr
(

BT X̄X̄T B
)

s.t. BT B = I.

(1.54)
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Algorithm 1.11: Principal component analysis

Input: data set X = {xi ∈ R
d}n

i=1, target dimension t (t < d)

Output: coordinate matrix in dimension-reduction space

Y = (y1, . . . , yn) ∈ R
t×n

1 compute μ = 1

n

∑n

i=1 xi;

2 define X̄ = (x1 − μ, . . . , xn − μ) ∈ R
d×n;

3 compute the first t orthogonal eigenvectors p1, . . . , pt of X̄X̄T ;

4 define P = (p1, . . . , pt) ∈ R
d×t ;

5 Y = PT X̄;

where X̄ = (x1 − μ, . . . , xn − μ). Suppose that p1, . . . , pt are t orthogonal eigen-

vectors corresponding to the t largest eigenvalues of X̄X̄T . By denoting P =
(p1, . . . , pt) ∈ R

d×t , the optimal solution to (1.54) is given by

B∗ = P (1.55)

according to Corollary 4.3.39 in [98]. Thus, the coordinate of xi in the dimension

reduction space is given by PT (xi − μ) = yi ∈ R
t . Finally, we conclude the whole

process in Algorithm 1.11.

PCA is effective when data distribute near a low-dimensional plane. However,

sometimes data may be approximately embedded in a non-linear structure, such as

an ellipsoid or a hyperboloid. To handle the non-linear case, kernel PCA [99] is

proposed by using the kernel trick. In addition, Generalized PCA [100] is proposed

to deal with the case where data distribute in multi low-dimensional planes. When data

is contaminated by a few noises, Robust PCA [101] has been shown to be effective

in this case. References [102] and [103] demonstrate two applications of PCA to

multivariate sampling for wireless sensor networks and wireless capsule endoscopy,

respectively.

1.2.7 Autoencoder

In this section, we will introduce another dimension-reduction method autoencoder.

An autoencoder is a neural network (see Section 1.1.3.3) used to learn an effective

representation (encoded mode) for a data set, where the transformed code has lower

dimensions compared with the original data.

As shown in Figure 1.17, an autoencoder consists of two parts, i.e. an encoder

f (·|η) and a decoder g(·|θ ). Each of them is a neural network, where η and θ denote the

parameter sets of the encoder and the decoder, respectively. Given an input x ∈ R
d ,

the encoder is in charge of transforming x into a code z ∈ R
t , i.e. f (x|η) = z, where

t is the length of the code with t < d. In contrast, the decoder tries to recover the

original feature x from the code z, i.e. g(z|θ ) = x̄ ∈ R
d such that x̄ ≈ x. Thus, given
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Figure 1.17 The flowchart of an autoencoder. First, the encoder f (·|η) encodes an

input x into a code z with short length. Then the code z is transformed

into an output x̄ being the same size as x, by the decoder g(·|θ ). Given

a data set {xi}n
i=i, the object of training is to learn the parameter set

such that minimize the sum of squared error
∑n

i=1 ‖xi − x̄i‖2

a data set {xi}n
i=1, the training process of the autoencoder can be formulated as the

following optimization problem:

min
η,θ

n
∑

i=1

‖xi − g( f (xi|η)|θ )‖2. (1.56)

By limiting the length of code, minimizing the object function will force the code to

capture critical structure of input features and ignore trivial details such as sparse

noises. Thus, besides dimension reduction, an autoencoder can also be used to

de-noise.

In Figure 1.18, we show a specific implementation for the dimension-reduction

task on the MNIST data set of handwritten digits [41], where each sample is a grey-

scale image with the size of 28 × 28. For simplicity, stacking the columns of each

image into a vector, thus the input has a dimension of 28 × 28 = 784. As we see,

the encoder consists of three FC layers, where each layer is equipped with a sigmoid

activation function. The first layer non-linearly transforms an input vector with 784

dimensions into a hidden vector with 256 dimensions, and the second layer continues

to reduce the dimension of the hidden vector from 256 to 128. Finally, after the

transformation of the third layer, we get a code of 64 dimensions, which is far less

than the dimension of the input vector. On the other hand, the decoder shares a same

structure with the encoder except that each FC layer transforms a low-dimensional

vector into a high-dimensional vector. The encoder tries to reconstruct the original

input vector with 784 dimensions from the code with 64 dimensions. In addition,

a sparse constraint on the parameters should be added as a regularization term to

achieve better performance. After training the autoencoder using the BP algorithm
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Figure 1.18 A specific implementation for the dimension-reduction task on the

MNIST data set. The encoder consists of three fully connected layers

(FC layers), where each layer is equipped with a sigmoid activation

function. The decoder shares a same structure with the encoder except

that each FC layer transforms a low-dimensional vector into a

high-dimension vector

Inputs:

Codes:

Outputs:

Figure 1.19 Partial results on the MNIST data set

(see Section 1.1.3.3), we can obtain the result shown in Figure 1.19. From this figure,

we observe that an image can be reconstructed with high quality from a small-size

code, which indicates that the main feature of the original image is encoded into the

code.

We can use an encoder to compress a high-dimensional sample into a low-

dimensional code and then use a decoder to reconstruct the sample from the code. An

interesting problem is that, can we feed a randomly generated code into the decoder

to obtain a new sample. Unfortunately, in most cases, the generated samples either

are very similar to the original data or become meaningless things. Inspired by this

idea, a variational autoencoder [104] is proposed. Different from the autoencoder, the

variational autoencoder tries to learn an encoder to encode the distribution of original

data rather than the data itself. By using a well-designed object function, the distribu-

tion of original data can be encoded into some low-dimensional normal distributions

through an encoder. Correspondingly, a decoder is trained to transform the normal
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Figure 1.20 Structure chart for unsupervised learning technologies discussed in

this chapter

distributions into real data distribution. Thus, one can first sample a code from the

normal distributions and then feed it to the decoder to obtain a new sample. For more

details about a variational autoencoder, please refer to [104]. In wireless communi-

cations and sensor networks, autoencoder has been applied in many fields, such as

data compression [105], sparse data representation [106], wireless localization [107]

and anomaly detection [108].

1.2.8 Summary of unsupervised learning

In this section, we have discussed unsupervised learning. In contrast to supervised

learning, unsupervised learning needs to discover and explore the inherent and hidden

structures of a data set without labels. As shown in Figure 1.20, unsupervised learning

tasks can be mainly divided into three categories, i.e. clustering, density estimation

and dimension reduction.

Clustering is the area studied most in unsupervised learning. We have intro-

duced four practical clustering methods, i.e. k-means, DBSCAN, FDP and RECOME.

k-means has the simplest form among four methods. It is very easy to implement and

has short running time for low-dimensional data. But the original k-means prefers to

divide data into clusters with convex shapes. DBSCAN is a density-based clustering

algorithm. It is apt at detecting clusters with different shapes. But the clustering result

of DBSCAN is sensitive to the choice of its parameters. FDP introduces a brilliant

idea, HDN, and based on it, a clustering algorithm is constructed. FDP is easy to

implement and can generate satisfactory results with cluster centres being selected

visually. RECOME is based on a novel density measure, relative NKD. It has been
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Table 1.3 Summary of applications of unsupervised learning in wireless

communications

Method Function Application in
wireless communications

k-Means Clustering Collaborative signal processing [73]
Wireless surveillance systems [74]
Wireless hybrid networks [75]

DBSCAN Clustering Localization [79]
Wireless agriculture [80]
Anomaly detection [81,83]
Power backup [82]

FDP Clustering Wireless energy strategy [91,92]
RECOME Clustering MIMO channel learning [93]
Gaussian mixture Density estimation Target tracking [96]

models Signal-strength prediction [97]
Principal component Dimension reduction Multivariate sampling [37]

analysis Wireless capsule endoscopy [103]
Autoencoder Dimension reduction Wireless data representation [105,106]

Localization [107]
Anomaly detection [108]

shown to be effective on detecting clusters with various shapes, densities and scales.

In addition, it also provides an auxiliary algorithm to help users selecting parameters.

Density estimation is a basic problem in unsupervised learning. We have pre-

sented the GMM, which is one of most popular models for density estimation. The

GMM can approximate any continuous distribution to some desired degree of accu-

racy as soon as the parameter k is large enough, but accordingly, time cost for the

estimation of its parameters will increase. Dimension reduction plays an important

role in the compression, comprehension and visualization of data. We have introduced

two dimension-reduction technologies, PCA and autoencoder. PCA can be deduced

from an intuitive geometry view and has been shown to be highly effective for data

distributed in a linear structure. However, it may destroy non-linear topological rela-

tions in original data. Autoencoder is a dimension-reduction method based on neural

networks. Compared with PCA, autoencoder has great potential to reserve the non-

linear structure in original data, but it needs more time to adjust parameters for a

given data set. In Table 1.3, we summarize the applications of supervised learning in

wireless communications. For more technologies of unsupervised learning, readers

can refer to [8].

1.3 Reinforcement learning

So far, we have discussed two kinds of machine-learning methods: supervised learn-

ing, which is adapted to handle a classification or regression task, and unsupervised



42 Applications of machine learning in wireless communications

Agent

Environment

State st
Reward rt

Next state st+1
Action at

Figure 1.21 Markov decision process

learning, which is used to learn underlying hidden structure of data. However, in

wireless communications, we sometimes encounter some problems of real-time con-

trolling, which is hard to be solved by supervised or unsupervised learning methods.

For example, in radio access networks, we need to dynamically turn on/off some

base stations according to the traffic load variations so as to improve energy effi-

ciency [109]. As a solution, RL is a powerful tool to deal with these real-time control

problems. In this section, we will introduce the main idea and classic approaches

of RL.

1.3.1 Markov decision process

In RL, a real-time control problem is simplified as a system where an agent and

an environment interact over time. As illustrated in Figure 1.21, at time step t, the

environment is in a state st (e.g. the traffic load variations in radio access networks).

Then, the agent takes an action at (e.g. turn on/off some base stations) according to

the state st . After that, the environment will return a reward rt (e.g. the saved energy

cost) to the agent and turn into the next state st+1 on the basis of st and at . Since the

rule of states and rewards is determined by the environment, what the agent controls

is choosing actions in accordance with states to maximize total rewards in a long

period.

The above idea can be formulated as a Markov decision process (MDP). Formally,

an MDP, represented by a tuple 〈S,A, P, R, γ 〉, consists of five parts:

● S is a finite set of states.
● A is a finite set of actions.
● P is a state transition probability function. P(·|s, a) gives the distribution over

next state given a pair (s, a), where s ∈ S and a ∈ A.
● R : S× A→ R is a reward function.2 R(s, a) gives the reward after the agent

takes an action a in a state s.
● γ ∈ [0, 1] is a discount factor, which is introduced to discount the long-period

reward.3

2Here we suppose the reward function is deterministic for simplicity though it can be a random function.
3People often pay more attention to the short-term reward.
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In addition, the strategy of the agent taking actions is defined as a policy π , where

π(a|s) gives the probability of the agent taking an action a in a state s. In other words,

a policy fully defines the behaviour of an agent. Given an initial state s0 and a policy

π , an MDP can ‘run’ as follows:

For t = 0, 1, 2, . . .

at ∼ π (·|st);

rt = R(st , at);

st+1 ∼ P(·|st , at).

(1.57)

Our objective is to find a policy π∗ that maximizes cumulative discounted award
∑∞

t=0 γ trt on average.

To smooth the ensuing discussion, we need to introduce two functions, i.e. a value

function and a Q-value function. The value function with the policy π is defined as

the expectation of cumulative discounted reward, i.e.:

V π (s) � E

[ ∞
∑

t=0

γ trt

∣

∣

∣
s0 = s

]

, s ∈ S. (1.58)

The Q-value function (also called action-value function) is defined as

Qπ (s, a) � E

[ ∞
∑

t=1

γ trt

∣

∣

∣
s0 = s, a0 = a

]

, s ∈ S, a ∈ A. (1.59)

Intuitively, the value function and the Q-value function evaluate how good a state and

a state-action pair are under a policy π , respectively. If we expand the summations in

the value function, we have

V π (s) = E

[ ∞
∑

t=0

γ trt

∣

∣

∣
s0 = s

]

= E

[

r0 +
∞
∑

t=1

γ trt

∣

∣

∣
s0 = s

]

=
∑

a∈A

π(a|s)

(

R(s, a) + γ
∑

s′∈S

P(s′|s, a)E

[ ∞
∑

t=1

γ t−1rt

∣

∣

∣
s1 = s′

])

=
∑

a∈A

π(a|s)

(

R(s, a) + γ
∑

s′∈S

P(s′|s, a)V π (s′)

)

(1.60)

Similarly, for Q-value function, we have

Qπ (s, a) = R(s, a) + γ
∑

s′∈S

P(s′|s, a)
∑

a′∈A

π(a′|s′)Qπ (s′, a′). (1.61)

Equations (1.60) and (1.61) are so-called Bellman equations, which are foundations

of RL.
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On the other hand, if we fix s and a, V π (s) and Qπ (s, a) in fact evaluate how good

a policy π is. Thus, a policy that maximizes V π (s) (Qπ (s, a)) will be a good candidate

for π∗ though s and a are fixed. An arising problem is that there exists a policy that

maximizes V π (s) (Qπ (s, a)) for any s ∈ S (and a ∈ A). The following theorem gives

a positive answer:

Theorem 1.1. [110] For any MDP, there exists an optimal policy π∗ such that

V π∗
(s) = max

π
V π (s) ∀s ∈ S

and

Qπ∗
(s, a) = max

π
Qπ (s, a) ∀s ∈ S and ∀a ∈ A.

According to Theorem 1.1, we can define the optimal value function and the

optimal Q-value function as

V ∗(·) � V π∗
(·) and Q∗(·, ·) � Qπ∗

(·, ·) (1.62)

respectively, which are useful in finding the optimal policy. Furthermore, if V ∗(·) and

Q∗(·, ·) have been obtained, we can construct the optimal policy π∗ by letting:

π∗(a|s) =

⎧

⎨

⎩

1 if a = arg maxa∈A Q∗(s, a)

= arg maxa∈A R(s, a) + γ
∑

s′∈S
P(s′|s, a)V ∗(s)

0 otherwise.

(1.63)

In other word, there always exists a deterministic optimal policy for any MDP. In

addition, we have the Bellman optimality equations as follows:

V ∗(s) = max
a

R(s, a) + γ
∑

s′∈S

P(s′|s, a)V ∗(s) (1.64)

and

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

P(s′|s, a) max
a′∈A

Q∗(s′, a′). (1.65)

MDP and the Bellman equations are theoretical cornerstones of RL, based on

which many RL algorithms have been derived as we will show below. For more results

regarding MDP, readers can refer to [111].

1.3.2 Model-based methods

In this subsection, we will discuss model-based methods, where the term ‘model-

based’ means that the model of MDP (i.e. 〈S,A, P, R, γ 〉) have been given as known

information. There are two typical model-based algorithms. The one is policy itera-

tion, and the other is value iteration. We will introduce the former followed by the

latter.
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Algorithm 1.12: Computing value function

Input: MDPM = 〈S,A, P, R, γ 〉, policy π

Output: value function V π

1 Initialize V π
0 randomly;

2 for i = 1, 2, . . . do

3 for s ∈ S do

4

V π
i (s) ←

∑

a∈A

π (a|s)

(

R(s, a) + γ
∑

s′∈S

P(s′|s, a)V π
i−1(s′)

)

;

5 if V π
i converges then

6 break;

7 V π ← V π
i

The policy iteration takes an iterative strategy to find the optimal policy π∗. Given

an MDPM = 〈S,A, P, R, γ 〉 and an initial policy π , the policy iteration alternatively

executes the following two steps:

1. Computing the value function V π based onM and π .

2. Improve the policy π according to V π .

How to compute a value function? Given an MDP and a policy, the corresponding

value function can be evaluated by Bellman equation (1.60). This process is described

inAlgorithm 1.12. The function sequence inAlgorithm 1.12 can be proved to converge

to V π .

How to improve a policy? Given an MDP and the value function of a policy, the

policy can be improved by using (1.63). As a result, we conclude the policy iteration

algorithm in Algorithm 1.13.

The value iteration, as its name suggests, iteratively updates a value function until

it achieves the optimal value function. It has a very brief form since it just iterates

according to the optimal Bellman equation (1.64). We present the value iteration

algorithm in Algorithm 1.14. After obtaining the optimal value function, we can

construct the optimal policy by using (1.63).

In summary, when an MDP is given as known information, we can use either

of the policy and the value iteration to find the optimal policy. The value iteration

has more simple form, but the policy iteration usually converges more quickly in

practice [111]. In wireless communications, the policy and the value iteration methods

have been applied to many tasks, such as heterogeneous wireless networks [112],

energy-efficient communications [113] and energy harvesting [114].
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Algorithm 1.13: Policy iteration

Input: MDPM = 〈S,A, P, R, γ 〉
Output: optimal policy π∗

1 Initialize π randomly;

2 repeat

3 Compute value function V π by using Algorithm 1.12;

π̄ (a|s) =
{

1 if a = arg maxa∈A R(s, a) + γ
∑

s′∈S
P(s′|s, a)V π (s′)

0 otherwise.

π ← π̄ ;
4 until π converges;

Algorithm 1.14: Value iteration

Input: MDPM = 〈S,A, P, R, γ 〉
Output: optimal policy V ∗

1 Initialize V ∗ randomly;

2 repeat

3 V̄ ∗(s) = maxa∈A R(s, a) + γ
∑

s′∈S
P(s′|s, a)V ∗(s′);

4 V ∗ ← V̄ ∗;

5 until V ∗ not change;

1.3.3 Model-free methods

In practice, we often encounter a problem where the MDP model behind it is

unknown to us, and thus model-based algorithms are prohibited in this situation.

In this subsection, we will discuss two kinds of model-free methods: Monte Carlo

(MC) methods, temporal-difference (TD) learning, which can be applied when the

MDP model is unobservable.

1.3.3.1 Monte Carlo methods

The MC approach is a general idea derived from the law of large numbers, i.e. the

average of the results obtained from numerous samples will be close to the expected

value. It performs estimations of the value or Q-value function based on the experience

of the agent (samples).

For example, consider the value function with a policy π:

V π (s) = E

[ ∞
∑

t=0

γ trt

∣

∣

∣
s0 = s

]

.
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Algorithm 1.15: Incremental Monte Carlo estimation

Input: experience trajectory s0, a0, r0, . . . , policy π , discount factor γ ,

truncation number n, iteration number m

Output: Q-value function Qπ

1 for s ∈ S do

2 for a ∈ A do

3 N (s, a) ← 0;

4 Qπ (s, a) ← 0;

5 set R =
∑n

t=0 γ trt ;

6 for t = 0, 1, . . . , m do

7 N (st , at) ← N (st , at) + 1;

8 Qπ (st , at) ← Qπ (st , at) + 1

N (st ,at )
(R − Qπ (st , at));

9 R ← R−rt

γ
+ γ nrt+1+n;

10 if Qπ converges then

11 break;

It is defined by the expectation of all trails starting from s. Now, suppose that

we independently conduct l experiments by applying the policy π , and thus we

obtain l trajectories {τi}l
i=1, where τi =

〈

s ≡ s
(i)

0 , a
(i)

0 , r
(i)

0 , s
(i)

1 , a
(i)

1 , r
(i)

1 , . . . , r(i)
ni

〉

. Let

R(i) =
∑ni

t=0 γ tr
(i)
t . Then, according to the law of large numbers, we have

V π (s) = E

[ ∞
∑

t=0

γ trt

∣

∣

∣
s0 = s

]

≈ 1

l

l
∑

i=1

R(i)

= 1

l − 1

l−1
∑

i=1

R(i) + 1

l

(

R(l) − 1

l − 1

l−1
∑

i=1

R(i)

)

when l is large enough. Therefore, the value function can be estimated if we afford

numerous experiments. Similarly, the Q-value function can also be estimated by

using the MC method. However, in practice, we often face an online infinity trajec-

tory: s0, a0, r0, . . . . In this situation, we can update the Q-value (or value) function

incrementally as shown inAlgorithm 1.15. The truncation number n inAlgorithm 1.15

is used to shield negligible remainders.

Once we estimate the Q-value function for a given policy π , the optimal policy

can be obtained iteratively as presented in Algorithm 1.16. Here ε is introduced to

take a chance on small probability events.

MC methods are unbiased and easy to implement. However, they often suffer from

high variance in practice since the MDP model in real world may be so complicated

that a huge amount of samples are required to achieve a stable estimation. This restricts

the usage of MC methods when the cost of experiments is high.
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Algorithm 1.16: Incremental Monte Carlo policy iteration

Input: discount factor γ , truncation number n, iteration number m, ε

Output: optimal policy π∗

1 Initialize π randomly;

2 repeat

3 Apply π to generate a trail s0, a0, r0, . . . , rn+m;

4 Estimate Q-value function Qπ by using Algorithm 1.15;

5

π̄(a|s) =
{

(1 − ε) if a = arg maxa∈A Qπ (s, a)

ε/(|S| − 1) otherwise.

π ← π̄ ;
6 until π converges;

1.3.3.2 Temporal-difference learning

Like the MC approach, TD learning also tries to estimate the value or Q-value function

from the experience of the agent. But it performs an incremental estimation based on

the Bellman equations besides MC sampling.

To begin with, suppose that we obtain a sample set
{

〈s, a(i), r(i), s(i)〉
}l

i=1
by apply-

ing a policy π . Then, by applying MC sampling to the Bellman equation of the value

function, we have

V π (s) = E
[

R(s, a) + γ V π (s′)|π
]

≈ 1

l

l
∑

i=1

r(i) + γ V π (s(i))

= μl−1 + 1

l

(

r(l) + γ V π (s(l)) − μl−1

)

,

≈ V π (s) + 1

l

(

r(l) + γ V π (s(l)) − V π (s)
)

,

(1.66)

where μl−1 = (1/(l − 1))
∑l−1

i=1 r(i) + γ V π (s(i)). Therefore, to acquire an estimation

of V π (s), we can update it by the fixed point iteration [111]:

V π (s) ← V π (s) + 1

l

(

r(l) + γ V π (s(l)) − V π (s)
)

. (1.67)

In practice, 1/l in (1.67) is usually replaced by a monotonically decreasing sequence.

So far, we have presented the main idea of the TD learning. The detailed steps of TD

learning are concluded in Algorithm 1.17, where the learning rate sequence should

satisfy
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞.

Similarly, the Q-value function w.r.t. a policy can be estimated by using Algo-

rithm 1.18, which is also known as the Sarsa algorithm. Based on the Sarsa algorithm,
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Algorithm 1.17: TD learning

Input: experience trajectory s0, a0, r0, s1 . . . w.r.t. policy π , discount factor γ ,

learning rate sequence α0, α1, . . .

Output: value function V π

1 for s ∈ S do

2 V π (s) ← 0;

3 for t = 0, 1, . . . do

4 V π (st) ← V π (st) + αt (rt + γ V π (st+1) − V π (st));

Algorithm 1.18: Sarsa algorithm

Input: experience trajectory s0, a0, r0, s1 . . . w.r.t. policy π , discount factor γ ,

learning rate sequence α0, α1, . . .

Output: Q-value function V π

1 for s ∈ S do

2 for a ∈ A do

3 Qπ (s, a) ← 0;

4 for t = 0, 1, . . . do

5 Qπ (st , at) ← Qπ (st , at) + αt (rt + γ Qπ (st+1, at+1) − Qπ (st , at));

we can improve the policy alternatively by using Algorithm 1.16, where the Q-value

function is estimated by the Sarsa algorithm.

On the other hand, if choosing the optimal Bellman equation (1.65) as the

iteration strategy, we can derive the famous Q-learning algorithm as presented in

Algorithm 1.19.

In summary, TD learning, Sarsa and Q-learning are all algorithms based on

the Bellman equations and MC sampling. Among them, the goal of TD learning

and Sarsa is to estimate the value or Q-value function for a given policy, while

Q-learning aims at learning the optimal Q-value function directly. It should be noted

that, by using TD learning, we can only estimate the value function, which is not

enough to determine a policy because the state transition probability is unknown to

us. In contrast, a policy can be derived from the Q-value function, which is estimated

by Sarsa and Q-learning. In practice, Sarsa often demonstrates better performance

than Q-learning. Furthermore, all of the three methods can be improved to converge

more quickly by introducing the eligibility trace. Readers can refer to [111] for

more details.

Moreover, TD learning, Sarsa and Q-learning have been widely applied in wire-

less communications. References [115] and [116] demonstrate two applications ofTD

learning in energy-aware sensor communications and detection of spectral resources,
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Algorithm 1.19: Q-learning

Input: discount factor γ , learning rate sequence α0, α1, . . .

Output: optimal Q-value function Q∗

1 for s ∈ S do

2 for a ∈ A do

3 Q∗(s, a) ← 0;

4 Initialize s0;

5 for t = 0, 1, . . . do

6 at ∼ π(·|st), where

π(a|s) =
{

(1 − ε) if a = arg maxa∈A Q∗(s, a)

ε/(|S| − 1) otherwise.

Take action at , observe rt and st+1;

7 Q∗(st , at) ← Q∗(st , at) + αt (rt + γ maxa∈A Q∗(st+1, a) − Q∗(st , at));

respectively. References [117], [118] and [119] show three applications of Sarsa in

channel allocation, interference mitigation and energy harvesting, respectively. Ref-

erences [120], [121] and [122] present three applications of Q-learning in routing

protocols, power allocation and caching policy, respectively.

1.3.4 Deep reinforcement learning

So far we have discussed both model-based and model-free methods in RL. All of

these methods need to store one or two tables with size |S| (for the value function)

or |S| × |A| (for the Q-value function and the policy). In practice, however, we often

encounter the situation where |S| is very large or even infinite. In this case, it is

impractical to store a table whose size is proportional to |S|. DNNs, as discussed in

Section 1.1.3.3, have a strong ability in representation and can be used to approximate

a complex function. As a result, DNNs have been applied to approximate the value

function, the Q-value function and the policy. In this subsection, we will discuss these

approximation ideas.

1.3.4.1 Value function approximation

First of all, we consider the problem of approximating the value function by using

a DNN. For simplicity, let V̂ (s, W) denote a DNN which is with parameter W and

receives an input s ∈ S. For a given policy π , our goal is turning W so as to V̂ (s, W) ≈
V π (s), ∀s ∈ S. Unfortunately, since the true V π (·) is unknown to us, we cannot learn

W directly. Alternatively, let us consider minimizing the difference between V̂ (·, W)

and V π (·) in expectation, i.e.:

min
W

1

2
E
s

(

V̂ (s, W) − V π (s)
)2

. (1.68)
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Algorithm 1.20: Value function approximation

Input: a sample set D = {(s(i), r(i), s′(i))}l
i=1, batch size m, learning rate α

Output: approximate value function V̂ (·, W)

1 Initialize W;

2 repeat

3 Randomly sample a subset {(s( j), r( j), s′( j)
)}m

j=1 from D;

4 W ← W + α

m

∑m

j=1

(

V̂ (s( j), W) − (r( j) + V̂ (s′( j)
, W)

)

∇WV̂ (s( j), W);

5 until convergence;

As mentioned in Section 1.1.3.3, we use the gradient descent method to update W.

Taking the gradient of (1.68) w.r.t. W, we have

∇W

1

2
E
s

(

V̂ (s, W) − V π (s)
)2

= E
s

(

V̂ (s, W) − V π (s)
)

∇WV̂ (s, W). (1.69)

By applying the Bellman equation, (1.69) can be transformed into

E
s,r,s′

(

V̂ (s, W) − (r + V π (s′))
)

∇WV̂ (s, W). (1.70)

However, since the true V π (s′) is unknown, we substitute V̂ (s′, W) for V π (s′) and get

E
s,r,s′

(

V̂ (s, W) − (r + V̂ (s′, W)
)

∇WV̂ (s, W). (1.71)

Now, if we have obtained a finite sample set {(s(i), r(i), s′(i))}l
i=1 from the experience,

(1.71) can be estimated as

1

l

l
∑

i=1

(

V̂ (s(i), W) − (r(i) + V̂ (s′(i), W)
)

∇WV̂ (s(i), W). (1.72)

Thus, we can use (1.72) to update W until convergence. The value function

approximation via DNNs is summarized in Algorithm 1.20.

On the other hand, for the Q-value function, we can approximate it with a similar

way as described in Algorithm 1.21. After the value function or the Q-value function

is approximated, we can work out the optimal policy by using the policy iteration

(Algorithms 1.13 or 1.16). However, given a large size problem, a more smarter way

is to parametrize the policy by using another DNN, which will be discussed in the

following part.

1.3.4.2 Policy gradient methods

Similar to value or Q-value functions, a policy can be parametrized by using DNNs

too. However, it is non-trivial to estimate a gradient to improve the parametrized

policy. Accordingly, a policy gradient has been proposed to solve this problem. In this

part, we will discuss the policy gradient and its derivation.
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Algorithm 1.21: Q-value function approximation

Input: a sample set D = {(s(i), a(i), r(i), s′(i), a′(i))}l
i=1, batch size m, learning

rate α

Output: approximate value function Q̂(·, ·, U)

1 Initialize U;

2 repeat

3 Randomly sample a subset {(s( j), a( j), r( j), s′( j)
, a′( j)

)}m
j=1 from D;

4 U ←
U + α

m

∑m

j=1

(

Q̂(s( j), a( j), U) − (r( j) + Q̂(s′( j)
, a′( j)

, U)
)

∇UQ̂(s( j), a( j), U);

5 until convergence;

To begin with, let π̂ (s, a, θ ) denote a DNN which is with parameter θ and receive

two inputs s ∈ S and a ∈ A. Our goal is to learn the parameter θ such that the

expectation of the total reward is maximized, i.e.:

max
θ

J (θ ) � E

[ ∞
∑

t=0

γ trt

∣

∣

∣
π̂ (·, ·, θ )

]

=
∫

τ

g(τ )P{τ |π̂(·, ·, θ )}dτ , (1.73)

where τ = 〈s0, a0, r0, s1, a1, r1, . . . 〉 and g(τ ) =
∑∞

t=0 γ trt denote a trajectory and its

reward, respectively. To update θ , we need to take the gradient w.r.t. θ , that is

∇θJ (θ ) =
∫

τ

g(τ )∇θP{τ |π̂(·, ·, θ )}dτ. (1.74)

But the gradient in (1.74) is hard to be estimated since it relies on the probability.

Fortunately, this difficulty can be resolved by using a nice trick as follows:

∇θJ (θ ) =
∫

τ

g(τ )∇θP{τ |π̂(·, ·, θ )}dτ

=
∫

τ

g(τ )P{τ |π̂(·, ·, θ )}∇θP{τ |π̂(·, ·, θ )}
P{τ |π̂(·, ·, θ )} dτ

=
∫

τ

g(τ )P{τ |π̂(·, ·, θ )}∇θ log P{τ |π̂(·, ·, θ )}dτ

= E

[

g(τ )∇θ log P{τ |π̂ (·, ·, θ )}
∣

∣

∣
π̂ (·, ·, θ )

]

.

(1.75)
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Moreover, we have

∇θ log P{τ |π̂(·, ·, θ )} = ∇θ log

(

P(s0)

∞
∏

t=0

π̂(st , at , θ )P(st+1|st , at)

)

= ∇θ

(

log P(s0) +
∞
∑

t=0

log P(st+1|st , at) +
∞
∑

t=0

log π̂ (st , at , θ )

)

=
∞
∑

t=0

∇θ log π̂(st , at , θ ). (1.76)

Plugging (1.76) into (1.75), we have

∇θJ (θ ) = E

[

g(τ )

∞
∑

t=0

∇θ log π̂(st , at , θ )

∣

∣

∣
π̂(·, ·, θ )

]

. (1.77)

Equation (1.77) can be estimated by the MC approach in principle. In practice, how-

ever, it suffers from high variance because credit assignment is really hard [123].

A way to reduce the variance is to replace (1.77) by the following equation [124]:

∇θJ (θ ) ≈ E

[ ∞
∑

t=0

(Qπ̂ (·,·,θ )(st , at) − V π̂ (·,·,θ)(st))∇θ log π̂ (st , at , θ )

∣

∣

∣
π̂ (·, ·, θ )

]

≈ 1

l

l
∑

i=1

(Qπ̂ (·,·,θ )(s(i), a(i)) − V π̂ (·,·,θ)(s(i)))∇θ log π̂(s(i), a(i), θ ), (1.78)

where {(s(i), a(i))}l
i=1 is a sample set from the experience under the policy π̂(·, ·, θ ).

So far, a remaining problem is that Qπ̂(·,·,θ ) and V π̂ (·,·,θ) are unknown to us. The

answer would be using the value and Q-value function approximations as described

in Section 1.3.4.1. We summary the whole process in Algorithm 1.22. This algo-

rithm is known as the famous actor–critic (AC) algorithm (also known as the A3C

algorithm), where actor and critic refer to the policy DNN and the value (Q-value)

DNN, respectively.

It is worth mentioning that the AC algorithm has an extension named asyn-

chronous advantage AC algorithm [125]. The A3C algorithm has better convergence

and became a standard starting point in many recent works [126].

DRL is popular with current wireless communications research. For example,

Q-value function approximation has been applied in mobile edge computing [127],

resource allocation [128] and base station control [129]. In addition, [130], [131]

and [132] demonstrate three applications of actor–critic algorithm in quality of service

(QoS) driven scheduling, bandwidth intrusion detection and spectrum management,

respectively.

1.3.5 Summary of reinforcement learning

In this section, we have discussed RL, which is an effective tool to solve real-time

control problems in various fields. As a theoretical basis of RL, the MDP theory has

provided essential concepts for the RL algorithm design, such as Bellman equations,

(optimal) value function, (optimal) Q-value function and optimal policy. As shown in
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Algorithm 1.22: Actor–critic algorithm

Input: sampling sizes l, m, learning rates α1, α2, α3

Output: approximate optimal policy π̂(·, ·, θ ), approximate optimal value

function V̂ (·, W), approximate Q-value function Q̂(·, ·, U)

1 Initialize θ , U, Q̂(·, ·, U);

2 repeat

3 Generate a sample set D = {(s(i), a(i), r(i), s′(i), a′(i))}l
i=1 by using policy

π̂(·, ·, θ );

4 Update W by using Algorithm 1.20 with D, m, α1, W (without parameter

initialization);

5 Update U by using Algorithm 1.21 with D, m, α2, U (without parameter

initialization);

6

θ ← θ + α3

l

l
∑

i=1

(Q(s(i), a(i), U) − V (s(i), W))∇θ log π̂ (s(i), a(i), θ );

7 until convergence;

Figure 1.22, we have introduced three parts of RL: model-based methods, model-free

methods and DRL.

Model-based methods assume that the MDP model is given as prior information.

Based on the model information and Bellman equations, this kind of algorithms try

to learn the (optimal) value function, the (optimal) Q-value function and the optimal

policy. In general, model-based algorithms have a better effect and a faster conver-

gence than model-free algorithms provided that the given MDP model is accurate.

However, model-based algorithms are rarely used in practice, since MDP models in

real world are usually too complicated to be estimated accurately.

Model-free methods are designed for the case where information of hidden MDP

is unknown. Model-free algorithms can be further divided into two subclasses: MC

methods and TD learning. Based on the law of large numbers, MC methods try to

estimate the value or Q-value function from an appropriate number of samples gener-

ated from experiments. MC methods are unbiased, but they suffer from high variance

in practice since MDP models in real world are usually complex such that it needs

massive samples to achieve a stable result. On the other hand, TD learning integrates

the Bellman equations and MC sampling in its algorithms design. By introducing

the Bellman equations, TD learning reduces the estimation variance compared with

MC methods, though its estimation may be biased. TD learning has shown a decent

performance in practice and provides basic ideas for many subsequent RL algorithms.

DRL is proposed to deal with the condition where the number of states is

extremely large or even infinite. DRL applies DNNs to approximate the value

function, the Q-value function and the policy.Among them, the update rule of the value
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Figure 1.22 Structure chart for reinforcement-learning technologies discussed

in this chapter

Table 1.4 Summary of applications of reinforcement learning

in wireless communications

Method Application in wireless communications

Policy iteration Energy harvesting [114]
Value iteration Heterogeneous wireless networks [112]

Energy-efficient communications [113]
TD learning Energy-aware sensor communications [115]

Detection of spectral resources [116]
Sarsa Channel allocation [117]

Interference mitigation [118]
Energy harvesting [119]

Q-learning Routing protocols [120]
Power allocation [121]
Caching policy [122]

Q-value function Mobile edge computing [127]
approximation Resource allocation [128]

Base station control [129]
Actor–critic algorithm QoS-driven scheduling [130]

Bandwidth intrusion detection [131]
Spectrum management [132]
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(Q-value) approximation is very similar to that of TD learning except replacing a

table with a DNN in the learning process. In this case, the parameter of the DNN

can be trained conveniently by using the gradient descent method. In contrast, the

policy approximation is more difficult since its gradient cannot be estimated directly.

Accordingly, the policy gradient is introduced which provides an approximate gradient

to update parameters. Based on the policy gradient, actor–critic (AC) algorithm is

proposed where both the actor and the critic are realized by DNNs. AC algorithm is

very practical and has become a framework of many cutting-edge RL techniques.

In Table 1.4, we summarize the applications of RL in wireless communications.

A historical survey of RL can be seen in [133], and the new developments in DRL

can be seen in [126].

1.4 Summary

In this chapter, we have reviewed three main branches of machine learning: super-

vised learning, unsupervised learning and RL. Supervised learning tries to learn a

function that maps an input to an output by referring to a training set. A supervised

learning task is called a classification task or a regression task according to whether

the predicted variable is categorical or continuous. In contrast, unsupervised learning

aims at discovering and exploring the inherent and hidden structures of a data set

without labels. Unsupervised learning has three main functions: clustering, density

estimation and dimension reduction. RL is commonly employed to deal with the opti-

mal decision-making in a dynamic system. By modelling the problem as the MDP, RL

seeks to find an optimal policy. An RL algorithm is called a model-based algorithm or

a model-free algorithm depending on whether the MDP model parameter is required

or not. Furthermore, if an RL algorithm applies DNNs to approximate a function, it

also called a deep RL method.

There is no doubt that machine learning is achieving increasingly promising

results in wireless communications. However, there are several essential open-

research issues that are noteworthy in the future [59]:

1. In general, supervised models require massive training data to gain satisfying

performance, especially for deep models. Unfortunately, unlike some popular

research areas such as computer vision and NLP, there still lacks high-quality

and large-volume-labelled data sets for wireless applications. Moreover, due

to limitations of sensors and network equipment, wireless data collected are

usually subjected to loss, redundancy, mislabelling and class imbalance. How

to implement supervised learning with limited low-quality training data is a

significant and urgent problem in the research of wireless learning.

2. On the other hand, wireless networks generate large amounts of data every

day. However, data labelling is an expensive and time-consuming process. To

facilitate the analysis of raw wireless data, unsupervised learning is increas-

ingly essential in extracting insights from unlabelled data [134]. Furthermore,

recent success in generative models (e.g. variational autoencoder and generative

adversarial networks) greatly boosts the development of unsupervised learning.
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It will be worthwhile and beneficial to employ these new technologies to handle

unsupervised tasks in wireless communications.

3. Currently, many wireless network control problems have been solved by con-

strained optimization, dynamic programming and game theory approaches.

These methods either make strong assumptions about the objective functions

(e.g. linearity or convexity) or sample distribution (e.g. Gaussian or Poisson dis-

tributed), or endure high time and space complexity. Unfortunately, as wireless

networks are getting increasingly complex, such assumptions become unrealistic

sometimes. As a solution, DRL is a powerful tool to handle complex control

problems. Inspired by its remarkable achievements in self-driving [135] and the

game of Go [136], a few researchers start to apply DRL to solve the wireless

network control problems. However, this work only demonstrates a small part of

DRL’s advantages, and its potential in wireless communications remains largely

unexplored.
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Chapter 2

Machine-learning-enabled channel modeling

Chen Huang1, Ruisi He2, Andreas F. Molisch3,

Zhangdui Zhong2, and Bo Ai2

In this chapter, we present an introduction to the use of machine learning in wireless

propagation channel modeling. We also present a survey of some current research

topics that have become important issues for 5G communications.

2.1 Introduction

Channel modeling is one of the most important research topics for wireless com-

munications, since the propagation channel determines the performance of any

communication system operating in it. Specifically, channel modeling is a process of

exploring and representing channel features in real environments, which reveals how

radio waves propagate in different scenarios. The fundamental physical propagation

processes of the radio waves, such as reflections, diffractions, are hard to observe

directly, since radio waves typically experience multiple such fundamental interac-

tions on their way from the transmitter to the receiver. In this case, channel modeling

is developed to characterize some effective channel parameters, e.g., delay dispersion

or attenuation, which can provide guidelines for the design and optimization of the

communication system.

Most channel models are based on measurements in representative scenarios.

Data collected during such measurement campaigns usually are the impulse response

or transfer function for specific transmit and receive antenna configurations. With

the emergence of multiple-input–multiple-output (MIMO) systems, directional char-

acteristics of the channels can be extracted as well. In particular for such MIMO

measurements, high-resolution parameter estimation (HRPE) techniques can be

applied to obtain high-accuracy characteristics of the multipath components (MPCs).

Examples for HRPE include space-alternating generalized expectation-maximization

(SAGE) [1], clean [2], or joint maximum likelihood estimation (RiMAX) [3].
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Machine learning, as an important branch of artificial intelligence, is considered

to be a powerful tool to analyze measurement data, understand propagation processes,

and create models. This is especially true for learning the principles and properties

in channel measurement data from modern measurement campaigns, since the data

volume and dimensionality of the measurement data have increased rapidly with the

advent of massive MIMO systems. Therefore, machine-learning-based channel mod-

eling has become a popular research topic. Typical applications of machine learning

in channel modeling include

● Propagation scenario classification. Classification of the scenarios is an impor-

tant part for the channel modeling and communication system deployment, since

the channel models, or at a minimum their parameterizations, depend on the con-

sidered environment and scenario. For example, most models show a difference

between line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Current

solutions for LOS/NLOS classification are generally based on different met-

rics, e.g., the K-factor [4], the root-mean-square delay spread and mean excess

delay [5], or the Kurtosis of the channel state information [6]. However, the clas-

sification of the scenarios by using a binary hypothesis test based on single metric

is not accurate enough for variable environments in wireless communications. On

the other hand, some machine-learning techniques, e.g., support vector machines

(SVM) and deep learning, which have a great advantage for extracting data fea-

tures, can be used for scenario classification as well. In this case, learning and

extracting the difference of channel properties in the different scenarios helps to

automatically separate the measured data into different scenarios and discover

the scenario features for resource allocation, system optimization, or localiza-

tion. In this chapter, we present some first result on the machine-learning-based

LOS/NLOS scenarios identification.
● Machine-learning-based MPC clustering. A large body of MIMO measure-

ments has shown that the MPCs occur in groups, also known as clusters, such

that the MPCs within one group have similar characteristics but have significantly

different characteristics from the MPCs in other clusters. Separately characteriz-

ing the intra-cluster and intercluster properties can allow to significantly simplify

channel models without major loss of accuracy. Therefore, many channel mod-

els have been proposed and developed based on the concept of clusters, e.g.,

Saleh–Valenzuela (SV) [7], COST 259 [8,9] COST 2100 [10], 3GPP spatial

channel model [11], and WINNER model [12]. In the past, visual inspection has

been widely used for cluster identification, which is inapplicable for extensive

measurement data, and also subjective. Automated algorithms, in particular the

KPowerMeans algorithm [13], have gained popularity in recent years but still suf-

fer from the use of arbitrary thresholds and/or a priori assumption of the number

of clusters. Moreover, many clustering approaches require to extract the MPCs

via HRPE methods before clustering. These algorithms have generally high com-

putational complexity, which makes real-time operation in time-varying channels

difficult. Hence, automatic clustering for MPCs based on machine-learning

algorithms has drawn a lot of attention.
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● Automatic MPC tracking. Time-variation of the propagation is relevant for many

applications such as high-speed railways and vehicular communications. How-

ever, in time-varying channels, the MPCs need to be not only clustered but also

tracked to characterize their dynamic features. Machine-learning-based tracking

algorithms can be adopted or developed to track the MPCs during consecutive

snapshots, e.g., Kalman filters [14,15], or the Kuhn–Munkres algorithm [16].

However, the MPCs’ behaviors during the time, e.g., split, merge, and lifetime,

are still not fully utilized in the current tracking procedures. Hence, how to track

the MPCs more accurately and efficiently is still an open question.
● Deep-learning-based channel modeling approach. The main goal of channel

modeling is to find the interconnections among the transmitted signals, envi-

ronments, and the received signals and model them by appropriate functions.

Meanwhile, with the dramatic development of artificial intelligence, neural-

network-based deep learning has shown great performance on characterizing

data and extracting the mapping relationship between system input and out-

put [17]. Therefore, many studies pay attention to modeling the channels by

using neural network. For example, a back-propagation (BP) network is used for

modeling the amplitude in propagation channels in [18], a radial-basis-function

(RBF)-based neural network is used for modeling the Doppler frequency shift

in [19]. Moreover, some other data-mining approaches can be adopted to pre-

process the measured data, which makes the data easier to be analyzed and

processed.

In this chapter, we introduce recent progress of the above applications for machine

learning in channel modeling. The results in this chapter can provide references to

other real-world measurement data-based channel modeling.

2.2 Propagation scenarios classification

In this section, machine-learning-based propagation scenario classification is intro-

duced. Generally, different channel models are used for different typical scenarios.

In particular, most models are developed based on different propagation assumptions

and parameter settings. At the same time, some machine-learning algorithms are able

to learn the interconnections and features of different training data and then refine

them into classification principles, which can automatically classify the input data

in applications. Due to the good accuracy of the classification, the machine-learning

approaches are expected to extract the features and properties of the different channels

and automatically distinguish the propagation scenarios. There are many machine-

learning algorithms that have been widely used for classification, e.g., SVM or deep

learning.

A particularly important example for classification problems is the identification

of LOS/NLOS scenarios, which is a binary classification problem. The SVM is one

of the promising solutions for such binary classification problems and offers a good

trade-off between accuracy and complexity compared to deep learning. Therefore, we
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investigate in the following in more detail the application of the SVM to distinguish

LOS/NLOS scenarios based on the channel properties.

The main goal of the algorithm described in the following is to use the machine-

learning tool, i.e., the SVM, to learn the internal features of the LOS/NLOS

parameters, which can be obtained by using parameters estimation algorithms, e.g.,

beamformers, and build an automatic classifier based on the extracted features. Con-

sequently, there are two main steps of the proposed algorithm: (i) develop the input

vector for the SVM method and (ii) adjust the parameters of the SVM method to

achieve a better accuracy of classification.

2.2.1 Design of input vector

In the described algorithm, the power-angle-spectrums (PASs) of the LOS/NLOS

scenarios obtained by using the Bartlett beamformer [20] are used as the training

database. Figure 2.1(a) and (b) depicts example PASs of the LOS and NLOS scenario,

respectively, where the data are collected from 30×4 MIMO measurements at a carrier

frequency of 5.3 GHz and estimated by using the Bartlett beamformer [20]. Since the

SVM can only use a vector as the input for training, the design of the input vector is
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Figure 2.1 Power angle spectrum of (a) LOS and (b) NLOS scenarios, which are

estimated by using Bartlett beamformer
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Figure 2.2 Histograms of the power distribution of the LOS and NLOS scenarios,

respectively

crucial for the performance of the SVM. In the described algorithm, the SVM is used

to learn the difference between the LOS and NLOS from the classified data (training

data) and distinguish the LOS and NLOS condition of the unclassified data (test data).

In this case, an input vector that is able to most clearly present the physical features

of the LOS/NLOS data can achieve the best classification accuracy.

In order to design an appropriate input vector, we first consider the main differ-

ence of physical features between the MPCs in the LOS and NLOS scenarios. First,

the average power is usually different, where the LOS scenario usually has higher

power. Second, the power distribution is another noteworthy difference between the

LOS and NLOS scenarios. Since the LOS path is blocked in the NLOS scenario, the

impact of MPCs undergoing reflections, scatterings, and diffusions is more signifi-

cant in the NLOS case. In other words, even if all such indirect MPCs are exactly

the same in LOS and NLOS scenarios, the existence of the direct MPC changes the

power distribution.

From the above, it follows that the histogram of the power is a characteristic that

can be used to distinguish the LOS/NLOS scenarios, where the abscissa represents

different power intervals, and the ordinate represents how many elements in the PAS

distribute in the different power intervals. Furthermore, to simplify the feature vector,

the number of power intervals is set at 100, with a uniform distribution in the range

of the power of the PAS, as shown in Figure 2.2. In this case, the histogram of the

power is considered as the input vector X, which can be expressed as

X = {x1, x2, . . . , x100} (2.1)

2.2.2 Training and adjustment

The thus-obtained input vector can now be fed into the SVM method. Nevertheless,

the typical linear-kernel-function-based SVM cannot achieve the best accuracy of

classification, considering that the physical features of the LOS/NLOS scenario are
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generally complicated to characterize. Consequently, we use here the RBF as the

kernel function, which can be expressed as

k(x, xi) = exp

(

−‖x − xi‖2

δ2

)

(2.2)

By using the RBF kernel function, the training data are projected to a higher dimen-

sion, in which the difference between the LOS and NLOS data can be observed more

easily.

In this case, the histogram of the power in each PAS is considered as the feature

vector for the input of the SVM to distinguish the LOS and NLOS scenarios. Based

on our experiments, the described solution achieves nearly 94% accuracy on the

classification.

In addition, the angle (azimuth/elevation) distribution of the power is also gener-

ally considered to be different in the LOS and NLOS scenarios. Since there is no LOS

component in the NLOS scenario, it will more concentrate on reflections and scat-

terings in the environment, which leads to a lower average power and smaller power

spread in the histograms. Therefore, utilizing the angle distribution in the feature

vector may also increase the classification accuracy of the solution.

2.3 Machine-learning-based MPC clustering

As outlined in the introduction, modeling of inter- and intra-cluster properties, instead

of the properties of the individual MPCs, offers an attractive trade-off between accu-

racy and complexity of the models and is thus widely used in the literature [21,22].

The basic requirement for such models is to identify clusters in measured data. In the

past, visual inspection has been widely used to recognize the clusters. However, it is

inapplicable to the analysis of large amounts of high-dimensional measurement data,

which commonly are encountered in particular in MIMO measurement campaigns.

Besides, visual inspection is a subjective approach, thus different inspectors may

provide different clustering results, which makes comparisons between results from

different groups difficult.

On the other hand, clustering is one of the most fundamental applications for

machine learning. Therefore, machine-learning-based clustering algorithms have

become a hot topic and are expected to be able to automatically cluster MPCs with high

accuracy. The main challenges of automatic clustering of MPCs include the follow-

ing: (i) the definition of MPCs’ cluster has not been addressed clearly; (ii) the ground

truth of MPCs’ clusters is generally unknown, which makes it difficult to validate the

clustering result; (iii) the number of clusters, which is required for many machine-

learning-clustering methods, is usually unknown; and (iv) the dynamic changes of

MPCs that occur in time-varying channels are difficult to utilize in many clustering

algorithm. To provide a benchmark, in the following we describe some widely used

classical MPC clustering algorithms.
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2.3.1 KPowerMeans-based clustering

The KPowerMeans algorithm described in [13] is one of the most popular clustering

approaches for MPCs in the radio channels. The key idea of KPowerMeans is based

on the conventional KMeans method, which is a typical hard partition approach and

clusters data objects based on the distance among each other. Similar to KMeans, the

KPowerMeans requires the number of clusters as prior information, an indeterminate

cluster number may have an impact on the performance of clustering. While a number

of different methods have been described, the most straightforward way is to compute

results with different cluster numbers and compare the results. The main idea of

KPowerMeans is summarized in the following subsection.

2.3.1.1 Clustering

Figure 2.3(a)–(d) shows the four stages in the iteration of clustering. The dots and

blocks in (a) present the input MPCs and initialed cluster-centroids, respectively,

whereas the different colors of the dots in (b)–(d) represent different categories

of clusters. The KPowerMeans algorithm requires the number of clusters as prior
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Figure 2.3 The clustering framework of the KPowerMeans algorithm, where

(a)–(d) is four stage in the iteration of clustering. The dots and blocks in

(a) present input objects and initialed cluster-centroids, respectively,

whereas the different colors of the dots in (b)–(d) represent different

categories of clusters
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information, e.g., the blue and red blocks in Figure 2.3(a) and then clusters the MPCs

preliminarily to the closest cluster-centroid, as shown in Figure 2.3(b). To accurately

measure the similarity between MPCs/clusters, the MPCs distance (MCD) is used

to measure the distance between MPCs and cluster-centroids, where the angle of

arrival (AoA), angle of departure (AoD) and delay of the MPCs/cluster-centroids are

considered. The MCD between the ith MPC and the jth MPC can be obtained as

MCDij =
√

‖MCDAoA,ij‖2 + ‖MCDAoD,ij‖2 + MCD2
τ ,ij (2.3)

where

MCDAoA/AoD,ij = 1

2

∣
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∣
∣
∣
∣
∣
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, (2.4)

MCDτ ,ij = ζ · |τi − τj|
�τmax

· τstd

�τmax

, (2.5)

with �τmax = maxi,j{|τi − τj|} and ζ as an opportune delay scaling factor; various

ways to select this scaling factor have been described in the literature. After the

MPCs are clustered preliminarily, the cluster-centroids are recomputed, as shown in

Figure 2.3(c). Then, the cluster members and the cluster-centroids are alternately

recomputed in each iteration, until the data converge to stable clusters or reach the

restraint of a preset running time.

2.3.1.2 Validation

To avoid the impact of an indeterminate number of the clusters, [13] develops the

CombinedValidate method based on the combination of the Calinski–Harabasz (CH)

index and the Davies–Bouldin criterion (DB). The basic idea of CombinedValidate is

to restrict valid choices of the optimum number of clusters by a threshold set in the

DB index. Subsequently, the CH index is used to decide on the optimum number out

of the restricted set of possibilities.

2.3.1.3 Cluster pruning—ShapePrune

After successfully finding the optimum number of the clusters, the ShapePrune clus-

ter pruning algorithm is adopted for discarding outliers. The basic idea of ShapePrune

is to remove data points that have the largest distance from their own cluster-centroid

with the constraint that cluster power and cluster spreads must not be changed sig-

nificantly. In this case, the features of clusters can be more easily observed, where

the clusters’ properties can also be preserved as much as possible. Figure 2.4 shows

the extracted MPCs from the MIMO measurement data in [13], where the power of

MPCs is color coded. By applying the KPowerMeans, the MPCs can be automati-

cally clustered without human interaction, as shown in Figure 2.5. Compared with
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Figure 2.5 The result of clustering from [13], where the weak MPCs are removed

the visual inspection, the KPowerMeans can well identify the clusters closest to each

other, e.g., the clusters in red, yellow, blue, and green in Figure 2.4.

2.3.1.4 Development

It is noteworthy that the initial parameters, e.g., cluster number and position of ini-

tial cluster-centroid, have a great impact on the performance of KPowerMeans. In

KPowerMeans, the validation method is applied to select the best estimation of the
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number of the clusters; thus the performance of the validation method also affects

the performance and efficiency of clustering. In [23], a performance assessment of

several cluster validation methods is presented. There it was found that the Xie–Beni

index and generalized Dunnes index reach the best performance, although the result

also shows that none of the indices is able to always predict correctly the desired

number of clusters. Moreover, to improve the efficiency of clustering, [24] devel-

ops the KPowerMeans by using the MPCs that have the highest power as the initial

cluster-centroids. On the other hand, the study in [25] claims that as a hard partition

approach, KMeans is not the best choice for clustering the MPCs, considering that

some MPCs are located near the middle of more than one cluster, and thus cannot be

directly associated with a single cluster. Therefore, instead of using hard decisions as

the KPowerMeans, a Fuzzy-c-means-based MPC clustering algorithm is described

in [25], where soft information regarding the association of multipaths to a centroid

are considered. As the result, the Fuzzy-c-means-based MPC clustering algorithm

performs a robust and automatic clustering.

2.3.2 Sparsity-based clustering

In this subsection, the framework of a sparsity-based MPC clustering algorithm [26]

is introduced, which was described to cluster channel impulse responses (CIRs) con-

sisting of multiple groups of clusters. The key idea of the described algorithm is to

use a sparsity-based optimization to recover the CIRs from measured data and then

use a heuristic approach to separate the clusters from the recovered CIRs. The main

idea can be summarized as follows [26,27]:

The CIRs are assumed to follow the SV model [7], i.e., the power of MPCs

generally decreases with the delays as follows:

∣
∣αl,k

∣
∣
2 =

∣
∣α0,0

∣
∣
2 · exp

(

−Tl

Ŵ

)

︸ ︷︷ ︸

A1

· exp

(

−τl,k


l

)

︸ ︷︷ ︸

A2

(2.6)

where A1 and A2 denote the intercluster and intra-cluster power decay, respectively;
∣
∣α0,0

∣
∣
2

denotes the average power of the first MPC in the first cluster. Ŵ and 
l are

the cluster and MPC power decay constants, respectively.

Then, the measured power delay profile (PDP) vector P is considered as the

given signal, and the convex optimization is used to recover an original signal vec-

tor P̂, which is assumed to have the formulation (2.6). Furthermore, re-weighted l1

minimization [28], which employed the weighted norm and iterations, is performed

to enhance the sparsity of the solution.

Finally, based on the enhanced sparsity of P̂, clusters are identified from the curve

of P̂. Generally, each cluster appears as a sharp onset followed by a linear decay, in

the curve of the P̂ on a dB-scale. Hence, the clusters can be identified based on this

feature, which can be formulated as the following optimization problem:

min
P̂

‖P − P̂‖2
2 + λ‖�2 · �1 · P̂‖0 (2.7)
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where ‖ · ‖x denotes the lx norm operation, and the l0 norm operation returns the

number of nonzero coefficients. λ is a regularization parameter, and �1 is the finite-

difference operator, which can be expressed as
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where N is the dimension of P and P̂, �τ is the minimum resolvable delay difference

of data. �2 is used to obtain the turning point at which the slope changes significantly

and can be expressed as

�2 =

⎛
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⎜
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(2.9)

Note that λ‖�2 · �1 · P̂‖0 in (2.7) is used to ensure that the recovered P̂ conform

with the anticipated behavior of A2 in (2.6). In this case, even a small number of

clusters can be well identified by using the described algorithm. Moreover, [26] also

incorporates the anticipated behavior of A1 in (2.6) into P̂ by using a clustering-

enhancement approach.

The details of the implementation of the sparsity-based clustering algorithm can

be found in [26]. To evaluate the performance, Figure 2.6(a) gives the cluster identifi-

cation result by using the sparsity-based algorithm, while (b) and (c) give the results

by using KMeans and KPowerMeans approaches, respectively. It can be seen that

the clusters identified by the sparsity-based algorithm show more distinct features,

where each cluster begins with a sharp power peak and ends with a low power valley

before the next cluster. This feature well conforms to the assumption of the cluster

in the SV model. On the other hand, as shown in Figure 2.6(b) and (c), the KMeans

and KPowerMeans tend to group the tail of one cluster into the next cluster, which

may lead to the parameterized intra-cluster PDP model having a larger delay spread.

More details and further analysis can be found in [26].
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Figure 2.6 Example plots of PDP clustering in [26], where (a) gives the cluster

identification result by using the sparsity-based algorithm, (b) and (c)

give the results by using KMeans and KPowerMeans approaches,

respectively. Different clusters are identified by using different colors,

where the magenta lines represent the least squared regression of

PDPs within clusters

2.3.3 Kernel-power-density-based clustering

In this section, the framework of the Kernel-power-density (KPD)-based algorithm is

introduced, which was described in [29,30] to cluster the MPCs in MIMO channels.

In this algorithm, the Kernel density of MPCs is adopted to characterize the modeled

behavior of MPCs, where the powers of MPCs are also considered in the clustering

process. Moreover, the relative density is considered, using a threshold to determine

whether two clusters are density reachable.

To better elaborate, an example [29] is given in Figure 2.7, where (a) shows the

measured MPCs, (b) shows the estimated density ρ, (c) shows the estimated density

ρ∗, and (d) gives the final clustering results by using the KPD algorithm. The details

are introduced as follows:

1. The KPD-based algorithm identifies clusters by using the Kernel density to iden-

tify the clusters; therefore, the density needs to be calculated first. For each MPC

x, the density ρ with the K nearest MPCs can be obtained as follows:

ρx =
∑

y∈Kx

exp(αy) × exp

(

−|τx − τy|2
(στ )2

)

× exp

(

−|�T ,x − �T ,y|
σ�T

)

× exp

(

−|�T ,x − �T ,y|
σ�T

)

× exp

(

−|�R,x − �R,y|
σ�R

)

(2.10)

where y is an arbitrary MPC (y �= x). Kx is the set of the K nearest MPCs for the

MPC x. σ(·) is the standard deviation of the MPCs in the domain of (·). Specif-

ically, past studies have modeled with good accuracy the intra-cluster power

angle distribution as Laplacian distribution [31]; therefore, the Laplacian Kernel

density is also used for the angular domain in (2.10).
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Figure 2.7 Illustration of KPD clustering using the measured MPCs: Part (a)

shows the measured MPCs, where the color bar indicates the power of

an MPC. Part (b) plots the estimated density ρ, where the color bar

indicates the level of ρ. Part (c) plots the estimated density ρ∗, where

the color bar indicates the level of ρ∗. The eight solid black points

are the key MPCs with ρ∗ = 1. Part (d) shows the clustering results

by using the KPD algorithm, where the clusters are plotted with

different colors

2. In the next step, the relative density ρ∗ also needs to be calculated based on the

obtained density ρx, which can be expressed as

ρ∗
x = ρx

maxy∈Kx∪{x}{ρy}
. (2.11)

Figure 2.7 shows an example plot of the relative density ρ∗. Specifically, the

relative density ρ∗ in (2.11) can be used to identify the clusters with relatively

weak power.

3. Next, the key MPCs need to be obtained. An MPC x will be labeled as key MPC

x̂ if ρ∗ = 1:

�̂ = {x|x ∈ �, ρ∗
x = 1}. (2.12)
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In the described algorithm, the obtained key MPCs are selected as the initial

cluster-centroids. Figure 2.7(c) gives an example of the key MPCs, which are

plotted as solid black points.

4. The main goal of the KPD algorithm is to cluster MPCs based on the Kernel den-

sity, therefore, for each non-key MPC x, we define its high-density-neighboring

MPC x̃ as

x̃ = arg min
y∈�,
ρy>ρx

d(x, y) (2.13)

where d represents the Euclidean distance. Then, the MPCs are connected based

on their own high-density-neighboring x̃ and the connection is defined as

px = {x → x̃} (2.14)

and thus a connection map ζ1 can be obtained as follows:

ζ1 = {px|x ∈ �}. (2.15)

In this case, the MPCs that are connected to the same key MPC in ζ1 are grouped

as one cluster.

5. For each MPC, the connection between itself and its K nearest MPCs can be

expressed as follows:

qx = {x → y, y ∈ Kx} (2.16)

where another connectedness map ζ2 can be obtained, as follows:

ζ2 = {qx|x ∈ �}. (2.17)

In this case, two key MPCs clusters will be merged into a new cluster if the following

criteria are met:

● The two key MPCs are included in ζ2

● Any MPC belonging to the two key MPCs’ clusters has ρ∗ > χ

where χ is a density threshold. As shown in Figure 2.7(c), clusters 2 and 3, 6 and 7

meet the conditions and are merged into new clusters, respectively.

To validate the performance of the clustering result, the F-measure is used in [29],

where the precision and recall of each cluster are considered. It is noteworthy that the

validation by using F-measure requires the ground truth of the cluster members. Gen-

erally, the ground truth is unavailable in measured channels; hence, the F-measure

can be only applied for the clustering result of simulated channel, for which the

(clustered) MPC generation mechanism, and thus the ground truth, is known. The

3GPP 3D MIMO channel model is used to simulate the channels in [29], and 300

random channels are simulated to validate the performance of the KPD-based algo-

rithm, where the conventional KPowerMeans [13] and DBSCAN [32] are shown as

comparisons. Figure 2.8 depicts the impact of the cluster number on the F-measure,

where the described algorithm shows better performance than the others, especially

in the scenarios containing more clusters, and the clustering performances of all three

reduce with the increasing number of clusters.
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Figure 2.9 Impact of cluster angular spread on the F measure in [29]

Figure 2.9 shows the impact of the cluster angular spread on the F-measure of the

three algorithms. It is found that the F-measure generally decreases with the increasing

cluster angular spread, where the KPD-based algorithm shows the best performance

among the three candidates. Further validation and analysis can be found in [29].
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2.3.4 Time-cluster-spatial-lobe (TCSL)-based clustering

This section describes the time-cluster (TC)-spatial-lobe (SL) (TCSL) algorithm

described in [33] for 3D-millimeter-wave statistical channel models, where the

NYUSIM channel simulator [34] is implemented. A comparison to measured field

data yielded a fit to 2D and 3D measurements using the TCSL algorithm, and it is

found thatTCSL can well fit the measurement data from urban NYC at mmWave using

directional antennas with a lower complexity structure compared to other classical

joint time-space modeling approaches [33,35–38]. The TCSL approach uses a fixed

intercluster void interval representing the minimum propagation time between likely

reflection or scattering objects. The framework of the TCSL algorithm is described

in the following subsection.

2.3.4.1 TC clustering

In [33], the TCs are defined as a group of MPCs that have similar runtime and sepa-

rated from other MPCs by a minimum interval, but which may arrive from different

directions. Specifically, the minimum intercluster void interval is set to 25 ns. In other

words, the MPCs whose inter-arrival time is less than 25 ns are considered as one

TC; otherwise, they are considered as different TCs. Besides, the propagation phases

of each MPC can be uniform between 0 and 2π . The choice of different intercluster

voids results in different number of clusters in the delay domain; to be physically

meaningful, this parameter needs to be adapted to the environment of observation.

2.3.4.2 SL clustering

Meanwhile, SLs are defined by the main directions of arrival/departure of the signal.

Since the TCSL is based on measurements without HRPE of the MPCs, the angular

width of an SL is determined by the beamwidth of the antenna (horn or lens or phased

array) and measured over several hundred nanoseconds. A −10 dB power threshold

with respect to the maximum received angle power is set in [33] to obtain the SLs

(again, different thresholds might lead to different clusterings).

By applying the TCs and SLs, the MPCs in the time-space domain are decoupled

into temporal and spatial statistics. Since the SLs and TCs are obtained individually,

it is possible that a TC contains MPCs which belong to different SLs. On the contrary,

an SL may contain many MPCs which belong to different TCs. These cases have

been observed in real-world measurements [35–37], where the MPCs in the same TC

may be observed in different SLs, or the MPCs in the same SL may be observed in

different TCs.

The TCSL-clustering approach has low complexity, and some of its parameters

can be related to the physical propagation environment [33]. However, it requires

some prior parameters, such as the threshold to obtain the SLs, the delays and power

levels of TC.

2.3.5 Target-recognition-based clustering

As we mentioned before, many current clustering algorithms for channel modeling

are based on the characteristics of the MPCs, which are extracted by using HRPE
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algorithms, e.g., SAGE or CLEAN. However, performing the high-resolution esti-

mation is time-consuming, and usually requires selection of algorithm parameters

such as model order. Hence, some research focuses on the alternative approaches that

require much lower computational effort.

For example, a power angle spectrum-based clustering and tracking algorithm

(PASCT) is described in [39]. The PASCT algorithm first obtains the PAS by using a

Bartlett (Fourier) beamformer [20], as shown in Figure 2.10. In this case, the cluster is

defined as an “energy group,” which has obvious higher power than the background,

in the azimuth-elevation domain.

Generally, to recognize the clusters from the PAS, we need to distinguish between

clusters and background. Clusters close to each other tend to be identified as one big

target (called a target object), which contains one or more clusters. In this case, to

further identify clusters in the big target objects, a density-peak-searching method is

developed to divide the clusters. The details of the clustering process are as follows.

To recognize the target objects in PAS, the maximum-between-class-variance

method [40] is applied to automatically determine a selection threshold of power for

the elements in the PAS. This can separate the target objects from background noise

at first stage. The between-class-variance of the average power levels of background

noise and target objects can be expressed by

δ2(α′
T ) = pB(α′

T )(eB(α′
T ) − E(α′

i))
2 + pO(α′

T )(eO(α′
T ) − E(α′

i))
2, (2.18)

where α′
T is the separation threshold between the clusters and background noise,

pB(α′
T ) and pO(α′

T ) are the probabilities of the background noise and target objects

occurrence in the current PAS, respectively, eB(α′
T ) and eO(α′

T ) are the average power

levels of background noise and target objects, respectively, and E(α′
i) is the total mean

power level of all the elements in the PAS.

The difference between background noise and groups of clusters can be max-

imized by maximizing the between-class-variance, and the best selection threshold

α′
T

∗
can be therefore expressed as

α′
T

∗ = arg{max δ2(α′
T )|α′

1 ≤ α′
T < α′

L}. (2.19)
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Figure 2.10 PAS obtained by using Bartlett beamformer in [39]
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Since the number of the power levels is limited, α′
T

∗
can be easily found by a sequential

search.

Nevertheless, the signal to interference plus noise ratio of the PAS has a strong

impact on the performance of the target recognition. In an LOS scenario, the clusters

are generally easily discernible, with strong power and low background noise, i.e.,

the targets can be easily recognized and detected. However, in many NLOS scenar-

ios, the power distribution of the PAS is more complicated with high background

noise, and many small clusters caused by reflections and scatterings interfere with

the recognition process. In this case, the targets that contain many small clusters are

difficult to be separated. To avoid this effect, an observation window �α′
W is set so that

only the elements having the power level between [α′
L − �α′

W , . . . , α′
L] are processed

in the target recognition approach. In this case, the best selection threshold α′
T

∗
is

obtained by

α′
T

∗ = arg{max δ2(α′
T )|α′

L − �α′
W ≤ α′

T < α′
L}. (2.20)

By using the observation window, the recognition process can focus on the ele-

ments with stronger power compared to the noise background. Moreover, a heuristic

sequential search is used to select an appropriate observation window size �α′
W as fol-

lows. Parameter �α′
W is initialized to 0.1α′

L at the beginning of the searching process

and keeps increasing until the following constraints are no longer satisfied:

● Size of recognized targets: S < Smax

● Power gap of each single target: �A < �Amax

where S is the size of the recognized targets indicating how many elements the target

consists of and Smax is the upper limit of size. Specifically, to avoid the interference

caused by the small and fragmental targets, the lower limit of the size is also consid-

ered: only a target bigger than Smin is counted, whereas the target smaller than Smin is

considered as noise rather than clusters. Parameter �A is the gap between the highest

power and the mean power of each target. In each iteration, S and �A are updated

based on the recognized target objects by using the new α′
T

∗
from (2.20), until the

above constraints are no longer satisfied.

Examples for the clustering results in an LOS and NLOS scenarios are given in

Figure 2.11(a) and (b), respectively. In the experiments in [39], the PASCT algorithm

is able to well recognize the clusters in time-varying channels without using any

high-resolution estimation algorithm.

2.3.6 Improved subtraction for cluster-centroid initialization

As mentioned in Section 2.3.1, the initial values of the positions of cluster-centroids

have a great impact on the clustering results. Hence, a density-based initialization

algorithm is developed in [41] to find an appropriate number and positions of the

initial cluster-centroids. Once those are determined, the KPowerMeans algorithm

[13] can be initiated to cluster the MPCs, and the position of the cluster-centroid is

updated in each iteration. It is noteworthy that the MPC closest to an initial cluster-

centroid is considered the initial power weighted centroid position in KPowerMeans.
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Figure 2.11 Cluster recognition results of the (a) LOS scenario and (b) NLOS

scenario, respectively, in [39]

To accurately measure the distance between MPCs, the BMCD (balanced multipath

component distance) [41] is used here. The main difference between the BMCD and

MCD is that the BMCD introduces additional normalization factors for the angular

domains. The normalization factors are calculated as

δAoD/AoA = 2 · stdj(dMCD,AoD/AoA(xj, x̄))

max2
j (dMCD,AoD/AoA(xj, x̄))

, (2.21)

where stdj is the standard deviation of the MCD between all MPC positions xj and

the center of data space x̄, and maxj is the corresponding maximum.

The concrete steps of the improved subtraction are expressed as follows:

1. Calculate the normalized parameter β:

β = N
∑N

j=i dMPC(xj, x̄)
, (2.22)

where N is the total number of MPCs and dMPC(xj, x̄) is the BMCD between xj

and x̄.
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2. Calculate the density value for each MPC xi:

Pm
j =

N
∑

j=1

exp(−mT · β · dMPC(xj, x̄)) (2.23)

where mT · β scales the actual influence of neighboring MPCs and its inverse is

called neighborhood radius. For measurement data, it is more practical to find

the appropriate radii for DoA, DoD, and delay dimension separately. Hence, both

m and d vectors contain three components:

dMPC(xi, xj) = [dMPC,DoA((xi, xj)), dMPC,DoD((xi, xj)), dMPC,delay((xi, xj))]
T . (2.24)

3. The points xk with the highest density value are selected as the new cluster-

centroids if their density value is above a certain threshold. Stop the iteration if

all density values are lower than the threshold.

4. Subtract the new centroid from the data by updating the density values:

Pm
i = Pm

i − Pm
k · exp(−η · mT · β · dMPC(xi, xk )), (2.25)

where η ∈ (0, 1] is a weight parameter for the density subtraction. Return to

step 3.

Then, the number and position of the initial cluster-centroids can be determined,

and the KPowerMeans can be initialized with these values.

Specifically, to find a proper neighborhood radius, the correlation self-

comparison method [41] is used. The detailed steps are

1. Calculate the set of density values for all MPCs Pml for an increasing ml , where

ml ∈ {1, 5, 10, 15, . . .}, and the other components in m are set to be 1.

2. Calculate the correlation between Pml and Pml+1 . If the correlation increases

above a preset threshold, ml here is selected as the value for m in this dimension.

2.3.7 MR-DMS clustering

MR-DMS (multi-reference detection of maximum separation) [42] is developed based

on the hierarchical cluster method, which first clusters all elements into one single

cluster and then further separates the cluster into more smaller clusters. Specifically,

the distances between all MPCs of a cluster seen from multiple reference points are

measured, and the MPC group with the biggest distance is separated into two clusters.

Besides, the BMCD introduced in Section 2.3.6 is used in [42] to measure the distance

between MPCs and reference points. In this study, the optimum number of the clusters

can be obtained by different ways: (i) using cluster validation indices, e.g., Xie–Beni

index [43], to validate different clustering results or (ii) predefine a threshold for the

separation process.

2.3.7.1 Cluster the MPCs

The concrete steps of the MR-DMS are as follows:

1. Spread N reference points over the data space. (e.g., N = 16).

2. Cluster all MPCs as single one cluster C1.
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3. Compare the current cluster number CN and the maximum cluster number CN ,max,

if CN < CN ,max: for each recent cluster Ck , and calculate the BMCDs between

all MPCs xi in the current cluster and the reference points rn according to

dk
n(i) = dMPC(xi, rn). (2.26)

4. Sort the obtained BMCDs dk
n(i) in ascending order.

5. Calculate the derivative (dk
n(i))′, which is the real distance between MPCs in the

kth cluster and the nth reference point.

6. Separate the MPCs in the current cluster, which have maximum BMCD over all

MPCs and the reference max
k ,n,i

(dk
n(i))′.

7. Update the number of current clusters CN and return to step 3.

2.3.7.2 Obtaining the optimum cluster number

The optimum cluster number can be determined by using the cluster validation

indices or a predefined threshold during the separation stage. The implementation

of the cluster validation indices is introduced in Section 2.3.1; thus, the threshold to

automatically detect a proper cluster number is explained in the below.

During the separation of MPCs in step 6, only the MPCs whose maximum deriva-

tive (dk
n(i))′ exceeds a certain threshold for at least one reference point are considered

for separation. In [42], an example of a dynamic threshold is defined by considering

the distribution of (dk
n(i))′:

thk
n = mean((dk

n(i))′) + α · std(((dk
n(i))′)), (2.27)

where α is a weight parameter. Consequently, for each cluster, only the MPCs which

have a BMCD significantly larger than the others in the same cluster are considered

to be separated. The separation is stopped if all MPCs in the clusters are below the

threshold.

Figure 2.12 compares the accuracy of detecting the cluster number by using the

improved subtraction algorithm in [41] and the MR-DMS in [42]. In the validation,

over 500 drops of the WINNER channel model scenario “urban macro cell” (C2)

are tested. In addition, two different scenarios are used where the cluster angular

spread of arrival (ASA) is varied (ASA ={6◦, 15◦}). From the results, the MR-DMS

achieves better performance in detecting the correct cluster number than the improved

subtraction algorithm.

Moreover, Figure 2.13 gives azimuth of AoA/AoD and delay domain clustering

results based on a MIMO measurement campaign in Bonn, where Figure 2.13(a) and

(b) is obtained by using the improved subtraction algorithm together with a run of

KPowerMeans and the MR-DMS algorithm, respectively. Details of the measurement

campaign can be found in [44], and the MPCs are extracted by using the RiMAX

algorithm.
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2.4 Automatic MPC tracking algorithms

To accurately model time-varying channels, the dynamic changes of the MPCs and

clusters need to be characterized. To achieve this, the dynamic MPCs need to be not

only clustered but also tracked over time to model the channel [45,46]. Unfortunately,

the true moving paths of the MPCs can never be obtained since the MPCs are indi-

vidually extracted from each snapshot if single-snapshot evaluation algorithms such

as SAGE or CLEAN are used. Therefore, many automatic tracking algorithm have

been described for searching the most likely moving paths among MPCs/clusters. In

this section, we present some machine-learning-based tracking algorithms used for

channel modeling.

2.4.1 MCD-based tracking

A tracking method for MPCs needs to capture the moving feature of the clusters/MPCs

considering the trade-off between tracking accuracy and computational complexity.

The MCD-based tracking method [47,48] aims to track the MPCs in time-varying

channels by measuring the MCD between each combination of MPC/cluster in two

consecutive snapshots. Note that the MCD between different clusters is defined as

the MCD between the cluster-centroids. The basic idea of the MCD-based tracking

algorithm is expressed as follows:

1. Preset a threshold PT based on measured data.

2. Measure the distance between MPCs:

DMPCi ,MPCj
= MCD(MPCi, MPCj), MPCi ∈ St , MPCj ∈ St+1 (2.28)

where St is the set of MPCs in the snapshot st , and St+1 is the set of MPCs in the

next snapshot.

3. Associate MPCs in the snapshots st and st+1 based on the DMPCi ,MPCj
and PT,

where
● if DMPCi ,MPCj

< PT, the two MPCs are considered as the same MPC, as shown

as the MPCi and MPCj in Figure 2.14(a);
● if DMPCi ,MPCj

> PT, the two MPC clusters are considered as different MPCs,

as shown as the MPCi and MPCk in Figure 2.14(a);
● if there are more than two MPCs in St+1 that are close to MPCi in St , MPCi

is considered to be split in the next snapshot, as shown in Figure 2.14(b);
● if there are more than two MPCs in St close to MPCi in St , MPCi and MPCj

are considered to be merged in the next snapshot, as shown in Figure 2.14(c);

One of the advantages of the MCD-based tracking algorithm is its low compu-

tational complexity, which can be used for complicated scenarios containing many

MPCs. Moreover, the behavior of the dynamic MPCs is properly considered in the

MCD-based tracking algorithm, including split, merge, and birth–death of MPCs,

which all correspond to realistic physical behavior. On the other hand, the value of

the preset threshold has a great impact on the tracking results of the algorithm. Hence,

the subjective threshold may cause unreliable performance.



90 Applications of machine learning in wireless communications

A
o

A

AoD

Preset

threshold
MPCi in

snapshot t  

MPCj in

snapshot t+1  
Tracking

result 

MPCk in

snapshot t+1  

(a)

A
o

A

AoD

Preset
threshold 

MPCk in

snapshot t+1 

(b)

A
o

A

AoD

Preset
threshold 

MPCi in

snapshot t  

(c)

MPCi in

snapshot t  

MPCj in

snapshot t  

MPCj in

snapshot t+1  

MPCk in

snapshot t+1  

Figure 2.14 MCD-based tracking algorithm (a) gives the principle of tracking

process, whereas (b) and (c) shows the cases of split and mergence,

respectively

2.4.2 Two-way matching tracking

The two-way matching tracking algorithm is proposed in [45,46] for time-varying

channels. It requires the estimated MPCs, which can be extracted by using an HRPE

algorithm, and uses the MCD to measure the difference between MPSs. In addition,

this tracking algorithm introduces a two-way matching process between two consec-

utive snapshots to improve the tracking accuracy. The main steps of the two way

matching can be expressed as follows:

1. Obtain the MCD matrix D by calculating the MCD between each MPC during

two consecutive snapshots. For two snapshots s and s + 1, the MCD matrix D

can be expressed as

D =

⎡

⎢
⎢
⎣

D1,1 . . . D1,N (s+1)

...
. . .

...

DN (s),1 . . . DN (s),N (s+1)

⎤

⎥
⎥
⎦

(2.29)

where N (s) and N (s + 1) is the number of the MPCs in snapshots s and s + 1,

respectively.
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2. MPCs x in snapshot s and y in snapshot s + 1 are considered as the same MPC

if the following condition is satisfied:

Dx,y ≤ ε (2.30)

x = arg min
x

(Dx∈s,y) (2.31)

y = arg min
y

(Dx,y∈s+1) (2.32)

where ε is a preset threshold to determine whether the two MPCs in consecutive

snapshots could be the same MPC.

3. Matching all MPCs between snapshots s and s + 1, the matched MPC pairs are

considered as the same MPC; the remaining MPCs in snapshots s and s + 1 are

considered as dead and new born MPC, respectively.

4. Repeat the preceding steps 1, 2, and 3 for the current and next snapshots.

One of the advantages of the two-way matching is low computation complexity,

which makes it easy to implement for massive data, e.g., V2V channel measure-

ment data. The described algorithm is implemented in [45] for V2V measurements,

where it is found that only the MPCs with similar delay and angular characteristic are

considered as the same MPCs.

2.4.3 Kalman filter-based tracking

Kalman filtering is one of the most popular machine-learning methods used for target

tracking. Therefore, [15] described a cluster-tracking algorithm based on Kalman

filters. It is noteworthy that the Kalman filter-based tracking algorithm is used for

tracking cluster-centroids, instead of MPCs. The framework of the Kalman filtering

is given in Figure 2.15, where μ(n)
c is the cluster-centroid position in the angle domain

or angle-delay domains, x(n)
c are the tracked objects in the input data: angle-delay

vector (X(n)), power (P(n)), and n is the index of the snapshot.

For each iteration, the position of the cluster-centroid in the next snapshot is

predicted by the Kalman filter based on the current position, and the predicted

cluster-centroids are used for the clustering method, e.g., KPowerMeans, for the

next snapshot.

Kalman

prediction

Next

snapshot
Kalman

update
Initial

guess

Clustering

algorithmxc
(n|n–1)

X(n),P(n)

xc
(n|n)

xc
(n|n–1) xc

(n|n–1)

μc
(n)

Figure 2.15 Framework of the Kalman filter, where x(n)
c are tracked objects in the

input data (X(n), P
(n))
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Figure 2.16 Illustration of the tracking result in [15]

Figure 2.16 gives the tracking result in [15]. For a single target, the Kalman

filter-based tracking algorithm can achieve high tracking accuracy. To track multiple

targets, the Kalman filter can be replaced by a particle filter [49].

2.4.4 Extended Kalman filter-based parameters estimation
and tracking

In this section, we discuss an extended Kalman filter-based parameters estimation

and tracking algorithm [14,50,51] to capture the dynamics of the channel parameters

in time with a low computational complexity. A state-space model is proposed in [51],

which is based on the assumption that the parameters are evolved slowly over time

and correlated in consecutive time instances.

In the state-space model, the state vector consists of normalized delay μτ
k ,p, the

normalized AoA μ
ϕ

k ,p, and the path weight including the real part γ Re
k ,p and imaginary

part γ Im
k ,p. Consequently, the state model of the pth path at time k can expressed as

θk , p =
[

μτ
k ,p, μ

ϕ

k ,p, γ Re
k ,p, γ Im

k ,p

]T

. (2.33)

It is noteworthy that this model can be extended to contain additional parameters.

Let the θk denote the state model of all MPCs at time k , then the state model can be

rewritten as

θk = �θk + νk (2.34)

yk = s(θk ) + ny,k (2.35)

where yk is the observation vector, ny,k is the complex vector containing dense MPCs

and noise, s(θk ) is the mapping function between θk and yk , � is the state transition
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matrix. Specifically, all the parameters in the state model are assumed to be uncorre-

lated with each other. In other words, each parameter evolves independently in time

and the state noise, which is additive real white Gaussian while the observation noise

is circular complex white Gaussian, is also assumed to be uncorrelated with each other

and the state. For each path, the covariance matrix of the state noise is represented by

Qθ ,p = diag{σ 2

μ(τ ) , σ
2

μ(ϕ) , σ
2
γ Re , σ 2

γ Im}, whereas the covariance matrix of the observation

noise is denoted by Ry.

Considering the estimated parameters are real, the EKF equations can be

expressed as

θ̂(k|k−1) = �θ̂(k−1|k−1) (2.36)

P(k|k−1) = �P(k−1|k−1)�
T + Qθ (2.37)

P(k|k) =
(

J(θ̂ , Rd) + P−1
(k|k−1)

)−1

(2.38)

K(k) = P(k|k−1)

[

I − J(θ̂ , Rd)P(k|k)

]

·
[

R{R−1
y D(k)}

I {R−1
y D(k)}

]T

(2.39)

θ̂(k|k) = θ̂(k|k−1) + K(k)

[

R{yk − s(θ̂(k|k−1))}
I {yk − s(θ̂(k|k−1)}

]T

(2.40)

where R(•) and I (•) denotes the real and imaginary parts of •, respectively, P(k|k)

is the estimated error covariance matrix, J(θ̂ , Rd) = R{DH
(k)R

−1
y D(k)}, and D is the

Jacobian matrix. For P paths containing L parameters, D can be expressed as

D(θ ) = ∂

∂θT
s(θ ) =

[
∂

∂θT
1

s(θ ) · · · ∂

∂θT
LP

s(θ )

]

. (2.41)

Apparently, the initialization value of parameters for the state transition matrix �

and the covariance matrix of the state noise Qθ are crucial to the performance of the

following tracking/estimation for the EKF.Therefore, it is suggested in [51] to employ

another HRPE algorithm, e.g., SAGE [1], RiMAX [3], for this purpose.

2.4.5 Probability-based tracking

In this section, we discuss a probability-based tracking algorithm [16] to track the

dynamic MPCs in time-varying channels. The algorithm aims to (i) identify the mov-

ing paths of the MPCs in consecutive snapshots and (ii) cluster these MPCs based

on the relationships of moving paths. To track the MPCs, a novel-probability-based

tracking process is used, which is conducted by maximizing the total sum probability

of all moving paths.

In this algorithm, the number of MPCs is assumed to be time-invariant to reduce

the complexity. For each MPC, four parameters are considered: AoD φD, AoA φA,

delay τ and power α. Let A1, . . . , Am and B1, . . . , Bm represent the MPCs in the snap-

shots Si and Si+1, respectively. l represents an ordered pair of the MPCs in consecutive
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snapshots, i.e., lAx ,By is the moving path from Ax to By, between Si and Si+1, as shown

in Figure 2.17(a). In the probability-based tracking algorithm, each moving path lA,B

is weighed by a moving probability P(Ax, By), as shown in Figure 2.17(b).

In the probability-based tracking algorithm, the moving paths are identified

by maximizing the total probabilities of all selected moving paths, which can be

expressed as

L∗ = arg max
L⊂L

∑

(Ax ,By)∈L

P(Ax, By) (2.42)

where L is the selected set of the moving paths and L is the set of all moving

paths. Then, the moving probability P(Ax, By) is obtained by using the normalized
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Figure 2.17 Illustration of the moving paths between two consecutive snapshots

in [16], where (a) is delay and azimuth domain and (b) is bipartite

graph domain
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Euclidean distance DAx ,By of the vector of parameters [φD, φA, τ , α], which can be

expressed as

P(Ax, By) =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

1 DAx ,By = 0,

0 DAx ,Bz = 0, y �= z,

1

DAx ,By

∑M

z=1 D−1
Ax ,Bz

others.

(2.43)

To identify the sets of true moving paths L∗, the Kuhn–Munkres algorithm is

executed, which is usually used to find the maximum weighted perfect-matching

in a bipartite graph of a general assignment problem. In the bipartite graph, every

node in two subsets links to each other and every link has its own weight. In this

algorithm, the MPCs in two successive snapshots are considered as the two subsets in

the bipartite graph, and the moving paths between each snapshot are considered as the

links between two subsets. which is weighted by P(Ax, By), as shown in Figure 2.17(b).

In this case, the true moving paths can be recognized.

After obtaining the moving paths of all MPCs, a heuristic approach is developed

to cluster these MPCs with the purpose of comparing the moving probability of the

MPCs in the same snapshot with a preset threshold PT . The basic idea of the clustering

process is to group the MPCs with similar moving probabilities, which means their

moving patterns are close to each other, e.g., if P(Ax, By) and P(Ax, Bz) are greater

than PT , it indicates that the MPCs By and Bz are fairly similar and estimated to belong

to the same cluster. The clustering process can be expressed as

Kx = {By|P(Ax, By) > PT, A ∈ Si, B ∈ Si+1}. (2.44)

According to the simulations in [16], PT is suggested to be set to 0.8. From

(2.44), different Ax in Si may lead to different clustering results. In this case, the result

with the most occurrences is selected, e.g., if K1 = {B1, B2}, K2 = {B1, B2, B3}, K3 =
{B1, B2, B3}, then K = {B1, B2, B3}.

2.5 Deep learning-based channel modeling approach

In this section, we present some learning-based channel-modeling algorithms. An

important advantage of many machine-learning methods, especially artificial neural

networks, is to automatically obtain the inherent features of input data and to find

the mapping relationship between input and output. On the other hand, the purpose

of wireless channel modeling is to accurately model MPCs in wireless channels,

and on some level, it aims to find the mapping relationship between the channel

parameters and the scenarios. Inspired by this, a number of papers have investigated

channel-modeling using neural networks.



96 Applications of machine learning in wireless communications

2.5.1 BP-based neural network for amplitude modeling

As early as 1997, [18] adaptively modeled nonlinear radio channels by using the odd

and even BP algorithm for multilayer perceptron (MLP) neural networks. The BP

algorithm is a classical algorithm for data training in neural networks; its flowchart

is given in Figure 2.18.

The SV model [7] is adopted in [18] as a comparison, the simulation result is

given in Figure 2.19.

Considering the advantages of neural network on regression problems, a multi-

layer neural network is used to find the mapping relationship between frequency and

amplitude, where the architecture of the neural network is shown in Figure 2.20. For

most of the neural networks, there are three parts in the framework: (i) input layer,

(ii) hidden layer, and (iii) output layer. The measured data are used as training data,

where the system input and output of the neural network are frequency and amplitude,

respectively, and the sub-output of each layer is the sub-input of the next layer in the

hidden layers. Through several iterations, the weight parameters of each layer can

be obtained; thus, the mapping function between the system input and output can be

modeled.

2.5.2 Development of neural-network-based channel modeling

Due to the good performance of finding mapping relationships, neural-network-based

channel modeling has drawn a lot of attention. For a classical architecture of the neural

network, the performance is related to the number of layers, and each layer is designed

to classify basic elements. Theoretically, a neural network with more layers can thus

achieve better performance. However, a neural network with too many layers leads

to another problem: vanishing gradient. In the training process of a neural network,

the difference between the system output and training data is assessed and fed back

to the upper layer to adjust the weight parameters.

In a multilayer network, the feedback obviously has more influence on the layers

closest to the system output and has a fairly limited influence on the layers at the

front end. Nevertheless, the layers at the front end usually have a great effect on

the final performance. As a result, the feedback in each iteration cannot be well

transmitted to the front layers, as shown in Figure 2.21. Hence, the performance

of the multilayer neural network can suffer. Besides, a multilayer neural network

has high computational complexity, which was prohibitive given the limitations of

the hardware at that time of that paper. Therefore, neural-network-based channel

modeling gradually disappeared from public view.

To avoid the vanishing gradient, [52] proved that a three-layer MLP neural net-

work can be multidimensionally approximated as an arbitrary function to any desired

accuracy, which is important and useful for modeling a mapping function. Since there

are only three layers in this network, the vanishing gradient does not impact the per-

formance during the training process. In this case, a three-layer MLP neural network

can be adopted for many channel-modeling applications without the limitation of

vanishing gradients.



Machine-learning-enabled channel modeling 97

Initialized

Give a input vector and

a target output 

Calculate every unit output

of the hidden layer and the

output layer  

Calculate warp value which

subtracted the target value from

the actual output  

Whether warp value 

is satisfied with the 

desire

Whether all warp 

values are satisfied

with the desire

Calculate the unit

error of the hidden

layer  

No

No

Calculate the error

grades 

Weight value

learning 

End

Yes

Figure 2.18 Flowchart of BP algorithm



98 Applications of machine learning in wireless communications

1.5

1

Measured data

Hetrakul–Taylor model

Saleh model

MSE = 1.60×10–3

MSE = 5.20×10–4

MSE = 2.63×10–4

NN model

0.5

0

–0.5

–1

–1.5
–6 –4 –2 0 2 4

Input amplitude

6

Figure 2.19 Simulation result of the comparison of SV model and ANN-based

model in [18]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input layer Output layerHidden layer

Figure 2.20 Illustrations of the common architecture of the neural network



Machine-learning-enabled channel modeling 99

Feed back

Hidden layer

Figure 2.21 Demonstration of the vanishing gradient in training process of the

neural network

In addition, there are some other novel frameworks for neural networks which

can avoid the vanishing gradient, e.g., the restricted Boltzmann machines framework

and the deep-learning method described in [53]. Hence, there are some propagation

channel modeling studies, e.g., [54], where the amplitude frequency response of

11 paths is modeled by an MLP neural network.

2.5.3 RBF-based neural network for wireless channel modeling

Reference [19] introduces a RBF neural network for modeling a single nonfading

path with additive white Gaussian noise (AWGN). The RBF neural network can

approximate any arbitrary nonlinear function with any accuracy, just like an MLP

network. However, it has a number of advantages: it only has one hidden layer, and

the number of hidden layer nodes can be adaptively adjusted in the training stage,

whereas the numbers of the hidden layer and the hidden layer nodes for MLP network

is not easily determined. The main framework of the RBF-based neural network is

expressed as follows.

1. RBF neural network: A RBF neural network is a three-layer feedforward net-

work, which contains one input layer, one hidden layer, and one output layer.

The input layer obtains the training data and transmits to the hidden layer. The

hidden layer consists of a group of RBF, and the corresponding center vectors

and width are the parameters of the RBF, where the Gaussian function is usually
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adopted as the basis function. At the end of the network, the out layer receives

the outputs of the hidden layer, which are combined with linear weighting. The

mapping function between the input and output layer can be expressed as

y = f (x) =
m
∑

i=1

ωiφ(‖x − ci‖, σi) =
m
∑

i=1

ωi exp

∣
∣
∣−

‖x − ci‖
2σ 2

i

∣
∣
∣ (2.45)

where the vector x = (x1, x2, . . . , xm) represents the input data of the network, ci

and σi are the mean and standard deviation of a Gaussian function, respectively,

m is the number of hidden layer neurons, ωi is the weight between the link of the

ith basis function and the output node, and ‖ • ‖ is the Euclidean norm.

The training process adjusts, through iterations, the parameters of the network

including the center and width of each neuron in the hidden layer, and the weight

vectors between the hidden and output layer.

2. Channel modeling: To model the radio channel by using a neural network,

the mapping relationship/function between the input, i.e., transmit power and

distance, and the output, receive power and delay, is usually a nonlinear function.

Hence, the goal of the neural-network-based channel modeling is to use the

network to approximate the transmission system, as shown in Figure 2.22.

In [19], the number of RBFs is set to the number of MPCs, to simulate the

transmit signal with different time delays. The output layer gives the received signal.

Besides, the width of the RBF network is obtained by

σ = d√
2M

(2.46)

where d is the maximum distance and M is the number of RBF nodes. In this case,

once the nodes and width of RBF network are determined, the weights of the output

layer can be obtained by solving linear equations.
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∑
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Figure 2.22 The wireless channel based on RBF neural network
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Furthermore, the BP-based network model is compared with the RBF-based

network model in [19]. A multipath channel with AWGN is simulated, where the

results are given in Figure 2.23. From the simulation results, the RBF-based network

model generally shows better accuracy than the BP-based network model.

Similarly, a neural network is also used in [55] to model the path loss in a mine

environment, where the frequency and the distance are considered as the input data,

and the received power is considered as output. The framework of the neural network

is given in Figure 2.24, which contains two input nodes, 80 hidden nodes, and one

output node. W1f and W2f are the weight parameters between the input layer and

hidden layer, whereas wjk and wNk are the weight parameters between the hidden and

output layers.

2.5.4 Algorithm improvement based on physical interpretation

The high accuracy and flexibility make neural networks a powerful learning tool for

channel modeling. Due to good learning ability and adaptability, neural networks are

expected not only to model the channel of one single scenario but also to model

the channels of multiple scenarios, as shown in Figure 2.25. Despite these high

expectations, there are still many problems that need to be discussed and studied.

Based on past research, artificial intelligence has shown great power for the

development of channel modeling, whether as a preprocessing tool or a learning tool.

However, the difference between the two fields of artificial intelligence and chan-

nel modeling still needs to be considered. Although machine-learning approaches
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generally have good performance at data processing, these approaches can be further

improved by considering the physical characteristics of channel parameters. For exam-

ple, KMeans is a good conventional clustering algorithm for data processing, and the

KPowerMeans in [13] is further developed by combining the physical interpretation
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of the power of MPCs with KMeans, thus improving performance for clustering of

MPCs than merely using the KMeans. Moreover, the development of MCD is another

example, where the physical characteristics of the MPCs are considered, and the MCD

thus is a more accurate measure of the differences of MPCs than using the Euclidean

distance for channel modeling. As for neural networks, the physical interpretation is

also important to build an appropriate network, e.g., the description of the CIR needs

to be considered while constructing the activation function for the neural network.

In addition, the disadvantages of the adopted machine-learning methods cannot be

neglected, e.g., the KMeans is sensitive to initial parameters; this feature also appears

in the KPowerMeans, e.g., the clustering result is sensitive to the assumed number of

clusters and the position of cluster-centroids. Using the physical meaning of param-

eters of the approaches is a possible way to evade these disadvantages. Hence, the

potential relationship between parameters of machine-learning techniques and phys-

ical variables of the radio channels needs to be further incorporated into the adopted

algorithms to improve accuracy.

2.6 Conclusion

In this chapter, we presented some machine-learning-based channel modeling algo-

rithms, including (i) propagation scenarios classification, (ii) machine-learning-based

MPC clustering, (iii) automatic MPC tracking, and (iv) neural network-based channel

modeling. The algorithms can be implemented to preprocess the measurement data,

extract the characteristics of the MPCs, or model the channels by directly seeking the

mapping relationships between the environments and received signals. The results in

this chapter can provide references to other real-world measurement-based channel

modeling.
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Chapter 3

Channel prediction based on machine-learning
algorithms

Xue Jiang1 and Zhimeng Zhong2

In this chapter, the authors address the wireless channel prediction using state-of-

the-art machine-learning techniques, which is important for wireless communication

network planning and operation. Instead of the classic model-based methods, the

authors provide a survey of recent advances in learning-based channel prediction

algorithms. Some open problems in this field are then proposed.

3.1 Introduction

Modern wireless communication networks can be considered as large, evolving dis-

tributed databases full of context and information available from mobile devices, base

stations, and environment. The wireless channel data in various scenarios including

large-scale and small-scale parameters are one of the important and useful data that

could be used for analyzing and making predictions.

A coverage map is often given as a set of radio measurements over discrete

geographical coordinates and is typically obtained by drive tests. Accurate coverage

maps are crucial for enabling efficient and proactive resource allocation. However, it

is nearly impossible to obtain these maps completely from measurements. Thus, the

coverage loss maps should be reconstructed with the available measurements. A reli-

able reconstruction of current and future coverage maps will enable future networks

to better utilize the scarce wireless resources and to improve the quality-of-service

experienced by the users. Reconstructing coverage maps is of particular importance

in the context of (network-assisted) device-to-device (D2D) communication where

no or only partial measurements are available for D2D channels [1].

As one of the hottest topics all over the world, machine-learning techniques have

been applied in various research fields in recent years including reconstruction of cov-

erage maps. These learning-based reconstruction approaches can be divided into two

categories: batch algorithms and online algorithms. The former one mainly includes

1School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China
2Huawei Technologies Ltd., China
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support vector machines (SVM) [2,3], artificial neural networks (ANN) [2,4], and

matrix completion with singular value thresholding (SVT) [5]. Aside from that,

Gaussian processes [6] and kriging-based techniques [7] have recently been suc-

cessfully used for the estimation of radio maps. In [8], kriging-based techniques

have been applied to track channel gain maps in a given geographical area. The pro-

posed kriged Kalman filtering algorithm allows to capture both spatial and temporal

correlations. These studies use batch schemes as well. In [9], an adaptive online

reconstruction methodology is proposed with adaptive projected subgradient method

(APSM) [10], which is the unique online coverage map reconstruction algorithm

having been employed so far.

This chapter mainly generalizes and reviews the learning-based coverage maps

reconstruction mentioned above. The rest of this survey is organized as follows. Sec-

tion 3.2 introduces methodologies of obtaining measurements. Section 3.3 discusses

the respective traits of batch algorithms and online algorithms. The corresponding

approaches will be studied as well. Section 3.4 comprises of the techniques applied

to label the measurements to get more accurate results. The final section draws the

conclusion of the survey.

3.2 Channel measurements

Before discussing the learning-based algorithms, a set of radio measurements over

discrete geographical coordinates should be obtained. In general, the methodology of

achieving measurements can be divided into two types:

● Conventional drive test: Conventional drive test is a manual process. To collect

network quality information, an operator often needs to send engineers directly

to the concerning area and obtain radio measurements in a hand-operated man-

ner. Typically, a measurement vehicle equipped with specially developed test

terminals, measurement devices, and a global-positioning system receiver to

obtain geographical location is used to check coverage outdoors [11]. With such

measurement vehicle, engineers would perform test calls in the car and record

measurement results along the drive route.
● Minimization of drive test (MDT): The main concept of MDT is to exploit

commercial user equipment (UE) measurement capabilities and geographically

spread nature for collecting radio measurements [12]. This methodology exploits

information from the so-called crowdsourcing applications. With crowdsourc-

ing, a user installs an application on an off-the-shelf smart phone and returns

measurements to a database [13].

Conventional drive test is simple and stable. Nevertheless, this methodology consumes

significant time and human efforts to obtain reliable data, and the cost will ascend

vastly with the studied area getting larger. Thus, it would be more suitable to small-

scale area. MDT is a relatively cost-efficient way to get the measurements, sacrificing

for its stability. The application on users’smart phones would reduce their data budget
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and the battery lifetime of the mobile device. Wide fluctuation of the involved smart

phones’ function might also result in the systematic measurement errors.

3.3 Learning-based reconstruction algorithms

Over the past years, path-loss models in various types of networks have been proposed

and analyzed. Despite the fact that path-loss modeling is useful in many applications,

the deviation between the path loss, measured in a real propagation environment,

and the one given by the model can be large [14]. For this reason, learning-based

reconstruction has been extensively studied since it can be tailored to the specific

environment under consideration and give more accurate results. As mentioned in

the first section, learning-based reconstruction algorithms can be divided into two

categories: batch and online algorithms (Table 3.1).

3.3.1 Batch algorithms

Batch algorithms assume the complete data to be available before performing the

reconstruction algorithm. The performance of batch algorithm is excellent, and the

cost is much cheaper than online algorithms, while storage is needed to store the sam-

ples. The batch algorithms, which have been employed in coverage loss reconstruction,

includes SVM, ANN, and SVT.

3.3.1.1 Support vector machine

SVM was first introduced by Vapnik [16]. One of the main advantages of SVM over

other classical machine-learning techniques (e.g., neural networks) is the absence

of local minima in the optimization problems, the possibility of enforcing sparse

solutions, and the capacity for controlling error margins in the prediction. SVMs

were initially developed for classification tasks, but they have proven to be a powerful

tool for regression problems (i.e., for function approximation problems), so they are

natural candidates for the task of coverage map estimation [2]. In particular, in [2],

an extended feature vector is used to train the SVM, and this feature vector includes

environmental information about transmitters, receivers, buildings, and the transmit

frequency, among others. To counter the curse of dimensionality owing to the high

number of input features, the authors of [3] use a principal component analysis (PCA)

Table 3.1 Representative algorithms for channel

map reconstruction

Type Methods

Batch SVM [2,3], ANN [2,4], matrix completion [5]
Online APSM [10], multi-kernel [15]
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based on dimensionality-reduction techniques. This operation is performed before

applying the SVMs.

The estimate usually assumes the following form by SVM:

ỹ =

m∑

j=1

ωj φj(x) (3.1)

where {φj(x)}m
j=1 is a set of m nonlinear basis functions. The loss function [17] used

for determining the estimate is given by

Lε( ỹ, y) =

{
| ỹ − y| − ε, | ỹ − y| > ε

0, otherwise
(3.2)

with ε being a small value. The problem can be formally stated as

min
1

N

N∑

i=1

Lε( ỹi, yi)

s.t. ‖ω‖ ≤ α

(3.3)

where ω ∈ R
m and α ∈ R+ is an arbitrarily chosen constant parameter. It is possible,

by introducing some slack variables, to reformulate problem (3.3) as follows:

min
ξ i ,ξ̄ i ,ω

1

2
‖ω‖2 + C

N∑

i=1

{ξ i + ξ̄ i}

s.t. yi − ωT φ(xi) ≤ ε + ξ i i = 1, . . . , N

ωT φ(xi) − yi ≤ ε + ξ̄ i i = 1, . . . , N

ξ i, ξ̄ i ≥ 0 i = 1, . . . , N .

(3.4)

Then the dual problem of (3.4) can be considered as

max
αi ,ᾱi

Q(αi, ᾱi) =

N∑

i=1

yi(αi − ᾱi) − ε

N∑

i=1

(αi + ᾱi)

−
1

2

N∑

i=1

N∑

j=1

(αi − ᾱi)(α j − ᾱ j)K(xi, x j)

s.t.

N∑

i=1

y i(αi − ᾱi) = 0

0 ≤ αi ≤ C i = 1, . . . , N

0 ≤ ᾱi ≤ C i = 1, . . . , N

(3.5)

where ε and C are arbitrarily chosen constants, and K(xi, x j) is the inner-product

kernel:

K(xi, x j) = φ(xi)T φ(x j) (3.6)
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defined in accordance with the Mercer’s condition [16]. Once problem (3.4) is solved,

αi, ᾱi can be used to determine the approximating function:

f (x, ω) =

N∑

i=1

(αi − ᾱi)K(x, xi). (3.7)

Data points for which αi − ᾱi �= 0 are defined as support vectors. Parameters ε and C

control in some way the machine complexity for whom control in nonlinear regression

is a very tough task, which impacts directly on the performance of SVM.

3.3.1.2 Neural networks

Machine-learning algorithms have been proven to be effective tools for solving regres-

sion problems, and they have been effectively applied to the task of wave propagation

prediction [2,4]. Channel prediction can be viewed as a regression problem related

to wave propagation, where the input consists of information about transmitters,

receivers, buildings, frequencies, among others, and the corresponding radio mea-

surements represent the output to be calculated, so we can pose the radio estimation

problem as that of finding a suitable input vector x to be used as the argument of a

function f that best approximates (in some sense) the radio measurements. Stated in

these general terms, we are in the typical setting of a machine-learning problem that

can be naturally addressed with ANNs.

In more detail, ANNs are methods motivated by the way biological nervous

systems, such as the human brain, process information. Their power lies in the fact

that they learn representations of the input data that are suitable for the prediction of

the output produced by possibly unseen inputs. In general, ANNs consist of several

elementary-processing units called neurons, which are located in different layers and

interconnected by a set of weighted edges. Neurons map their input information into

an output information by means of nonlinear functions, from which a variety exists,

each of them having its own estimation properties, but a principled means of choosing

the functions remains an open research problem.

Very early attempts to path-loss prediction via ANNs have been made in [18]

and [19]. These studies show that ANNs can give good estimates of path loss in rural

environments by using discretized information about land cover and topography, the

frequency of the radio waves, and the antenna height. These studies are built upon the

well-known empirical Okumura–Hata’s model for rural areas. In [18,19], the approx-

imation of Okumura–Hata’s model is carried out using a three-layer neural network

with four input units corresponding to these four parameters. This approach shows

a good predictive power, thus demonstrating the feasibility of neural networks for

the task of path-loss prediction. In [20], the authors consider a semiempirical model

for path-loss prediction. They use a semiempirical model field strength prediction

combined with theoretical results from propagation loss algorithms and neural net-

works. They obtain good results for the case of dense urban areas and show that

neural networks are efficient empirical methods, able to produce good models that

integrate theoretical and experimental data. A similar approach is taken in [21],
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where neural networks are used to correct the biases generated by unknown envi-

ronmental properties and algorithmic simplifications of path-loss estimations that

are common in ray-tracing techniques. The considered neural networks show to sub-

stantially improve the results obtained by classic ray-tracing tools. In [22], radial basis

function (RBF) neural networks are used instead of the classic multilayer perceptron

(MLP). One of the major advantages of RBF neural networks is that they tend to learn

much faster than MLP neural networks, because their learning process can be split

into two stages for which relatively efficient algorithms exist. More specifically, a

two-stage learning approach is taken, where the first stage is composed of an unsu-

pervised clustering step via the rival penalized competitive learning approach. Then

the centers of the radial basis function are adjusted, and, once fixed, the weights are

then learned in a supervised fashion by using the celebrated recursive least squares

algorithm.

In [23], a one-layer backpropagation ANN is proposed to gauge the perfor-

mance of kriging-based coverage map estimation. A new distance measure that takes

obstacles between two points into consideration is introduced, and it is defined as

di,j =

√
(xi − xj)2 + (yi − yj)2 + 10E (3.8)

where E = (10c)(−1)
∑

r∈Wi,j
Lr with Wi,j representing the set of obstacles between

point i and j, Lr being the path loss of the respective obstacles, and c being the free

space parameter. The first term, involving the square root, is simply the Euclidean

distance between points i and j. The term 10E expresses the path loss caused by

obstacles. For an example, if one assumes that the path-loss factor of a wall between

two points is 5 dB and the free space parameter c is 2 dB for the environment in

which the wall resides, then the path loss between these two points due to the wall

will equal to the free space path loss of 105/(10×2). This increase of the path loss

can be equivalently represented by an increase of the effective distance between the

two points. This new measure for the distance improves the achievable estimation

accuracy for prediction tools based on both kriging and ANNs.

A common problem that arises in learning tasks is that in general we have no or

little prior knowledge of the relevance of the input data, and hence many candidate

features are generally included in order to equip algorithms with enough degrees of

freedom to represent the domain. Unfortunately, many of these features are irrelevant

or redundant, and their presence does not improve the discrimination ability. Further-

more, many inputs and a limited number of training examples generally lead to the

so-called curse of dimensionality, where the data is very sparse and provides a poor

representation of the mapping. (Deep neural networks do not perform well with lim-

ited training data.) As a remedy to this problem, dimensionality-reduction techniques

are applied to the data in practice, which transform the input into a reduced represen-

tation of features. Dimensionality-reduction techniques are usually divided into two

classes, linear methods (e.g., independent component analysis) and nonlinear meth-

ods (e.g., nonlinear PCA). In [2], a two-step approach using learning machines and

dimensionality-reduction techniques is proposed. SVMs and ANNs are used as the

learning tools, and they are combined with two dimensionality-reduction techniques,
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namely, linear and nonlinear PCA. In more detail, in [2], the macrocellular path-loss

model is defined as follows:

L(dB) = L0 + αbuildings = 32.4 + 20 log(d) + 20 log( f ) + αbuildings (3.9)

where L0 is the free space path loss in dB, d is the radio path, f is the radio frequency,

and αbuildings is an attenuation term that depends on several parameters, such as height

of base stations and receivers, the distance between consecutive buildings, the height

of buildings. In [2], the function in (3.9) is learned by using a three-layerANN, with the

three parameters as input. The estimation using dimensionality-reduction techniques

has shown to improve substantially the prediction power over methods that use the

full dimensionality of the input. In addition, PCA-based prediction models provide

better prediction performance than nonlinear PCA-based models, and ANNs-based

models tend to perform slightly better than SVM-based predictors (in the scenarios

considered in the above mentioned studies).

The applications of neural network discussed in this topic are considered as

function approximation problems consisting of a nonlinear mapping from a set of

input variables containing information about potential receiver onto a single output

variable representing the predicted path loss. MLPs is applied to reconstruct the path

loss in [24]. Figure 3.1 shows the configuration for an MLP with one hidden layer

and output layer. The output of the neural network is described as

y = F0

M∑

j=0

woj

(
Fh

N∑

i=0

wjixi

)
(3.10)

where woj represents the synaptic weights from neuron j in the hidden layer to the

single output neuron, xi represents the ith element of the input vector, Fh and F0 are

the activation function of the neurons from the hidden and output layers, respectively,

and wji are the connection weights between the neurons of the hidden layer and the

inputs. The learning phase of the network proceeds by adaptively adjusting the free

Wji
X0

X1

X2

Xn–1

Input layer Hidden layer Output layer

Y

Woj

Figure 3.1 The configuration of the multilayer perceptron
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parameters of the system based on the mean squares error described by (3.10), between

predicted and measured path loss for a set of appropriately selected training examples:

E =
1

2

m∑

i=1

(yi − di)
2 (3.11)

where yi is the output value calculated by the network and di represents the expected

output.

When the error between network output and the desired output is minimized, the

learning process is terminated. Thus, the selection of the training data is critical to

achieve good generalization properties [25,26]. In coverage map reconstruction, the

neural networks are trained with the Levenberg–Marquardt algorithm, which provides

faster convergence rate than the backpropagation algorithm with adaptive learning

rates and momentum. The Levenberg–Marquardt rule for updating parameters is

given by

�W =
(
J T J + μI

)−1
J T e (3.12)

where e is an error vector, μ is a scalar parameter, W is a matrix of networks weights,

and J is the Jacobian matrix of the partial derivations of the error components with

respect to the weights.

An important problem that occurs during the neural network training is the over

adaptation. That is, the network memorizes the train examples, and it does not learn

to generalize the new situation. In order to avoid over adaptation and to achieve good

generalization performances, the training set is separated in the actual training subset

and the validation subset, typical 10%–20% of the full training set [26].

3.3.1.3 Matrix completion

In radio map reconstruction, if the sampling rate of the area of interest is high enough,

classical signal-processing approaches can be used to reconstruct coverage maps.

However, dense sampling can be very costly or impracticable, and in general only

a subset of radio measurements of an area are available at a given time. By mak-

ing assumptions on the spatial correlation properties of radio measurements, which

are strongly related to structural properties of an area, and by fitting correspond-

ing correlation models, statistical estimators such as kriging interpolation are able

to produce precise estimates based on only few measurements. However, the price

for this precision is the high computational complexity and questionable scalability.

Nevertheless, the spatial correlation exploited by kriging approaches suggests that

coverage maps contain redundant information, so, if represented by a matrix, radio

maps can be assumed to be of low rank. This observation has led some authors to

propose the framework of low-rank matrix completion for coverage map estimation,

which is the topic of this section.

Matrix completion builds on the observation that a matrix that is of low rank or

approximately low rank can be recovered by using just a subset of randomly observed

data [27,28]. A major advantage of matrix completion is that it is able to recover a

matrix by making no assumption about the process that generates the matrix, except

that the resulting matrix is of low rank. In the context of radio map estimation, matrix
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completion has been successfully applied in [13,29,30]. Although in [31] standard

matrix completion is used for radio map construction, the authors in [29] consid-

ered the non-consistency (continuity) observed in radio map constructed via matrix

completion. More specifically, they add a smoothness constraint to the reconstruc-

tion problem. Building upon the approaches in [29,31], the authors in [13] use SVT

techniques for the reconstruction. In order to increase the estimation quality, which

generally degrades in areas with low spatial correlation, the query by committee

(QbC) rationale is used in [13] to identify areas requiring more samples in order to

obtain accurate predictions. An online algorithm for matrix completion is introduced

by the same authors in a subsequent work [30], where they propose an alternating

least squares (ALSs) algorithm as an alternative to the popular stochastic gradient

descent approach, popularized in the context of the Netflix prize problem [27].

Matrix completion, i.e., low-rank matrix recovery with missing entries, has

attracted much attention in recent years because it plays an important role in informa-

tion retrieval and inference and has numerous applications in computer vision, data

mining, signal processing, bioinformatics, and machine learning. For the following

theoretical review on matrix completion, we denote by P ∈ R
m×n the matrix to be

recovered, which in the present case is a two-dimensional coverage map containing

path-loss values. Without any assumptions, it is impossible to recover reliably P with

a small number d ≪ mn, of measurements. However, for the case that the rank of

the matrix P is small enough compared to its dimensions, the matrix completion

framework shows that full recovery of P is possible with high probability. More pre-

cisely, full recovery is feasible with high probability from d ≥ cn6/5r log(n) uniformly

random measurements, with r being the matrix rank r = rank(P) and n > m.

Due to the regular propagation of a radio wave in unobstructed environments,

pass-loss maps exhibit spatial correlation and smooth patterns. Hence, they can be well

approximated by low-rank matrices. For the specific case of coverage map estimation,

first a matrix P representing the area of interest is defined, and this matrix contains

measured values and the respective missing entries. This matrix is used to represent

the physical space, where each cell corresponds to a physical position. The values of

the matrix are either zero, for the case of a missing entry, or contain the measured

path loss at the given cell. The problem of estimating missing entries using the matrix

completion framework can be informally formulated as follows: compute a low-rank

matrix A that has entries equal to the observation matrix P at the positions containing

observed measurements.

Nuclear norm minimization-based methods
Let us denote by � the set of observed entries. Formally, the matrix completion

problem is formulated as the following nonconvex optimization problem [27]:

min
A

rank(A)

s.t. Aij = Pij, ∀i, j ∈ �
(3.13)

where Pij and Aij are the {i, j}th entry of P and A, respectively, {i, j} ∈ �. Unfortunately,

the problem of rank minimization is NP-hard. Therefore, existing approaches in the

literature replace the intractable problem by a relaxed formulation that can be solved
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efficiently with convex optimization tools. (The relaxed problems are often analyzed

to check the number of measurements required to recover the solution to the original

NP-hard problem exactly, with high probability.) In particular, a common relaxation

of the rank minimization problem is formulated as

min
A

‖A‖∗

s.t. Aij = Pij, ∀i, j ∈ �
(3.14)

where ‖A‖∗ denotes the nuclear norm of the matrix A which is defined as

‖A‖∗ =

min(m,n)∑

k=1

σk (A)

with σk (·) being the kth largest singular value of a matrix. Note that (3.14) can

be converted into a semidefinite programming (SDP) and hence can be solved by

interior-point methods. However, directly solving the SDP has a high complexity.

Several algorithms faster than the SDP-based methods have been proposed to solve

the nuclear norm minimization, such as SVT, fixed point continuation (FPC), and

proximal gradient descent [5]. In radio map reconstruction, the authors of [13] opt

for the SVT algorithm, which can be briefly described as follows. Starting from an

initial zero matrix Y0, the following steps take place at each iteration:

Ai = shrink(Yi−1, τ )
(3.15)

Yi = Yi−1 + μ��(P − Xi)

with μ being a nonnegative step size. The operator ��(X ) is the sampling operator

associated with the set �. Entries not contained in the index set � are set to zero,

the remaining entries are kept unchanged. The shrink operator (·, τ ) is the standard

rank-reduction thresholding function, which sets singular values beneath a certain

threshold τ > 0 to be zero.

In [13], the authors also introduce a method to improve the path-loss reconstruc-

tion via matrix completion. The idea is to define a notion of “informative areas,” which

are regions in which samples are required to improve greatly the map reconstruction.

The motivation for this approach is that, in coverage maps, there may exist nonsmooth

transitions caused by abrupt attenuation of signals, which are common when radio

waves impinge on obstacles such as large buildings, tunnels, metal constructions.

Consequently, path loss in such areas exhibits low spatial correlation, which can lead

to reconstruction artifacts that can only be mitigated by increasing the sampling rate

in those regions. In order to identify those regions, which are mathematically rep-

resented by matrix entries, the authors of [13] resort to a family of active learning

algorithms, and, in particular, they employ the QbC rationale. The general approach

is to quantify the uncertainty of the prediction in each missing value in the matrix, so

only measurements corresponding to the most uncertain entries are taken. In the QbC

rationale, the missing matrix values are first estimated by means of many different

algorithms, and only a subset of the available data is used. Assuming that the available

data budget amounts to k measurements, first the coverage map is computed by only
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using l < k of the available entries. Then, three different algorithms for matrix recon-

struction are compared, and the top K = k − l entries with the largest disagreement

are chosen. New measurements for those K entries are then gathered, and a new cov-

erage map is estimated by using the new samples. The three different reconstruction

algorithms used in [13] are the SVT, the K-nearest neighbors, and the kernel APSM.

In a subsequent work [30], the authors from [13] derive an online algorithm

based on the ALS method for matrix completion. They adopt the matrix factorization

framework in which the low-rank matrix A is replaced by the low-rank product LRT ,

with L ∈ R
m×ρ and RT ∈ R

n×ρ , and ρ is a prespecified overestimated of the rank

of A. Based on this framework, the rank-minimization objective is replaced by the

equivalent objective:

minL,R
1
2
(‖L‖2

F + ‖R‖2
F )

s.t. LRT = A

Aij = Pij, ∀i, j ∈ �

(3.16)

For noisy case, the objective function for matrix completion becomes in [30]:

minL,R ‖P − LRT ‖2
F + γ (‖L‖2

F + ‖R‖2
F )

s.t. LRT = A

Aij = Pij, ∀i, j ∈ �

(3.17)

with γ being a regularization parameter that controls the trade-off between the close-

ness to data and the nuclear norm of the reconstructed matrix. The ALS method is

a two-step iterative method in which the objective is consecutively minimized over

one variable by holding the other constant. Hence, two quadratic programs have to

be solved in each iteration step consecutively. This amounts to solving D least square

problems to find the optimum solution of each row of L and R. This, however, amounts

computing a (ρ × ρ) matrix inversion for each row, which might become prohibitive

with increased number of samples. Therefore, the authors in [30] propose an approx-

imation algorithm, in which the coefficients of the optimum row vector are computed

one by one, which significantly reduces the computational complexity, especially for

sparse datasets. In this mindset, the online version of the ALS is proposed in a way

that, with new incoming data, only the respective coefficients are updated via this

approximated update function.

In addition to the online reconstruction algorithm for matrix-completion-based

coverage map reconstruction, the authors in [30] also derive a new adaptive sampling

scheme, able to outperform the QbC rationale from their previous work. They assume

that coverage maps are in general smooth. Therefore, for two neighboring matrix

entries (i1, j1) and (i2, j2) that satisfy |i1 − i2| ≤ 1 and | j1 − j2| ≤ 1, the entry difference

should be bounded by

|Ai1j1 − Ai2j2 | ≤ �
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where � is a small positive number. Under this assumption, incomplete or erroneous

reconstruction will very likely violate this condition. In order to detect eventual vio-

lations of the gradient bound, a two-dimensional edge-detector filter was proposed

in [30] with the following kernel:

f =
1

9

⎡
⎢⎣

−1 −1 −1

−1 8 −1

−1 −1 −1

⎤
⎥⎦ .

The data smoothness condition on A implies that each entry of its filtered version

Ā will be bounded by |Āi,j| ≤ (8/9)�. With Y being the current estimate of A, the

authors of that study propose to obtain measurements corresponding to entries for

which |Ȳi,j| is large. Since the filter is a bounded linear operator, if the reconstruction

is reliable, then we should have

‖Ā − Ȳ‖ ≤ M‖A − Y‖ ≤ ε

for ε small enough. By considering the triangular inequality, the following constraint

can be imposed on each coefficient |Ȳi,j|:

|Ȳi,j| ≤ |Ȳi,j − X̄i,j| ≤ ε +
8

9
�

which implies that coefficients of Ȳ should be small. However, if the entries Ȳi,j

are large, typically larger than �, then |Ȳi,j − X̄i,j| should also be large, and the

matrix completion algorithm fails to reconstruct the coverage map correctly. As a

consequence, we should obtain measurements in the region of the respective entry

(i, j) in order to increase the accuracy of the estimation. The proposed online algorithm

and adaptive sampling scheme are tested based on the image data. A 150 × 150 gray-

scale image is considered. At first, only 8% of the entire dataset is considered for the

reconstruction. In steps of N = 20 entries, which are selected based on the proposed

adaptive sampling scheme and the QbC rationale, the reconstruction is refined. It

is shown that 100 selected entries based on the adaptive sampling schemes resulted

in better improvements than 1,000 randomly selected entries. The proposed adaptive

sampling scheme outperformed the QbC approach. Further, it is also shown that in

combination with the proposed online algorithm, the QbC approach, which is based

on batch algorithms, is also outperformed in terms of computational complexity.

An alternative approach for producing smooth coverage maps is proposed in

[29]. The low-rank minimization objective is here extended by adding a smoothness

constraint term. The revised low-rank model is formulated as follows [29]:

minL,R
1
2
(‖L‖2

F + ‖R‖2
F ) + λs(LRT )

s.t. LRT = A

Aij = Pij, ∀i, j ∈ �

(3.18)

where s(A) is the smoothing term, and the regularization term λ is a weight that

balances low rankness and smoothness. In [29], the smoothness constraint term is
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defined via the diversity of the row-wise and column-wise difference of LRT = A, or,

in mathematical terms:

s(LRT ) = ‖Dx(LRT )‖2
F + ‖Dy(LRT )‖2

F

with the gradient operators Dx(A) and Dy(A) being defined as

Dx(i, j) = A(i, j + 1) − A(i, j)

Dy(i, j) = A(i + 1, j) − A(i, j)

The smoothed matrix completion objective from is then stated as

minL,R
1
2
(‖L‖2

F + ‖R‖2
F ) + λ

(
‖Dx(LRT )‖2

F + ‖Dy(LRT )‖2
F

)

s.t. LRT = A

Aij = Pij, ∀i, j ∈ �

(3.19)

For the solution of the minimum problem in (3.19), an alternating iteration algorithm

over L and R is adopted in [29]. At first, L and R are chosen at random, then L is fixed

and R is optimized by a linear least square method. Then R is fixed and the cost function

is optimized over L. This procedure is repeated until no progress is observed. In [29],

the proposed smoothed low-rank reconstruction method is compared with interpola-

tion methods such as radial basis interpolation and inverse distance weighting. The

smoothed low-rank reconstruction method shows to achieve similar reconstruction

properties with fewer samples compared to these methods.

Alternating projection methods
Note that these nuclear-norm-based algorithms require performing the full SVD of

an m × n matrix. When m or n is large, computing the full SVD is time-consuming.

Different from rank or nuclear norm minimization, a new strategy is adopted for

matrix completion. The basic motivation of alternating projection algorithm (APA)

is to find a matrix such that it has low rank and its entries over the sample set � are

consistent with the available observations. Denote the known entries as P�:

[P�]i,j =

{
Pi,j, if (i, j) ∈ �

0, otherwise
. (3.20)

Then it can be formulated as the following feasibility problem [32]:

find A

s.t. rank(A) ≤ r, A� = P�,
(3.21)

where r ≪ min(m, n) is the desired rank. It is obvious that (3.21) is only suitable for

noise-free case. For noisy case, we use:

find A

s.t. rank(A) ≤ r, ‖A� − P�‖F ≤ ε2

(3.22)

to achieve robustness to the Gaussian noise. In the presence of outliers, we adopt:

find A

s.t. rank(A) ≤ r, ‖A� − P�‖p ≤ εp

(3.23)
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where εp > 0 is a small tolerance parameter that controls the ℓp-norm of the fitting

error and ‖·‖p denotes the element-wise ℓp-norm of a matrix, i.e.:

‖A�‖p =

⎛
⎝ ∑

(i,j)∈�

∣∣[A]i,j

∣∣p

⎞
⎠

1/p

. (3.24)

Apparently, (3.23) reduces to (3.22) when p = 2. Also, (3.23) reduces to the noise-free

case of (3.21) if εp = 0.

By defining the rank constraint set

Sr := {A|rank(A) ≤ r} (3.25)

and the fidelity constraint set

Sp :=
{
A| ‖A� − P�‖p ≤ εp

}
, (3.26)

the matrix completion problem of (3.23) is formulated as finding a common point of

the two sets, i.e.:

find X ∈ Sr ∩ Sp. (3.27)

For a given set S , the projection of a point Z /∈ S onto it, which is denoted as

�S (Z), is defined as

�S (Z) := arg min
X ∈S

‖X − Z‖2
F . (3.28)

We adopt the strategy of alternating projection (AP) onto Sr and Se to find a common

point lying in the intersection of the two sets [32]. That is, we alternately project onto

Sr and Sp in the kth iteration as

Y k = �Sr (A
k )

(3.29)
Ak+1 = �Sp (Y k ).

The choice of p = 1 is quite robust to outliers. Other values of p < 2 may also be of

interest. The case of p < 1 requires to compute the projection onto a nonconvex and

nonsmooth ℓp-ball, which is difficult and hence not considered here. The 1 < p < 2

involves the projection onto a convex ℓp-ball, which is not difficult to solve but requires

an iterative procedure. Since the choice of p = 1 is more robust than 1 < p < 2 and

computationally simpler, we can use p = 1 for outlier-robust matrix completion.

By Eckart–Young theorem, the projection of Z /∈ Sr onto Sr can be computed

via truncated SVD of Z :

�Sr (Z) =

r∑

i=1

σiuiv
T
i (3.30)

where {σi}
r
i=1, {ui}

r
i=1 ∈ R

m, and {vi}
r
i=1 ∈ R

n are the r largest singular values and

the corresponding left and right singular vectors of Z , respectively. Clearly, the AP

does not need to perform the full SVD. Only truncated SVD is required. That is, we

only calculate the r largest singular values and their corresponding singular vectors.
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Without loss of generality, assuming n ≤ m, the computational cost of full SVD is

O(mn2 + n3), while that of truncated SVD is O(mnr). In practical applications, the

rank r could be much smaller than the matrix dimension. Therefore, the computational

cost of the AP is much lower than the nuclear norm minimization-based methods that

need full SVD.

We then investigate computing the projection onto Sp for p = 1 and p = 2. Note

that projection onto Sp only affects the entries indexed by �. Other entries {Zi,j} with

(i, j) /∈ � will remain unchanged through this projection. Define p� ∈ R
|�|, where

|�| is the cardinality of �, as the vector that contains the observed entries of P, i.e.,

the nonzero entries of P�. Also, a� ∈ R
|�| is defined in a similar manner. Then the

set Sp of (3.26) has the equivalent vector form:

Bp :=
{

a� ∈ R
|�|

∣∣ ‖a� − p�‖p ≤ εp

}
(3.31)

which is an ℓp-ball with the observed vector p� being the ball center. Now it is clear

that the projection for matrices is converted into one for vectors of length |�|. We

consider the following three cases with different values of p and εp:

● For εp = 0, (3.31) reduces to the equality constraint of a� = p�. For any vector

z ∈ R
|�|, the projection is calculated as �Bp (z) = p�.

● For p = 2 and ε2 > 0, B2 is the conventional ℓ2-ball in the Euclidean space. For

any vector z /∈ B2, it is not difficult to derive the closed-form expression of the

projection onto B2 as

�B2
(z) = p� +

ε2(z − p�)

‖z − p�‖2

. (3.32)

With a proper value of ε2 and p = 2, the robustness to Gaussian noise can be

enhanced.
● For p = 1 and ε1 > 0, B1 is an ℓ1-ball. For any vector z /∈ B1, the projection

onto B1 is the solution of

min
a

1

2
‖a − z‖2

2, s.t. ‖a − p�‖1 ≤ ε1. (3.33)

Using the Lagrange multiplier method, we obtain the solution of (3.33):

[�B1
(zzz) ]i = sgn([z − p�]i) max(|[z − p�]i| − λ⋆, 0) (3.34)

where i = 1, . . . , |�| and λ⋆ is the unique root of the nonlinear equation:

|�|∑

i=1

max(|[z − p�]i| − λ, 0) = ε1 (3.35)

in the interval (0, ‖z − p�‖∞) using the bisection method, where ‖·‖∞ is the ℓ∞-

norm of a vector. The computational complexity of projection onto ℓ1-ball is

O(|�|), which is much lower than that of the projection onto Sr .

The selection of εp is critical to the performance of APA. In the absence of noise,

the optimum is εp = 0. For noisy case, εp is related to the noise level. Roughly

speaking, larger noise requires a larger εp. If the probability of the noise is known
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a priori, we can estimate the probability distribution of the ℓp-norm of the noise.

Then a proper value of εp can be determined according to the probability such that

the true entries are located in the ℓp-ball. If the probability of the noise is unknown,

one may resort to cross validation to determine a proper εp. Note that in the nuclear

norm regularized problem:

min
A

1

2
‖A� − P�‖2

F + τ‖A‖∗ (3.36)

one also faces the issue of selecting the regularization parameter τ . Clearly, an advan-

tage of the proposed formulation is that it is not difficult to determine εp from the

a priori noise level but not easy for τ .

Remark: It should be pointed out that the APA is different from the iterative hard

thresholding (IHT) and its variants [33,34] although they all use a rank-r projection.

The IHT solves the rank constrained Frobenius norm minimization:

min
A

f (A) :=
1

2
‖A� − P�‖2

F , s.t. rank(A) ≤ r (3.37)

using gradient projection with iteration step being:

Ak+1 = �Sr

(
Ak − μ∇f (Ak )

)
(3.38)

where μ > 0 is the step size and ∇f is the gradient of f . Determining the step size

with a line search scheme requires computing the projection �Sr (·) for several times.

Thus, the computational cost of the IHT is several times of the APA per iteration.

Convergence of the alternating projection for finding a common point of two sets

was previously established for convex sets only [35]. Recently, the convergence of

APA for nonconvex sets, which satisfies a regularity condition has been investigated

[36,37]. Exploiting the fact that the rank constraint set of (3.25) satisfies the prox-

regularity and according to Theorem 5.2 of [36], we can establish the convergence of

the APA for matrix completion, as stated in the following proposition.

Proposition: The APA locally converges to a point in Sr ∩ Sp at a linear rate.

3.3.2 Online algorithms

The batch algorithms applied in coverage map reconstruction was widely studied as

mentioned above. However, batch algorithms need a great number of storage and is

poor in real-time performance. It is more practical that an algorithm is capable of

updating the corresponding base station’s current approximation of the unknown path

loss function in its cell. Thus, coverage map reconstruction needs to be an online

function itself. In [9], APSM-based [10] and multi-kernel learning techniques [38]

are adopted for their capability of coping with large-scale problems where the huge

number of measurements arrives to operators.

3.3.2.1 APSM-based algorithm

APSM is a recently developed tool for iteratively minimizing a sequence of convex

cost functions [10]. And it can be easily combined with kernel-based tools from

machine learning [10,39,40]. In particular, a variation of the APSM is proposed in

this study.
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In more detail, at each iteration, n, q sets are selected from the collection

{S1, . . . , Sn} with the approach described in [9]. The intersection of these sets is the

set Cn and the index of the sets chosen from the collection is denoted by

In,q := {i(n)
rn

, i
(n)
rn−1, . . . , i

(n)
rn−q+1} ⊆ {1, . . . , n}, (3.39)

where n ≥ q, and rn is the size of dictionary. With this selection of sets, starting from

f̂0 = 0, sequence { f̂n}n∈N ⊂ H by

f̂n+1 := f̂n + μn

∑

j∈In,q

ωj,nPSj
( f̂n) − f̂n, (3.40)

where μn ∈ (0, 2Mn) is the step size, Mn is a scalar given by

Mn =

⎧
⎪⎪⎨
⎪⎪⎩

∑
j∈In,q

wj,n

∥∥PSj
( fn) − fn

∥∥2

∥∥∥
∑

j∈In,q
wj,nPSj

( fn) − fn

∥∥∥
2

, if fn /∈ ∩j∈In,q Sj,

1, otherwise,

(3.41)

and ωj,n > 0 are weights satisfying:

∑

j

ωj,n = 1 (3.42)

The projection onto the hyperslab induced by measurement n is given by PSn ( f ) =

f + βf κ(x̃n, ·) where

βf =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y − 〈 f , κ(x̃n, ·)〉 − ε

κ(x̃n, x̃n)
, if 〈 f , κ(x̃n, ·)〉 − y < −ε,

y − 〈 f , κ(x̃n, ·)〉 + ε

κ(x̃n, x̃n)
, if 〈 f , κ(x̃n, ·)〉 − y > ε,

0, if |〈 f , κ(x̃n, ·)〉 − y| ≤ ε.

(3.43)

3.3.2.2 Multi-kernel algorithm

The choice of the kernel κ for a given estimation task is one of the main challenges for

the application of kernel methods. To address this challenge in the path-loss estimation

problem, we propose the application of the multi-kernel algorithm described in [38].

Briefly, this algorithm provides good estimates by selecting, automatically, both a

reasonable kernel (the weighted sum of a few given kernels) and a sparse dictionary.

The APSM-based online algorithm demonstrated above has good performance in

real-time and requires little storage. Nevertheless, its time complexity and accuracy

are inferior to common batch algorithms. What should be noticed is that so far only

the online algorithm mentioned in this section has been employed in coverage map

reconstruction. So there is still a great deal of open questions in this topic.
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3.4 Optimized sampling

Informative areas are areas from which we want to have samples, since such knowl-

edge can improve the path-loss reconstruction. Note that some regions can be

nonsmooth. This is the consequence of large buildings, obstacles, tunnels that can

abruptly attenuate the propagating radio wave. Due to these, the path loss in such

areas exhibits low spatial correlation and this can lead to poor reconstruction effects.

Consequently, in this case, optimized samplings are required.

3.4.1 Active learning

Active learning is a special case of semi-supervised machine learning in which a

learning algorithm is able to interactively query the user (or some other information

source) to obtain the desired outputs at new data points. In active learning systems, an

algorithm is able to choose its training data, as opposed to passively trained systems

that must learn a behavior from a set of random observations.

3.4.1.1 Query by committee

A QbC training strategy for selecting new data points uses the disagreement between

a committee of different algorithms to suggest new data points, which most rationally

complement existing data, that is, they are the most informative data points.

In the application of [13], assume that the available budget corresponds to k

measurements, coming from drive tests, the matrix is first completed using a number

of l < k observed entries. Subsequently, having access to a number of reconstructed

matrices, finding the top K := k − l entries with the largest “disagreement” according

to a certain criterion and obtaining measurements from them. Finally, drive tests are

performed to obtain the K samples indicated by the previous step and reconstruct the

path-loss map exploiting the newly obtained information.

In general, one can employ any number of algorithms to reconstruct the matrix.

These algorithms run in parallel using the same set of measurements as an input. After

the estimation of the missing entries, the entries with the largest disagreement can

be obtained according to the following simple rules. Supposing that three algorithms

are employed as committees, the entries obtained by these algorithms are denoted by

aij(ξ ), ξ = 1, 2, 3. Then the disagreement equals to

dij = (a
(1)
ij − a

(2)
ij )2 + (a

(12)
ij − a

(3)
ij )2 + (a

(1)
ij − a

(3)
ij )2. (3.44)

The K entries, which score the largest disagreement, are chosen, and we perform

drive tests to obtain the path loss.

QbC algorithm is a simple one which can be implemented easily. And this algo-

rithm enhances the accuracy of the reconstruction as illustrated in [13]. However,

for that larger than two algorithms required to run parallel, it cannot be one of the

most efficient algorithms. And the predicted results can be influenced greatly if the

algorithms employed are not stable enough.



Channel prediction based on machine-learning algorithms 127

3.4.1.2 Side information

In [9], in order to predict the informative areas, the approach based on side information

is applied to decide the weight of parallel projections. For instance, sets corresponding

to measurements taken at pixels farther away from the route of the user of interest

(UOI) should be given smaller weights than measurements of pixels that are close to

the user’s trajectory. The reason is that estimates should be accurate at the pixels the

UOI is expected to visit because these are the pixels of interest to most applications

(e.g., video caching based on channel conditions). Therefore, we assign large weights

to measurements close to the UOI’s route by proceeding as follows. Let χUOI ⊂ N 2

be the set of pixels that belong to the path of the UOI. Then, for each weight ωi,n:

ωi,n =
1

dmin(x̃i, χUOI) + εω

(3.45)

where dmin(x̃i, χUOI) denotes the minimum distance of measurement x̃i to the area of

interest, and εω > 0 is a small regularization parameter. This distance can be obtained

for each pixel x̃i by considering the distances of every pixel in χUOI to x̃i and by taking

the minimum of these distances. Subsequently, the weights are normalized. Compared

to an equal choice of the weights, the proposed method provides fast convergence to

a given prediction quality for the UOI, but at the cost of degraded performance in

other areas of the map.

3.4.2 Channel prediction results with path-loss measurements

We implement the matrix completion via the AP algorithm for channel prediction,

whose performance is compared with the state-of-the-art method, i.e., SVT [5]. The

experimental data is collected in Tengfei Industrial Park, and the scenario of data

collection is illustrated in Figure 3.2. Specifically, the UE routes, including the

Figure 3.2 Measurement scenario in Tengfei industrial park
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line-of-sight (LOS) and non-LOS routes, are in red lines and yellow lines, respec-

tively. With the data points being sampled from these UE routes, our purpose is to

predict the values of other points and hence to achieve the path-loss reconstruction.

We devise an experiment to evaluate the prediction performance of both AP and

SVT. The experiment is based upon the fact that only the fractional sampling points

are viewed as the known points. And the rest part of sampling points is considered to

be unknown in advance. Hence, those points are supposed to be predicted. Assuming

that �1 is a subset, consisting of those predicted points, of the set � and Pi,j, (i, j) ∈ �1

denotes the true value of the (i, j) point. We compare the predicted value P̂i,j, (i, j) with

its true value. If the condition
∣∣P̂i,j, (i, j) − Pi,j, (i, j)

∣∣ ≤ δ

is satisfied, the prediction with respect to the (i, j) point is assumed to be successful,

otherwise the prediction is failed. In our experiment, we set δ = 20 and investigate

the successful ratio of prediction with respect to the rank r. For each value of the

matrix rank, 100 trials are carried out to calculate the average result. The proportion

of known sampling points, which are randomly selected in each trial, is 85%. Hence,

the rest of 15% sampling points is viewed as predicted points.

Note that AP’s performance is affected by the parameter of the estimated rank r,

while SVT’s performance is determined by the parameter of the threshold of singular

value. Hence, we evaluate the performance of each algorithm with respect to different

parameters. In terms of the AP, Figure 3.3 plots the successful ratio of prediction

versus the rank r. It is observed that using r = 2 yields the best performance. When

r > 2, the successful ratio is successively decreased with the increase of the rank. This

phenomenon shows that only when tight rank constraint with quite small r is adopted,

the reasonable prediction can be obtained. With the SVT in contrast, Figure 3.4 plots

its successful ratio of prediction versus the threshold of singular value. While an

appropriate threshold of singular value yields the highest successful ratio, too small

or too large threshold value will result in a decreased successful ratio.
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Figure 3.3 Successful ratio of prediction versus rank r with ε2 = 0 via AP
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Based upon the optimal parameters in two algorithms (rank r = 2 in the APA and

threshold of singular value equal to 1.5 × 105 in the SVT), we compare the highest

successful ratio that two algorithms can attain. Observe that the highest successful

ratio of the APA is 72.9% and that of the SVT is 67.8%. We can see that the AP

outperforms the SVT.

Then we evaluate the prediction errors of both algorithms by the root mean square

error (RMSE) which is defined as

RMSE = 10 log10

√
E{‖P̂�1

− P�1
‖2

F}. (3.46)

Figure 3.5 plots the RMSE versus the rank r of AP, which demonstrates that the best

performance can be achieved when r = 2. This RMSE result is consistent with the

above successful ratio result. In those two aspects of evaluation, the choice of r = 2
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Figure 3.6 RMSE versus threshold of singular value via SVT

derives the best successful ratio and prediction error. Therefore, we can conclude that

adopting r = 2 as the estimated rank for the AP yields the best prediction. In contrast,

Figure 3.6 plots the RMSE versus the threshold of singular value for the SVT. While

the SVT can attain the smallest RMSE value of 8.57 with threshold of singular value

equal to 1 × 105, the AP can obtain the smallest RMSE value of 7.92 with rank r = 2.

This comparison proves the better performance of the AP than the SVT.

3.5 Conclusion

Numerous wireless communication applications in future will greatly depend on accu-

rate coverage loss map. Making sense of the coverage loss map reconstruction can

be a precarious task for the uninitiated research. In this survey, methodologies of

reconstruction are divided into three parts to discuss the following: approaches of

achieving measurements, learning-based reconstruction algorithms, and optimized

sampling of measurements. And different methodologies of each part are studied

and analyzed, respectively. Mainly, two approaches can be applied to achieve mea-

surements: conventional drive tests and MDTs. The former one is simple and stable,

while the cost of it will rapidly ascend with the measured area getting larger. MDTs

are a relatively cheap and efficient way without the consideration of absolute stabil-

ity. Then learning-based reconstruction algorithms which can be categorized into two

parts are discussed. Batch algorithms are usually efficient and cheap, but it requires

huge amount of storage and performs in real-time calculating. Among batch algo-

rithms, SVM is hard to implement for which resolving nonlinear regression should

be complicated; SVT is easy to be implemented, but it is too simple to adapt to var-

ious scenarios. Over adaptation may occur in the training procedure of ANN, which

manifests that it cannot be an adaptive algorithm. On the other hand, online algo-

rithm has great performance in real-time and storage is unnecessary. The only online
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approach having been employed in path-loss reconstruction isAPSM-based algorithm

with multi-kernel techniques. It successfully updates the prediction of coverage map

whenever new data comes in. Nevertheless, the time complexity and accuracy are

inferior to common batch algorithms. The last part is optimized sampling. The main

techniques applied in this part is active learning which is derived from machine learn-

ing. There are mainly two active learning algorithms in the procedure of optimized

sampling: QbC and side information. QbC determines the informative areas through

running various reconstruction algorithms in parallel. Its accuracy is considerable,

but the stability and time complexity are poor. Side information is applied in the

online algorithm mentioned above. Informative areas are selected through exerting

different weights. This is a simple and efficient way, but whether it is robust should

be studied more deeply. According to the generalization discussed above, learning-

based algorithms employed in coverage loss map reconstruction has a great area to

be explored, especially in online algorithm. How to revise an efficient and real-time

learning-based algorithm may be a meaningful topic to study on.
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Chapter 4

Machine-learning-based channel estimation

Yue Zhu1, Gongpu Wang1, and Feifei Gao2

Wireless communication has been a highly active research field [1]. Channel estima-

tion technology plays a vital role in wireless communication systems [2]. Channel

estimates are required by wireless nodes to perform essential tasks such as precoding,

beamforming, and data detection. A wireless network would have good performance

with well-designed channel estimates [3,4].

Recently, artificial intelligence (AI) has been a hot research topic which attracts

worldwide attentions from both academic and industrial circles. AI, which aims to

enable machines to mimic human intelligence, was first proposed and founded as

an academic discipline in Dartmouth Conference in 1956 [5]. It covers a series of

research areas, including natural language processing, pattern recognition, computer

vision, machine learning (ML), robotics, and other fields as shown in Figure 4.1.

ML, a branch of AI, uses statistical techniques to develop algorithms that can

enable computers to learn with data and make predictions or yield patterns. According

to different learning styles, ML can be divided into supervised learning, unsuper-

vised learning, semi-supervised learning, and reinforcement learning. Typical ML

algorithms include support vector machine (SVM) [6], decision tree, expectation-

maximization (EM) algorithm [7], artificial neural network (NN), ensemble learning,

Bayesian model, and so on.

Currently, one of the most attractive branches of ML is deep learning proposed

by Geoffrey Hinton in 2006 [8]. Deep learning is a class of ML algorithms that can

use a cascade of multiple layers of nonlinear processing units for feature extraction

and transformation. Its origin can be traced back to the McCulloch–Pitts (MP) model

of neuron in the 1940s [9]. Nowadays, with the rapid development in data volume

and also computer hardware and software facilities such as central processing unit,

graphic processing unit, andTensorFlow library, deep learning demonstrates powerful

abilities such as high recognition and prediction accuracy in various applications.

In short, ML is an important branch of AI, and deep learning is one key family

among various ML algorithms. Figure 4.2 depicts a simplified relationship between

AI, ML, and deep learning.

1School of Computer and Information Technology, Beijing Jiaotong University, China
2Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, China



136 Applications of machine learning in wireless communications

Nature language processing Classification

of learning

styles

Traditional

machine

learning

algorithm

Pattern recognition

Supervised learning

Unsupervised learning

Semi-supervised learning

Reinforcement learning

SVM

ANN

Decision tree

EM

Deep learning

Ensemble learning

Machine learning

Computer vision

• 
• 

•

• 
• 

•Robotics

AI

Figure 4.1 The research branches of AI and ML

DPMLAI

Figure 4.2 The relationship between AI, ML, and deep learning

In recent years, a range of ML algorithms have been exploited in wireless com-

munication systems to address key issues. Reference [10] has proposed a Bayesian

channel estimator with a substantial improvement over the conventional estimators

in the presence of pilot contamination. Besides, a blind estimator based on EM algo-

rithm [11] has been introduced which requires no training symbols and outperforms

the existing training-aided estimators. Some deep-learning methods [12–14] have also

been exploited to enhance channel estimation and detection performance of wireless

communication systems. In addition, one new wireless communication architecture

on the basis of an ML-aided autoencoder has been suggested in [15].

In this chapter, we first review the channel model for wireless communication

systems and then describe two traditional channel estimation methods, and finally

introduce two newly designed channel estimators based on deep learning and one

EM-based channel estimator.
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4.1 Channel model

The wireless channel is described by the response h(t, τ ) at time t to an impulse

transmitted at time t − τ . The channel consists of several independent paths. For this

multipath model, the general expression can be written as [16]:

h(τ , t) =
∑

i

ai(t)δ(τ − τi(t)), (4.1)

where ai(t) is the attenuation and τi(t) is the delay from the transmitter to the receiver on

the ith path. An example of a wireless channel with three paths is shown in Figure 4.3.

The general expression (4.1) is also known as a doubly selective channel since

there are several paths and the attenuations and delays are functions of time. The

following two special cases for h(t, τ ) are widely used:

● Time-invariant frequency-selective channel: This channel occurs when the trans-

mitter, receiver, and the environment are all stationary so that the attenuations

ai(t) and propagation delays τi(t) do not depend on time t. However, the delays

are significantly large compared to the symbol period.
● Time-varying (or time-selective) flat-fading channel: The delays τi(t) in this case

are all approximately constant and small compared to the symbol period. This

channel occurs when the transmitter or the receiver is mobile and when the symbol

period of the transmitted signal significantly exceeds any of all the delays.

Since the symbol period Ts decreases when the data rate increases, the channel

can be flat fading or frequency selective depending on the data rate. Moreover, the

Transmitter Delay

Receiver

a2(t)

τ1(t)

τ2(t)

τ3(t)

t

a1(t)

a3(t)

Figure 4.3 Wireless channel model
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delay spread is another relevant parameter. Delay spread Td is defined as the difference

in propagation delay between the longest and shortest path:

Td = max
i,j

|τi(t) − τj(t)|. (4.2)

When Ts is much larger than Td , the channel is flat fading. Otherwise, the channel is

frequency selective. For example, the typical delay spread in a wireless channel in

an urban area is 5 µs when the distance between transmitter and receiver is 1 km [1].

When the data rate is 1 kbps, the symbol period is 1 ms, and the channel is flat-fading

since the delay is negligible compared to the symbol period. If the data rate increases

to 1 Mbps, the symbol period Ts is 1 µs. Then the channel becomes frequency selective

due to the non-negligible delays.

Furthermore, the mobility of transmitter or receiver will induce a shift in radio

frequency, which is referred to as the Doppler shift Ds. Coherence time Tc, a parameter

related to the Doppler shift, is defined as

Tc = 1

4Ds

. (4.3)

If the coherence time Tc is comparable to the symbol period, the channel is time-

varying. On the other hand, in time-invariant channels, the coherence time Tc is

much larger than the symbol period (i.e., the channel remains constant). For exam-

ple, if Doppler shift Ds = 50 Hz and the transmission data rate is 1 Mbps, then the

coherence time Tc = 2.5 ms is much larger than one symbol duration 1 µs. In this

case, the channel is time invariant.

The types of wireless channels are depicted in Table 4.1.

4.1.1 Channel input and output

In terms of the wireless channel h(t, τ ), the relationship between input s(t) and output

y(t) is given by

y(t) =
∫ +∞

−∞
h(t, τ )s(t − τ )dτ + w(t), (4.4)

where w(t) is an additive white Gaussian complex noise signal. The receiver is

required to recover data signal s(t) from received signal y(t); this process is called

data detection.

For data detection, the receiver requires the knowledge of h(t, τ ), which is referred

to as channel state information (CSI). To help the receiver estimate CSI, special

Table 4.1 Different types of wireless channels

Types of channel Characteristic

Time varying Tc ≪ Ts

Time invariant Tc ≫ Ts

Flat fading Td ≪ Ts

Frequency selective Td ≫ Ts
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predefined symbols may be transmitted in addition to data symbols. These symbols

are called pilot symbols or training symbols. Pilot symbols are utilized by the channel

estimator at the receiver to obtain CSI.

In practice, channel estimation and data detection are done by using the discrete-

time baseband signals. Define the samples y(nTs) = y(n) for n = 0, 1, . . . , N − 1.

The discrete-time baseband model equivalent to (4.4) can then be obtained as

y(n) =
L∑

l=0

h(n, l)s(n − l) + w(n), (4.5)

where h(n, l) is the sampling version of h(t, τ ), i.e., h(n, l) = h(nTs, lTs), and s(n − l)

is the sampling version of s(t), i.e., s(n − l) = s((n − l)Ts), and L + 1 is the number of

multipaths and w(n) is complex white Gaussian noise with mean zero and variance σ 2
w.

4.2 Channel estimation in point-to-point systems

4.2.1 Estimation of frequency-selective channels

For a frequency-selective time-invariant channel where h(n, l) does not change with

time index n, i.e., h(n, l) = h(l), the model (4.5) can be simplified as

y(n) =
L∑

l=0

h(l)s(n − l) + w(n). (4.6)

Define y = [y(0), y(1), . . . , y(N − 1)]T , w = [w(0), w(1), . . . , w(N − 1)]T , and h =
[h(0), h(1), . . . , h(L)]T , where N is the block length. We can further write (4.6) in the

following vector form:

y = Sh + w, (4.7)

where S is a N × (L + 1) circulant matrix with the first column s = [s(0), s(1), . . . ,

s(N − 1)]T . Note that the sequence s is the training sequence and depends on the

choice of pilots and their values.

Two linear estimators are often utilized to obtain the estimate of h from the

received signal y. The first one is least square (LS). It treats h as deterministic constant

and minimizes the square error. The LS estimate is [17]:

ĥ = (SH S)−1SH y. (4.8)

LS estimator can be derived as follows. The square error between the real value

and the estimate value is

J (h) = (y − Sh)H (y − Sh) = yH y − 2yH Sh + hH SH Sh (4.9)

To minimize the error, the gradient of J (h) with respect to h is derived as

∂J (h)

∂h
= −2SH y + 2SH Sh (4.10)
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Setting the gradient to be zero, we can then obtain the LS estimate (4.8). For simplicity,

denote (SH S)−1SH as S†, the LS estimate can be rewritten as

ĥ = S†y, (4.11)

where (·)† represents the pseudo inverse. It can be readily checked that the minimum

square error of LS is

Jmin = J (h) = yT (I − S(XT S)−1ST )y (4.12)

The second one is the linear minimum mean square error (LMMSE) estimator.

It treats h as a random vector and minimizes the mean square error.

Define Ryy = E(yyH ), Rhh = E(hhH ), and Rhy = E(hyH ), where E(x) is the

expected value of a random variable x. The LMMSE estimator can be expressed as

ĥ = RhSH (SRhSH + σ 2
wI)−1y (4.13)

LMMSE estimator can be derived as follows. As a linear estimator, the estimate

ĥ can be given as linear combination of the received signal y:

ĥ = Ay. (4.14)

LMMSE estimator aims to minimize the mean square error through choosing the

linear combinator A, i.e.:

A = arg min
A

E(‖h − ĥ‖2) = arg min
A

E(‖h − Ay‖2). (4.15)

The mean square error can be further obtained as

E(‖h − Ay‖2) = E(tr{(h − A(Sh + e))(h − A(Sh + e))H }) (4.16)

= tr{Rh} − tr{RhSHAH} − tr{ASRh} + tr{W(SRhSH + σ 2
wI)AH }

(4.17)

where tr{A} denotes the trace operation of the matrix A and σ 2
w is the noise variance.

Setting the derivative of MSE to the parameter A as zero, we can derive:

A = RhSH (SRhSH + σ 2
wI)−1. (4.18)

Substituting (4.18) into (4.14) will generate (4.13).

The LS estimator is simpler compared with the LMMSE estimator. But the

LMMSE estimator outperforms the LS estimator because it exploits the statistics

of h.

4.3 Deep-learning-based channel estimation

4.3.1 History of deep learning

Deep learning, suggested by Geoffrey Hinton in 2006, is rooted from NN. The ear-

liest idea about NN originated from the MP neuron model [9] proposed by Warren

McCulloch and Walter Pitts in 1943. Interestingly, we can find that there exists three

up-and-down tides of NN development during the past 70 years.
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The first tide, as illustrated in Figure 4.4, took place from 1940s to 1960s [18]. The

MP neuron model, created in 1943, laid the foundation for the research of NN.Then in

1958, Frank Rosenblatt created the first machine referred to as perceptron [19] which

exhibited the ability of simple image recognition. The perception aroused huge inter-

ests and large investments during its first decade. However, in 1969, Marvin Minsky

discovered that perceptrons were incapable of realizing the exclusive OR function.

He also pointed out that the computers, due to the limited computing ability at that

time, cannot effectively complete the large amount of computation work required by

large-scale NN [20], such as adjusting the weights. The two key factors leaded to the

first recession in the development of NN.

The second wave started from the 1980s and ended at the 1990s. In 1986, David

Rumelhart, Geoffrey Hinton, and Ronald J. Williams successfully utilized the back

propagation (BP) algorithm [21] and effectively solved the nonlinear problems for

NN with multiple layers. From then on, BP algorithms gained much popularization,

which resulted in the second upsurge of NN. Unfortunately, in the early 1990s, it was

pointed out that there existed three unsolved challenges for BP algorithms. The first is

that the optimization method obtains the local optimal value, instead of global, when

training the multilayer NN. The second is the vanishing gradient problem that the

neuron weights closed to the inputs have little changes. The third is the over-fitting

problem caused by the contradiction between training ability and prediction results.

In addition, the data sets for training the NN and the computing capability at the time

also cannot fully support the requirements from the multilayer NN. Besides, SVM [6]

attracted much attentions and became one hot research topic. These factors led to a

second winter in the NN development.

The third wave emerged in 2006 when Geoffrey Hinton proposed deep belief

networks [8] to solve the problem of gradient disappearance through pretraining and

supervised fine tuning. The term deep learning became popular ever since then. Later

the success of ImageNet in 2012 provided abundant pictures for training sets and

1986, backpropagation

1958, perceptron

1943, MP model 1969, winter

Mid-1990s, winter

Time

2006, deep learning

Figure 4.4 Development trend of deep learning
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set a good example for deep-learning research. So far, the third wave is still gaining

momentums.

4.3.2 Deep-learning-based channel estimator for orthogonal
frequency division multiplexing (OFDM) systems

Figure 4.5 illustrates the functional diagram and the basic elements of a digital

orthogonal frequency division multiplexing (OFDM) communication system. At the

transmitter, the source bits X (k) follows the operations of modulation, inverse discrete

Fourier transform (IDFT), and adding cyclic prefix (CP), respectively.

Denote the multipath fading channels as h(0), h(1), . . . , h(L − 1). The signal

arrived at the receiver is

y(n) = x(n) ⊗ h(n) + w(n), (4.19)

where x(n) and w(n) indicate the transmitted signal and the noise, respectively,

and ⊗ represents the circular convolution. After removing CP and performing DFT

operation, the received signals can be obtained as

Y (k) = X (k)H (k) + W (k) (4.20)

where Y (k), X (k), H (K), and W (k) are the DFT of y(n), x(n), h(n), and w(n) respec-

tively. Finally, the source information is recovered from Y (k) through frequency

domain equalization and demodulation. Generally, the traditional OFDM receiver

first estimates the CSI H (k) using the pilot and then detects the source signal with

the channel estimates Ĥ (k).

Different from the classical design shown in Figure 4.5, a deep-learning-based

transceiver is proposed in [12] which can estimate CSI implicitly and recover the

signal directly. This approach considers the whole receiver as a black box, takes the

received signal as input of a deep NN (DNN), and outputs the recovered source bits

after calculation and transformation in the hidden layers of the NN.

The OFDM transmission frame structure is shown in Figure 4.6. One OFDM

frame consists of two OFDM blocks: one for pilot symbols and the other for data

symbols. Assume that the channel parameters remain unchanged in each frame and

may vary between frames.

X(k)

x(n)

y(n)

Modulation IDFT

FDE DFT Remove CP

Insert CP

Channel h(n)
Noise
w(n)

Demodulation
X(k)ˆ

Figure 4.5 Basis elements of an OFDM system



Machine-learning-based channel estimation 143

Frame 1 Frame 2 Frame 3

CP

First OFDM block Second OFDM block

CPPilot Data

Figure 4.6 OFDM frame structure for deep-learning-based transceiver
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Figure 4.7 The data-generation process

The data-generation process is depicted in Figure 4.7. Suppose the OFDM system

has 64 subcarriers and the length of CP is 16. In each frame, the first block contains

fixed pilot symbols, and the second data block consists of 128 random binary bits.

After QPSK modulation, IDFT, and CP insertion, the whole frame data is con-

volved with the channel vector. The channel vector is randomly selected from the

generated channel parameter sets based on the WINNER model [22]. The maximum

multipath delay is set as 16.

At the receiver side, the received signals including noise and interference in one

frame will be collected as the input of DNN after removing CP. The DNN model aims

to learn the wireless channel parameters and recover the source signals.

As illustrated in Figure 4.8, the architecture of the DNN model has five layers:

input layer, three hidden layers, and output layer. The real and imaginary parts of the

signal are treated separately. Therefore, the number of neurons in the first layer is 256.

The number of neurons in the three hidden layers are 500, 250, and 120, respectively.

The active function of the hidden layers are rectified linear unit (ReLU) function

and that of the last payer is Sigmoid function. Every 16 bits of the transmitted data

are detected for one model which indicates the dimension of the output layer is 16.

For example, the model in Figure 4.8 aims to predict the 16th–31st data bits in the

second block. Since the data block contains 128 binary bits, eight DNN models are

needed to recover the whole transmitted data part as indicated in Figure 4.9.
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The objective function for optimization is L2 loss function and optimal parameters

is obtained with the root mean square prop (RMSProp)1 optimizer algorithm, where

Python2 environment and TensorFlow3 architecture are utilized. Table 4.2 lists some

key parameters for training the DNN.

Figure 4.10 illustrates the bit error rate performance of the DNN method and

traditional estimators: LS and LMMSE. It can be seen that the LS method performs

worst and that the DNN method has the same performance as the LMMSE at low SNR.

When the SNR is over 15 dB, the LMMSE slightly outperforms the DNN method.

1RMSProp is a stochastic gradient descent method with adapted learning rates.
2Python is a high-level programming language.
3TensorFlow is an open-source software library for dataflow programming.
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Table 4.2 Key parameters for training

the DNN

Parameters Value

Epoch 60
Batch size 2,000
Batch 400
Learning rate 0.001
Test set 10,000

155 10 20 25

SNR

B
E

R

Deep learning
LMMSE
LS

10–4

10–3

10–2

10–1

100

Figure 4.10 DNN, LMMSE, and LS performance

4.3.3 Deep learning for massive MIMO CSI feedback

Massive multiple-input and multiple-output (MIMO) wireless communication sys-

tems have attracted enormous attentions from both academy and industry. For massive

MIMO with frequency division duplex mode, the user equipment (UE) estimates the

downlink channel information and returns it to the base station (BS) via the feed-

back link. The main challenge of this CSI feedback mechanism is the large overhead.

Existing systems usually utilize compressed sensing (CS)-based methods to obtain the

sparse vector and then restructure the matrix as the estimate. These methods require

that the channel should be sparse in some bases.

Different from the CS method, a feedback mechanism based on DNN is proposed

in [13]. The suggested deep-learning-based CSI network (CsiNet) can sense and

recover the channel matrix. The workflow of the CsiNet is shown in Figure 4.11.
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Suppose the BS has Nt transmit antennas and UE has one, and the OFDM system

has Ñc carriers. Denote the estimated downlink channel matrix as H̃ ∈ CNt×Ñc . Once

the UE estimates the channel H̃, it will apply the following DFT and then obtain:

H̄ = FdH̃FH
a (4.21)

where Fd and Fa are Ñc × Ñc and Nt × Nt DFT matrices, respectively. Next the UE

selects the first Nc rows of H since the CSI are mainly included in these rows. Let H

represent the truncated matrix, i.e., H = H̄( :, 1 : Nc). Clearly, the matrix H contains

N = Nc × Nt elements, which indicates that the number of the feedback parameters

is cut down to N .

Based on the deep-learning method, the CsiNet designs an encoder to convert

H to a vector s that only has M elements. Next the UE sends the codeword s to the

BS. The BS aims to reconstruct the original channel matrix H with the code word s.

The compression ratio is γ = M/N . Then the decoder in CsiNet can recover s to Ĥ.

After completing Ĥ to H̄, IDFT is used to obtain the final channel matrix. In summary,

the CSI feedback approach is shown as Figure 4.12.

The CsiNet is an autoencoder model based on convolution NN. Figure 4.13 shows

the architecture of the CsiNet which mainly consists of an encoder (Figure 4.14) and

a decoder (Figure 4.15).

The detailed structure of the encoder is shown in Figure 4.14. It contains two

layers. The first layer is a convolutional layer and the second is a reshape layer. The

real and imaginary parts of the truncated matrix H with dimensions 8 × 8 is the input

of the convolutional layer. This convolutional layer uses a 3 × 3 kernel to generate two

feature maps, which is the output of the layer, i.e., two matrices with dimensions 8 × 8.

Then the output feature maps are reshaped into a 128 × 1 vector. The vector enters
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into a fully connected layer and the output of the connected layer is the compressed

codeword s with eight elements.

The goal of the decoder is to recover the codeword to the matrix H. The detailed

structure of the decoder is shown in Figure 4.15. The decoder is comprised of three

main parts: a fully connected layer (also referred to as dense layer) and two RefineNet.

The first fully connected layer transforms the codeword s into a 128 × 1 vector. And
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then the vector is reshaped into two 8 × 8 matrices which is considered as the initial

estimate of H. Next, two RefineNets are designed to refine the estimates.

Each RefineNet has four layers: one input layer and three convolutional layers.

The input layer has two feature maps, and the three convolutional layers have eight,

sixteen, and two feature maps, respectively. All the feature maps are of the same size

as the input channel matrix size 8 × 8.

It is worth noting that in each RefineNet, there is a direct data flow from the input

layer to the end of last convolutional layer so as to avoid the gradient disappearance.

Each layer of the CsiNet executes normalization and employs a ReLU function

to activate the neurons. After two RefineNet units, the refined channel estimates will

be delivered to the final convolutional layer and the sigmoid function is also exploited

to activate the neurons.

The end of the second RefineNet in the decoder will output two matrices with

size 8 × 8, i.e., the real and imaginary parts of Ĥ, which is the recovery of H at

the BS.

MSE is chosen as the loss function for optimization, and the optimal parameters

are obtained through ADAM algorithm. Simulation experiments are carried out in

Python environment with TensorFlow and Keras4 architecture. The key parameters

needed to train the network are listed in Table 4.3.

Here, we provide one example of H. The UE obtain channel estimate and trans-

form it into H. The real and image parts of H are as shown in Tables 4.4 and 4.5,

respectively.

The UE inputs H to CsiNet. The encoder of the CsiNet then generates a 8 × 1

codeword:

s = [−0.17767, −0.035453, −0.094305, −0.072261,

−0.34441, −0.34731, 0.14061, 0.089002] (4.22)

Table 4.3 The parameters for

training CsiNet

Parameters Value

Training set 100,000
Validation set 3,000
Test set 2,000
Epoch 1,000
Batch size 200
Batch 50
Learning rate 0.01

4Keras is an open-source neural network library which contains numerous implementations of commonly

used neural network building blocks.
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Table 4.4 Real parts of the channel matrix H

h(0) h(1) h(2) h(3) h(4) h(5) h(6) h(7)

0.49238 0.48270 0.57059 0.48917 0.50353 0.50847 0.46970 0.46497
0.49181 0.47943 0.53719 0.51973 0.50382 0.51015 0.47846 0.50859
0.49114 0.47463 0.52339 0.51216 0.50416 0.51259 0.48357 0.50004
0.49035 0.46690 0.51880 0.50956 0.50456 0.51650 0.48655 0.49873
0.48941 0.45239 0.51662 0.50631 0.50503 0.52370 0.48838 0.49633
0.48828 0.41570 0.51161 0.50951 0.50561 0.54108 0.48948 0.49984
0.48687 0.16565 0.51290 0.50482 0.50634 0.62954 0.48995 0.49621
0.48507 0.81859 0.50914 0.50794 0.50726 0.33268 0.49038 0.49959

Table 4.5 Image parts of the channel matrix H

h(0) h(1) h(2) h(3) h(4) h(5) h(6) h(7)

0.50008 0.50085 0.49364 0.44990 0.49925 0.49954 0.48900 0.34167
0.50012 0.50115 0.49413 0.51919 0.49924 0.49975 0.49007 0.57858
0.50016 0.50161 0.49481 0.50429 0.49924 0.50010 0.49050 0.55735
0.50022 0.50237 0.49508 0.50391 0.49924 0.50074 0.49014 0.50956
0.50029 0.50383 0.49503 0.50028 0.49926 0.50203 0.48907 0.50658
0.50037 0.50749 0.49465 0.50244 0.49929 0.50539 0.48700 0.50755
0.50049 0.52458 0.49375 0.49802 0.49933 0.52117 0.48301 0.50263
0.50064 0.44605 0.49326 0.49966 0.49941 0.46087 0.48067 0.50367

The decoder can utilize this codeword s to reconstruct the channel matrix Ĥ. Define the

distance between H and Ĥ as d = ‖H − Ĥ‖2
2. In this case, we obtain d = 3.98 × 10−4.

The compression ratio is γ = ((8 × 8 × 2)/8) = 1/16.

4.4 EM-based channel estimator

4.4.1 Basic principles of EM algorithm

EM algorithm [7] is an iterative method to obtain maximum likelihood estimates

of parameters in statistical models which depend on unobserved latent or hidden

variables. Each iteration of the EM algorithm consists of two steps: calculating the

expectation (E step) and performing the maximization (M step).

Next, we will introduce the principles of the EM algorithm in detail. And for

clarity and ease of understanding EM algorithm, the notations used throughout this

section are illustrated in Table 4.6.

In probabilistic models, there may exist observable variables and latent variables.

For example, in the wireless communication systems, the received signals can be

given as

y(i) = hx(i) + w(i), i = 1, 2, . . . , N (4.23)
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Table 4.6 Parameters description

Notations Description Corresponding item
in the model (4.23)

y Observed variable [y(1), y(2), . . . , y(N )]T

z Latent variable (hidden variable) [x(1), x(2), . . . , x(N )]T

θ Parameter to be estimated h

θ ( j) The jth iterative estimate of parameter θ h( j)

L(θ) The log-likelihood function about parameter θ L(h)

P(y; θ ) The probability with the parameter θ
∏N

i=1 P(y(i); h)

P(y, z; θ) The joint probability for variables y, z with the
parameter θ

P(y(i), xk ; h)

P(z|y; θ ( j)) The conditional probability given y and
parameter

P(xk |y(i); h( j))

LB(θ , θ ( j)) The lower bound of log likelihood function LB(h, h( j))

Q(θ , θ ( j)) The expected value of the log likelihood
function of θ given the current estimates
of the parameter θ

Q(h, h( j))

Q(θ ( j), θ ( j)) The value of the log likelihood function
when θ is equal to θ ( j)

Q(h( j), h( j))

where h is the flat-fading channel to be estimated, and x(i) is the unknown modulated

BPSK signal, i.e., x(i) ∈ {+1, −1}. In this statistical model (4.23) that aims to esti-

mate h with unknown BPSK signals x(i), the received signals y(i) are the observable

variables and the transmitted signals x(i) can be considered as latent variables.

Denote y, z, and θ as the observed data, the latent variable, and the parameter to be

estimated, respectively. For the model (4.23), we can have y = [y(1), y(2), . . . , y(N )]T ,

z = [x(1), x(2), . . . , x(N )]T , and θ = h.

If the variable z can be available, the parameter θ can be estimated by maximum

likelihood approach or Bayesian estimation. Maximum likelihood estimator solves

the log-likelihood function:

L(θ ) = lnP(y; θ ) (4.24)

where z is a parameter in the probability density function P(y; θ ). Clearly, there is

only one unknown parameter θ in the log-likelihood function L(θ |y), and therefore

the estimate of θ can be obtained through maximizing5 L(θ ):

θ̂ = max
θ

L(θ ). (4.25)

However, if the variable z are unknown, we cannot find the estimate θ̂ from (4.25)

since the expression of L(θ ) contains unknown parameter z. To address this problem,

EM algorithm was proposed in [7] in 1977. EM algorithm estimates the parameter θ

5One dimensional search or setting the derivative as zero can obtain the optimal value of θ .
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iteratively. Denote the jth estimate of θ as θ ( j). The basic principle of EM algorithm

is as follows.

Noting that the relationship between the marginal probability density function

P(y) and the joint density function P(y, z) is

P(y) =
∑

z

P(y, z). (4.26)

Hence, we can rewrite the likelihood function L(θ ) as

L(θ ) = lnP(y; θ ) = ln

{∑

z

P(y, z; θ )

}
(4.27)

= ln

{∑

z

P(z; θ )P(y|z; θ )

}
, (4.28)

where the Bayesian equation P(y, z) = P(z)P(y|z) is utilized in the last step in (4.28).

Equation (4.28) is often intractable since it contains not only the logarithm oper-

ation of the summation of multiple items and also the unknown parameter z in the

function P(y|z; θ ).

To address this problem of the unknown parameter z, EM algorithm rewrites the

likelihood function L(θ ) as

L(θ ) = ln

(∑

z

P(z|y; θ ( j))
P(z; θ )P(y|z; θ )

P(z|y; θ ( j))

)
(4.29)

where P(z|y; θ ( j)) is the probability distribution function of the latent variable z

given y. Since the distribution P(z|y; θ ( j)) can be readily obtained, it is possible

to generate a likelihood function that only contains one unknown parameter θ .

Using Jensen’s inequality [23]:

f (E[x]) ≥ E[ f (x)], (4.30)

where x is a random variable, f (x) is a concave function, and E[x] is the expected

value of x, we can have

ln(E[x]) ≥ E[ ln(x)]. (4.31)

Thus, we can find

L(θ ) ≥ E

[
ln

(
P(z; θ )P(y|z; θ )

P(z|y; θ ( j))

)]

=
∑

z

P(z|y; θ ( j)) ln
P(z; θ )P(y|z; θ )

P(z|y; θ ( j))
= LB(θ , θ ( j)), (4.32)

where LB(θ , θ ( j)) is defined as the lower bound of the likelihood function L(θ ).

We can further simplify LB(θ , θ ( j)) as

LB(θ , θ ( j)) =
∑

z

P(z|y; θ ( j)) ln
P(y, z; θ )

P(z|y; θ ( j))
. (4.33)
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It is worth noting that there is only one unknown parameter θ in the above

expression (4.33) of LB(θ , θ ( j)). Therefore, we can find the ( j + 1)th iterative estimate

θ ( j+1) through:

θ ( j+1) = arg max
θ

LB(θ , θ ( j)) (4.34)

= arg max
θ

∑

z

P(z|y; θ ( j))(ln P(y, z; θ ) − ln P(z|y; θ ( j))) (4.35)

which is the focus of the M step.

Since the item P(z|y; θ ( j)) does not contain the variable θ , it can be negligible in

the maximization optimization operation (4.35). Therefore, we can further simplify

(4.35) as

θ ( j+1) = arg max
θ

∑

z

P(z|y; θ ( j)) ln P(y, z; θ )

︸ ︷︷ ︸
Q(θ ,θ ( j))

(4.36)

where the function Q(θ , θ ( j)) is defined as the corresponding item.

Interestingly, we can find the function Q(θ , θ ( j)) can be written as

Q(θ , θ ( j)) =
∑

z

P(z|y; θ ( j)) ln P(y, z; θ ) (4.37)

= Ez|y;θ ( j) [ ln P(y, z; θ )], (4.38)

which indicates that the function Q(θ , θ ( j)) is the expected value of the log likelihood

function ln P(y, z; θ ) with respect to the current conditional distribution P(z|y; θ ( j))

given the observed data y and the current estimate θ ( j). This is the reason for the name

of the E step.

Next the M step is to find the parameter θ which can maximize the function

Q(θ , θ ( j)) found on the E step, and we set the optimal value of θ as θ ( j+1). That is,

θ ( j+1) = arg max
θ

Q(θ , θ ( j)). (4.39)

Till now, the jth iteration ends. The estimate θ ( j+1) is then used in the next round

of iteration (the E step and the M step).

The termination condition of the iterative process is

‖θ ( j+1) − θ ( j)‖ < ε, (4.40)

or

‖Q(θ ( j+1), θ ( j)) − Q(θ ( j), θ ( j))‖ < ε, (4.41)

where ε is a predefined positive constant.

4.4.2 An example of channel estimation with EM algorithm

In this section, we will use the EM method to estimate the channel h in the signal trans-

mission model (4.23) without training symbols which indicates that the BPSK signals
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x(i) are unknown to the receiver. We assume that the BPSK signals are equiprobable,

i.e., P(x(i) = +1) = P(x(i) = −1) = 1/2, i = 1, 2, . . . , N .

Suppose x1 = +1 and x2 = −1, and clearly the BPSK signals x(i) can be either

x1 or x2. The conditional probability density function of received signal y(i) given

x(i) = xk , k = 1, 2 can be expressed as

P(y(i)|xk ; h) = 1√
2πσw

exp

{
(y(i) − hxk )2

−2σ 2
w

}
, (4.42)

And the joint probability density function of xk and y(i) is

P(y(i), xk ; h) = P(y(i)|xk ; h)P(xk )

= 1

2
√

2πσw

exp

{
(y(i) − hxk )2

−2σ 2
w

}
. (4.43)

The core of the EM algorithm is to iteratively calculate the function Q(h, h( j))

where h is the channel to be estimated and h( j) denoted the jth estimate of h. Accord-

ing to (4.38), we need the joint distribution P(y(i), xk ; h) and also the conditional

distribution P(xk |y(i); h( j)) to derive the function Q(h, h( j)). Since the joint distribu-

tion P(y(i), xk ; h) is given in (4.43), our next focus is to calculate the conditional

probability P(xk |y(i); h( j)).

The conditional probability P(xk |y(i); h( j)) can be derived as

P(xk |y(i); h( j)) = P(xk , y(i); h( j))

P(y(i); h( j))

= P(y(i)|xk ; h( j))P(xk )
∑2

m=1 P(y(i)|xm; h( j))P(xm)

=
(1/(2

√
2πσw)) exp

{
(y(i) − h( j)xk )2/−2σ 2

w

}
∑2

m=1 (1/(2
√

2πσw)) exp
{
(y(i) − h( j)xm)2/−2σ 2

w

}

=
exp

{
(y(i) − h( j)xk )2/−2σ 2

w

}
∑2

m=1 exp
{
(y(i) − h( j)xm)2/−2σ 2

w

} (4.44)

Subsequently, in the E step, the expectation of ln P(y(i), xk ; h) with respect to the

current conditional distribution P(xk |y(i); h( j)) given y(i) can be found as

Q(h, h( j)) =
N∑

i=1

2∑

k=1

P(xk |y(i); h( j)) ln P(y(i), xk ; h) (4.45)
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Substituting (4.43) and ( 4.44) into (4.45), we can further obtain

Q(h, h( j)) =
N∑

i=1

2∑

k=1

P(xk |y(i); h( j))

(
−ln 2

√
2πσw − (y(i) − hxk )2

−2σ 2
w

)

=
N∑

i=1

2∑

k=1

exp
{
(y(i) − h( j)xk )2/−2σ 2

w

}
∑2

m=1 exp
{
(y(i) − h( j)xm)2/−2σ 2

w

}
{
−ln 2

√
2πσw − (y(i) − hxk )2

−2σ 2
w

}

(4.46)

It is worth noting that the expression (4.46) of Q(h, h( j)) only contains one

unknown parameter h. Therefore, the ( j + 1)th estimate of the channel h can be cal-

culated through setting the derivative of (4.46) with respect to h as zero. Accordingly,

it can be readily obtained that

h( j+1) =
∑N

i=1

∑2
k=1 P(xk |y(i); h( j))y(i)xk∑N

i=1

∑2
k=1 P(xk |y(i); h( j))x2

k

=
∑N

i=1

∑2
k=1

((
exp

{
(y(i) − h( j)xk )2/−2σ 2

w

}
y(i)xk

)
/

(∑2
m=1 exp

{
(y(i) − h( j)xm)2/−2σ 2

w

}))

∑N
i=1

∑2
k=1

((
exp

{
(y(i) − h( j)xk )2/−2σ 2

w

}
x2

k

)
/

(∑2
m=1 exp

{
(y(i) − h( j)xm)2/−2σ 2

w

}))

(4.47)

In conclusion, the EM algorithm preset a value for θ and then calculates h( j+1)

iteratively according to (4.47) until the convergence condition (4.40) or (4.41) is

satisfied.

In the following part, we provide simulation results to corroborate the proposed

EM-based channel estimator. Both real and complex Gaussian channels are simu-

lated. For comparison, Cramér–Rao Lower Bound (CRLB) is also derived. CRLB

determines a lower bound for the variance of any unbiased estimator. First, since N

observations are used in the estimation, the probability density function of y is

P(y; h) =
N∏

i

1√
2πσw

exp

{
(y(i) − hxk )2

−2σ 2
w

}
, (4.48)

and its logarithm likelihood function is

ln P(y; h) = −N

2
ln 2πσ 2

w − 1

2σ 2
w

N∑

i

(y(i) − hx(i))2. (4.49)

The first derivative of ln P(y; h) with respect to h can be derived as

∂ln P(y; h)

∂h
= 1

σ 2
w

N∑

i

(y(i) − hx(i))x(i). (4.50)

Thus, the CRLB can be expressed as [17]

var(h) ≥ 1

−E
[
(∂2 ln p(y; h))/∂2h

] = σ 2
w

E[
∑N

i x2
i ]

= σ 2
w

NPx

= CRLB (4.51)

where Px is the average transmission power of the signals x(n).
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Figures 4.16 and 4.17 depict the MSEs of the EM estimator versus SNR for

the following two cases separately: when the channel h is generated from N (0, 1),

i.e., real channel; and when it is generated from CN (0, 1), i.e., Rayleigh channel.

The observation length is set as N = 6. For comparison with the EM estimator, the

MSE curves of LS method are also plotted when the length of pilot is N/2 and N ,
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Figure 4.16 Real channel estimation MSEs versus SNR
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Figure 4.17 Complex channel estimation MSEs versus SNR
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Figure 4.18 Channel estimation MSEs versus N

respectively. The CRLBs are also illustrated as benchmarks. It can be seen from

Figures 4.16 and 4.17 that the EM-based blind channel estimator performs well and

approaches CRLB at high SNR. It can also be found that the EM-based blind channel

estimator with no pilots exhibits almost the same performance with the LS estimator

with N pilots and fully outperforms the LS estimator with N/2 pilots.

Figure 4.18 demonstrates the MSEs of LS method and EM algorithm versus the

length of signal N when SNR = 3 and 20 dB, respectively. As we expected, the MSEs

of the two estimator witness a downward trend when the length N increases. It can

be also found that the EM algorithm without pilot has almost consistent performance

with the LS method with N pilots when SNR is 20 dB.

4.5 Conclusion and open problems

In this chapter, we introduce two traditional, one EM-based, and two deep-learning-

based channel estimators. Exploiting ML algorithms to design channel estimators is

a new research area that involves many open problems [24]. For example, devel-

oping new estimators in the relay or cooperative scenarios is worthy of further

studies. Besides, design of new deep-learning-based channel estimators for wire-

less communications on high-speed railways is another interesting challenge since

the railway tracks are fixed and a large amount of historical data along the railways

can be exploited [25] through various deep-learning approaches to enhance estimation

performance.
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Chapter 5

Signal identification in cognitive radios
using machine learning

Jingwen Zhang1 and Fanggang Wang1

As an intelligent radio, cognitive radio (CR) allows the CR users to access and share

the licensed spectrum. Being a typical noncooperative system, the applications of

signal identification in CRs have emerged. This chapter introduces several signal

identification techniques, which are implemented based on the machine-learning

theory.

The background of signal identification techniques in CRs and the motivation

of using machine learning to solve signal identification problems are introduced

in Section 5.1. A typical signal-identification system contains two parts, namely, the

modulation classifier and specific emitter identifier, which are respectively discussed

in Sections 5.2 and 5.3. Conclusions are drawn in Section 5.3.5.

5.1 Signal identification in cognitive radios

CR was first proposed by Joseph Mitola III in 1999 [1], with its original definition

as a software-defined radio platform, which can be fully configured and dynamically

adapt the communication parameters to make the best use of the wireless channels.

In 2005, Simon Haykin further developed the concept of CR to spectrum sharing [2],

where the CR users are allowed to share the spectrum with the licensed users and hence

mitigates the scarcity problem of limited spectrum. With the advent of the upcoming

fifth generation (5G) cellular-communication systems, the challenges faced by 5G are

neglectable. In particular, the explosion of mobile data traffic, user demand, and new

applications contradicts with the limited licensed spectrum. The existing cellular net-

work is built based on the legacy command-and-control regulation, which in large part

limits the ability of potential users to access the spectrum. In such a case, CR provides

a promising solution to address the above bottleneck faced by 5G cellular system.

In general, CR network is a noncooperative system. Within the framework, the

CR users and the licensed users work in separate and independent networks. For

a CR user, it has little a prior knowledge of the parameters used by the licensed

1State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, China
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user and other CR users and barely knows the identities (whether they are legal or

evil) of other users in the network. Hence, signal identification plays a key role in

CRs in order to successfully proceed the received signals and to guarantee the safety

and fairness of the networks. In this chapter, two signal identification techniques

are introduced, modulation classification and specific emitter identification (SEI).

Figure 5.1 illustrates the diagram of a typical signal-identification system. The signal

identification system is capable of solving two typical problems that the CR networks

are confronted with: one is that the CR users have little information of the parameters

used by the licensed users and/or other CR users; the other is that with the ability

that allows any unlicensed users to access the spectrum, a certain user lacks the

identity information of other users in the network. Modulation classification can be

adopted to solve the unknown parameter problem and has vital applications in CRs.

For the case when the licensed and cognitive users share the same frequency band

for transmission and reception, the received signal at the cognitive receiver is the

superposition of signals from the licensed transmitter and its own transmitter, which

implies that the signal from the licensed user can be treated as an interference with

higher transmission power. By applying the modulation classification techniques, the

CR receiver can blindly recognize the modulation format adopted by the licensed

signal and is capable of demodulating, reconstructing, and canceling the interference

caused by the licensed user, which is the basis to proceed its own signal. Furthermore,

to solve the problem that the CRs is exposed to high possibility of being attacked

or harmed by the evil users, SEI offers a way to determine the user’s identity and

guarantees the safety and fairness of the CR networks.

The task of signal identification is to blindly learn from the signal and the envi-

ronment to make the classification decision, behind which is the idea of the artificial

intelligence. As an approach to implement the artificial intelligence, machine learn-

ing has been introduced in signal identification for the designing of the identification

algorithms. With little knowledge of the transmitted signal and the transmission

Cognitive
radios 

Licensed
and

cognitive
users

spectrum
sharing

Modulation
classification 

Unknown
parameter 

Unknown 
identity

Signal processing

Specific emitter identification

Signal reception

Identity recognition

Figure 5.1 The diagram of a typical signal identification system
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environments, blind signal identification remains a challenging task for conventional

methods. Machine learning provides a novel and promising solution for the signal-

identification problem. In general, a signal identifier/classifier consists of two parts,

one is the feature extraction subsystems to extract distinguishable features and the

other one is the classifier, which implements the classification task and makes deci-

sions by training and learning from the extracted features. In the remaining sections,

details of two signal identification techniques, i.e., the modulation classification and

SEI algorithms, based on machine learning is described.

5.2 Modulation classification via machine learning

The automatic modulation classification, hereinafter referred to as modulation clas-

sification, is a technique adopted at an intelligent receiver to automatically determine

the unknown modulation format used by a detected signal of interest. As an indis-

pensable process between signal detection and demodulation, it finds its applications

in military communications, along with CRs and adaptive systems.

Depending on the theories that used, typical modulation classification techniques

can be categorized into two classes, i.e., the decision-theoretic and the pattern-

recognition algorithms. The decision-theoretic algorithms are based on the likelihood

theory, where the modulation-classification problem is formulated as a multiple-

hypothesis test [3,4]. On the other hand, the pattern-recognition algorithms are based

on the pattern-recognition and machine-learning theory, where certain classification

features are extracted from the received signal and then inputted into the classifiers

to decide the modulation format [5,6].

More recently, the modulation classification investigation has focused on a more

challenging task of implementing the classification problem in the realistic environ-

ment, e.g., in the presence of complicated channel conditions and with no knowledge

of many transmission parameters. The expectation–maximization (EM) algorithm is

a commonly known algorithm in machine learning, which can be widely adopted to

clustering and dimension reduction. For a probabilistic model with unobserved latent

variables, the EM algorithm provides a feasible way to obtain the maximum likelihood

estimates (MLEs) of the unknown parameters.

In this section, we introduce two modulation classifiers, one is for determining

the typical constellation-based modulation formats (e.g., quadrature amplitude modu-

lation (QAM) and phase-shift keying (PSK)), which are widely adopted in the mobile

communication systems long term evolution (LTE) and new radio (NR), and the other

is for classifying continuous phase modulation (CPM) types, which have critical appli-

cations in satellite-communication systems. Both of the two classification problems

are considered in unknown fading channels, where the EM-based algorithms are pro-

posed to obtain the MLEs of the unknown channel parameters and further determine

the modulation formats. Note that in Section 5.2.2, the exact algorithm used in the

classification problem is the Baum–Welch (BW) algorithm. However, it is clarified

that the idea behind the BW algorithm is using the EM algorithm to find the MLEs

of the unknowns in a hidden Markov model (HMM).
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5.2.1 Modulation classification in multipath fading channels via
expectation–maximization

In this section, we investigate the classification problem of classifying QAM/PSK

modulations in the presence of unknown multipath channels. QAM/PSK is the most

commonly used modulation formats in the existing LTE systems and the upcoming

NR systems, of which the classification problem has been thoroughly investigated

for decades. However, the classification problem in real-world scenarios, such as in

the unknown multipath fading channels, is still challenging and needs further study.

A hybrid maximum likelihood (also known as hybrid likelihood ratio test) based

classifier is proposed to solve this problem. Specifically, the likelihood function is

computed by averaging over the unknown transmitted constellation points and then

maximizing over the unknown channel coefficients. Solutions to this problem cannot

be obtained in a computationally efficient way, where the EM algorithm is developed

to compute the MLEs of the unknowns tractably.

5.2.1.1 Problem statement

We consider a typical centralized cooperation system with one transmitter, K

receivers, and one fusion center; the fusion center collects data from the K receivers

to enhance the classification performance.1 The transmit signal undergoes a multi-

path channel with L resolvable paths. Then, the received signal at the kth receiver is

written as

yk (t) =
∑

n

L−1
∑

l=0

ak (l)ejφk (l)xs(n)g(t − nT − lT ) + wk (t), 0 ≤ t ≤ T0 (5.1)

where T and T0 are the symbol and observation intervals, respectively, with T0 ≫ T ,

g(·) is the real-valued pulse shape, j =
√

−1, ak (l) > 0 and φk (l) ∈ [0, 2π) are the

unknown amplitude and phase of the lth path at the kth receiver, respectively, wk (t)

is the complex-valued zero-mean white Gaussian noise process with noise power σ 2
k ,

and xs(n) is the nth transmit constellation symbol drawn from an unknown modulation

format s. The modulation format s belongs to a modulation candidate set {1, . . . , S},
which is known at the receivers. The task of the modulation classification problem

is to determine the correct modulation format to which the transmit signal belongs

based on the received signal.

The maximum likelihood algorithm is adopted as the classifier, which is optimal

when each modulation candidate is equally probable. Let Hs denote the hypothesis

that transmit symbols are drawn from the modulation format s, the likelihood function

under the hypothesis Hs is given by

ps(y|θ ) =
∑

xs

ps (y|xs, θ) p (xs|θ) (5.2)

1Multiple receivers are considered to obtain the diversity gain, while the proposed algorithm is applicable

to the case with only one receiver.
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where yT = [yT
1 , . . . , yT

K ], with yT
k as the vector representation of yk (t), θT =

[θT
1 , . . . , θT

K ], with θ k = [ak (0), φk (0), . . . , ak (L − 1), φk (L − 1)]T as the vector of

unknown parameters, and xs = [xs(1), . . . , xs(N )]T is the vector representation of the

transmit symbol, with N = (T0/T ), and (·)T as the transpose of a vector/matrix. We

assume that the multiple receivers are spatially divided; therefore, the received signals

at multiple receivers are independent. Then, ps (y|xs, θ) is expressed as

ps (y|xs, θ) =
K
∏

k=1

ps

(

yk |xs, θ k

)

∝ exp

⎧

⎨

⎩

−
K

∑

k=1

T0
∫

0

|yk (t) − fk (xs(n), t)|2dt

σ 2
k

⎫

⎬

⎭

(5.3)

where

fk (xs(n), t) =
N

∑

n=1

L−1
∑

l=0

ak (l)ejφk (l)xs(n)g(t − nT − lT ).

Define xs,i(n) as the nth transmit symbol that maps to the ith constellation point

under the hypothesis Hs and assume that each constellation symbol has equal prior

probability, i.e., p(xs,i(n)) = (1/M ), with M as the modulation order of modulation

format s. The log-likelihood function Ls(θ ) is then obtained by

Ls(θ ) = ln ps(y|θ ) = ln

⎛

⎝

M
∑

i=1

1

M
exp

⎧

⎨

⎩

−
K

∑

k=1

T0
∫

0

|yk (t) − fk (xs,i(n), t)|2dt

σ 2
k

⎫

⎬

⎭

⎞

⎠ . (5.4)

The classifier makes the final decision on the modulation format by

ŝ = arg max
s

Ls(θ
(⋆)
s ) (5.5)

where θ (⋆)
s is the MLE of the unknown parameters under the hypothesis Hs, which

can be obtained by

θ (⋆)
s = arg max

θ
Ls(θ ). (5.6)

It should be noted that (5.26) is a high-dimensional non-convex optimization problem

with no closed-form solutions. Essentially, the computation of the MLEs suffers from

high-computational complexity, which is impractical in applications of modulation

classification.

5.2.1.2 Modulation classification via EM

In this section, an EM-based algorithm is proposed to solve the problem in (5.26) in

a tractable way. The expectation step (E-step) and maximization step (M-step) under

the hypothesis Hs can be mathematically formulated as [7]:

E-step: J (θ |θ (r)
s ) = E

z|y,θ
(r)
s

[ln p(z|θ )] (5.7)

M-step: θ (r+1)
s = arg max

θ
J (θ |θ (r)

s ) (5.8)
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where z is the complete data, which cannot be directly observed at the receivers.

Instead, the complete data is related to the observations, i.e., the received signals,

by y = K(z), where K(·) is a deterministic and non-invertible transformation. The

non-invertible property of K(·) implies that there exits more than one possible defini-

tions of the complete data to generate the same observations. It should be noted that

these choices have great impact on the complexity and convergence result of the EM

algorithm, bad choices of the complete data make the algorithm invalid.

In our problem, the received signal that undergoes multipath channels is equiv-

alent to a superposition of signals from different independent paths; therefore, the

complete data can be defined as

zkl(t) =
∑

n

ak (l)ejφk (l)xs(n)g(t − nT − lT ) + wkl(t) (5.9)

where wkl(t) is the lth noise component, which is obtained by arbitrarily decompos-

ing the total noise wk (t) into L independent and identically distributed components,

i.e.,
∑L−1

l=0 wkl(t) = wk (t). Assume that wkl(t) follows the complex-valued zero-mean

Gaussian process with power σ 2
kl . The noise power σ 2

kl is defined as σ 2
kl = βklσ

2
k ,

where βkl is a positive real-valued random noise decomposition factor following
∑L−1

l=0 βkl = 1 [8]. Hence, we can rewrite the transmission model in (5.1) as

yk (t) = K(zk ) = 1LzT
k

where 1L is a L × 1 vector with all entries equal to 1, and zk is the vector representation

of zkl(t). Since the multiple receivers are assumed to be independent, we reduce the

E-step in (5.27) to

J (θ |θ (r)
s ) =

K
∑

k=1

Jk (θ |θ (r)

s,k )

=
K

∑

k=1

E
zk |yk ,θ

(r)
s,k

[ln p(zk |θ k )] (5.10)

which indicates that J (θ |θ (r)
s ) can be computed locally at each receiver.

In order to derive the E-step and M-step, the posterior expectations of the

unknown transmit symbols should be estimated first. Define ρ
(r)
s,i (n) as the poste-

rior probability of the nth transmit symbol mapping to the ith constellation point

under the hypothesis Hs at iteration r, which is given by

ρ
(r)
s,i (n)

= ps

(

xs(n) = Xs,i|y, θ (r)
s

)

=
ps

(

y|xs(n) = Xs,i, θ
(r)
s

)

p(xs(n) = Xs,i|θ (r)
s )

∑M

j=1 ps

(

y|xs(n) = Xs,j, θ
(r)
s

)

p(xs(n) = Xs,j|θ (r)
s )

=
exp

{

−
∑K

k=1

(

∣

∣

∣
yk (n) −

∑L−1

l=0 a
(r)

s,k (l)e
jφ

(r)
s,k

(l)
x(r)

s (n − l)

∣

∣

∣

2

/σ 2
k

)}

∑M

j=1 exp

{

−
∑K

k=1

(

∣

∣

∣

∣

yk (n) −
L−1
∑

l=0

a
(r)

s,k (l)e
jφ

(r)
s,k

(l)
x

(r)
s (n − l)

∣

∣

∣

∣

2

/σ 2
k

)} (5.11)
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where the last equality is computed with the assumption that each symbol has equal

prior probability, i.e., p
(

xs(n) = Xs,i|θ (r)
s

)

= (1/M ), yk (n) is the nth received sym-

bol at discrete time nT , Xs,i is the ith constellation point for modulation format s.

By obtaining the posterior probability ρ
(r)
s,i (n), we can compute x(r)

s (n) as

x(r)
s (n) =

M
∑

i=1

ρ
(r)
s,i (n)Xs,i. (5.12)

We define z̄kl(t) =
∑

n ak (l)ejφk (l)xs(n)g(t − nT − lT ). By computing (5.12), xs(n)

turns to a deterministic symbol. Furthermore, since flat fading is assumed for each

path, the channel amplitude ak (l) and phase φk (l) are treated as unknown deterministic

parameters. Thus, we have that z̄kl(t) is an unknown deterministic signal. Note that

wkl(t) is a zero-mean white Gaussian noise process, ln p(zk |θ k ) is then given by [9]:

ln p(zk |θ k ) = C1 −
L−1
∑

l=0

T0
∫

0

1

σ 2
kl

|zkl(t) − z̄kl(t)|2 dt (5.13)

where C1 is a term irrelevant to the unknowns. Taking the conditional expectation of

(5.13) given yk and θ
(r)

s,k , Jk (θ |θ (r)

s,k ) is obtained by [10]:

Jk (θ |θ (r)

s,k ) = C2 −
L−1
∑

l=0

T0
∫

0

1

σ 2
kl

∣

∣

∣
ẑ

(r)

s,kl(t) − z̄
(r)

s,kl(t)

∣

∣

∣

2

dt (5.14)

where C2 is a term independent of the unknowns, and

ẑ
(r)

s,kl(t) = z̄
(r)

s,kl(t) + βkl

(

yk (t) −
L−1
∑

l=0

z̄
(r)

s,kl(t)

)

. (5.15)

It is noted from (5.14) that the maximization of Jk (θ |θ (r)

s,k ) with respect to θ is equivalent

to the minimization of each of the L summations. Hence, the E-step and M-step in

(5.10) and (5.28) are respectively simplified as

E-step: for l = 0, . . . , L − 1 compute

ẑ
(r)

s,kl(t) = z̄
(r)

s,kl(t) + βkl

(

yk (t) −
L−1
∑

l=0

z̄
(r)

s,kl(t)

)

(5.16)

M-step: for l = 0, . . . , L − 1 compute:

θ
(r+1)

s,k (l) = arg min
θk (l)

T0
∫

0

(

ẑ
(r)

s,kl(t) − z̄
(r)

s,kl(t)
)2

dt

σ 2
kl

. (5.17)

By taking the derivative of (5.17) with respect to as,k (l) and setting it to zero, we can

obtain that

a
(r+1)

s,k (l) = 1

E(r)

N
∑

n=1

ℜ

⎧

⎨

⎩

x(r)
s (n)∗e

−jφ
(r)
s,k

(l)

T0
∫

0

ẑ
(r)

s,kl(t)g
∗(t − nT − lT )dt

⎫

⎬

⎭

(5.18)
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where E(r) = Eg

∑N

n=1 |x(r)
s (n)|2, with Eg =

∫ ∞
−∞ g2(t)dt as the pulse energy, ℜ{·} rep-

resents the real component of a complex variable, and (·)∗ denotes the conjugation

of a variable. Apparently, the second derivative of (5.17) with respect to as,k (l) is a

negative definite matrix, which implies that (5.18) is the optimal estimate of as,k (l).

By substituting (5.18) into (5.17), with the assumption that E(r) is independent of

φ
(r)

s,k (l), the M-step in (5.17) is rewritten as

M-step: for l = 0, . . . , L − 1 compute

φ
(r+1)

s,k (l) = tan−1
ℑ

{

x
(r)

s,l

H
ẑ

(r)

s,kl

}

ℜ
{

x
(r)

s,l

H
ẑ

(r)

s,kl

} (5.19)

a
(r+1)

s,k (l) = 1

E(r)

N
∑

n=1

ℜ
{

x(r)
s (n)∗e

−jφ
(r+1)
s,k

(l)

×
T0
∫

0

ẑ
(r)

s,kl(t)g
∗(t − nT − lT )dt

⎫

⎬

⎭

(5.20)

where x
(r)

s,l =
[

0T
l , x(r)

s (1), . . . , x(r)
s (N − l)

]T
, with 0l as a l × 1 vector with all elements

equal zero, ẑ
(r)

s,kl =
[

ẑ
(r)

s,kl(1), . . . , ẑ
(r)

s,kl(N )
]T

, ℑ{·} represents the imaginary component

of a complex variable, and (·)H denotes the conjugate transpose of a vector/matrix.

It should be noted from (5.16), (5.19), and (5.20) that by employing the EM

algorithm and properly designing the complete data, the multivariate optimization

problem in (5.26) is successfully decomposed into L separate ones, where only one

unknown parameter is optimized at each step, solving the original high-dimensional

and non-convex problem in a tractable way.

Fourth-order moment-based initialization
The most prominent problem for the EM algorithm is how to set proper initialization

points of the unknowns, from which the EM algorithm takes iterative steps to converge

to some stationary points. Since the EM algorithm has no guarantee of the convergence

to the global maxima, poor initializations enhance its probability to converge to the

local maxima. In general, the most commonly adopted initialization schemes for the

EM algorithm include the simulated annealing (SA) [11] and random restart. However,

since our problem considers multipath channels and multiple users, where a (2 × K ×
L)-dimensional initial value should be selected, it is computationally expensive for

the SA and random restart algorithms to find proper initials.

In this section, we employ a simple though effective method to find the initial

values of the unknown fadings. A modified version of the fourth-order moment-based

estimator proposed in [12] is applied to roughly estimate the multipath channels,

which are then used as the initialization points of the EM algorithm. The estimator is

expressed as

ĥk (l) = m
yk
4 (p, p, p, l)

m
yk
4 (p, p, p, p)

(5.21)
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where m
yk
4 (τ1, τ2, τ3, τ4) = E{yk (n + τ1)yk (n + τ2)yk (n + τ3)yk (n + τ4)} is the fourth-

order moment of yk (n), and hk (p) denotes the coefficient of the dominant path of

the channel between the transmitter and kth receiver. Without loss of generality, the

dominant path is assumed to be the leading path, i.e., p = 0.

The overall modulation classification algorithm is summarized as follows:

EM-based modulation classifier

1. Set the stopping threshold 	 and the maximum number of iterations I ;

2. FOR s = 1, . . . , S;

3. Set r = 0;

4. Initialize the unknown parameters θ
(0)

s,k (l) using the fourth-order moment-

based estimator;

5. For n = 1, . . . , N , compute x(r)
s (n) according to (5.12);

6. Compute the likelihood function Ls(θ
(r)
s ) according to (5.4);

7. Set r = r + 1;

8. Perform over (5.16), (5.19) and (5.20) to estimate φ
(r+1)

s,k (l) and a
(r+1)

s,k (l);

9. Compute the likelihood function Ls(θ
(r+1)
s ) with the new estimates;

10. If
∣

∣

(

Ls(θ
(r+1)
s ) − Ls(θ

(r)
s )

)

/Ls(θ
(r)
s )

∣

∣ > 	 or r ≤ I , go to Step 5; otherwise, set

θ (∗)
s = θ (r+1)

s , and continue;

11. ENDFOR

12. Final decision is made by ŝ = arg max
s

Ls(θ
(∗)
s ).

5.2.1.3 Numerical results

In this section, various numerical experiments are provided to examine the clas-

sification performance of the proposed algorithm, using the probability of correct

classification Pc as a performance metric. The number of paths is set to L = 6, where

without loss of generality, the coefficient of the leading path hk (0) = ak (0)ejφk (0) is

set to 1, and the remaining channel coefficients follow zero-mean complex Gaussian

distribution with parameter ς2
k = 0.1. The number of receivers is set to K = 3, and

we assume that the noise power at all receivers is the same. The number of samples

per receiver is set to N = 500. For the EM algorithm, we set the stopping threshold

	 = 10−3 and the maximum number of iterations I = 100.

Since the convergence of the EM algorithm is highly dependent on the initial-

izations of the unknowns, we first evaluate the impact of the initial values of the

unknowns on the classification performance of the proposed algorithm, which are

formulated as the true values plus bias. Let φk (l) and ak (l) denote the true values,

respectively, and δφk (l) and δak (l) denote the maximum errors for each unknown param-

eter. We randomly take the initial values of the unknown channel phase and amplitude

within [φk (l) − δφk (l), φk (l) + δφk (l)] and [0, ak (l) + δak (l)], respectively [13].

Figure 5.2(a) and (b) shows the classification performance of the proposed

algorithm for QAM and PSK, respectively, with curves parameterized by differ-

ent initialization points of the unknowns. For QAM modulations, the candidate set

is {4, 16, 64}-QAM, and for PSK modulations, it is {QPSK, 8-PSK, 16-PSK}.
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Figure 5.2 (a) Impact of the initial values of unknowns on the proposed algorithm

for QAM and (b) impact of the initial values of unknowns on the

proposed algorithm for PSK

Three sets of maximum errors are examined, namely, (δφk (l) = π/20, δak (l) = 0.1),

(δφk (l) = π/10, δak (l) = 0.3), and (δφk (l) = π/5, δak (l) = 0.5). Moreover, the classifi-

cation performance is compared to the performance upper bound, which is obtained

by using the Cramér–Rao lower bounds of the estimates of the unknowns as the vari-

ances. It is apparent that the classification performance decreases with the increase of

the maximum errors. To be specific, for both QAM and PSK modulations, the clas-

sification performance is not sensitive to the initial values for the first two sets with

smaller biases, especially for the PSK modulation, where the classification perfor-

mance is more robust against smaller initialization errors, while for the third set with
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larger bias, the classification performance degrades, especially in the low signal to

noise ratio (SNR) region. In our problem, we consider a complicated case with multi-

ple receivers in the presence of multipath channels; therefore, the likelihood function

contains large amounts of local extrema. Then, the EM algorithm easier converges to

local extrema when the initial values are far away from the true values. In addition,

we can see from Figure 5.2(a) and (b) that, in the high SNR region, the classification

performance with smaller maximum errors is close to the upper bounds. It indicates

that with proper initialization points, the proposed algorithm can provide promising

performance.

Next, we consider the classification performance of the proposed algorithm using

the fourth-order moment-based initialization scheme, as shown in Figure 5.3(a) and

(b) for QAM and PSK modulations, respectively. Figure 5.3(a) depicts that the clas-

sification performance of the proposed algorithm for QAM modulations using the

fourth-order moment-based initialization method attains Pc ≥ 0.8 for SNR > 10 dB.

When compared to that taking the true values plus bias as the initial values, we can

see that the classification performance of the proposed algorithm is comparable in the

SNR region ranges from 6 to 10 dB. The results show that the fourth-order moment-

based method is feasible in the moderate SNR region. In addition, we also compare the

classification performance of the proposed algorithm with the cumulant-based meth-

ods in [14,15]. The number of samples per receiver for the cumulant-based methods is

set to Nc = 2, 000. Note that the difference of cumulant values between higher order

modulation formats (e.g., 16-QAM and 64-QAM) is small; therefore, the classifica-

tion performance of the cumulant-based approaches is limited, which saturates in the

high SNR region. It is apparent that the classification performance of the proposed

algorithm outperforms that of the cumulant-based ones. Meanwhile, it indicates that

the propose algorithm is more sample efficient than the cumulant-based ones. Similar

results can be seen from Figure 5.3(b) when classifying PSK modulations. The advan-

tage in the probability of correct classification of the proposed algorithm is obvious

when compared to that of cumulant-based methods.

On the other hand, however, we can see from Figure 5.3(a) and (b) that the

classification performance of the proposed algorithm decreases in the high SNR

region. The possible reason is that the likelihood function in the low SNR region

is dominated by the noise, which contains less local extrema and is not sensitive to

the initialization errors. In contrast, the likelihood function in the high SNR region

is dominated by the signal, which contains more local extrema. In such a case, the

convergence result is more likely to be trapped at the local extrema, even when the

initial values are slightly far away from the true values. In addition, when comparing

Figure 5.3(a) with (b), it is noted that using the moment-based estimator, the PSK

modulations are more sensitive to initialization errors in the high SNR region.

To intuitively demonstrate the impact of the noise decomposition factor βkl on the

classification performance, we evaluate the probability of correct classification versus

the SNR in Figure 5.4, with curves parameterized by different choices of βkl . The lines

illustrate the classification performance with fixed βkl = 1/L, and the markers show

that with random βkl . As we can see, different choices of the noise decomposition

factor βkl does not affect the classification performance of the proposed algorithm.



170 Applications of machine learning in wireless communications

SNR (dB)

0 5 10 15 20

P
c

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EM upper bound
EM with moment-based initialization
EM with δφ

k
(l) = π/10, δa

k
(l) = 0.3

Cumulant-based method in [14]
Cumulant-based method in [15]

(a)

SNR (dB)

0 5 10 15 20

P
c

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EM upper bound
EM with moment-based initialization

Cumulant-based method in [14]
Cumulant-based method in [15]

(b)

EM with δφ
k
(l) = π/10, δa

k
(l) = 0.3

Figure 5.3 (a) The classification performance of the proposed algorithm for QAM

with the fourth-order moment-based initialization scheme and (b) the

classification performance of the proposed algorithm for PSK with the

fourth-order moment-based initialization scheme

5.2.2 Continuous phase modulation classification in fading
channels via Baum–Welch algorithm

In contrast to constellation-based modulation formats (e.g., QAM and PSK) in the

previous section, CPM yields high spectral and power efficiency, which are widely

adopted in wireless communications, such as the satellite communications. Most of

the existing literature that classifies CPM signals is merely investigated in additive

white Gaussian noise (AWGN) channels [16] [17], while the effective algorithms in

the presence of the unknown fading channels have not been adequately studied yet.
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Figure 5.4 The classification performance of the proposed algorithm for QAM

with curves parameterized by different choices of βkl

In this section, we consider a classification problem of CPM signals under

unknown fading channels, where the CPM signal is formulated as an HMM corre-

sponding to the memorable property of the continuous phases. A likelihood-based

classifier is proposed using the BW algorithm, which obtains the MLEs of the

unknown parameters of the HMM based on the EM algorithm.

5.2.2.1 Problem statement

Consider a typical centralized cooperation system with one transmitter and K

receivers, and a fusion center is introduced to fuse data from the K receivers to enhance

the classification performance. At the kth receiver, the discrete-time transmission

model is given by

yk ,n = gkxn + wk ,n, n = 1, . . . , N , k = 1, . . . , K (5.22)

where gk is the unknown complex channel fading coefficient from the transmitter to

the kth receiver, wk ,n is circularly symmetric complex Gaussian with the distribution

CN (0, σ 2
k ), and xn is the transmit CPM signal. The continuous-time complex CPM

signal is expressed as

x(t) =
√

2E

T
ej�(t;I ) (5.23)

where E is the energy per symbol, T is the symbol duration, and �(t; I ) is the time-

varying phase. For t ∈ [nT , (n + 1)T ], the time-varying phase is represented as

�(t; I ) = πh

n−L
∑

l=−∞
Il + 2πh

n
∑

l=n−L+1

Ilq(t − lT ) (5.24)
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Figure 5.5 A trellis of state transition for CPM with parameter

{M = 2, h = (1/2), L = 1}. In this example, the number of states is

Q0 = 4, and the information data is drawn from {+1, −1}. The

transition from state Sn to Sn+1, denoted as κq, q = 1, . . . , 8, is

represented by solid line, if +1 is transmitted, and dotted line, if −1 is

transmitted

where h is the modulation index, Il is the lth information symbol drawn from the set

{±1, . . . , ±(M − 1)}, with M as the symbol level, q(t) is the integral of the pulse shape

u(t), i.e., q(t) =
∫ t

0
u(τ )dτ , t ≤ LT , and L is the pulse length. From (5.24), we can

see that a CPM format is determined by a set of parameters, denoted as {M , h, L, u(t)}.
Basically, by setting different values of these parameters, infinite number of CPM

formats can be generated. Let Sn = {θn, In−1, . . . , In−L+1}be the state of the CPM signal

at t = nT , where θn = πh
∑n−L

l=−∞ Il . The modulation index h is a rational number,

which can be represented by h = (h1/h2), with h1 and h2 as coprime numbers. Then,

we define h0 as the number of states of θn, which is given by

h0 =
{

h2, if h1 is even

2h2, if h1 is odd.

Hence, we can obtain that the number of states of Sn is Q0 = h0M L−1. A trellis of state

transition for CPM with parameter {M = 2, h = (1/2), L = 1} is shown in Figure 5.5.

Let S be the set of CPM candidates, which is known at the receivers. The classifi-

cation task is to identify the correct CPM format s ∈ {1, . . . , S} based on the received

signals. Let y = [y1, . . . , yK ], where yk is the received signal at the kth receiver,

g = {gk}K
k=1, and x = {xn}N

n=1, which are the observations, unknown parameters, and

hidden variables of the HMM, respectively. We formulate this problem as a multiple

composite hypothesis testing problem, and the likelihood-based classifier is adopted

to solve it. For hypothesis Hs, meaning that the transmit signal uses the CPM format s,



Signal identification in cognitive radios using machine learning 173

the log-likelihood function ln ps(y|g) is computed. The classifier makes the final

decision on the modulation format by

ŝ = arg max
s∈S

ln ps(y|g(†)
s ) (5.25)

where g(†)
s is the MLEs of the unknown parameters g under hypothesis Hs, which can

be computed by

g(†)
s = arg max

g
ln ps(y|g). (5.26)

Unlike the case for constellation-based modulation formats, where the likelihood

function ps(y|g) is obtained by averaging over all the unknown constellation symbols

A, i.e., ps(y|g) =
∑

x∈A
ps(y|x, g)ps(x|g), since the CPM signal is time correlated, its

likelihood function cannot be calculated in such a way.

5.2.2.2 Classification of CPM via BW

In this section, the CPM signal is first formulated as an HMM regarding to its mem-

orable property, a likelihood-based classifier is then proposed based on the BW

algorithm, which utilizes the EM algorithm to calculate the MLEs of the unknown

parameters in the HMM [18].

HMM description for CPM signals
According to the phase memory of the CPM signal, it can be developed as an HMM.

We parameterize the HMM by λ = (A, B, π ), which are defined as follows

1. A denotes the state probability matrix, the element αij = Pr{Sn+1 = j|Sn = i} is

expressed as

αij =
{

1

M
, if i → j is permissible

0, otherwise.

2. B represents the conditional probability density function vector, the element

βi(yk ,n) = p(yk ,n|Sn = i, gk ) is given by

βi(yk ,n) = 1

πσ 2
k

exp

{

−|yk ,n − gkx(Sn = i)|2
σ 2

k

}

with x(Sn = i) as the transmit CPM signal at t = nT corresponding to the state Sn.

3. π is the initial state probability vector, the element is defined as

πi = Pr{S1 = i} = 1

Q0

.
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BW-based modulation classifier
The BW algorithm provides a way to compute the MLEs of the unknowns in the HMM

by using the EM algorithm. To be specific, under the hypothesis Hs, the E-step and

M-step at iteration r are written as

E-step: J (g(r)
s , g) =

∑

x

ps(y, x|g(r)
s ) log ps(y, x|g) (5.27)

M-step: g(r+1)
s = arg max

g
J (g(r)

s , g). (5.28)

As shown in Figure 5.5, we denote κq as the transition from state Sn to Sn+1, where

κq, q = 1, . . . , Q is drawn from the information sequence, with Q = Q0M . Let

ℓ(xn, κq) denote the transmit signal at t = nT that corresponding to κq. To simplify the

notifications, denote x1:n−1 and xn+1:N as the transmit symbol sequences {x1, . . . , xn−1}
and {xn+1, . . . , xN }, respectively; we then can rewrite (5.27) as

J (g(r)
s , g) =

∑

x

ps(y, x|g(r)
s ) (log ps(x|g) + log ps(y|x, g))

= 	1 +
K

∑

k=1

N
∑

n=1

log ps(yk ,n|xn, gk )
∑

x

ps(y, x|g(r)
s )

= 	1 +
K

∑

k=1

N
∑

n=1

Q
∑

q=1

log ps(yk ,n|ℓ(xn, κq), gk )

×
∑

x\xn

ps(y, x1:n−1, ℓ(xn, κq), xn+1:N |g(r)
s )

= 	2 −
K

∑

k=1

N
∑

n=1

Q
∑

q=1

ps(y, ℓ(xn, κq)|g(r)
s )

× 1

σ 2
k

|yk ,n − gkx(Sn = z(q, Q0))|2 (5.29)

where z(q, Q0) defines the remainder of (q/Q0).

Forward–backward algorithm: Define ηs(n, q) = ps(y, ℓ(xn, κq)|g(r)
s ). Note that

ℓ(xn, κq) is equivalent to the event {Sn = i, Sn+1 = j}, we can then derive ηs(n, q) as

ηs(n, q) =
K
∏

k=1

ps(yk , Sn = i, Sn+1 = j|gk )

=
K
∏

k=1

ps(yk |Sn = i, Sn+1 = j, gk )ps(Sn = i|gk )

×ps(Sn+1 = j|Sn = i, gk )

=
K
∏

k=1

υk ,n(i)ωk ,n+1(j)ps(Sn+1 = j|Sn = i, gk ) (5.30)
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where υk ,n(i) = ps(yk ,1:n|Sn = i, gk )ps(Sn = i|gk ) and ωk ,n+1(j) = ps(y
N
k ,n+1|Sn+1 =

j, gk ) are the forward and backward variables, respectively, which can be inductively

obtained by performing the forward–backward procedure as follows:

● Compute forward variable υk ,n(i)

Initialize: υk ,1(i) = πi

Induction: υk ,n(i) =
∑Q

j=1 υk ,n−1(j)αjiβi(yk ,n)
● Compute backward variable ωk ,n+1(j)

Initialize: ωk ,N+1(j) = 1

Induction: ωk ,n(j) =
∑Q

i=1 ωk ,n+1(i)αijβi(yk ,n).

Finally, by taking the derivative of (5.29) with respect to g and setting it to zero,

the unknown channel fading can be estimated by

g
(r+1)

s,k =
∑N

n=1

∑Q

q=1 ηs(n, q)yk ,nx(Sn = z(q, Q0))∗

∑N

n=1

∑Q

q=1 ηs(n, q)‖x(Sn = z(q, Q0))‖
. (5.31)

The proposed BW-based modulation classifier is summarized in the follow-

ing box:

BW-based modulation classifier for CPM

1. Set stopping threshold ε and maximum number of iterations Nm;

2. FOR s = 1, . . . , |S|;
3. Set r = 0;

4. Initialize the unknown parameters g
(0)

s,k ;

5. For n = 1, . . . , N , q = 1, . . . , Q, perform the forward–backward procedure

to compute ηs(n, q) in (5.30);

6. Compute J (g(r)
s , g) according to (5.29);

7. Set r = r + 1;

8. Compute g
(r+1)

s,k according to (5.31);

9. Compute J (g(r+1)
s , g) using the new estimates;

10. If
∣

∣(J (g(r+1)
s , g) − J (g(r)

s , g))/J (g(r)
s , g)

∣

∣ > ε or r ≤ Nm, go to Step 5; other-

wise, set g(opt)
s = g(r+1)

s , and continue;

11. ENDFOR

12. Final decision is made by ŝ = arg max
s

J (g(opt)
s , g).

5.2.2.3 Numerical results

In this section, the classification performance of the proposed algorithm is examined

through various numerical simulations. The probability of correct classification Pc is

adopted as the measure metric. To comprehensively evaluate the proposed algorithm,

two experiments with different CPM candidate sets are considered and is compared

to the conventional approximate entropy (ApEn)-based method in [17]:

Experiment 1: Denote the CPM parameters as {M , h, L, u(t)}, four CPM candi-

dates are considered, namely, {2, 1/2, 1, rectangular pulse shape}, {4, 1/2, 2, raised
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cosine pulse shape}, {2, 3/4, 3, Gaussian pulse shape}, and {4, 3/4, 3, Gaussian

pulse shape}. For the Gaussian pulse shape, the bandwidth-time product is set to

B = 0.3.

Experiment 2: Consider the case where various values of M , h, and L are set,

with M = {2, 4}, h = {1/2, 3/4 }, L = {1, 2, 3}. The pulse shapes for L = 1, 2, 3

are set to rectangular, raised cosine, and Gaussian, respectively. In such a case,

12 different CPM candidates are considered.

For the proposed algorithm, we assume that the number of symbols per receiver is

N = 100, the stopping threshold is ε = 10−3, and maximum iterations is Nm = 100.

For the ApEn-based algorithm, the simulation parameters are set according to [17].

Without loss of generality, we assume that the noise power at all receivers is the same.

Comparison with approximate entropy-based approach
We first consider the scenario with one receiver in the presence of AWGN and fading

channels. Figure 5.6 evaluates the classification performance of the proposed algo-

rithm when considering experiment 1 and is compared to that of the ApEn-based

algorithm in [17] as well. From Figure 5.6, we can see that in AWGN channels, the

proposed algorithm attains an acceptable classification performance, i.e., a classifica-

tion probability of 0.8, when SNR = 5 dB, and it achieves an error-free classification

performance at SNR = 10 dB.

Furthermore, we consider the classification performance in the presence of fad-

ing channels. We first initiate the unknown fading channel coefficients with the true

values with bias for the proposed algorithm [13]. Let ak and φk denote the true values

of the magnitude and phase of the fading channel, respectively, and let �ak and �φk

denote the maximum errors of the magnitude and phase, respectively. The initial val-

ues of the unknown magnitude and phase are arbitrarily chosen within [0, ak + �ak ]
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Figure 5.6 The classification performance of the proposed algorithm under AWGN

and fading channels
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and [φk − �φk , φk + �φk ], respectively. Two sets of initials of the unknowns are eval-

uated, whose maximum errors are set to (�ak , �φk ) = (0.1, π/20) and (0.3, π/10),

respectively. It is noted that the classification performance of the proposed algorithm

outcomes that of the ApEn-based algorithm in the fading channels. In particular, the

proposed algorithm provides classification probability of 0.8 for SNR > 15 dB, while

the probability of correct classification of the ApEn-based algorithm saturates around

0.6 in the high SNR region, which is invalid for the classification in fading channels.

Impact of initialization of unknowns
Note that the BW algorithm uses the EM algorithm to estimate the unknowns; there-

fore, its estimation accuracy highly relies on the initial values of the unknowns. In

Figure 5.7, we examine the impact of the initializations of the unknowns on the

classification performance of the proposed algorithm. Both experiments 1 and 2 are

evaluated. We consider multiple receivers to enhance the classification performance,

and the number of receivers is set to K = 3. In such a case, the unknown fadings are

first estimated at each receiver independently, the estimations are then forwarded to a

fusion center to make the final decision. The initial values of the unknown parameters

are set as the true values with bias, as previously described. It is seen from Figure 5.7

that, with smaller bias, the classification performance of the proposed algorithm pro-

vides promising classification performance. For experiment 1, the proposed classifier

achieves Pc > 80% when SNR > 10 dB, and for experiment 2, Pc > 80% is obtained

when SNR = 14 dB. Apparently, the cooperative classification further enhances the

classification performance when compared to that with a single receiver. Further-

more, with large bias, it is noticed that the classification performance of the proposed

algorithm degrades in the high SNR region. This phenomenon occurs when using the

EM algorithm [19]. The main reason is that the estimation results of the EM are not
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Figure 5.8 The classification performance under fading channels with simulated

annealing initialization method

guaranteed to converge at the global maxima and are sensitive to the initialization

points of the unknowns. In the high SNR region, the likelihood function is dominated

by the signal and it has more local maxima than that in the low SNR region. Thus,

with large bias, the proposed scheme is more likely to converge at a local maxima,

which causes the degradation of the classification performance.

Performance with simulated annealing initialization
Next, we evaluate the classification performance of the proposed algorithm with the

SA initialization method, as illustrated in Figure 5.8. The parameters of the SA method

are set as in [13]. Experiment 1 is considered. Figure 5.8 shows that, using the SA

method to generate the initial values of the unknowns, the classification performance

of the proposed algorithm monotonically increases in the low-to-moderate SNR region

(0–10 dB). It implies that the SA scheme can provide appropriate initializations for

the proposed algorithm. Apparently, a gap is noticed between the classification per-

formance with the SA scheme and that with the true values of the unknowns plus bias.

However, note that how to determine proper initials could be an interesting topic for

future research, which is out of the scope of this chapter.

5.3 Specific emitter identification via machine learning

SEI, motivated by the identification and tracking task of unique emitters of interest

in military communications, is a technique to discriminate individual emitters by

extracting the identification feature from the received signal and comparing it with
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a categorized feature set [20]. As a key technology in military communications, the

SEI has been intensively investigated over the past few decades. More recently, with

the advent of CRs and adaptive techniques, it has become increasingly important for

commercial applications.

In general, the SEI technique is based on the machine-learning theory, where

a simplified SEI system includes three main parts, namely, signal preprocessing,

feature extraction, and identification classifier. In the feature-extraction subsystem,

identification features are extracted from the received signal, and then the features are

input to the identification classifier to determine the class of the emitters. Hence, the

most important and challenging part of SEI based on machine learning is to design

proper and robust identification features, which have strong separation capability

among different emitters and are robust against the real-world scenarios.

In this section, we introduce three SEI algorithms, which extract identification

features via adaptive time–frequency analysis and implement classification task using

the support vector machine (SVM). We investigate the SEI approaches under realistic

scenarios. The three SEI algorithms are applicable to both single-hop and relaying

systems and are robust against several nonideal channel conditions, such as the non-

Gaussian and fading channels.

5.3.1 System model

5.3.1.1 Single-hop scenario

A time-division multiple-access communication system is considered with K emitters/

transmitters and one receiver, as shown in Figure 5.9(a). The number of the emitters

is assumed to be a priori known at the receiver, which can be achieved by algorithms

for estimating the number of transmitters. Since the target of the SEI is to distinguish

different emitters by extracting the unique feature carried by the transmit signals, a

model that describes the difference between emitters is first introduced below.

For an emitter, a power amplifier is the main component, whose nonlinear system

response characteristic is one of the principle sources of the specific feature, as known

as the fingerprint of an emitter. We use the Taylor series to describe the nonlinear

system [21,22], and let Ls denote the order for the Taylor series. For emitter k , the

system response function of the power amplifier is then defined as

�[k] (x(t)) =
Ls
∑

l=1

α
[k]

l (x(t))l (5.32)

where x(t) = s(t)ej2πnfT is the input signal at the power amplifier—with s(t) as the

baseband-modulated signal, f as the carrier frequency, and T as the sampling period—

{α[k]

l } denotes the coefficients of the Taylor series, and �[k](x(t)) denotes the output

signal at the power amplifier of the kth emitter, i.e., the transmit signal of the kth

emitter. Apparently, for emitters with the same order Ls, their different coefficients

represent the specific fingerprints, which are carried through the transmit signals

�[k](x(t)).
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At the receiver, the received signal is given by

r(t) = H
[k]

sd �[k] (x(t)) + w(t), k = 1, . . . , K (5.33)

where H
[k]

sd is the unknown channel fading coefficient between the kth emitter and

the receiver, and w(t) is the additive noise. By substituting (5.32) into (5.33), we can

rewrite the received signal as

r(t) = H
[k]

sd

Ls
∑

l=1

α
[k]

l (x(t))l + w(t). (5.34)

5.3.1.2 Relaying scenario

Next, we expand the single-hop scenario to the multi-hop one. Note that two-hop

communication systems are the most commonly adopted, such as the satellite com-

munications; therefore, we focus on the two-hop communication system with an

amplify-and-forward relay, as shown in Figure 5.9(b). The received signal at the relay

is expressed as

y(t) = H [k]
sr �[k] (x(t)) + η(t), k = 1, . . . , K (5.35)

where H [k]
sr is the unknown channel fading from the kth emitter to the relay, and η(t)

is the additive noise.

1

K

2

D

[1]
sdH

[2]
sdH

[K]
sdH

(a)

1

K

2

R

[1]
srH

[2]
srH

[K]
srH

D
Hrd

(b)

Figure 5.9 (a) The system model of the single-hop scenario and (b) the system

model of the relaying scenario
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Then, the received signal at the receiver, which is forwarded by the relay, is

written as

r(t) = Hrd� (y(t)) + υ(t)

= Hrd�
(

H [k]
sr �[k] (x(t)) + η(t)

)

+ υ(t) (5.36)

where �(·) denotes the system response characteristic of the power amplifier of the

relay, Hrd is the unknown channel fading coefficient from the relay to the receiver,

and υ(t) is the additive noise. Similarly, we use the Taylor series to define �(·), which

is given by

�(y(t)) =
Lr
∑

m=1

βm (y(t))m (5.37)

where Lr denotes the order of Taylor series for the power amplifier of the relay,

and {βm} represent the fingerprint of the relay. Hence, the received signal is further

expressed as

r(t) = Hrd

Lr
∑

m=1

βm (y(t))m + υ(t) (5.38)

= Hrd

Lr
∑

m=1

βm

(

H [k]
sr

Ls
∑

l=1

α
[k]

l (x(t))l + η(t)

)m

+ υ(t). (5.39)

It is obvious that the features carried by the received signal are the combinations of

the fingerprint of both the emitter and the relay, meaning that the fingerprint of the

emitter is contaminated by that of the relay, which causes negative effect on SEI.

5.3.2 Feature extraction

In this section, three feature-extraction algorithms are introduced, namely, the entropy

and first- and second-order moments-based algorithm (EM2), the correlation-based

(CB) algorithm, and the Fisher discriminant ratio (FDR)-based algorithm. All the

three algorithms extract identification features from the Hilbert spectrum, which is

obtained by employing the Hilbert–Huang transform (HHT).

5.3.2.1 Hilbert–Huang transform

The HHT is a powerful and adaptive tool to analyze nonlinear and nonstationary

signals [23]. The principle of the HHT being adaptive relies on the empirical mode

decomposition (EMD), which is capable of decomposing any signals into a finite

number of intrinsic mode functions (IMFs). By performing the Hilbert transform on

the IMFs, we can obtain a time–frequency–energy distribution of the signal, also

known as the Hilbert spectrum of the signal.

Empirical mode decomposition
The target of the EMD is to obtain the instantaneous frequency with physical meaning,

therefore, the IMF should satisfy two conditions [23]: (1) the number of extrema and
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the number of zero-crossings should either be equal, or the difference is one at most;

(2) at any point, the sum of the upper and lower envelopes, respectively, defined by

the local maxima and minima, should be zero.

Let z(t) be the original signal, the EMD uses an iteration process to decompose

the original signal into the IMFs, which is described as follows [23]:

1. First, identify all local maxima and minima, then employing the cubic spline

fitting to obtain the upper and lower envelopes of the signal;

2. Compute the mean of the upper and lower envelopes, denoted by μ10(t). Subtract

μ10(t) from z(t) to obtain the first component z10(t), i.e., z10(t) = z(t) − μ10(t);

3. Basically, since the original signal is complicated, the first component does not

satisfy the IMF conditions. Thus, steps 1 and 2 are repeated p times until z1p(t)

becomes an IMF:

z1p(t) = z1(p−1)(t) − μ1p(t), p = 1, 2, . . . , (5.40)

where μ1p(t) is the mean of the upper and lower envelopes of z1(p−1)(t). We

define that

ξ =
Ts
∑

t=0

|z1(p−1)(t) − z1p(t)|2
z2

1(p−1)(t)
(5.41)

where Ts is the length of the signal. Then, the stopping criterion of this shifting

process is when ξ < ε. Note that an empirical value of ε is set between 0.2

and 0.3.

4. Denote c1(t) = z1p(t) as the first IMF. Subtract it from the z(t) to obtain the

residual, which is

d1(t) = z(t) − c1(t). (5.42)

5. Consider the residual as a new signal, repeat steps 1 to 4 on all residuals dq(t),

q = 1, . . . , Q, to extract the remaining IMFs, i.e.:

d2(t) = d1(t) − c2(t),

· · ·
dQ(t) = dQ−1(t) − cQ(t)

(5.43)

where Q is the number of IMFs. The stopping criterion of the iteration procedure

is when dQ(t) < ε, or it becomes a monotonic function without any oscillation.

From (5.42) and (5.43), we can rewrite z(t) as

z(t) =
Q

∑

q=1

cq(t) + dQ(t). (5.44)

Hilbert spectrum analysis
We omit the residual dQ(t) in (5.44), and implement the Hilbert transform on the

extracted IMFs, the original signal is then expressed as

z(t) = ℜ

⎛

⎝

Q
∑

q=1

aq(t) exp

(

j

∫

ωq(t)dt

)

⎞

⎠ (5.45)
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where ℜ(·) denotes the real component of a complex variable, j =
√

−1, aq(t) =
√

c2
q(t) + ĉ2

q(t) and ωq(t) = (dθq(t)/dt) are the instantaneous amplitude and frequency

of the IMF cq(t), respectively, in which ĉq(t) = 1

π

∫ ∞
−∞ (cq(τ )/(t − τ ))dτ is the Hilbert

transform, and θq(t) = arctan (ĉq(t)/cq(t)) is the phase function.

With the instantaneous amplitude and frequency of the IMFs, we can obtain the

Hilbert spectrum of the original signal, denoted by H(ω, t). In this section, we use

the squared value of the instantaneous amplitude, therefore, the Hilbert spectrum

provides the time–frequency–energy distribution.

5.3.2.2 Entropy and first- and second-order moments-based algorithm

The EM2 algorithm extracts features by measuring the uniformity of the Hilbert

spectrum. The feature contains three-dimensional data, which are the energy entropy,

the first-order and second-order moments, respectively.

Energy entropy
We use the definition of information entropy to define the energy entropy of the

Hilbert spectrum. First, the Hilbert spectrum is divided into several time–frequency

slots. Denote Hij(ω, t), i = 1, . . . , Gt , j = 1, . . . , Gω as the (i, j)th time–frequency

slot, where Gt is the number of time slots with resolution �t and Gω is the number

of frequency slots with resolution �ω. By using the expression of the information

entropy [24], the energy entropy of the Hilbert spectrum is defined as

I = −
Gt
∑

i=1

Gω
∑

j=1

pij log pij (5.46)

where pij = Eij/E is the proportion of the energy of each time–frequency slot, with

E as the total energy of the Hilbert spectrum, and Eij as the energy of the (i, j)th

time–frequency slot, given by

Eij =
i�t
∫

(i−1)�t

j�ω
∫

(j−1)�ω

Hij(ω, t)dωdt. (5.47)

First- and second-order moments
The first- and second-order moments adopt the concept of color moments in image

processing, which measure the color distribution of an image. To compute the first-

and second-order moments, we first map the Hilbert spectrum into a gray scale image,

where the Hilbert spectrum elements are described by shades of gray with intensity

information, which is

Bm,n =
⌊

(2ζ − 1) × Hm,n

max{m,n} Hm,n

⌋

(5.48)

where Bm,n is the (m, n)th value of the gray scale image matrix B, Hm,n is the (m, n)th

element of the Hilbert spectrum matrix H,2 and ⌊·⌋ is the floor function, which equals

2As a two-dimensional spectrum, we represent the Hilbert spectrum through a matrix, referred to as the

Hilbert spectrum matrix, where the indices of the columns and rows correspond to the sampling point and

instantaneous frequency, respectively, and the elements of the matrix are combinations of the instantaneous

energy of the IMFs.
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the nearest lower integer value. Taking ζ -bit gray scale as an example, the largest value

of the Hilbert spectrum is converted to the gray scale (2ζ − 1), while other values are

linearly scaled.

The first- and second-order moments of the gray scale image are, respectively,

defined as

μ = 1

NH

M
∑

m=1

N
∑

n=1

Bm,n (5.49)

ς =
(

1

NH

M
∑

m=1

N
∑

n=1

(

Bm,n − μ
)2

)1/2

(5.50)

where NH = M × N is the total number of pixels (elements) of the gray scale image

matrix. Note that the first-order moment interprets the average intensity of the gray

scale image, and the second-order moment describes the standard deviation of the

shades of gray.

5.3.2.3 Correlation-based algorithm

It is observed that the shape of the time–frequency–energy distribution of signals

from the same emitter are similar, while that from different emitters are diverse;

therefore, the correlation coefficients between Hilbert spectra can be extracted as the

identification features.

Let Hi and Hj, i, j = 1, . . . , NR represent the Hilbert spectrum matrices of the

ith and jth training sequence, respectively, where NR is the total number of train-

ing sequences over K classes. The correlation coefficient between Hi and Hj is

expressed as

ρ(i,j) =
∑

m

∑

n

(

Hi,m,n − E(Hi)
) (

Hj,m,n − E(Hj)
)

√

(

∑

m

∑

n

(

Hi,m,n − E(Hi)
)2
) (

∑

m

∑

n

(

Hj,m,n − E(Hj)
)2
)

(5.51)

where Hi,m,n (Hj,m,n) denotes the (m, n)th element of the Hilbert spectrum matrix

Hi (Hj), and E(·) is the mean of the elements. Equation (5.51) depicts the linear

dependence between Hi and Hj; larger ρ(i,j) implies that Hi and Hj are more likely

from the same emitter; otherwise, ρ(i,j) close to zero indicates that Hi and Hj are

from diverse emitters.

5.3.2.4 Fisher’s discriminant ratio-based algorithm

It should be noted that large number of elements in a Hilbert spectrum are featureless,

meaning that they have little discrimination. In contrast to the EM2 and CB algorithms

that exploits all the elements of a Hilbert spectrum, the FDR algorithm selects the

elements of a Hilbert spectrum that provides well separation between two classes.

Let (k1, k2) be a possible combination of two classes arbitrarily selected from K

classes, k1 �= k2. Note that the total number of possible combinations (k1, k2) for all K
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classes is C = K(K − 1)/2. For (k1, k2), we define the FDR at time–frequency spot

(ω, t) as

F
(k1 ,k2)(ω, t) =

(

Ei

(

H
[k1]
i (ω, t)

)

− Ei

(

H
[k2]
i (ω, t)

))2

∑

k=k1 ,k2
Di

(

H
[k]
i (ω, t)

) (5.52)

where H
[k]
i (ω, t), i = 1, . . . , N̄0 is the Hilbert spectrum of the ith training sequence

of the kth class at (ω, t), with N̄0 as the number of training sequences for each class,

and Ei

(

H
[k]
i (ω, t)

)

and Di

(

H
[k]
i (ω, t)

)

denote the mean and variance of the training

sequences of class k at (ω, t), respectively. From (5.52), we can see that the FDR

F (k1 ,k2)(ω, t) measures the separability of the time–frequency spot (ω, t) between

classes k1 and k2. It indicates that the time–frequency spot (ω, t) with larger FDR

provides larger separation between the mean of two classes and smaller within-class

variance, which shows stronger discrimination.

For each combination (k1, k2), we define � = {F (k1 ,k2)

1 (ω, t), . . . , F
(k1 ,k2)

NH
(ω, t)}

as the original FDR sequence. Sort � in descending order and denote the new

FDR sequence as �̃ = {F̃ (k1,k2)

1 (ω, t), . . . , F̃
(k1 ,k2)

NH
(ω, t)}, i.e., F̃

(k1 ,k2)

1 (ω, t) ≥ · · · ≥
F̃

(k1 ,k2)

NH
(ω, t). Let {(ω̃1, t̃1), . . . , (ω̃NH

, t̃NH
)} be the time–frequency slots which cor-

respond to the rearranged FDR sequence �̃. Then, we select the time–frequency

spots that correspond to the S largest FDR as optimal time–frequency spots, denoted

as Z (c) = {(ω̃(c)
s , t̃(c)

s ), s = 1, . . . , S, c = 1, . . . , C}. The total set of optimal time–

frequency spots is defined as the union of Z (c), i.e., Z =
⋃C

c=1 Z (c). For the same

(ω̃s, t̃s) between different combinations (k1, k2), only one is retained in order to avoid

duplication, i.e., Z = {(ω̃1, t̃1), . . . , (ω̃D, t̃D)}, where D is the number of optimal

time–frequency spots without duplication, with D ≤ S × ((K(K − 1))/2).

5.3.3 Identification procedure via SVM

By using the feature extraction algorithms proposed in the previous section to extract

the identification features, the SVM is then adopted to implement the identification

procedure. SVM is a widely used supervised learning classifier in machine learning,

which is originally designed for two-class classification problems. Input a set of

labeled training samples, the SVM outputs an optimal hyperplane, which can classify

new samples.

Linear SVM: Suppose that {vi, ιi} is the training set, with vi as the training vector

and ιi ∈ {1, −1} as the class label. We first consider the simplest linear case, where

the labeled data can be separated by a hyperplane χ (v) = 0. The decision function

χ (v) is expressed as [25]:

χ (v) = wTv + b (5.53)

where w is the normal vector to the hyperplane and (b/‖w‖) determines the per-

pendicular offset of the hyperplane from the origin, with ‖ · ‖ as the Euclidean

norm.
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Given a set of training data, labeled as positive and negative ones, we define

the closest distances from the positive and negative points to the hyperplane as md,+
and md,−, respectively. Then, the optimization task of the hyperplane is to make the

margin, md = md,+ + md,−, the largest. To simplify the derivation, two hyperplanes

that bound the margin are defined as

wTv + b = 1 (5.54)

wTv + b = −1. (5.55)

Note that the distance between the two hyperplanes is md = (2/‖w‖), the original

problem of maximizing md can be converted to a constrained minimization problem,

which is [25,26]:

min
1

2
‖w‖2 (5.56)

s.t. ιi

(

wTvi + b
)

≥ 1, i = 1, . . . , N̄ (5.57)

where N̄ is the number of training examples. By introducing nonnegative Lan-

grage multipliers λi ≥ 0, (5.56) is transformed to a dual quadratic programming

optimization problem, given by [25,26]:

max
λ

N̄
∑

i=1

λi − 1

2

N̄
∑

i,j=1

λiλjιiιj〈vi, vj〉 (5.58)

s.t. λi ≥ 0, i = 1, . . . , N̄ (5.59)

N̄
∑

i=1

λiιi = 0 (5.60)

where w and b are represented by w =
∑N̄

i=1 λiιivi and b = −(1/2)( max
i:ι1=−1

wTvi +
min
i:ι1=1

wTvi), respectively.

The decision function is obtained by solving the optimization problem in (5.58):

χ (v) =
N̄

∑

i=1

λiιi〈vi, v〉 + b (5.61)

where 〈·, ·〉 denotes the inner product. The decision criterion of the correct classifica-

tion is ιlχ(ul) > 0, i.e., the testing example ul that satisfies χ (ul) > 0 is labeled as 1;

otherwise, it is labeled as −1.

Nonlinear SVM: For the case where vi cannot be simply distinguished by the linear

classifier, a nonlinear mapping function φ is utilized to map vi to a high-dimensional

space F, in which the categorization can be done by a hyperplane. Similarly, the

decision function is expressed as [25]:

χ (v) =
N̄

∑

i=1

λiιi〈φ(vi), φ(v)〉 + b. (5.62)
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In such a case, a kernel function κ(vi, v) is defined to avoid the computation of the inner

product 〈φ(vi), φ(v)〉, which is generally intractable in high-dimensional spaces [27].3

Using w =
∑N̄

i=1 λiιivi and the kernel function, we rewrite (5.62) as

χ (v) =
N̄

∑

i=1

λiιiκ(vi, v) + b. (5.63)

The decision rule is the same as that for the linear classifier.

Multi-class SVM: Next, we consider the case of multiple classes. The multi-

class classification problem is solved by reducing it to several binary classification

problems. Commonly adopted methods include one-versus-one [28], one-versus-

all [28] and binary tree architecture [29] techniques. In this section, we employ the

one-versus-one technique for the multi-class problem, by which the classification is

solved using a max-win voting mechanism, and the decision rule is to choose the

class with the highest number of votes.

The training and identification procedures of the three proposed algorithms using

the SVM are summarized as follows:

Training and identification procedures of the EM2 algorithm

Training procedure: Let Hi, i = 1, . . . , N̄ , denote the Hilbert spectrum

matrix of the training sequence i, with N̄ as the total number of training sequences

over all K classes.

1. From (5.46), we compute the energy entropy of Hi, denoted as Īi.

2. Map Hi to Bi using (5.48), with Bi as the Hilbert gray scale image matrix

of the training sequence i. From (5.49) and (5.50), we compute the first- and

second-order moments, denoted as (μ̄i, ς̄i)
T, respectively.

3. Generate the three-dimensional training vector, i.e., vi =
(

Īi, μ̄i, ς̄i

)T
.

4. Let {vi, ιi} be the training set, where ιi ∈ {1, . . . , K} is the label of each class.

Use the labeled training set to train the optimal hyperplane χ (v).

Identification procedure: Let Hl , l = 1, . . . , N , denote the Hilbert spectrum

matrix of the lth test sequence of an unknown class, where N is the number of test

sequences.

1. Use (5.46)–(5.50) to compute the energy entropy Il , the first- and second-order

moments (μl , ςl)
T of Hl .

2. Generate the test vector, denoted as ul = (Il , μl , ςl)
T.

3. The identification task is implemented by employing the SVM classifier

defined in the training procedure. For K = 2, ul which satisfies χ (ul) > 0

is labeled as class 2; otherwise, it is labeled as class 1. For K > 2, the one-

versus-one technique is applied, where the decision depends on the max-win

voting mechanism, i.e., the class with the highest number of votes is considered

as the identification result.

3Typical kernel functions include the Gaussian radial-base function (RBF), κ(x, y) = e−‖x−y‖2/2γ 2
, and the

polynomial kernel, κ(x, y) = (x, y)d , with d as the sum of the exponents in each term.
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Training and identification procedures of the CB algorithm

Training procedure: Let Hi and Hj denote the Hilbert spectrum matrices of

the training sequences i and j, respectively, where i, j = 1, . . . , N̄ , with N̄ as the

total number of the training sequences over all K classes.

1. From (5.51), we calculate the correlation coefficient ρ̄(i,j) between Hi and Hj.

For the training sequence i, the training vector is N̄ -dimensional, denoted as

ρ̄ i =
[

ρ̄(i,1), . . . , ρ̄(i,N̄ )
]T

.

2. Let
{

ρ̄ i, ιi

}

be the set of training data with ιi ∈ {1, . . . , K} as the label of each

class. Then, input the labeled training set to the SVM classifier to optimize

the decision hyperplane χ(ρ̄).

Identification procedure: Let Hl , l = 1, . . . , N , be the Hilbert spectrum

matrix of the test sequence of an unknown class, where N is the number of test

sequences.

1. For the test sequence l, the correlation coefficient ρ(l,i) between Hl and Hi

is calculated from (5.51), the N̄ -dimensional test vector is denoted as ρ l =
[ρ(l,1), . . . , ρ(l,N̄ )]T.

2. Classify the test sequence by employing the SVM classifier. For K = 2, ρ l

which satisfies χ (ρ l) > 0 is labeled as class 2; otherwise, it is labeled as

class 1. For K > 2, the one-versus-one technique is applied, where the decision

depends on the max-win voting mechanism, i.e., the class with the highest

number of votes is considered as the identification result.

Training and identification procedures of the FDR algorithm

Training procedure: Let Hi(ω, t) denote the Hilbert spectrum of the training

sequence i at time–frequency spot (ω, t), where i = 1, . . . , N̄ , with N̄ as the total

number of the training sequences over all K classes.

1. For the combination (k1, k2), we compute the original FDR sequence � =
{F (k1 ,k2)

1 (ω, t), . . . , F
(k1 ,k2)

NH
(ω, t)} from (5.52);

2. Obtain the FDR sequence (descending order of elements) �̃ =
{F̃ (k1 ,k2)

1 (ω, t), . . . , F̃
(k1 ,k2)

NH
(ω, t)};

3. Select the time–frequency spots that correspond with the S largest FDR

in �̃ to form the optimal time–frequency spots set Z (c) = {(ω̃(c)
s , t̃(c)

s ), s =
1, . . . , S, c = 1, . . . , C};

4. Repeat steps 1–3 over all C = K(K − 1)/2 possible combinations (k1, k2) to

obtain the total set of optimal time–frequency spots, Z =
⋃C

c=1 Z (c). For the

same (ω̃s, t̃s) between different combinations (k1, k2), only one of them is

retained in order to avoid duplication;

5. For the training sequence i, the Hilbert spectrum elements corresponding to

(ω̃1, t̃1), . . . , (ω̃D, t̃D) are extracted to form a D-dimensional training vector,

expressed as vi =
[

Hi(ω̃1, t̃1), . . . , Hi(ω̃D, t̃D)
]T

;
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6. Let {vi, ιi} be the set of training data with ιi ∈ {1, . . . , K} as the label of each

class. Then, the data is input into the SVM classifier for training, i.e., to obtain

the optimal w and b of the decision hyperplane χ(v).

Identification procedure: Let Hl(ω, t), l = 1, . . . , N , denote the Hilbert

spectrum of test sequence l at time–frequency spot (ω, t) of a unknown class,

where N is the number of test sequences.

1. For the test sequence l, extract the elements corresponding to the D opti-

mal time–frequency spots as the test vector, i.e., ul = [Hl(ω̃1, t̃1), . . . ,

Hl(ω̃D, t̃D)]T;

2. Utilize the SVM classifier to identify the test sequence. For K = 2, ul which

satisfies χ (ul) > 0 is labeled as class 2; otherwise, it is labeled as class 1.

For K > 2, one-versus-one technique is applied, where the decision depends

on the max-win voting mechanism, i.e., the class with the highest number of

votes is considered as the identification results.

5.3.4 Numerical results

In this section, we provide various numerical experiments based on the probability of

correct identification Pc, to evaluate the identification performance of the proposed

algorithms, and compare it with that of some conventional approaches. The identifi-

cation performance of the proposed algorithms are evaluated under three scenarios,

namely, the AWGN channels, the flat-fading channels, and the non-Gaussian noise

channels. It is noted that distinguishing the identity of different emitters is a difficult

task even in the presence of the AWGN channels, the results in AWGN channels

provides the baseline of the proposed algorithms, which show that they can obtain

better identification performance than the conventional methods. Furthermore, we

examine the identification performance of the proposed algorithms in the presence of

flat-fading channels and non-Gaussian noise channels to illustrate that the proposed

algorithms are robust against more realistic and complicated scenarios.

For the power amplifiers of both the emitters and the relay, we assume that

the order of the Taylor polynomial is Ls = Lr = 3. In the simulations, we con-

sider three cases, i.e., the number of emitters are set to K = 2, 3 and 5. For the

power amplifier of the emitters, denote the coefficients of the Taylor polynomial

as α[k] =
(

α
[k]
1 , . . . , α

[k]
Ls

)

, and each coefficient is set to α[1] = (1, 0.5, 0.3)T, α[2] =
(1, 0.08, 0.6)T, α[3] = (1, 0.01, 0.01)T, α[4] = (1, 0.01, 0.4)T and α[5] = (1, 0.6, 0.08)T,

respectively. To be specific, for the case that K = 2, the coefficient matrix is

AT
2 =

(

α[1]; α[2]
)

; for the case that K = 3, it is A3 =
(

α[1]; α[2]; α[3]
)

; and for K = 5,

it is A5 =
(

α[1]; α[2]; α[3]; α[4]; α[5]
)

. For the coefficient matrix of the power amplifier

Taylor polynomial model of the relay, we set it to BT = (1, 0.1, 0.1). The SVM classi-

fier is implemented by using the LIBSVM toolbox, in which we adopt the Gaussian

RBF, κ(x, y) = e−‖x−y‖2/2γ 2
, as the kernel function with parameter γ = 0.1. For each

class, we set the number of training and test sequences as N̄0 = N0 = 50.

● Algorithms performance in AWGN channel
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In the AWGN channels, we first evaluate the identification performance of the

EM2 algorithm for K = 2 and K = 3 in the single-hop and relaying scenarios, shown

as Figure 5.10. For K = 2, the acceptable identification performance (Pc ≥ 0.8) is

attained for SNR ≥ 0 dB and SNR > 2 dB under the single-hop and relaying scenarios,

respectively. For K = 3, Pc achieves 0.8 at SNR = 6 dB in the single-hop scenario and

SNR = 8 dB in the relaying scenario. When compared to the conventional algorithm

in [30], the advantage of the EM2 algorithm is apparent. In particular, Pc enhances

more than 30% at SNR = 8 dB for both K = 2 and K = 3 in both single-hop and

relaying scenarios. In addition, it is seen that in high SNR region, the identification

accuracy of the EM2 algorithm in the single-hop and relaying scenarios is similar,

while the conventional algorithm presents a gap of 10% between these cases. It implies

that the EM2 algorithm can effectively combat the negative effect caused by the relay

on the identification of emitters at high SNR.

We then consider the identification performance of the EM2 algorithm versus

the number of training and test samples. In Figure 5.11, Pc is plotted as a function of

the number of training sequences for each class N̄0, with curves parameterized by the

number of test sequences for each class N0. We take the case that K = 2 and K = 3

in the relaying scenario at SNR = 14 dB as an example. It is noted that the number

of training and test samples barely influences the identification performance.
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Figure 5.10 The identification performance of the EM2 algorithm in AWGN

channel
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Figure 5.11 The identification performance of the EM2 algorithm in AWGN

channel. The number of test sequences for each class is

N0 = 25, 50, 75, 100 and SNR = 14 dB

Next, we depict the identification performance of the CB algorithm in

Figure 5.12. where the identification performance for K = 2 and K = 3 in the single-

hop and relaying scenarios is illustrated. When K = 2, the CB algorithm reaches

Pc ≥ 0.8 for SNR ≥ 0 dB in both scenarios. When K = 3, the identification perfor-

mance attains Pc = 0.8 at SNR = 4 dB in the single-hop scenario and at SNR = 7 dB

in the relaying scenario. Moreover, we compare the identification performance of

the CB algorithm with that of the EM2 algorithm, and the results show that the CB

algorithm provides better identification performance for K = 2 and K = 3 in both

single-hop and relaying scenarios.

In Figure 5.13, the identification performance of the FDR algorithm is illustrated,

along with that of the EM2 and CB algorithms when classifying five emitters for

single-hop and relaying scenarios. Apparently, the FDR attains a reliable performance

when K = 5 and outperforms that of the EM2 and CB algorithms. Specifically, the

FDR algorithm obtains Pc ≥ 0.8 at SNR = 5 dB in the single-hop scenario and at

SNR = 7 dB in the relaying scenario. The reason is that the FDR algorithm extracts

elements with strong separability as identification features, which can provide better

identification performance.

Table 5.1 summarizes the identification performance of the three proposed algo-

rithms, along with that of the algorithm in [30], for SNR = 4, 12, and 20 dB in AWGN

channels. It can be seen that when K = 2 and K = 3, all the proposed algorithms

attain good identification performance in both single-hop and relaying scenarios.
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Figure 5.12 The identification performance of the CB algorithm in AWGN channel
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Table 5.1 Identification performance Pc for SNR = 4,12,20 dB in AWGN channels

4 dB 12 dB 20 dB

EM2 CB FDR [30] EM2 CB FDR [30] EM2 CB FDR [30]

K = 2 Single-hop 0.93 0.97 0.99 0.55 0.98 0.99 1.00 0.70 0.99 1.00 1.00 0.94

Relaying 0.87 0.90 0.94 0.53 0.97 0.99 0.99 0.62 0.99 0.99 0.99 0.85

K = 3 Single-hop 0.79 0.81 0.97 0.41 0.88 0.93 0.99 0.56 0.90 0.96 0.99 0.81

Relaying 0.72 0.70 0.89 0.38 0.86 0.91 0.98 0.51 0.89 0.95 0.99 0.72

K = 5 Single-hop 0.56 0.56 0.77 0.25 0.63 0.66 0.92 0.28 0.65 0.71 0.93 0.33

Relaying 0.48 0.50 0.70 0.25 0.61 0.62 0.89 0.26 0.64 0.69 0.92 0.30

As expected, the FDR algorithm obtains the best identification performance, then

followed by the CB algorithm and finally the EM2 algorithm. The FDR algorithm

can effectively identify emitters when K = 5 since it extracts features with strong

separability. In addition, the identification performance of the proposed algorithms

outperforms that of the algorithm in [30], especially in the relaying scenario.

● Algorithms performance comparison in non-Gaussian noise channel

Next, the identification performance of the proposed algorithms is evaluated

under the non-Gaussian noise channels and compared to that in [30]. In the simula-

tions, we assume that the non-Gaussian noise follows the Middleton Class A model,

where the probability distribution function (pdf) is expressed as [31,32]:

fClassA(x) = e−A

∞
∑

m=0

Am

m!
√

(2πσ 2
m)

e−(x2/2σ 2
m) (5.64)

where A is the impulse index, and σ 2
m = (((m/A) + Ŵ)/(1 + Ŵ)) is the noise variance,

with Ŵ as the ratio of the intensity of the independent Gaussian component and the

intensity of the impulsive non-Gaussian component. We set A = 0.1 and Ŵ = 0.05,

respectively. In addition, we assume that the number of terms in the Class A pdf M is

finite, i.e., m ∈ [0, M − 1], and set M = 500 [31]. No fading is considered.

Table 5.2 summarizes the identification accuracy of the proposed algorithms and

the algorithm in [30], at SNR = 4, 12 and 20 dB in the presence of the non-Gaussian

noise channels. Comparing the results with that in the AWGN channels, it is noticed

that for K = 2 and K = 3 in the single-hop scenario, the proposed algorithms have

little degradation in the identification performance, and in the relaying scenario, the

proposed algorithms effectively combat the negative effect of the non-Gaussian noise

in the high SNR region. The results indicate that the proposed algorithms are appli-

cable to non-Gaussian noise channels. Furthermore, it is obvious that all proposed

algorithms outperform that of the conventional method in [30], which performs poorly

especially in the relaying scenario.

● Algorithms performance comparison in flat-fading channel
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Table 5.2 Identification performance Pc for SNR = 4, 12, 20 dB in non-Gaussian

noise channels

4 dB 12 dB 20 dB

EM2 CB FDR [30] EM2 CB FDR [30] EM2 CB FDR [30]

K = 2 Single-hop 0.90 0.91 0.98 0.55 0.98 0.99 0.99 0.70 0.99 0.99 0.99 0.94

Relaying 0.82 0.83 0.86 0.53 0.96 0.97 0.99 0.62 0.98 0.99 0.99 0.85

K = 3 Single-hop 0.74 0.75 0.94 0.40 0.86 0.91 0.99 0.56 0.89 0.95 0.99 0.81

Relaying 0.60 0.62 0.81 0.38 0.85 0.87 0.97 0.51 0.88 0.94 0.99 0.72

K = 5 Single-hop 0.53 0.50 0.73 0.25 0.61 0.62 0.90 0.28 0.64 0.69 0.93 0.33

Relaying 0.41 0.43 0.63 0.25 0.57 0.57 0.88 0.26 0.62 0.67 0.91 0.30

Table 5.3 Identification performance Pc for SNR = 4, 12, 20 dB in fading channels

4 dB 12 dB 20 dB

EM2 CB FDR [30] EM2 CB FDR [30] EM2 CB FDR [30]

K = 2 Single-hop 0.81 0.90 0.97 0.51 0.96 0.98 0.99 0.56 0.99 0.99 0.99 0.68

Relaying 0.63 0.72 0.82 0.50 0.90 0.90 0.99 0.53 0.98 0.98 0.99 0.59

K = 3 Single-hop 0.65 0.73 0.91 0.36 0.86 0.89 0.98 0.40 0.90 0.93 0.99 0.54

Relaying 0.63 0.50 0.77 0.35 0.80 0.76 0.96 0.39 0.98 0.92 0.98 0.45

K = 5 Single-hop 0.50 0.49 0.71 0.21 0.60 0.61 0.89 0.23 0.62 0.66 0.92 0.29

Relaying 0.35 0.40 0.58 0.20 0.55 0.55 0.86 0.21 0.60 0.64 0.91 0.25

Next, the identification performance in the presence of flat-fading channels is

examined. We assume that the channel-fading coefficients are unknown at the receiver.

Table 5.3 summarizes the identification performance of all the proposed algo-

rithms and compared to that in [9], for SNR = 4, 12 and 20 dB in fading channels

for both single-hop and relaying scenarios. As expected, the fading degrades the per-

formance, especially for the CB algorithm in the relaying scenario. The main reason

lies in that the fading channel significantly corrupts the similarity between Hilbert

spectra, which leads to a severe identification performance loss for the CB algorithm.

In addition, it is noted that the FDR algorithm provides the most promising identifi-

cation performance among all the three proposed algorithms, which has a relatively

reduced performance degradation in the fading channels.

5.3.5 Conclusions

This chapter discusses two main signal identification issues in CRs, that is the

modulation classification and the SEI. New challenges to the signal identification

techniques have raised considering the real-world environments. More advanced
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and intelligent theory is required to solve the blind recognition tasks. The machine-

learning theory-based algorithms are introduced to solve the modulation classification

and SEI problems. Numerical results demonstrate that the proposed algorithms

provide promising identification performance.
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Chapter 6

Compressive sensing for wireless
sensor networks

Wei Chen1

Over the past two decades, the rapid development of technologies in sensing, com-

puting and communication has made it possible to employ wireless sensor networks

(WSNs) to continuously monitor physical phenomena in a variety of applications, for

example, air-quality monitoring, wildlife tracking, biomedical monitoring and disas-

ter detection. Since the development of these technologies will continue to reduce the

size and the cost of sensors in the next few decades, it is believed that WSNs will be

involved more and more in our daily lives increasing the impact on the way we live

our lives.

A WSN can be defined as a network of sensor nodes, which can sense the physical

phenomena in a monitored field and transmit the collected information to a central

information-processing station, namely, the fusion center (FC), through wireless links.

A wireless sensor node is composed of three basic elements, i.e., a sensing unit, a

computation unit and a wireless communication unit, although the node’s physical

size and shape may differ in various applications. The rapid development of WSNs

with various types of sensors has resulted in a dramatic increase in the amount of

data that has to be transmitted, stored and processed. As number and resolution of the

sensors grow, the main constraints in the development of WSNs are limited battery

power, limited memory, limited computational capability, limited wireless bandwidth,

the cost and the physical size of the wireless sensor node. While the sensor node

is the performance bottleneck, the FC (or any back-end processor) usually has a

comparatively high-computational capability and power. The asymmetrical structure

of WSNs motivates us to exploit compressive-sensing (CS)-related techniques and to

incorporate those techniques into a WSN system for data acquisition.

CS, also called compressed sensing or sub-Nyquist sampling, was initially pro-

posed by Candès, Romberg and Tao in [1] and Donoho in [2], who derived some

important theoretical results on the minimum number of random samples needed to

reconstruct a signal. By taking advantage of the sparse characteristic of the nat-

ural physical signals of interest, CS makes it possible to recover sparse signals

from far fewer samples that is predicted by the Nyquist–Shannon sampling theorem.

1State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, China
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The typical CS measurement of signals can be seen as a randomly weighted linear

combination of samples in some basis different from the basis where the signal is

sparse. Since the number of CS measurements is smaller than the number of elements

in a discrete signal, the task of CS reconstruction is to solve an underdetermined

matrix equation with a constraint on the sparsity of the signal in some known basis.

In contrast to the conventional data-acquisition structure, i.e., doing compression at

the sensor node and decompression at the FC, the CS process trade-off an increase in

the computational complexity of post-processing at the FC against the convenience

of a smaller quantity of data acquisition and lower demands on the computational

capability of the sensor node.

As indicated, the rapid development of WSNs with various types of sensors has

resulted in a dramatic increase in the amount of data that needs to be processed, trans-

ported and stored. CS is a promising technique to deal with the flood of data, as it

enables the design of new kinds of data-acquisition systems that combine sensing,

compression and data processing in one operation by using the so-called compressive

sensors, instead of conventional sensors. In addition, CS is a nonadaptive compres-

sion method, and the characteristics of the signals are exploited at the recovery stage.

Therefore, compressive sensors do not need the intra-sensor and inter-sensor correla-

tion information to perform compression, which facilitates distributed compression

in WSNs.

This chapter introduces the fundamental concepts that are important in the study

of CS. We present the mathematical model of CS where the use of sparse signal

representation is emphasized. We describe three conditions, i.e., the null space prop-

erty (NSP), the restricted isometry property (RIP) and mutual coherence, that are

used to evaluate the quality of sensing matrices and to demonstrate the feasibility of

reconstruction. We briefly review some widely used numerical algorithms for sparse

recovery, which are classified into two categories, i.e., convex optimization algo-

rithms and greedy algorithms. Finally, we illustrate various examples where the CS

principle has been applied to deal with various problems occurring in WSNs.

6.1 Sparse signal representation

6.1.1 Signal representation

Most naturally occurring signals, that people are interested in monitoring, have a

very high degree of redundancy of information. Therefore, by removing redundancy,

signals can be transformed to some compressed version that is convenient for storage

and transportation.

Transform compression reduces the redundancy of an n dimensional signal

f ∈ R
n by representing it with a sparse or nearly sparse representation x ∈ R

n in

some basis � ∈ R
n×n, i.e.:

f = �x (6.1)

Here, sparse means that all elements in vector x are zeros except for a small

number of them. Thus, we say the signal f is s-sparse if its sparse representation x
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has only s nonzero elements. Most naturally occurring signals are not exactly but

nearly sparse under a given transform basis, which means the values of the elements

in x, when sorted, decay rapidly to zero, or follow power-law distributions, i.e., the

ith element of the sorted representation x̀ satisfies:

|x̀i| ≤ c · i−p (6.2)

for each 1 ≤ i ≤ n, where c denotes a constant and p ≥ 1.

Transforming signals into a sparse domain has been widely used in data reduction.

For example, audio signals are compressed by projecting them into the frequency

domain, and images are compressed by projecting them into the wavelet domain and

curvelet domain. Furthermore, sometimes it is easier to manipulate or process the

information content of signals in the projected domain than in the original domain

where signals are observed. For example, by expressing audio signals in the frequency

domain, one can acquire the dominant information more accurately than by expressing

them as the amplitude levels over time. In this case, people are more interested in

the signal representation in the transformed domain rather than the signal itself in the

observed domain.

6.1.2 Representation error

By preserving a small number of the largest components of the representation, the

original signals are compressed subject to a tolerable distortion. If the signals are

exactly sparse, then perfect reconstruction of the signals is possible. However, as most

signals of interest are nearly sparse in the transformed domain, discarding the small

elements of the representations will result in a selective loss of the least significant

information. Therefore, the transform compression is typically lossy.

A representation error x − xs occurs if xs is used to recover the signal. Assume

x follows power-law distribution as in (6.2), then the squared representation error is

given by

‖x − xs‖2
2 ≤

n
∑

i=s+1

(

c · i−p
)2 ≈ c2

n
∫

s+1

z−2pdz

= c2

2p − 1
((s + 1)1−2p − n1−2p) (6.3)

<
c0

(s + 1)2p−1

where c0 = c2/(2p − 1) is a constant and p ≥ 1. Obviously, the more elements that

are kept in the representation, the smaller error the compressed signal has. It is noted

that the squared sparse representation error decays in the order of 1/(s2p−1).

Lossy compression is most commonly used to compress multimedia signals.

For example, the image in Figure 6.1 with 256 × 256 pixel can be represented by

coefficients of the discrete wavelet transform. By sorting the coefficients in order

of their magnitude, we note that only a small portion of the coefficients have a

large amplitude. We then choose to neglect all the coefficients whose amplitudes are
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Figure 6.1 The original cameraman image vs. the compressed version

smaller than 10 and show the compressed image in the right-hand image in Figure 6.1.

The perceptual loss in quality of the compressed image compared to the original is

imperceptible.

6.2 CS and signal recovery

6.2.1 CS model

Given a signal f ∈ R
n, we consider a measurement system that acquires m (m ≤ n)

linear measurements by projecting the signal with a sensing matrix � ∈ R
m×n. This

sensing system can be presented as

y = �f , (6.4)

where y ∈ R
m denotes the measurement vector.

The standard CS framework assumes that the sensing matrices are randomized

and nonadaptive, which means each measurement is derived independently to the

previously acquired measurements. In some settings, it is interesting to design fixed

and adaptive sensing matrices which can lead to improved performance. More details

about the design of sensing matrices are given in [3–7]. For now, we will concentrate

on the standard CS framework.

Remembering that the signal f can be represented by an s-sparse vector x as

expressed in (6.1), the sensing system can be rewritten as

y = ��x = Ax, (6.5)

where A = �� denotes an equivalent sensing matrix. The simplified model with

the equivalent sensing matrix A will be frequently used in this dissertation unless

we need to specify the basis, not only to simplify nomenclature but also because

many important results are given in the product form of � and �. More gener-

ally, measurements are considered to be contaminated by some noise term n ∈ R
m
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owing to the sampling noise or the quantization process. Then the CS model can be

described as

y = Ax + n. (6.6)

In generally, it is not possible to solve (6.6) even if the noise term is equal to zero,

as there are infinite number of solutions satisfying (6.6). However, a suitable sparsity

constraint may rule out all the solutions except for the one that is expected. Therefore,

the most natural strategy to recover the sparse representation from the measurements

uses ℓ0 minimization, which can be written as

min
x

‖x‖0

s.t. Ax = y.
(6.7)

The solution of (6.7) is the most sparse vector satisfying (6.5). However, (6.7) is a

combinatorial optimization problem and thus computationally intractable.

Consequently, as a convex relaxation of ℓ0 minimization, ℓ1 minimization is used

instead to solve the sparse signal representation, which leads to a linear program and

thus straight forward to solve [8]. Therefore, the optimization problem becomes:

min
x

‖x‖1

s.t. Ax = y.
(6.8)

This program is also known as basis pursuit (BP).

In the presence of noise, the equality constraint in (6.8) can never be satisfied.

Instead, the optimization problem (6.8) can be relaxed by using the BP de-noising

(BPDN) [9], which is

min
x

‖x‖1

s.t. ‖Ax − y‖2
2 ≤ ε,

(6.9)

where ε is an estimate of the noise level. It has been demonstrated that only

m = O(s log(n/s)) measurements [10] are required for robust reconstruction in the

CS framework.

This standard CS framework only exploits the sparse characteristics of the sig-

nal to reduce the dimensionality required for sensing the signal. A recent growing

trend relates to the use of more complex signal models that go beyond the simple

sparsity model to further enhance the performance of CS. For example, Baraniuk

et al. [11] have introduced a model-based CS, where more realistic signal models

such as wavelet trees or block sparsity are leveraged in order to reduce the number of

measurements required for reconstruction. In particular, it has been shown that robust

signal recovery is possible with m = O(s) measurements in model-based CS [11].

Ji et al. [12] introduced Bayesian CS, where a signal statistical model instead is

exploited to reduce the number of measurements for reconstruction. In [13,14], recon-

struction methods have been proposed for manifold-based CS, where the signal is

assumed to belong to a manifold. Other works that consider various sparsity mod-

els that go beyond that of simple sparsity in order to improve the performance of

traditional CS include [15–18].
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6.2.2 Conditions for the equivalent sensing matrix

Another theoretical question in CS is what conditions should the equivalent sensing

matrix A satisfy in order to preserve the information in the sparse representation x.

In this subsection, three different conditions for the matrix A are presented, i.e., the

NSP, the RIP and mutual coherence. The information in the sparse representation x

is recoverable by CS if any property can be satisfied.

6.2.2.1 Null space property

For any pair of distinct s-sparse vectors, x and x′, a proper equivalent sensing matrix

A must have Ax �= Ax′. Otherwise, it is impossible to differentiate each other from

the measurements y in conjunction with the s-sparse constraint. Since x − x′ could

be any 2s-sparse vector and A(x − x′) �= 0, we can deduce that there exists a unique

s-sparse vector x satisfying Ax = y if and only if the null space of matrix A does not

contain any 2s-sparse vector.

This condition corresponds to the ℓ0 norm constraint, which is used in (6.7).

However, as mentioned previously, it is painful to solve (6.7) directly. Therefore, it is

desirable to evaluate the quality of matrix A corresponding to the ℓ1 norm operation

which is computationally tractable. Based on this consideration, we now give the

definition of the NSP as in [19].

Definition 6.1. A matrix A ∈ R
m×n satisfies the NSP in ℓ1 of order s if and only if

the following inequality:

‖xJ‖1 < ‖xJc‖1 (6.10)

holds for all x ∈ Null(A) and x �= 0 with ‖J‖0 = s.

The NSP highlights that vectors in the null space of the equivalent sensing matrix

A should not concentrate on a small number of elements. Based on the definition of

the NSP, the following theorem [19] guarantees the success of ℓ1 minimization with

the equivalent sensing matrix A satisfying the NSP condition.

Theorem 6.1. Let A ∈ R
m×n. Then every s-sparse vector x ∈ R

n is the unique solution

of the ℓ1 minimization problem in (6.8) with y = Ax if and only if A satisfies the NSP

in ℓ1 of order s.

This theorem claims that the NSP is both necessary and sufficient for successful

sparse recovery by ℓ1 minimization. However, it does not consider the presence of

noise as in (6.9). Furthermore, it is very difficult to evaluate the NSP condition for a

given matrix, since it includes calculation of the null space and testing all vectors in

this space.

6.2.2.2 Restricted isometry property

A stronger condition, named RIP, is introduced by Candès and Tao in [20].
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Definition 6.2. A matrix A ∈ R
m×n satisfies the RIP of order s with a restricted

isometry constant (RIC) δs ∈ (0, 1) being the smallest number such that

(1 − δs)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs)‖x‖2
2 (6.11)

holds for all x with ‖x‖0 ≤ s.

The RIP quantifies the notion that the energy of sparse vectors should not be

scaled too much when projected by the equivalent sensing matrix A. It has been

established in [21] that the RIP provides a sufficient condition for exact or near exact

recovery of a sparse signal via ℓ1 minimization.

Theorem 6.2. Let A ∈ R
m×n. Then the solution x∗ of (6.9) obeys:

‖x∗ − x‖2 ≤ c1s−1/2‖x − xs‖ℓ1
+ c2ε, (6.12)

where c1 = (2+ (2
√

2−2)δ2s)/(1− (
√

2+1)δ2s), c2 = (4
√

1+δ2s)/(1− (
√

2+1)δ2s),

and δ2s is the RIC of matrix A.

This theorem claims that with a reduced number of measurements, the recon-

structed vector x∗ is a good approximation to the original signal representation x. In

addition, for the noiseless case, any sparse representation x with support size no larger

than s, can be exactly recovered by ℓ1 minimization if the RIC satisfies δ2s <
√

2 − 1.

Improved bounds based on the RIP are derived in [22–24].

For any arbitrary matrix, computing the RIP by going through all possible sparse

signals is exhaustive. Baraniuk et al. prove in [10] that any random matrix whose

entries are independent identical distributed (i.i.d.) realizations of certain zero-mean

random variables with variance 1/m, e.g., Gaussian distribution and Bernoulli distri-

bution,1 satisfies the RIP with a very high possibility when the number of samples

m = O(s log(n/s)).

Note that the RIP is a sufficient condition for successful reconstruction, but it is

too strict. In practice, signals with sparse representations can be reconstructed very

well even though the sensing matrices do not satisfy the RIP.

6.2.2.3 Mutual coherence

Another way to evaluate a sensing matrix, which is not as computationally intractable

as the NSP and the RIP, is via the mutual coherence of the matrix [26], which is

given by

μ = max
1≤i, j≤n,i �=j

|AT
i Aj|. (6.13)

Small mutual coherence means that any pair of vectors in matrix A has a low coher-

ence, which eases the difficulty in discriminating components from the measurement

vector y.

1In most of the experiments we have conducted, we use random matrices with elements drawn from i.i.d.

Gaussian distributions, since it is the typical setting found in the literature and its performance is no worse

than one with elements drawn from i.i.d. Bernoulli distributions [25].
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Donoho, Elad and Temlyakov demonstrated in [26] that every x is the unique

sparsest solution of (6.7) if μ < 1/(2s − 1), and the error of the solution (6.8) is

bounded if μ < 1/(4s − 1). According to the relationship between the RIC and the

mutual coherence, i.e., δs ≤ (s − 1)μ [19], it is clear that if a matrix possesses a small

mutual coherence, it also satisfies the RIP condition. It means that the mutual coher-

ence condition is a stronger condition than the RIP. However, the mutual coherence is

still very attractive for sensing matrix design owing to its convenience in evaluation.

6.2.3 Numerical algorithms for sparse recovery

By applying CS, the number of samples required is reduced and the compression

operation is simpler than that for traditional compression methods. However, the

convenience of the compression operation leads to the increased complexity of the

decoding operation, i.e., the decoder requires sophisticated algorithms to recover

the original signal. Many approaches and their variants have been proposed in the

literature. Most of those algorithms can be classified into two categories—convex

optimization algorithms and greedy algorithms. Here, we briefly review some of

these convex optimization algorithms and greedy pursuit algorithms, and refer the

interested readers to the literature for other classes of algorithms including Bayesian

approaches [12,27–30] and nonconvex optimization approaches [31].

6.2.3.1 Convex optimization algorithms

Replacing the ℓ0 norm with the ℓ1 norm as in (6.9) is one approach to solve a convex

optimization problem that is computationally tractable. The reason for selecting the

ℓ1 norm is that the ℓ1 norm is the closest convex function to the ℓ0 norm, which is

illustrated in Figure 6.2. It is clear that any ℓp norm with 0 < p < 1 is not convex,
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and the curve of the ℓ1 norm is closer to the curve of the ℓ0 norm than any other ℓp

norms with p > 1.

Some equivalent formulations to (6.9) exist. For example, the least absolute

shrinkage and selection operator (LASSO) [32] instead minimizes the energy of

detection error with an ℓ1 constraint:

min
x

‖Ax − y‖2
2

s.t. ‖x‖1 ≤ η,
(6.14)

whereη ≥ 0. Both BPDN and LASSO can be written as an unconstrained optimization

problem with some τ ≥ 0 for any η ≥ 0 in (6.14) and ε ≥ 0 (6.9):

min
x

1

2
‖Ax − y‖2

2 + τ‖x‖1. (6.15)

Note that the value of τ is an unknown coefficient to make these problems equivalent.

How to choose τ is discussed in [33].

There are several methods, such as the steepest descent and the conjugate gra-

dient, to search for the global optimal solution for these convex-relaxed problems.

Interior-point (IP) methods, developed in the 1980s to solve convex optimization, are

used in [9,34] for sparse reconstruction. Figueiredo, Nowak and Wright propose a

gradient projection approach with one level of iteration [35], while the IP approaches

in [9,34] have two iteration levels, and ℓ1-magic [9,34] has three iteration levels.

Other algorithms proposed to solve (6.15) include the homotopy method [36,37],

the iterative soft thresholding algorithm [38] and the approximately message passing

algorithm [39].

Generally, algorithms in this category have better performances than greedy algo-

rithms in terms of the number of measurements required for successful reconstruction.

However, their high computing complexity makes them unsuitable for applications

where high-dimensional signals are required to be reconstructed within a short time.

6.2.3.2 Greedy pursuit algorithms

While we have seen the success of convex optimization algorithms for sparse recov-

ery, greedy pursuit algorithms also attract much attention because of their simple

forms and ease of implementation. The main idea of greedy pursuit algorithms is

to iteratively compute the support of the sparse representation and so estimate the

representation corresponding to the identified support until some stopping criterion

is satisfied.

One main branch of those algorithms is known as matching pursuit (MP) [40].

The outline of MP can be described as follows:

● Step 0: Initialize the signal x = 0, the residual r = y and the index set J = ∅.
● Step 1: Find the largest coordinate i of AT r.
● Step 2: Add the coordinate to the index set J = J

⋃

{i}, and calculate the

product u = rT Ai.
● Step 3: Update the residual r = r − uAi and the signal xi = xi + u.
● Step 4: Return to step 1 until the stopping criterion is satisfied.
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The disadvantage of MP is its poor performance although asymptotic conver-

gence is guaranteed. A modified version called orthogonal MPs (OMPs) is proposed

in [41]. OMP converges faster than MP by ensuring full backward orthogonality

of the error. Tropp and Gilbert claimed in [42] that OMP can reliably reconstruct

a signal with s nonzero entries out of n coordinates using O(s ln n) random linear

measurements of that signal. Comparing with BP, OMP requires more measurements

for reconstruction. Another shortcoming of OMP is that only one component of the

support of the signal is selected in each iteration. The number of iterations would

be large for recovering a signal having a lot of nonzero components. To overcome

this defect, Donoho et al. propose an alternative greedy approach, called stagewise

OMP (StOMP) [43]. Instead of choosing one component in each iteration, StOMP

selects all of the components whose values are above a specified threshold. Obviously,

StOMP is faster than OMP, and in some cases, it even outperforms BP. However, a

suitable threshold for StOMP is difficult to acquire in practice, which significantly

effects the reconstruction performance. Many other algorithms based on OMP have

been proposed in the literature such as regularized OMP [44], compressive sampling

MP [45] and subspace MP [46], all of which require prior knowledge of the number

of nonzero components.

6.3 Optimized sensing matrix design for CS

The sensing matrices used in CS play a key role for successful reconstruction in

underdetermined sparse-recovery problems. A number of conditions, such as the

NSP, the RIP and mutual coherence, have been put forth in order to study the quality

of the sensing matrices and recovery algorithms. These conditions are mainly used

to address the worst case performance of sparse recovery [25,47,48]. However, the

actual reconstruction performance in practice is often much better than the worst case

performance, so that this viewpoint can be too conservative. In addition, the worst case

performance is a less typical indicator of quality in signal-processing applications than

the expected-case performance. This motivates us to investigate the design of sensing

matrices with adequate expected-case performance. Furthermore, a recent growing

trend relates to the use of more complex signal models that go beyond the simple

sparsity model to further enhance the performance of CS. The use of additional signal

knowledge also enables one to replace the conventional random sensing matrices by

optimized ones in order to further enhance CS performance (e.g., see [3–7,49–53]).

6.3.1 Elad’s method

The mutual coherence denotes the maximum coherence between any pair of columns

in the equivalent sensing matrix A. In [49], Elad considered a different coherence

indicator, called t-averaged mutual coherence, which reflects the average coherence

between columns. The t-averaged mutual coherence is defined as the average of

all normalized absolute inner products between different columns in the equivalent

sensing matrix that are not smaller than a positive number t.
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Definition 6.3. For a matrix A ∈ R
m×n, its t-averaged mutual coherence is

μt(A) =
∑

1≤i, j≤n and i �=j 1(
∣

∣AT
i Aj

∣

∣ ≥ t) ·
∣

∣AT
i Aj

∣

∣

∑

1≤i, j≤n and i �=j 1(
∣

∣AT
i Aj

∣

∣ ≥ t)
, (6.16)

where t ≥ 0, and the function 1(•) is equal to 1 if its input expression is true, otherwise

it is equal to 0.

If t = 0, the t-averaged mutual coherence is the average of all coherence between

columns. If t = μ, then the t-averaged mutual coherence μt is exactly equal to the

mutual coherence μ. Elad claimed that the equivalent sensing matrix A will have a

better performance if one can reduce the coherence of columns. Iteratively reducing

the mutual coherence by adjusting the related pair of columns is not an efficient

approach to do this since the coherence of all column pairs is not improved except

for the worst pair in each iteration. The t-averaged mutual coherence includes the

contribution of a batch of column pairs with high coherence. Thus, one can improve

the coherence of many column pairs by reducing the t-averaged mutual coherence.

Elad proposes an iterative algorithm to minimize μt(A) = μt(��) with respect to

the sensing matrix �, assuming the basis � and the parameter t are fixed and known.

In each iteration, the Gram matrix G = AT A is computed, and the values above t

are forced to reduce by multiplication with γ (0 < γ < 1), which can be expressed as

Ĝi, j =

⎧

⎪

⎨

⎪

⎩

γ Gi, j |Gi, j| ≥ t

γ t · sign(Gi, j) t > |Gi, j| ≥ γ t

Gi, j γ t > |Gi, j|
, (6.17)

where sign(•) denotes the sign function. The shrunk Gram matrix Ĝ becomes full

rank in the general case due to the operation in (6.17). To fix this, the Gram matrix

Ĝ is forced to be of rank m by applying the singular value decomposition (SVD) and

setting all the singular values to be zero except for the m largest ones. Then one can

build the square root of Ĝ, i.e., ÃT Ã = Ĝ, where the square root Ã is of size m × n.

The last step in each iteration is to find a sensing matrix � that makes �� closest to

Ã by minimizing ‖Ã − ��‖2
F .

The outline of Elad’s algorithm is given as follows:

● Step 0: Generate an arbitrary random matrix �.
● Step 1: Generate a matrix A by normalizing the columns of ��.
● Step 2: Compute the Gram matrix G = AT A.
● Step 3: Update the Gram matrix Ĝ by (6.17).
● Step 4: Apply SVD and set all the singular values of Ĝ to be zero except for the

m largest ones.
● Step 5: Build the square root m × n matrix Ã by ÃT Ã = Ĝ.

● Step 6: Update the sensing matrix � by minimizing

∥

∥

∥
Ã − ��

∥

∥

∥

2

F
.

● Step 7: Return to step 1 if some halting condition is not satisfied.

Elad’s method aims to minimize the large absolute values of the off-diagonal

elements in the Gram matrix and thus reduces the t-averaged mutual coherence. This
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method updates a number of columns at the same time in each iteration. Therefore, it

converges to a good matrix design faster than directly working on and updating the

mutual coherence iteratively. Empirical knowledge is required to determine the value

of t and γ , which affects the matrix quality and the convergence rate, respectively.

6.3.2 Duarte-Carvajalino and Sapiro’s method

In [50], Duarte-Carvajalino and Sapiro propose an algorithm to iteratively optimize

both the sensing matrix and the basis simultaneously. For any given basis, they propose

an m-step algorithm to optimize the sensing matrix. Their aim is to make the Gram

matrix of the equivalent sensing matrix as close as possible to an identity matrix,

which can be described as

G = AT A = �T �T �� ≈ In. (6.18)

By multiplying both sides of (6.18) with � on the left and �T on the right,

we have

��T �T ���T ≈ ��T . (6.19)

Now ��T can be decomposed to V�VT by eigen-decomposition, where V ∈ R
n×n

is an orthonormal matrix and � ∈ R
n×n is a diagonal matrix. Thus, (6.19) can be

rewritten as

V�VT �T �V�VT ≈ V�VT , (6.20)

which is equivalent to

�VT �T �V� ≈ �. (6.21)

After defining a matrixŴ = �V, they formulated the following optimization problem:

min
Ŵ

‖� − �ŴT Ŵ�‖2
F , (6.22)

and then let the sensing matrix � = ŴVT .

Duarte-Carvajalino and Sapiro select (6.18) as their optimal design without

giving a theoretical analysis, although the approach appears reasonable and the supe-

riority of the design is witnessed in their experimental results. As a closed form for its

solution cannot be determined, they propose an algorithm that requires m iterations

to determine a solution to (6.22).

The outline of their algorithm is given as follows:

● Step 0: Generate an arbitrary random matrix �.
● Step 1: Apply eigen-decomposition ��T = V�VT .
● Step 2: Let Ŵ = �V , Z = Ŵ� and i = 1.
● Step 3: Find the largest eigenvalue τ and corresponding eigenvector u of ‖� −

�ŴT Ŵ� + ZiZ
T
i ‖2

F .
● Step 4: Let Zi = √

τu and i = i + 1.
● Step 5: Update Ŵ according to Ŵ = Z�−1.
● Step 6: Return to step 2 unless i = m + 1.
● Step 7: Compute the sensing matrix � = ŴVT .
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6.3.3 Xu et al.’s method

Xu et al. considered the equiangular tight frame as their target design and proposed an

iterative algorithm to make the sensing matrix close to that design [51]. Tight frames

will be introduced in the next section, but for now, we only need to mention that the

equiangular tight frame is a class of matrix with some good properties, for example,

if the coherence value between any two columns of the equivalent sensing matrix A

is equal, then A is an equiangular tight frame.

Although the equiangular tight frame does not exist for any arbitrary selection of

dimensions and finding the equiangular tight frame for given dimensions is difficult,

the achievable lower bound of the Gram matrix of the equiangular tight frame, i.e.,

G = AT A, has been derived [54]:

|Gi, j| ≥
√

n − m

m(n − 1)
for i �= j. (6.23)

Being aware of the difficulty in generating equiangular tight frames, Xu et al. propose

an optimization approach that iteratively makes the Gram matrix of the equivalent

sensing matrix close to the lower bound in (6.23). In each iteration, a new Gram

matrix is calculated by

Ĝi, j =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1 i = j

Gi, j |Gi, j| <

√

n − m

m(n − 1)
√

n − m

m(n − 1)
· sign(Gi, j) |Gi, j| ≥

√

n − m

m(n − 1)

. (6.24)

Then they update the Gram matrix by

G = αGprev + (1 − α)Ĝ, (6.25)

where Gprev denotes the Gram matrix in the previous iteration, and 0 < α < 1 denotes

the forgetting parameter. Then they update the sensing matrix � as the matrix with

the minimum distance to the Gram matrix, given by

min
�

‖�T �T �� − G‖2
F , (6.26)

which can be solved using QR factorization with eigen-decomposition. As the Gram

matrix is forced to the bound of the equiangular tight frame in each iteration, they

expect the equivalent sensing matrix in turn to be close to an equiangular tight frame.

The outline of their algorithm is given as follows:

● Step 0: Generate an arbitrary random matrix �.
● Step 1: Compute the Gram matrix G = �T �T ��.
● Step 2: Update the Gram matrix by (6.24).
● Step 3: Update the Gram matrix by (6.25).
● Step 4: Apply SVD and set all the singular values of G to be zero except for the

m largest ones.
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● Step 5: Build the square root m × n matrix Ã by ÃT Ã = G.

● Step 6: Update the sensing matrix � by minimizing

∥

∥

∥
Ã − ��

∥

∥

∥

2

F
.

● Step 7: Return to step 1 if some halting condition is not satisfied.

Xu et al. make the equiangular tight frame lower bound as the target of their

design, as the equiangular tight frame has minimum mutual coherence [51]. However,

the lower bound can never be achieved if an equiangular tight frame for dimensions

m × n does not exist. Although the design target is based on knowledge of the bound,

an improved performance has been shown for arbitrary dimensions.

6.3.4 Chen et al.’s method

While previous work considers iterative methods, Chen et al. proposed noniterative

methods that use tight frame principles for CS sensing matrix design. For finite-

dimensional real spaces, a frame can be seen as a matrix � ∈ R
m×n such that for any

vector z ∈ R
m:

a‖z‖2
2 ≤ ‖�T z‖2

2 ≤ b‖z‖2
2, (6.27)

where a > 0 and b > 0 are called frame bounds. Tight frames are a class of frames

with equal frame bounds, i.e., a = b. Any tight frame can be scaled with the frame

bound equal to 1 by multiplying 1/
√

a. A tight frame is called a Parseval tight frame

if its frame bound is equal 1, i.e.:

‖�T z‖2
2 = ‖z‖2

2, (6.28)

for any z. A tight frame represents a matrix whose coherence matrix is as close as

possible to an orthonormal matrix corresponding to the Frobenius norm. Tight frames

have been widely used in many applications such as denoising, code division multiple

access systems and multi-antenna code design. Equal-norm tight frames require one

more condition than a general tight frame, i.e., the ℓ2 norm of all columns are equal.

If all the columns of a tight frame are equal to 1, it is called a unit-norm tight frame.

In [4], Chen et al. proposed the use of unit-norm tight frames, which has been

justified from optimization considerations and has been shown to lead to MSE per-

formance gains when used in conjunction with standard sparse recovery algorithms.

Finding a matrix, which has minimum mutual coherence and columns with ℓ2 norm

equal to 1, is equivalent to finding n points on the sphere in R
m so that the points are

as orthogonal to each other as possible. However, the equiangular tight frame does not

exist for any arbitrary selection of dimensions and finding the equiangular tight frame

for any given dimension is in general very difficult. An alternative approach is to find

the equilibrium of the points on the sphere under some applied “force.” Equilibrium

in this case means that in such a state, the points will return to their original positions

if slightly disturbed.

In [3], Chen et al. proposed a closed-form sensing matrix design, given an

over-complete dictionary �. The proposed sensing matrix design is given by

�̂ = U	̂�	̂�T UT

 , (6.29)
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where U	̂ is an arbitrary orthonormal matrix, �	 =
[

Diag
(

(1/λ

m ), . . . , (1/λ


1 )
)

Om×(n−m)

]

and � = Jn. It uncovers the key operations performed by this optimal

sensing matrix design. In particular, this sensing matrix design (i) exposes the modes

(singular values) of the dictionary; (ii) passes the m strongest modes and filters out the

n − m weakest modes and (iii) weighs the strongest modes. This is also accomplished

by taking the matrix of right singular vectors of the sensing matrix to correspond to

the matrix of left singular vectors of the dictionary and taking the strongest modes of

the dictionary. It leads immediately to the sensing matrix design, which is consistent

with the sensing cost constraint ‖�̂‖2
F = n, as follows:

� =
√

n�̂

‖�̂‖F

=
√

n�	̂JnUT



‖�	̂‖F

. (6.30)

The sensing matrix design can be generated as follows:

● Step 0: For a given n × k dictionary �, perform SVD, i.e., � = U
�
VT



(λ

1 ≥ · · · ≥ λ


n ).
● Step 1: Build an m × n matrix �	 whose diagonal entries are λ	

i = (1/λ

i )

(i = 1, . . . , m) and all the other entries are zeros.
● Step 2: Build the sensing matrix � = U	̂�	UT


 , where U	̂ is an arbitrary

orthonormal matrix.
● Step 3: Normalize the sensing matrix energy using � = (

√
n�/‖�‖F ).

In [5], Ding, Chen and Wassell proposed sensing matrix designs for tensor CS.

Previous study concerning CS implicitly assume the sampling costs for all samples

are equal and suggest random sampling as an appropriate approach to achieve good

reconstruction accuracy. However, this assumption does not hold for applications such

as WSNs which have significant variability in sampling cost owing to the different

physical conditions at particular sensors. To exploit this sampling cost nonuniformity,

Chen et al. proposed cost-aware sensing matrix designs that minimize the sampling

cost with constraints on the regularized mutual coherence of the equivalent sensing

matrix [6,7].

6.4 CS-based WSNs

The CS principle can be applied to various practical applications where the sensing

matrices represent different systems. In this section, we only illustrate five examples

where the CS principle is used to deal with different problems occurring in WSNs,

although CS can address a much wider range of applications.

6.4.1 Robust data transmission

Data loss in WSNs is inevitable due to the wireless fading channel. Various error-

detection and error-correction schemes have been proposed to fight against channel

fading in the physical layer. In addition, to guarantee reliable data transmission,

retransmission schemes are often applied in the application layer. Considering the
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poor computing capability of wireless sensor devices and the bandwidth overhead,

many error protection and retransmission schemes are not suitable for WSNs. In

addition, for small and battery-operated sensor devices, sophisticated source coding

cannot be afforded in some cases. However, as naturally occurring signals are often

compressible, CS can be viewed as a compression process. What is more interesting

is that these CS data with redundant measurements are robust against data loss, i.e.,

the original signal can be recovered without retransmission even though some data

are missing.

As shown in Figure 6.3, the conventional sequence of sampling, source coding

and channel coding is replaced by one CS procedure. Each CS measurement contains

some information about the whole signal owing to the mixture effect of the sensing

matrix. Thus, any lost measurement will not cause an inevitable information loss. With

some redundant measurements, the CS system can combat data loss and successfully

recover the original signal.

This CS-coding scheme has a low-encoding cost especially if random sampling

is used. All the measurements are acquired in the same way, and thus the number of

redundant measurements can be specified according to fading severity of the wireless

channel. In addition, one can still use physical layer channel coding on the CS mea-

surements. In this case, CS can be seen as a coding strategy that is applied at the appli-

cation layer where the signal characteristics are exploited, and also can be seen as a

replacement of traditional sampling and source-coding procedures. If channel coding

fails, the receiver is still able to recover the original signal in the application layer.

In [56], Davenport et al. demonstrate theoretically that each CS measurement

carries roughly the same amount of signal information if random matrices are used.

Therefore, by slightly increasing the number of measurements, the system is robust to

the loss of a small number of arbitrary measurements. Charbiwala et al. show that this

CS coding approach is efficient for dealing with data loss, and cheaper than several

other approaches including Reed–Solomon encoding in terms of energy consumption

using a MicaZ sensor platform [57].

Note that the fountain codes [58]—in particular random linear fountain codes—

and network coding [59] can also be used to combat data loss by transmitting mixed
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Figure 6.3 Conventional transmission approach vs. CS approach: (a) the

conventional sequence of source and channel coding and (b) joint

source and channel coding using CS
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symbols, which are “equally important.” The number of received symbols for both

approaches should be no smaller than the original number of symbols for decoding,

which is not necessary in the CS-based approach owing to the use of the sparse signal

characteristic.

6.4.2 Compressive data gathering

Typical WSNs consist of a large number of sensors distributed in the field to collect

information of interest for geographical monitoring, industrial monitoring, security

and climate monitoring. In these WSNs, signals sensed in the physical field usually

have high spatial correlations. Generally, it is difficult to compress the signals at

the sensor nodes due to their distributed structure. However, by exploiting the CS

principle, the signals can be gathered and transmitted in an efficient way.

6.4.2.1 WSNs with single hop communications

The proposed architecture in [60] for efficient estimation of sensor field data con-

siders single hop communications between n sensor nodes and an FC as shown in

Figure 6.4. Each sensor has a monitored parameter fi (i = 1, . . . , n) to report. The

conventional method to transmit the total number of parameters, n, requires n time

slots by allocating one time slot to each sensor node, while the new strategy only

needs m (m < n) time slots to transmit all the information.

In the new strategy, each sensor generates a random sequence �i ∈ R
m (i =

1, . . . , n) by using its network address as the seed of a pseudorandom number gener-

ator. Each sensor sequentially transmits the product of the random sequence and the

sensed parameter fi in m time slots, while the transmission power is reduced to 1/m

of its default value in each time slot. All the sensors transmit in an analog fashion.

The received signal at the FC in m time slots can be written as

y = H ◦ �f + n, (6.31)

Fusion center

Sensor nodes

Figure 6.4 A WSN with single hop communication
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where � ∈ R
m×n denotes the random matrix corresponding to n different random

sequences, H ∈ R
m×n denotes the channel path gain matrix, and n denotes the noise

term. It is assumed that the channel path gain hi, j can be calculated using:

hj,i = 1

d
α/2
i

, (6.32)

where di is the distance between the ith sensor and the FC, and α is the propagation

loss factor. It is also assumed that the FC knows the network address of each sensor

node and its distance to each sensor node.

Authors in [61] propose a method exploiting both the intra-sensor and inter-

sensor correlation to reduce the number of samples required for reconstruction of the

original signals. In [62], a sampling rate indicator feedback scheme is proposed to

enable the sensor to adjust its sampling rate to maintain an acceptable reconstruction

performance while minimizing the number of samples. In [6], authors propose a cost-

aware activity-scheduling approach that minimizes the sampling cost with constraints

on the regularized mutual coherence of the equivalent sensing matrix.

As the sensed field signal has high spatial correlation, it has a sparse representa-

tion in some basis. In [63], different 2-D transformations which sparsify the spatial

signals are discussed with real data. In [64], the authors use principal component

analysis to find transformations that sparsify the signal. Then, by exploiting the CS

principle, the FC can recover the original signal f from the received signal y.

Note that multiterminal source coding can also be used for joint decoding multi-

ple correlated sources, where statistical correlation models are considered typically.

However, the CS-based approach relies on a sparse transform, e.g., wavelet transform,

which is appropriate for a specific class of signals.

6.4.2.2 WSNs with multi-hop communications

Sensor readings in some WSNs are transmitted to the FC through multi-hop routing.

In [65], Luo et al. propose a compressive data gathering (CDG) scheme to reduce

the communication cost of WSNs using multi-hop transmissions. A chain-type WSN,

with n sensor nodes as shown in Figure 6.5(a), requires O(n2) total message transmis-

sions in the network and O(n) maximum message transmissions for any single sensor

node. On the other hand, in the CDG scheme shown in Figure 6.5(b), the jth sen-

sor node transmits m (m < n) messages that are the sum of the received message

vector
∑j−1

i=1 φi fi and its own message vector φj fj generated by multiplying its

monitored element fj with a spreading code φj ∈ R
m. By exploiting the CS principle,

the CDG scheme only requires O(mn) total message transmissions in the network and

O(m) maximum message transmissions for any single node.

This CDG scheme can also be applied to a tree-type topology [65]. Although the

transmission cost for the tree-type topology is different to the chain-type topology,

the superiority of the CDG scheme over the baseline scheme remains [65].

6.4.3 Sparse events detection

Another important usage of WSNs is to detect anomalies. For example, WSNs can be

used to detect poisonous gas or liquid. Not only an alarm concerning the leakage but
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also the leaking positions and the volumes of the leaks are reported to the monitoring

system. Other anomalies, such as abnormal temperature, humidity and so on, can

also be detected by WSNs. All of these anomaly detection problems can be analyzed

using the same model [66–69].

As shown in Figure 6.6, the n grid intersection points denote sources to be mon-

itored, the m yellow nodes denote sensors, and the s red hexagons denote anomalies.

The monitored phenomena is modeled as a vector x ∈ R
n where xi denotes the value at

the ith monitored position. The normal situation is represented by xi = 0 and xi �= 0

represents the anomaly. The measurements of the sensors are denoted by a vector

y ∈ R
m where yj represents the jth sensor’s measurement. The relationship between

the events x and measurements y can be written as

y = Ax + n, (6.33)

1 2 3
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∑

( f1)
f1
f2

f1

fn
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...
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..
.

Figure 6.5 Chain-type WSNs: (a) baseline data gather and (b) compressive data

gather

Figure 6.6 A WSN for sparse event detection
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where n ∈ R
m is the noise vector. The channel response matrix is denoted by A ∈

R
m×n. The influence of the ith source to the jth sensor can be calculated as

Ai, j = |gi, j|
d

α/2
i, j

, (6.34)

where di, j is the distance from the ith source to the jth sensor, α is the propagation

loss factor and gi, j is the Rayleigh fading factor.

Assume that the total number of sources n is large while the number of anomalies

s is relatively very small, i.e., (s ≪ n). The number of sensors m follows s < m ≪ n.

Therefore, to solve x from a reduced number of measurements, y turns out to be a

typical sparse recovery problem. Consequently, WSNs are able to accurately detect

multiple events at high spatial resolution by using measurements from a small number

of sensor devices.

Various research have been performed using this framework. Meng, Li and Han

formulate the problem for sparse event detection in WSNs as a CS problem in [66],

where they assume the events are binary in nature, i.e., either xi = 1 or xi = 0. Ling

and Tian develop a decentralized algorithm for monitoring localized phenomena in

WSNs using a similar CS model [67]. Zhang et al. rigorously justify the validity of the

formulation of sparse event detection by ensuring that the equivalent sensing matrix

satisfies the RIP [68]. Liu et al. further exploit the temporal correlation of the events

to improve the detection accuracy [69].

6.4.4 Reduced-dimension multiple access

In WSNs, medium access control (MAC) plays an important role in data transmission,

where n sensor nodes share a wireless channel with m (m < n) degree of freedom.

Uncoordinated channel access from different sensor nodes will lead to packet colli-

sions and retransmissions, which reduces both the efficiency of bandwidth usage and

the lifetime of the sensor nodes. The simplest MAC protocols in WSNs are designed

to avoid simultaneous transmissions. For example, the 802.11 protocol protects a

communication link by disabling all other nodes using request-to-send and clear-

to-send messages. Simultaneous transmissions can be realized by using multiuser

communication techniques in the physical layer, which will result in an improved net-

work throughput performance. One of these techniques is multiuser detection, where

the received signal consists of a noisy version of the superposition of a number of

transmitted waveforms, and the receiver has to detect the symbols of all users simul-

taneously. However, multiuser detectors in general have high complexities, as the

number of correlators used at the receiver’s front-end is equal to the number of users

in the system.

In WSNs, the number of active sensor nodes s at any time is much smaller than

the total number of sensor nodes n, which can be exploited to reduce the dimension

in multiuser detection. We assume that the duration of the period of one time frame

is less than the coherence time of both the monitored signal and the wireless channel,

i.e., both the environment and the channel remain static in one time frame. Each time

frame can be divided into m time slots, in which sensor nodes can transmit one symbol.
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Each sensor node has a unique signature sequence φi ∈ R
m, which is multiplied by

its transmitted symbol. The received signal y ∈ R
m in one time frame at the receiver

is given by

y =
n

∑

i=1

φihi fi + n, (6.35)

where hi and fi denote the channel gain and transmitted symbol corresponding to the ith

sensor node, and n ∈ R
m denotes a white Gaussian noise vector. We assume that both

the channel gains hi (i = 1, . . . , n) and sensor signature sequences φi (i = 1, . . . , n)

are known at the receiver. It is in general impossible to solve f ∈ R
n with m received

measurements. However, as there are very few active sensor nodes in each time

frame, the transmitted symbols can be reconstructed exploiting CS reconstruction

algorithms.

This reduced-dimension MAC design has been proposed in WSN applications to

save channel resource and power consumption [70,71]. Various linear and nonlinear

detectors are given and analyzed by Xie, Eldar and Goldsmith [72]. In [73], in addition

to the sparsity of active sensor nodes, the authors exploit additional correlations that

exist naturally in the signals to further improve the performance in terms of power

efficiency.

6.4.5 Localization

Accurate localization is very important in many applications including indoor

location-based services for mobile users, equipment monitoring in WSNs and radio

frequency identification-based tracking. In the outdoor environment, the global posi-

tioning system (GPS) works very well for localization purpose. However, this solution

for the outdoor environment is not suitable for an indoor environment. For one thing,

it is difficult to detect the signal from the GPS satellites in most buildings due to the

penetration loss of the signal. For the other thing, the precision of civilian GPS is

about 10 m [74], while indoor location-based services usually requires a much higher

accuracy than GPS provides.

Using trilateration, the position of a device in a 2-D space can be determined by

the distances from the device to three reference positions. The precision of localization

can be improved by using an increased number of distance measurements, which are

corrupted by noises in real application. One localization technique considered for the

indoor environment uses the received signal strength (RSS) as a distance proxy where

the distance corresponding to a particular RSS value can be looked up from a radio

map on the server. However, the RSS metric in combination with the trilateration

is unreliable owing to the complex nature of indoor radio propagation [75]. Another

approach is to compare the online RSS readings with off-line observations of different

reference points, which is stored in a database. The estimated position of a device is a

grid point in the radio map. However, owing to the dynamic and unpredictable nature

of indoor radio propagation, accurate localization requires a large number of RSS

measurements. CS can be used to accurately localize a target with a small number of

RSS measurements, where the sparsity level of the signal representation is equal to 1.
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The efficiency of this CS-based localization system is demonstrated in [75].

Further improved localization systems and multiple target localization systems based

on the CS principle are proposed in [75–77].

6.5 Summary

This chapter reviews the fundamental concepts of CS and sparse recovery. Particularly,

it has been shown that compressively sensed signals can be successfully recovered

if the sensing matrices satisfy any of the three given conditions. The focus of this

chapter is on the applications in WSNs, and five cases in WSNs are presented where

the CS principle has been used to solve different problems. There are many new

emerging directions and many challenges that have to be tackled. For example, it

would be interesting to study better signal models beyond sparsity, computational

efficient algorithms, compressive information processing, data-driven approaches,

multidimensional data and so on.
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Chapter 7

Reinforcement learning-based channel sharing
in wireless vehicular networks

Andreas Pressas1, Zhengguo Sheng1, and Falah Ali1

In this chapter, the authors study the enhancement of the proposed IEEE 802.11p

medium access control (MAC) layer for vehicular use by applying reinforcement

learning (RL). The purpose of this adaptive channel access control technique is

enabling more reliable, high-throughput data exchanges among moving vehicles for

cooperative awareness purposes. Some technical background for vehicular networks is

presented, as well as some relevant existing solutions tackling similar channel sharing

problems. Finally, some new findings from combining the IEEE 802.11p MAC with

RL-based adaptation and insight of the various challenges appearing when applying

such mechanisms in a wireless vehicular network are presented.

7.1 Introduction

Vehicle-to-vehicle (V2V) technology aims to enable safer and more sophisti-

cated transportation starting with minor, inexpensive additions of communication

equipment on conventional vehicles and moving towards network-assisted fully

autonomous driving. It will be a fundamental component of the intelligent trans-

portation services and the Internet of Things (IoT). This technology allows for the

formation of vehicular ad hoc networks (VANETs), a new type of network which

allows the exchange of kinematic data among vehicles for the primary purpose of

safer and more efficient driving as well as efficient traffic management and other

third-party services. VANETs can help minimize road accidents and randomness in

driving with on-time alerts as well as enhance the whole travelling experience with new

infotainment systems, which allow acquiring navigation maps and other information

from peers.

The V2V radio technology is based on the IEEE 802.11a stack, adjusted for low

overhead operations in the dedicated short-range communications (DSRCs) spec-

trum (30 MHz in the 5.9 GHz band for Europe). It is being standardized as IEEE

802.11p [1]. The adjustments that have been made are mainly for enabling exchanges

1Department of Engineering and Design, University of Sussex, UK
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without belonging in a basic service set (SS) (BSS). Consequently, communication

via IEEE 802.11p is not managed by a central access point (AP) as in typical wireless

LANs (WLANs). This allows faster, ad hoc communication, necessary for mission

critical applications.

Enabling such applications for various traffic scenarios to prevent safety issues

is a challenging topic to deal with in VANETs; since the bandwidth is limited, the

topology is highly mobile, and there is a lack of central coordination. Additionally,

a significant amount of data would have to be exchanged via DSRC links in dense,

urban scenarios. Every vehicle has in-car sensor and controller networks, collecting

kinematic, engine, safety, environmental and other information and passing some of

them to on-board units (OBUs) to be exchanged via DSRC links. In this chapter, we

look into the various subsystems for wireless vehicular networks and also suggest a

new RL-based protocol, first presented in [2] to efficiently share the DSRC control

channel (CCH) for safety communications among multiple vehicle stations. We begin

from how the data is generated, proceed to presenting the DSRC stack for transmitting

the vehicle’s information via wireless links, and then go on to present a self-learning

MAC protocol that is able to improve performance when network traffic becomes too

heavy for the baseline DSRC MAC (i.e. in urban scenarios, city centres).

7.1.1 Motivation

VANETs are the first large-scale network to operate primarily on broadcast transmis-

sions, since the data exchanges are often relevant for vehicles within an immediate

geographical region of interest (ROI) of the host vehicle. This allows the transmission

of broadcast packets (packets not addressed to a specific MAC address), so that they

can be received from every vehicle within range without the overhead of authentica-

tion and association with an AP. Broadcasting has always been controversial for the

IEEE 802.11 family of protocols [3] since they treat unicast and broadcast frames

differently. Radio signals are likely to overlap with others in a geographical area,

and two or more stations will attempt to transmit using the same channel leading

to contention. Broadcast transmissions are inherently unreliable and more prone to

contention since the MAC specification in IEEE 802.11 does not request explicit

acknowledgements (ACKs packets) on receipt of broadcast packets to avoid the ACK

storm phenomenon, which appears when all successful receivers attempt to send back

an ACK simultaneously and consequently congest the channel. This has not changed

in the IEEE 802.11p amendment.

A MAC protocol is part of the data link layer (L2) of the Open Systems Intercon-

nection model (OSI model) and defines the rules of how the various network stations

share access to the channel. The de facto MAC layer used in IEEE 802.11-based net-

works is called carrier sense multiple access (CSMA) with collision avoidance (CA)

(CSMA/CA) protocol. It is a simple decentralized contention-based access scheme

which has been extensively tested inWLANs and mobile ad hoc networks (MANETs).

The IEEE 802.11p stack also employs the classic CSMA/CA MAC. Although the

proposed stack works fine for sparse VANETs with few nodes, it quickly shows its

inability to accommodate increased network traffic because of the lack of ACKs.
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The lack of ACKs not only makes transmissions unreliable but also does not provide

any feedback mechanism for the CSMA/CA backoff mechanism. So it cannot adapt

and resolve contention among stations when the network is congested.

The DSRC operation requires that L1 and L2 must be built in a way that they

can handle a large number of contenting nodes in the communication zone, on the

order of 50–100. The system should not collapse from saturation even if this number

is exceeded. Useful data for transportation purposes can be technical (i.e. vehicular,

proximity sensors, radars), crowd-sourced (i.e. maps, environment, traffic, parking)

or personal (i.e. Voice over Internet Protocol (VoIP), Internet radio, routes). We believe

that a significant part of this data will be exchanged throughV2V links, making system

scalability a critical issue to address. There is a need for an efficient MAC protocol

for V2V communication purposes that adapts to the VANET’s density and transmitted

data rate, since such network conditions are not known a priori.

7.1.2 Chapter organization

The chapter is organized as follows: Section 7.2 refers to the architecture and various

components of vehicular networks, from in-vehicle to V2V and vehicle-to-anything

(V2X). Section 7.3 introduces the DSRC networking stack for V2V and Section 7.4

gets into the intrinsics of the DSRC channel access control protocol. Section 7.5

is an overview of the congestion problem in such networks and methods of resolu-

tion. Section 7.6 is an introduction to learning-based networking protocols, Markov

decision processes (MDPs) and Q-learning. Section 7.7 describes the operation of a

novel-proposed Q-learning-based channel access control protocol for DSRC. Finally,

Sections 7.8 and 7.9 introduce a simulation environment for wireless vehicular net-

works and present the protocol performance evaluation regarding packet delivery and

achieved delay.

7.2 Connected vehicles architecture

The various electronic systems incorporated on a modern-vehicle-enable connected

vehicles, since these provide the data input (sensors), actuators as well as the local

processing and communication capabilities.

7.2.1 Electronic control units

Electronic control, rather than purely mechanical control, governs every function in

modern vehicles from activating various lights to adaptive cruise control. Electronic

control units (ECUs) are embedded systems that collect data from the vehicle’s sensors

and perform real-time calculations on these. Then they drive various electronic sys-

tems/actuators accordingly so which maximum driving efficiency can be achieved at

all times. Each unit works independently, running its own firmware, but cooperation

among ECUs can be done if needed for more complex tasks.
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7.2.2 Automotive sensors

Vehicle Sensors are components that enable autonomous vehicles applications as well

as advanced driver assistance/safety systems. One type of sensor that is commonly

deployed for such application is radar sensors, which use radio waves to detect nearby

objects and determine their relative position and velocity [4]. In actual applications,

usually an array of radar sensors is placed on the vehicle. Cameras are another option

for object detection and are used as sensing inputs for safety and driver-assistance

applications. Radars, as mentioned, have the ability to detect distance and velocity,

but cameras have a better angle of detection. These sensors are often used together to

provide more accurate-detection capabilities. Radars are usually employed as primary

sensors, with cameras extending the area of detection on the sides, for enhanced,

reliable object detection.

7.2.3 Intra-vehicle communications

The various electronic subsystems incorporated on a vehicle have to communi-

cate with each other so that sensor readings, control signals and other data can be

exchanged to perform complex tasks. This is a challenging research task, considering

the progressive advancements in the car electronics density. A typical car would fea-

ture around 8–10 ECUs in the early 1990s, around 50 ECUs at 2000, and today it is

common to have around 100 ECUs exchanging up to 2,500 signals between them [5].

One can understand the complexities involved in designing a network of ECUs that

dense, and the need for advancements in intra-vehicle networks. Table 7.1 presents

the most common in-vehicle communication protocols.

7.2.4 Vehicular ad hoc networks

The technological advances of the past few years in the field of communications,

regarding both software and hardware, are enablers of new types of networks targeted

for previously unexplored environments. The VANET is a type of wireless networks

that has received a lot of interest from researchers, standardization bodies and develop-

ers the past few years, since it has the potential to improve road safety, enhance traffic

and travel efficiency as well as make transportation more convenient and comfortable

for both drivers and passengers [6]. It is envisioned to be a fundamental building block

of intelligent transport services (ITS), the smart city as well as the IoT. VANETs are

self-organized networks composed of mobile and stationary nodes connected with

Table 7.1 Network protocols used in automotive networks

Protocol Max. bit-rate Medium Protocol

CAN 1 Mbps Shielded twisted pair CSMA/CD
LIN 20 kbps Single wire Serial
FlexRay 2×10 Mbps Twisted pair/fibre optic TDMA
MOST 150 Mbps Fibre optic TDMA
Ethernet 1 Gbps Coaxial/twisted pair/fibre optic CSMA/CD
HomePlug AV >150 Mbps Vehicular power lines CSMA/CA
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wireless links [7]. They are a subclass of MANETs, but in this case, the mobile sta-

tions are embedded on vehicles and the stationary nodes are roadside units (RSUs).

There are more differences from classic MANETs, since VANETs are limited to road

topology while moving, meaning that potentially we could predict the future positions

of the vehicles to be used for, i.e. better routing and traffic management. Addition-

ally, since vehicles do not have the energy restrictions of typical MANET nodes, they

can feature significant computational, communication and sensing capabilities [8].

Because of these capabilities and opportunities, many applications are envisioned for

deployment on VANETs, ranging from simple exchange of status or safety messages

between vehicles to large-scale traffic management, Internet Service provisioning

and other infotainment applications.

7.2.5 Network domains

The VANET system architecture comprises three domains: the in-vehicle, the ad hoc

and the infrastructure domain, as seen in [9]. The in-vehicle domain (whose com-

ponents are described in Sections 7.2.1 and 7.2.3) is composed of an on-board

communication unit (OBU) and multiple control units. The connections between them

are usually wired, utilizing the protocols in Section 7.2.3, and sometimes wireless.

The ad hoc domain is composed of vehicles equipped with such OBUs and RSUs.

The OBUs can be seen as the mobile nodes of a wireless ad hoc network, and likewise

RSUs are static nodes. Additionally, RSUs can be connected to the Internet via gate-

ways, as well as communicate with each other directly or via multi-hop. There are two

types of infrastructure domain access, RSUs and hot spots (HSs). These provide

OBUs access to the Internet. In the absence of RSUs and HSs, OBUs could also

use cellular radio networks (GSM, GPRS, LTE) for the same purpose. The various

networking domains and their respective components can be seen in Figure 7.1.

7.2.6 Types of communication

In-vehicle communication refers to a car’s various electronic controllers communi-

cating within the in-vehicle domain. The in-vehicle communication system can detect

the vehicle’s performance regarding the internal systems (electrical and mechanical)

as well as driver’s fatigue and drowsiness [10], which is critical for driver and public

safety.

In the ad hoc domain, V2V communication can provide a data-exchange plat-

form for the drivers to share information and warning messages, so as to expand

driver assistance and prevent road accidents. Vehicle-to-road infrastructure (V2I)

communication enabled by VANETs allows real-time traffic updates for drivers, a

sophisticated and efficient traffic light system as well, as could provide environmental

sensing and monitoring.

Vehicle-to-broadband cloud communication means that vehicles may commu-

nicate via wireless broadband mechanisms such as 3G/4G (infrastructure domain).

As the broadband cloud includes more traffic information and monitoring data as well

as infotainment, this type of communication will be useful for active driver assistance

and vehicle tracking as well as other infotainment services [11]. Figure 7.2 presents

the various applications envisioned for the different types of communications.
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7.3 Dedicated short range communication

The primary functionality of VANETs is advanced active road safety via V2V and V2I

communication. A vehicular safety communication network is ad hoc, highly mobile

with a large number of contending nodes. The safety messages are very short as it is

their useful lifetime relevance and must be received with high probability [12]. The

key-enabling technology, specifying Layer 1 and 2 (L1, L2) of the protocol stack used

in V2X (ad hoc domain), is DSRC. The DSRC radio technology is essentially IEEE

802.11a adjusted for low overhead operations in the DSRC spectrum (70 MHz in the

5.9 GHz band for North America). It is being standardized as IEEE 802.11p [1].

Work in [13] shows that IEEE 802.11p exhibits lower latency and higher delivery

ratio than LTE in scenarios fewer than 50 vehicles. More specifically, for smaller net-

work densities, the standard allows end-to-end delays less than 100 ms and throughput

of 10 kbps which satisfies the requirements set by active road safety applications

and few of the lightweight cooperative traffic awareness applications. However,

as the number of vehicles increases, the standard is unable to accommodate the

increased network traffic and support performance requirements for more demanding

applications.

7.3.1 IEEE 802.11p

In the architecture of classic IEEE 802.11 networks, there are three modes of

operation:

● A BSS, which includes an AP node that behaves as the controller/master station

(STA).
● The (independent BSS) IBSS, which is formed by STAs without infrastructure

(AP/s). Networks formed like this are called ad-hoc networks.
● The (Extended Service Set), which is the union of two or more BSSs connected

by a distribution system [14].

The most suitable architecture for a VANET would be the IBSS. An STA(node)

within an IBSS acts as the AP and periodically broadcasts the SSID and other infor-

mation. The rest of the nodes receive these packets and synchronize their time and

frequency accordingly. Communication can only be established as long as the STAs

belong in the same SS.

The IEEE 802.11p amendment defines a mode called “Outside the context of

BSS” in its L2, that enables exchanging data without the need for the station to

belong in a BSS, and thus, without the overhead required for these association and

authentication procedures with an AP before exchanging data.

DSRC defines seven licenced channels, as seen in Figure 7.3, each of 10 MHz

bandwidth, six service channels (SCHs) and one CCH. All safety messages, whether

transmitted by vehicles or RSUs, are to be sent in the CCH, which has to be regularly

monitored by all vehicles. The CCH could be also used by RSUs to inform approaching

vehicles of their services, then use the SCH to exchange data with interested vehicles.
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The explicit multichannel nature of DSRC necessitates a concurrent multichannel

operational scheme for safety and non-safety applications [15]. This need is facilitated

with a MAC protocol extension by the IEEE 1609 working group, which deals with

the standardization of the DSRC communication stack between the link layer and

applications.

The IEEE 802.11p and IEEE 1609.x protocols combined form the wireless access

in vehicular environments (WAVE) stack, and they aim to enable wireless communi-

cation between vehicles for safety (via the CCH) and other purposes (via the SCH).

The complete WAVE/DSRC stack is presented at Figure 7.4.

7.3.2 WAVE Short Message Protocol

So there are two stacks supported by WAVE, one being the classic Internet Protocol

version 6 (IPv6) and a proprietary one known as WAVE Short Message Protocol

(WSMP). The reason for having two variations in the upper layers is to distinguish

the messages as high-priority/time sensitive and less-demanding transmissions such

as User Datagram Protocol (UDP) transactions.

Vehicular safety applications do not require big datagram lengths or complex

packets to be transmitted rather than very strict probability of reception and little

latency. The overhead is 11 bytes, when a typical UDP-IPv6 packet has a minimum

overhead of 52 bytes [16]. WSMP enables sending short messages while directly

manipulating the physical layer characteristics such as the transmission power and

data rate so that nearby vehicles have a high probability of reception within a set

time frame. A provider service ID field is similar to a port number in Transmission
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Control Protocol (TCP)/UDP, which acts as an identity and answers which application

is a specific WSMP heading towards. To reduce latency, WSMP exchanges do not

necessitate the formation of a BSS, which is a requirement for SCH exchanges. The

WSMP format can be seen at Figure 7.5.

However, WSMP is not able to support the classic Internet applications or

exchange of multimedia, and it does not need to, since such applications are more

tolerant to delay or fluctuations in network performance. By supporting the IPv6

stack, which is open and already widely deployed, third-party internet services are

easily deployable in a vehicular environment, and the cost of deployment would be

significantly lower for private investors.

7.3.3 Control channel behaviour

The CCH is the one to facilitate safety communications through the exchange of

safety messages, while having the following link layer characteristics:

● Most of the safety applications are based on single hop communication since

they are much localized. This means that the basic DSRC communication design

does not feature any networking (packet routing) capabilities, but there are sce-

narios where multi-hop communication is of use (warning for an accident/hazard

along a highway). Some rebroadcast schemes for enhancing the broadcasting per-

formance or reliability can be found in the literature [17] but are not considered

as proper multi-hop.
● As mentioned already, safety communications are of broadcast nature, which

means that it is targeted at vehicles for where they are rather than who they are.

Additionally, channel access is not centrally managed in DSRC. Vehicular safety

communication is fully distributed.
● A major concern for DSRC is that since all DSRC-enabled vehicles and infra-

structure continuously broadcast beacon messages and event-triggered safety

messages, such a system would require special design so that it can work reliably

and efficiently in a large scale.Although safety communications are mostly single-

hop, the system is unbounded which means that V2V communication can stretch

to great distances, unlike a bounded system (cells in mobile telephony) [15].
● The CCH is to facilitate the exchange of safety messages, complying with WSMP.

Occasionally, it is used for advertising non-safety applications (by RSUs) which

take place in one of the SCHs. These are called WAVE Service Advertisement

(WSA) messages. The receiving node would get informed of the existence of

such applications and tune in the appropriate channel if it needs to make use

of these. These advertisements are generally lightweight and their effect to the

CCH’s load is insignificant [15]. Consequently, the focus when designing the CCH

characteristics is towards safety applications.
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7.3.4 Message types

Two types of (safety) WSMP messages are to be sent through the CCH by every

DSRC-enabled vehicle:

● Periodic safety messages: Cooperative awareness messages (CAMs) are broad-

cast status messages (beacons) containing the location, direction, velocity and

other kinematic information of the transmitting vehicle. These messages are

meaningful for little time, so that the receivers can predict the movement of

the sender, and after a few seconds become irrelevant. RSUs also utilize these

beacons for traffic light status and other applications. The beaconing interval is

100 ms (Fbeacon = 10 Hz).
● Event-triggered messages: Changes in the vehicle dynamics (hard breaking) or

RSU status activate the broadcasting of emergency messages containing safety

information (i.e. road accident warning, unexpected breaking ahead, slippery

road), called decentralized environmental notification messages.
● There are also non-safety communications, that can happen for file transfers

(local map updates, infotainment) or transactions (toll collection) and others.

These take place in the SCHs but are often advertised through WSA messages in

the CCH, in which every DSRC-enabled vehicle is tuned in by default.

7.4 The IEEE 802.11p medium access control

Reliable transmission and reception of messages can be affected by packet collisions.

Two or more transmitters within the range of the same receiver sending a packet

simultaneously would lead to a packet collision at the receiver, and the receiver would

not receive any message. To tackle this problem, a MAC protocol, which serves the

purpose of allowing only one node to transmit at a time, would have to be designed

and implemented. Two nearby nodes transmitting frames at the same time means that

these frames will collide leading to wasted bandwidth. A MAC protocol is a set of

rules defined in L2 by which the radio [12] (physical layer – L1) decides when to

send data and when to defer from transmission.

Given that wireless vehicular networks are ad hoc in nature, TDMA, FDMA or

CDMA are difficult to realize since some short of centralized control (AP) would be

needed to dynamically allocate time slots, frequency channels or codes, respectively.

In addition to the infrastructure-less nature of VANETs, the high degree of mobil-

ity makes these MAC protocols unsuitable for such networks [12]. Random access

mechanisms are better suited to ad hoc networks, such as ALOHA or in the case of

VANETs, CSMA.

7.4.1 Distributed coordination function

The de facto technique for sharing access to the medium among multiple nodes without

central coordination in IEEE 802.11-based networks is the distributed coordination
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function (DCF). It employs a CSMA/CA algorithm. DCF defines two access mech-

anisms to enable fair packet transmission, a two-way handshaking (basic mode) or a

four-way handshaking (request-to-send/clear-to-send (RTS/CTS)).

Under the basic access mechanism, a node wishing to transmit would have to

sense the channel for a DCF Interframe Space (IFS) (DIFS) interval. If the channel

is found busy during the interval, the node would not transmit but instead wait for an

additional DIFS interval plus a specific period of time known as the backoff interval,

and then try again. If the channel was not found busy for a DIFS interval, the node

would transmit.

Another optional mechanism for transmitting data packets is RTS/CTS reserva-

tion scheme. Small RTS/CTS packets are used to reserve the medium before large

packets are transmitted.

7.4.2 Basic access mechanism

In a network like VANETs where many stations contend for the wireless medium, if

multiple stations sense the channel and find it busy, they would also find it being idle

virtually the same time and try to use it at that time instant. To avoid the collisions that

would occur that very moment, as seen in Figure 7.6, every station would have to wait

for a backoff interval, whose length is specified by the random backoff mechanism in

DCF. This interval is picked randomly from the uniform distribution over the interval

[0,CW] where CW is the current contention window. According to the IEEE 802.11p,

the CW can be a number between CWmin = 3 and CWmax = 255 [18].

For every DIFS interval that the node senses the medium to be idle, the backoff

timer is decreased. If the medium is used, the counter will freeze and resume when

the channel is again idle for a DIFS interval. The station whose backoff timer expires

(reaches 0) first will begin the transmission, and the other stations freeze their timers

and defer transmission. Once the transmitting station completes transmission, the

backoff process starts again and the remaining stations resume their backoff timers.

Figure 7.6 Collisions in a simulated environment
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For unicast packet transmissions, in the case of a successful reception, the desti-

nation will send an ACK to the source node after a short IFS (SIFS), so it (the ACK)

can be given priority (since SIFS<DIFS). If the source does not receive an ACK

within a set time frame, it reactivates the sending process after the channel remains

idle for an extended IFS. If two or more nodes decrease their backoff counter to 0

simultaneously, a collision occurs. For each retransmission attempt (because of colli-

sion and no ACK), the used CW is doubled, until it reaches CWmax. Upon successful

transmission, CW resets to CWmin. The operation of CSMA/CA for both unicast and

broadcast transmissions can be seen in Figure 7.7.

7.4.3 Binary exponential backoff

This mechanism of CW adaptation for unicast packets is called the binary exponential

backoff (BEB) algorithm. It is the CA part of CSMA/CA and specifies that for every

packet transmission, the station uniformly selects a random value for its backoff

counter within [0, Wi − 1], where Wi is the current CW and i is the number of failed

attempts to transmit this single packet:

Wi = 2i × CW for i ∈ [0, m], (7.1)

where the number of the backoff stages m is given by

m = log2

(

CWmax

CWmin

)

(7.2)

At the first transmission attempt for a packet:

W0 = CWmin = CW . (7.3)

If a unicast packet encounters a collision (meaning no ACK was received for a

set time frame), W1 = 2 × CW . Wi is doubled every time a collision happens, until

it reaches a Wm = CWmax = 2mCW . When Wi = Wmax, it maintains this value until a

successful transmission (ACK received). Wi will be reset to CWmin, and the process

will start again for the next unicast packet.

Node A

Node B

DIFS Backoff

DATA

SIFS DIFS Backoff

ACK

Time

Unicast only

Figure 7.7 A CSMA/CA cycle for both unicast and broadcast cases. It manages

channel access among transmitting nodes A and B



Reinforcement learning-based channel sharing 237

Two problems seem to appear with the BEB mechanism when trying to establish

unicast communication among many highly mobile nodes. First, in dense wireless

networks such as VANETs, there is higher probability that more than one node choose

the same CW, resulting to collisions. Second, every time a collision occurs, the CW

is doubled to avoid more collisions. But given that the network density for a VANET

can vary a lot over small time periods because of high mobility, a node with a large

CW (because of previous failed transmissions) will wait more than it needs to before

transmitting under lighter network conditions. This will result in unnecessary delay.

7.4.4 RTS/CTS handshake

The hidden terminal problem, shown in Figure 7.8, appears when node C wants

to transmit to node B but cannot hear that it is already occupied. This is due to

node C not being within the transmission range of node A. The RTS/CTS scheme

(also known as virtual carrier sensing) can help to reduce contention caused from

this phenomenon. An RTS packet is transmitted first from the sender, containing

the size of the upcoming, larger, data frame and the channel time which is required

for it to be transmitted. In the case that the receiving node is free to receive the

data frame, it sends a CTS packet back to the sender. The neighbouring nodes defer

from the medium until the channel becomes free again. This mechanism is helpful

when transmitting large data packets and tackles the hidden and exposed terminal

problem, but in the case of ad hoc networks it was found [19] not to be as effective.

The overhead associated with the exchange of RTS/CTS packets does not worth it

when the network has many, highly mobile stations, especially when targeting low

latency communication. Additionally, for VANETs, vehicle-stations positioned at the

edge of a station’s transmission range are not as depended on geo-significant safety

information transmitted from that station, as much as the vehicles of close proximity

to the transmitter.

A Tx range

A B C
A transmitting

Nodes A and C are hidden from each

other with respect to B

C Tx range

Figure 7.8 Hidden terminal problem
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7.4.5 DCF for broadcasting

Frames exchanged in an 802.11 DCF-based network can be distinguished as unicast,

if sent to a single destination node, or broadcast if sent to all available nodes within

the transmission range. In both transmission cases, the MAC layer of the future-

transmitting node receives a request to transmit from the upper layers of the networking

stack, and then physical carrier sensing takes place to observe whether the channel

is unoccupied by another transmitter. The channel being found idle for more than

a DIFS interval means that the MAC layer of that station will begin the process of

transmission, for either unicast or broadcast packets.

For the unicast case, the DCF backoff mechanism uses multiple backoff stages,

as defined by (7.1) and (7.2). For every transmission that an ACK packet from the

destination is not received in time or at all, the transmitter’s CW is doubled, except

from the last stage in which CW stays at maximum value.

For broadcast packet transmission though, the algorithm can have only a single

backoff stage. The reason for this is that the 802.11 protocol does not require ACKs

from the destination nodes for broadcast transmission, for practical reasons. All the

receiving nodes sending an ACK on the reception of a message would impose an

overhead, causing even more collisions (among all the ACK packets) and generally

degrading the performance of the network for the given time.

So as usual, when the backoff counter expires for the first backoff stage, the

message is going to be sent but will not be acknowledged, which means there is

no definite way to know whether the packet actually reached the destination nodes.

Collisions would be unrecoverable in this case [20], since no intelligent retransmission

strategy is implemented by default for broadcasting. The different behaviours of the

backoff algorithm for unicast and broadcast traffic also lead to different contention

times [20].

7.4.6 Enhanced distributed channel access

When just the basic DCF scheme is employed, all nodes contend for access to the

medium using the CSMA/CA algorithm with the same parameters. Data packets

that are different regarding content, priority or delay-tolerance should be handled

differently, and quality of service (QoS) should be guaranteed [21]. Real-time traffic

information and collision-warning messages have strict delay requirements, while

applications such as map data downloading and Internet browsing are more time

tolerant.

In order to meet the different QoS requirements such as end-to-end delay and

throughput, traffic should be differentiated depending on such requirements. A way

of doing this service differentiation is by setting different contention parameters for

different classes of data, as seen in Table 7.2.

The IEEE 802.11p/WAVE stack can adopt the enhanced distributed channel

access from 802.11e in order to improve the QoS. It offers traffic classification

through four access categories (ACs). When packets have different ACs, they contend

internally and the winner will participate in external contention [22]. As shown on the

table below, highly important messages (safety broadcasts) fall in AC3 which has the
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Table 7.2 Contention parameters for different access categories in 802.11p

AC Data class CW min CW max AIFS

3 Safety related 3 7 2
2 Voice 3 7 3
1 Best effect 7 15 6
0 Background traffic 15 1,023 9

Table 7.3 Typical DSRC QoS requirements as seen in [12]

Applications Packet size (bytes)/
bandwidth

Allowable
latency
(ms)

Network
traffic
type

Message
range (m)

Priority

Intersection collision
warning/avoidance

∼100 ∼100 Event 300 Safety of
life

Cooperative collision
warning

∼100/∼10 kbps ∼100 Periodic 50–300 Safety of
life

Work zone warning ∼100/∼1 kbps ∼1,000 Periodic 300 Safety
Transit vehicle signal

priority
∼100 ∼1,000 Event 300–1,000 Safety

Toll collection ∼100 ∼50 Event 15 Non-safety
Service

announcements
∼100/2 kbps ∼500 Periodic 0–90 Non-safety

Movie download
(2 hours of
MPEG 1): 10 min
download time

>20 Mbps N/A N/A 0–90 Non-safety

lowest arbitrary IFS (AIFS) and CW size, so they are more likely to win the internal

contention and affect transmission delay as little as possible (up to seven time slots

for unicast and up to three time slots for broadcast transmissions). The QoS require-

ments for various vehicular networking applications can be found at Table 7.3, taken

from [12].

7.5 Network traffic congestion in wireless vehicular networks

It is by now clear that the safety applications made possible through VANETs require

a low end-to-end delay and high packet delivery ratio (PDR). Additionally, since

the safety messages will be of broadcast nature, VANETs will be the first large-scale

networks where communication is based on broadcast rather than on unicast messages.

The choice of an IEEE 802.11-based technology for this kind of network raises some

issues [23]. The MAC protocol in this family of standards is well known for its
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inability to cope with large-scale broadcast communications, since it was designed

for a different use case, and it clearly favours unicast [20] communication.

Network traffic congestion in VANETs has a devastating impact on the perfor-

mance of ITS applications. Given the large number of contending nodes, especially

in an urban environment, it has been found [24] that the CSMA/CA algorithm, which

is the basic medium access scheme in the IEEE 802.11, is not reliable enough due

to high collision rates. This means channel congestion control and broadcast perfor-

mance improvements of the 802.11p MAC are of particular concern and need to be

addressed [15] in order to meet the QoS requirements of DSRC applications. The

basic reason for this is the non-adaptation of the CW size depending on sensed net-

work traffic. Work presented in [25] proves that throughput (derived from a simple

Markov chains model) is diminished with an increased number of competing nodes

exchanging broadcast packets.

The node density in a typical scenario can vary from very sparse connectivity

to more than 150 cars/lane/km [23], so VANETs have to be able to accommodate

the needs (channel-wise) of multiple simultaneous transmitters. The modifications

brought by the IEEE 802.11p amendment focused on the physical layer, while the

classic 802.11 MAC layer was enhanced for transmission of data outside BSS context

which will contribute towards the scalability goal by removing the association and

authentication overheads. But IEEE 802.11 was designed for unicast applications in

mind, so it comes as no surprise that the CCH operating under 802.11p can be saturated

solely by periodic broadcasting (beaconing), even for medium vehicle density [23].

7.5.1 Transmission power control

One idea on how to treat degrading performance on increasing vehicle density that

has been extensively studied is limiting the number of contending nodes, which can

be done by using TX power control mechanisms. When access to the wireless medium

becomes difficult, lowering the transmission power of a station reduces the interfer-

ence area [26]. WSMPs exploit this by providing the capability to set the transmission

power on a per-packet basis. There are, however, some limitations on the minimum

area that safety messages should reach.

7.5.2 Transmission rate control

Another solution, often combined with power control, is controlling the transmission

time of a beacon. Since the packets’size is set by the application, only the data rate can

be adjusted. Higher data rate translates into higher transmission probability [27], but

also higher Signal-to-noise ratio (SNR) at the destination of the message, so the cov-

erage area is reduced. This solution suffers from the same limitation as power control.

7.5.3 Adaptive backoff algorithms

A way to operate on maximum coverage area and still avoid collisions and degrad-

ing performance would be an adaptive backoff mechanism. With a high number of

transmitting nodes, a large CW size is needed to avoid unnecessary collisions. On the
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other hand, when the traffic load of the network is low, a small CW size is needed so

that potential senders can access the wireless medium with a short delay [18], thus

making more efficient use of channel bandwidth. Additionally, the time the channel

is idle because of nodes being in the backoff stage could be minimized. In an ideal

situation, there would be zero idle time (which is essentially lost and is a synonym of

bandwidth wastage) between messages with the exception of the DIFS [23].

7.6 Reinforcement learning-based channel access control

Machine-learning-based techniques have the potential to enter and improve every

layer of the network stack for the IoT and other applications. The focus of this chapter

is on RL [28] in the context of MAC for wireless V2V/V2X communication in the

ad-hoc domain of vehicular networks. An adaptive backoff algorithm based on RL

can help tackle the channel congestion when many stations are deployed, without

reducing the transmission range or data rate, or knowing any details about the network

beforehand.

RL is a general class of machine-learning algorithms fit for problems of sequential

decision-making and control. It can be used as a parameter-perturbation/adaptive-

control method for MDPs [29], a discrete time stochastic control formulation. It is

based on the idea that if an action is followed by a satisfactory state of affairs, or by

an improvement in the state of affairs (or a reward function), then the agent’s ten-

dency to produce that action is strengthened, i.e. reinforced. Specifically, we develop

and evaluate a solution based on Q-learning, a much-used model-free RL algorithm

that can solve MDPs with very little information from the dynamic VANET envi-

ronment, but still reveals effective solutions regarding contention control for various

network conditions. In addition, we employ a strategy for building self-improving

Q-learning controllers that yield instant performance benefits since the vehicle-

station’s deployment and always strive for optimum operation while online.

7.6.1 Review of learning channel access control protocols

When it comes to relevant work which is focused specifically on the MAC layer

issues, [30] uses the MDP formulation to design a MAC with deterministic backoff

for virtualized IEEE 802.11 WLANs. For V2V exchanges, the work presented in [31]

examines the IEEE 802.11p MAC regarding channel contention using the Markov

model from [32] and proposes a passive contention estimation technique by observing

the count of idle inter-frame slots.

RL is inspired by behaviourist psychology and deals with how software agents

should take actions in an environment while aiming to maximize their cumulative

reward. The problem, because of its generality, is studied in many disciplines such

as game theory, control systems, IT, simulation-based optimization, statistics and

genetic algorithms. There have been attempts to apply RL for optimizing the access

control layer of wireless networks. The protocol in [33] is targeted on wireless sensor

networks, optimizing battery-power node energy consumption. The protocol in [34]
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is targeted on wireless vehicular networks that operate on a unicast basis. It employs

CW adaptation [35] which is a proven technique to improve the network contention

because of interference in wireless networks. The premise is interesting, but the

proposed IEEE 802.11p is a broadcast-based protocol. The current literature does not

deal with the broadcasting issues within the context of contention resolution on the

MAC level.

7.6.2 Markov decision processes

In RL, the learning agents can be studied mathematically by adopting the MDP for-

malism. An MDP is defined as a (S, A, P, R) tuple, where S stands for the set of

possible states, As is the set of possible actions from state s ∈ S, Pa(s, s′) is the proba-

bility to transit from a state s ∈ S to s′ ∈ S by performing an action a ∈ A. Ra(s, s′) is

the reinforcement (or immediate reward), result of the transition from state s to state

s′ because of an action a, as seen in Figure 7.9. The decision policy π maps the state

set to the action set, π : S → A. Therefore, the MDP can be solved by discovering

the optimal policy that decides the action π (s) ∈ A that the agent will make when in

state s ∈ S.

7.6.3 Q-learning

There are, though, many practical scenarios such as the channel access control prob-

lem studied in this work, for which the transition probability Pπ (s)(s, s′) or the reward

function Rπ(s)(s, s′) are unknown, which makes it difficult to evaluate the policy π .

Q-learning [36,37] is an effective and popular algorithm for learning from delayed

reinforcement to determine an optimal policy π in the absence of transition probabil-

ity. It is a form of model-free RL which provides agents the ability to learn how to act

optimally in Markovian domains by experiencing the consequences of their actions,

without requiring maps of these domains.

In Q-learning, the agent maintains a table of Q[S, A], where S is the set of states

and A is the set of actions. At each discrete time step t = 1, 2, . . . , ∞, the agent

observes the state st ∈ S of the MDP, selects an action at ∈ A, receives the resultant

reward rt and observes the resulting next state st+1 ∈ S. This experience (st , at , rt , st+1)

updates the Q-function at the observed state-action pair, thus providing the updated

Q(st , at). The algorithm, therefore, is defined by the function (1) that calculates the

Agent in sAgent Environment

Transit to s'  

Receive Ra(s,s')

From s execute a with Pa(s,s')

Figure 7.9 Abstract MDP model
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quantity of a state-action (s, a) combination. The goal of the agent is to maximize its

cumulative reward. The core of the algorithm is a value iteration update. It assumes

the current value and makes a correction based on the newly acquired information,

as in the following equation:

Q(st , at) ← Q(st , at) + α × [rt + γ × max
at+1

Q(st+1, at+1) − Q(st , at)], (7.4)

where the discount factorγ models the importance of future rewards.A factor ofγ = 0

will make the agent “myopic” or short-sighted by only considering current rewards,

while a factor close to γ = 1 will make it strive for a high long-term reward. The

learning rate α quantifies to what extent the newly acquired information will override

the old information. An agent with α = 0 will not learn anything, while with α = 1, it

would consider only the most recent information. The maxat+1∈A Q(st+1, at+1) quantity

is the maximum Q value among possible actions in the next state. In the following

sections, we present employing (7.4) as a learning, self-improving, control method

for managing channel access among IEEE 802.11p stations.

7.7 Q-learning MAC protocol

The adaptive backoff problem fits into the MDP formulation. RL is used to design a

MAC protocol that selects the appropriate CW parameter based on gained experience

from its interactions with the environment within an immediate communication zone.

The proposed MAC protocol features a Q-learning-based algorithm that adjusts the

CW size based on binary feedback from probabilistic rebroadcasts in order to avoid

packet collisions.

7.7.1 The action selection dilemma

The state space S contains the discrete IEEE 802.11p-compatible CW values rang-

ing from CWmin = 3 to CWmax = 255. The CW is adapted prior to every packet

transmission by performing one of the following actions:

CWt+1

a∈{(CWt−1)/2,CWt ,CWt×2−1}
←−−−−−−−−−−−−−−− CWt . (7.5)

RL differs from supervised learning in which correct input/output pairs are never

presented, nor suboptimal actions are explicitly corrected. In addition, in RL there is a

focus on online performance, which involves finding a balance between exploration of

uncharted territory and exploitation of current knowledge. This in practice translates

as a trade-off in how the learning agent in this protocol selects its next action for every

algorithm iteration. It can either randomly pick an action from (7.5) (exploration) so

that the algorithm can transit to a different (s, a) pair and get experience (reward) for

it or follow a greedy strategy (exploitation) and choose the action with the highest

Q-value for its current state given by

π(s) = argmax
a

Q(s, a). (7.6)
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7.7.2 Convergence requirements

The RL algorithm’s purpose is to converge to a (near) optimum output, in terms

of CW. Watkins and Dayan [36] proved that Q-learning converges to the optimum

action-values with probability 1 as long as all actions are repeatedly sampled in all

states and the action-value pairs are represented discretely.

The greedy policy, with respect to the Q-values, tries to exploit continuously.

However, since it does not explore all (s, a) pairs properly, it fails satisfying the first

criterion. At the other extreme, a fully random policy continuously explores all (s, a)

pairs, but it will behave suboptimally as a controller. An interesting compromise

between the two extremes is the ε-greedy policy [28], which executes the greedy

policy with probability 1 − ε. This balancing between exploitation and exploration

can guarantee convergence and often good performance.

The proposed protocol uses the ε-greedy strategy to focus the algorithm’s explo-

ration on the most promising CW trajectories. Specifically, it guarantees the first

convergence criterion by forcing the agent to sample all (s, a) pairs over time with

probability ε. Consequently, the proposed algorithmic implementation satisfies both

convergence criteria, but further optimization is needed regarding convergence speed

and applicability of the system.

In practice, the Q-learning algorithm converges under different factors, depend-

ing on the application and complexity. When deployed in a new environment, the

agent should mostly explore and value immediate rewards and then progressively

show its preference for the discovered (near) optimal actions π (s) as it is becoming

more sure of its Q estimates. This can be achieved via the decay function shown in

the following equation:

ε = α = 1 −
Ntx

Ndecay

for 0 ≤ Ntx ≤ Ndecay, (7.7)

where Ntx is the number of transmitted broadcast packets and Ndecay is a preset number

of packets that sets the decay period. This decay function is necessary to guarantee

convergence towards the last-known optimum policy in probabilistic systems such as

the proposed contention-based MAC since there is no known optimum final state. By

reducing the values of ε and α over time via (7.7), the agent is forced to progressively

focus on exploitation of gained experience and strive for a high long-term reward.

This way, when approaching the end of the decay period, the found (near) optimal

states-CW/s are revealed.

7.7.3 A priori approximate controller

The above strategy can be used to get instant performance benefits, starting from

the first transmission. This is done by preloading approximate controllers, pretrained

for different transmitted bit rates and number of neighbours via (7.7), to the station’s

memory. These controllers define an initial policy that positively biases the search

and accelerates the learning process.

The agent’s objective in this phase is to quickly populate its Q-table with values

(explore all the state-action pairs multiple times) and form an initial impression of the
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environment. The lookup Q-table is produced by encoding this knowledge (Q-values)

for a set period of Ndecay a priori and can be used as an initial approximate controller,

which yields an instant performance benefit since the system is deployed.

Q-learning is an iterative algorithm so it implicitly assumes an initial condition

before the first update occurs. Zero initial conditions are used the very first time

the algorithm is trained on a set environment, except for some forbidden state-action

pairs with large negative values, so it does not waste iterations in which it would

try to increase/decrease the CW when it is already set on the upper/lower limit.

The algorithm is also explicitly programmed to avoid performing these actions on

exploration. The un-trained, initial Q-table is set as in (7.8), where the rows represent

the possible states – CW sizes and columns stand for the action space:

Q0[7][3] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

CW (CW − 1)/2 CW CW×2 + 1

3 −100 0 0

7 0 0 0

15 0 0 0

31 0 0 0

63 0 0 0

127 0 0 0

255 0 0 −100

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.8)

Each station can employ various different learning, self-improving, controllers

and use the appropriate one depending on a combination of sensed density and

received bit rate. This is feasible because the station has the ability to sense the

number of one-hop neighbours since they all transmit heart-beat, status packets peri-

odically. It also does not have the memory constraints that typical sensor networks

have. An example of a controller’s table at the end of the ε decay period as in (7.7)

can be seen in (7.9). The controller has been trained a priori with γ = 0.7 and a

decay period lasting for 180 s in a 60-car network, where every car transmits 256

bytes every 100 ms. A trajectory leading to optimum/near-optimum CW/s is being

formed (depending on past experience) by choosing the maximum Q-value for every

CW-state, seen in bold font. The controller in (7.9) oscillates between the values 31

and 63 when exploiting the Q-table to find the optimum CW:

Qπ [7][3] ≈

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

CW (CW − 1)/2 CW CW ∗ 2 + 1

3 −100 −0.07218 0.2388

7 −0.076 −0.0325 0.6748

15 0.198 0.28012 0.817

31 0.2896 0.2985 0.4917

63 0.4945 0.10115 0.2838

127 0.2043 −0.055 −0.0218

255 0.1745 −0.86756 −100

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7.9)

Figure 7.10 shows the steps (in terms of CW size) the algorithm takes (explo-

ration/pretraining) until it converges to an optimal value, or more specifically

oscillates among two values (63–127) so that it can exploit (90% of the time) its

knowledge and yield performance benefits. Figure 7.11 shows how the proposed
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Figure 7.10 Trace of CW over time for a station in a 100-car network. The first

stage is the a priori controller training phase via (4) for 200 sec (or

Ndecay = 2000 original packets), then online stage for the remaining

time, with an exploration to exploitation ratio of 1:9
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Figure 7.11 Mean network-wide CW versus training time (second half) for

networks of different densities using the Q-learning-based MAC

MAC discovers the optimum CW size of the stations in three networks of different

densities.

7.7.4 Online controller augmentation

While the pretrained, preloaded, approximate controller is useful for speeding up the

learning process as well as getting an instant performance benefit, its drawback is that

by default it is not adaptive to changes in the environment while online. The online

efficiency of the Q-learning controller depends on finding the right balance between

exploitation of the station’s current knowledge and exploration for gathering new

information. This means that the algorithm must sometimes perform actions other

than the ones dictated by the current policy to update and augment that controller

with new information.

While the station is online, exploratory action selection is performed less fre-

quently (ε = 0.1) than in a priori learning (7.7) (ε starts from 1), primarily to

compensate for modelling errors in the approximate controller. This means that the

controller in its online operation uses the optimum Q-value 90% of the time and makes
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exploratory CW perturbations 10% of the time in order to gain new experience. In

this way, the agent still has the opportunity to correct its behaviour based on new

interactions with the VANET and corresponding rewards.

7.7.5 Implementation details

In RL, the only positive or negative reinforcement an agent receives upon acting so

that it can learn to behave correctly in its environment comes in a form of a scalar

reward signal. Taking advantage of the link capacity for maximum packet delivery

(throughput) was of primary concern for this design, aiming to satisfy the requirements

of V2V traffic (frequent broadcasting of kinematic and multimedia information). For

this purpose, the reward function is based on the success of these transmissions.

Reward r can be either 1 or −1 for successful (ACK) and failed transmissions (no

ACK) correspondingly. A successful transmission from the same consecutive state –

CW – is not given any reward. The pseudo-code in Algorithm 7.1 summarizes the

operation of our proposed protocol.

Algorithm 7.1: Q-learning V2V MAC

1: Initialize Q0(CW , A) at t0 = 0 ⊲ as in (7.8)

2: procedure Action-selection(CWt) ⊲ ε-greedy

3: if pε ≤ ε then

4: at+1 ← random[
(CWt−1)

2
, CWt , CWt ∗ 2 − 1]

5: else if pε ≥ 1 − ε then

6: at+1 ← aπ ⊲ Optimum a from (7.5)

7: end if

8: if A-priori Controller Learning then

9: ε = α → decay ⊲ according to rule (7.7)

10: else if On-line Learning then

11: ε = α → constant

12: end if

13: CWt+1 ← CW at+1

14: end procedure

15: TX Broadcast Packet: MessageId ⊲ Transmit

16: procedure Feedback(CWt+1, at+1) ⊲ Collect Reward

17: Initialize: RTT ← 0 s

18: if RX MessageId AND RTT < 0.1 s then

19: if at 
= (CWt+1 ←− CWt) then

20: rt ← 1

21: end if

22: else if RTT ≥ 0.1 s then

23: rt ← −1

24: end if

25: end procedure

26: Update Q(CWt+1, at+1) ⊲ according to rule (7.4)

27: GOTO 2
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The first step of the MAC protocol would be to set the default CW of the station

to the minimum possible value, which is suggested by the IEEE 802.11p standard.

After that, the node makes an exploratory move with probability ε (exploration) or

picks the best known action to date (highest Q value) with probability 1 − ε.

Received packet rebroadcasts can be used as ACKs since some will definitely be

overheard from the source vehicle, even assuming that they move at the maximum

speed limit. These rebroadcasts can happen for forwarding purposes, and they enhance

the reliability of the protocol, since the original packet senders can detect collisions

as well as provide a means to reward them if they succeed in broadcasting a packet.

We use probabilistic rebroadcasting for simplicity, but various routing protocols can

be used instead.

Every time a packet containing original information is transmitted, a timer is

initiated which waits for a predefined time for an overheard retransmission of that

packet, which will have the same MessageId. These broadcast packets are useful

for a short lifetime, which is the period between refreshes. So a rebroadcast packet,

received after that period, is not considered to be a valid ACK because the information

will not be relevant any more, since the nodes in VANETs attempt to broadcast fresh

information frequently (i.e. 1–10 Hz).

7.8 VANET simulation modelling

A VANET simulation has two main components; a network component as described

above, which must have the capability to simulate the behaviour of communication

networks as well as a vehicular traffic component which provides accurate enough

mobility patterns for the nodes of such a network (vehicles/cars).

7.8.1 Network simulator

There are a few software environments for simulating a wireless network [38], of

which OMNeT++ 4.6 is chosen for its many available models, maturity and advanced

GUI capabilities. OMNeT++ [39] is a simulation platform written in C++ with a

component-based, modular and extensible architecture.

The basic entities in OMNeT++ are simple modules implemented in C++. Com-

pound modules can be built of simple modules as well as compound modules. These

modules can be hosts, routers, switches or any other networking devices. Modules

communicate with each other via message passing through gates. The connections

from one gate to another can have various channel characteristics such as error/data

rate or propagation delay.

Another important reason for choosing OMNeT++ to conduct simulation

experiments is the availability of third party libraries containing many protocol imple-

mentations for wireless networks. The INET [40] framework version 3.2.3 is used

for higher layer protocol implementations to achieve Internet connectivity for the

OBUs. The VEINS 4.4 (Vehicles in Network Simulation) framework is used for its

DSRC/IEEE 802.11p implementation and its ability to bind a network simulation
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Figure 7.12 Network protocols used on all communication domains

with a live mobility simulation conducted by Simulation of Urban Mobility (SUMO)

v0.25. Figure 7.12 shows the network protocols made available by OMNeT++ to

enable in-vehicle and inter-vehicle communications.

7.8.2 Mobility simulator

Since vehicular traffic flow is very complex to model, researchers try to predict road

traffic using simulations. A traffic simulation introduces models of transportation

systems such as freeway junctions, arterial routes, roundabouts to the system under

study. SUMO [41] is an open-source microscopic and continuous road traffic sim-

ulation package which enables us to simulate the car flow in a large road network

such as the one in the city of Brighton. Microscopic traffic flow models, in contrast

to macroscopic, simulate single vehicle units, taking under consideration properties

such as position and velocity of individual vehicles.

7.8.3 Implementation

The simulation environment on which novel medium access algorithms are to be

evaluated uses SUMO and open data to reproduce accurate car mobility [42]. The

map is extracted off OpenStreetMap and converted to an XML file which defines

the road network. Then random trips are generated from this road network file, and

finally these trips are converted to routes and traffic flow. The resulting files are

used in SUMO for live traffic simulation as depicted in Figure 7.13. The vehicles are

dynamically generated with unique IDs shown in green labels.

Each node within OMNeT++, either mobile (car) or static (RSU) consists of a

network interface that uses the 802.11p PHY and MAC, and the application layer that

describes a basic safety message exchange and a mobility module. A car, chosen in

random fashion, broadcasts a periodic safety message, much like the ones specified

in the WSMP.
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Figure 7.13 Large scale simulation in the city of Brighton

Listing 7.1 SUMO scripts and parameters to produce the needed XML files

//map file to road network XML

$netconvert --osm city.osm

//random trips from XML; source and

//destination edge weighted by length "-l"

$randomTrips.py -n city.net.xml -l -e 800 -o

city.trips.xml

//routes using Shortest Path computation

$duarouter -n city.net.xml -t city.trips.xml

-o city.rou.xml

As well as safety message exchange, connected cars can provide extra function-

ality and enable driving assisting and infotainment systems, such as downloading

city map content from RSUs, exchanging video for extended driver vision or even

uploading traffic information to the cloud towards an efficient traffic light system.

The protocols used for such applications would be different from WSMP, such as

the Internet protocols (IPv6, UDP) for the pervasiveness of IP-based applications.

Figure 7.14 shows an example of V2V connectivity, where a car broadcasts a safety

message to neighbouring cars within range.
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Figure 7.14 A car is broadcasting to neighbouring cars using IEEE 802.11p

in OMNeT++

7.9 Protocol performance

The MAC method of the vehicular communication standard IEEE 802.11p has been

simulated in a realistic vehicular traffic scenario with vehicle stations periodically

broadcasting packets. In order to evaluate the performance of the novel proposed

RL-based channel sharing protocol in comparison to the baseline IEEE 802.11p pro-

tocol, V2V simulations were carried out using OMNeT++ 5 simulator and the Veins

framework. Realistic mobility simulation is achieved by using SUMO coupled with

OMNeT++.

7.9.1 Simulation setup

All the cars within the area content for access to medium when trying to transmit

a packet or rebroadcast a copy of one. Retransmission probability is set so that a

proportion of nodes in the area of interest will rebroadcast the same information upon

receipt (i.e. for 100 cars it is set at 2%). We collect most of our results within a specific

ROI of ∼600 m × 500 m within the University of Sussex campus and set the power

to a high enough level within the DSRC limit, in order to not be influenced by border
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Figure 7.15 Campus map used in network simulations

effects (hidden/exposed terminals). The artificial campus map used for simulations

can be seen in Figure 7.15.

The achieved improvement on link-level contention was of primary concern, so a

multitude of tests were run for a single hop scenario, with every node being within the

range of the others. By eliminating the hidden terminal problem from the experiment

and setting an infinite queue size, packet losses from collisions can be accurately

measured. A multi-hop scenario is also presented, which makes the hidden terminal

effect apparent in the performance of the network.

The simulation run time for the proposed MAC protocol consists of two stages,

as seen in Figure 7.10. First is the approximate controller training stage, which lasts

for Ndecay = 1,800 transmitted packets (or 180 s with fb = 10 Hz). Then follows the

evaluation or online period which lasts for 120 s, in which the agent acts with an

ε = α = 0.1. During this time, we benchmark the effect of the trained controllers

regarding network performance as well as keep performing some learning for the

controller augmentation. For IEEE 802.11p simulations, only the evaluation stage is

needed, which lasts for the same time.

All cars in the network are continuously transmitting broadcast packets, such as

CAMs with a period Tb = (1/fb) = 100 ms. The packets are transmitted using the

highest priority, voice traffic (AC_VO) AC. In VANETs, the network density changes

depending on location and time of the day. We test the performance of the novel MAC

against the standard IEEE 802.11p protocol for different number of cars. The data

rate is set at 6 Mbps so it can conveniently accommodate hundreds of vehicles within

the DSRC communication range. Simulation parameters can be found at Table 7.4.

7.9.2 Effect of increased network density

The scalability of the MAC protocols is evaluated against a varying number of vehicles

travelling in the simulated campus map shown in Figure 7.15. The packet size Lp
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Table 7.4 Simulation parameters

Parameter Value

Evaluation time 120 s
A priori training time 180 s
Channel frequency 5.9 GHz
Transmission rate 6 Mbps
Transmission power 1-hop: 100 mW, 2-hop: 40 mW
Packet size Lp 256 bytes
Backoff slot time 13 µs
Broadcasting frequency fb 10 Hz
No of relays ≥2 cars (probabilistic)
Discount rate γ 0.7
Learning rate α Training: (7.4), on-line: 0.1
Epsilon ε training: (7.4), on-line: 0.1
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Figure 7.16 PDR versus network density for broadcasting of 256-byte packets

with fb = 10 Hz

used in this scenario is 256 bytes, and the broadcasting frequency fb is set at 10 Hz.

Figure 7.16 shows the increase in goodput when using this novel MAC protocol,

expressed as a PDR. When using the standard IEEE 802.11p, PDR decreases in

denser networks due to the increased collisions between data packets.

The PDR for the proposed Q-learning MAC is measured after the initial,

exploratory phase (since the agent by then has gained significant experience). We

observed a 37.5% increase in performance (original packets delivered) in a network

formed of 80 cars when using the modified, “learning” MAC. There is a slight loss

in performance (4%) for 20-car networks. In such sparse networks, the minimum

CW is optimal, since with a big CW (waiting for more b time slots), transmission

opportunities can be lost and the channel access delay will increase. When using our
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Figure 7.17 Packet Return Time (delay) versus network density for broadcasting

of 256-byte packets with fb = 10 Hz

learning protocol, the agent still explores larger CW levels 10% of the time (ε = 0.1),

for better adaptability and augmentation of its initial controller. When the network

density exceeds 40 cars, the proposed learning MAC performs much better regarding

successful deliveries.

The round-trip time (RTT) shown in Figure 7.17 is defined as the length of time

it takes for an original broadcast packet to be sent plus the length of time it takes for

a rebroadcast of that packet to be received by the original sender. We can see that the

increased CW of the learning MAC adds to the channel-access delay time. The worst

case scenario simulated is for 100 simultaneous transceivers within the immediate

range of each other, in which the average RTT doubles to 32.8 ms when using the

Q-learning MAC. Given that both the transmission and heard retransmission are of

the same packet size, we can assume that the mean packet delivery latency is 16.4 ms

when using the learning MAC instead of 8 ms for baseline IEEE 802.11p, while PDR

is improved by 54%.

7.9.3 Effect of data rate

We also examine the performance of both the standard and enhanced protocol for

different data rates. PDR is measured for a network of 60 nodes without hidden

terminals. The broadcasting frequency is set at fb = 10 Hz, and the packet size Lp

varies from 64 to 512 bytes, as seen in Figure 7.18. For 512 byte packets, the mean

achieved goodput Tavg per IEEE 802.11p node from (7.10) is 16.925 kbps. For the

same settings, each learning MAC station achieves 29.218 kbps on average, yielding

to a 72.63% increase in goodput. It is clear that for larger packet transmissions the

Q-learning-based protocol will be much faster and more reliable:

Tavg = Lp × fb × 8 bit × PDR. (7.10)
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Figure 7.19 PDR versus network density for broadcasting of 256-byte packets with

fb = 10 Hz in a two-hop scenario

7.9.4 Effect of multi-hop

In a network without fixed topology, the most common way to disseminate informa-

tion is to broadcast packets across the network. In VANETs, vehicles often cooperate

to deliver data messages through multi-hop paths, without the need of centralized

administration. In this scenario, we test the performance of the proposed protocol

when attempting to transmit two hops away. We evaluate performance for two-hop

transmissions by reducing the transmission power to 40 mW. As the network density

increases, the proposed MAC offers a valid delivery benefit for vehicle-stations con-

tenting for access on the same channel. The performance of both IEEE 802.11p and

the proposed learning MAC regarding two-hop packet reception ratio is compared in

Figure 7.19.
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We see that because the hidden terminal phenomenon appears, the performance

deteriorates compared to the single hop scenario, but the performance gain regarding

packet delivery is still apparent when using Q-learning to adapt the backoff. Packets

lost are not recovered since we are concerned with the performance of the link layer.

7.10 Conclusion

A contention-based MAC protocol for V2V/V2I transmissions was introduced in this

chapter. It relies on Q-learning to discover the optimum CW by continuously interact-

ing with the network. Simulations were developed to demonstrate the effectiveness

of this learning-based MAC protocol. Results prove that the proposed method allows

the network to scale better to increase network density and accommodate higher

packet delivery rates compared to the IEEE 802.11p standard. This translates to more

reliable packet delivery and higher system throughput, while maintaining acceptable

delay levels. Future work will be focused on how the learning MAC responds to dras-

tic changes in the networking environment via invoking the ε decay function while

online as well as improving fairness and transmission latency.
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Chapter 8

Machine-learning-based perceptual video coding
in wireless multimedia communications

Shengxi Li1, Mai Xu2, Yufan Liu3, and Zhiguo Ding4

We present in this chapter the advantage of applying machine-learning-based per-

ceptual coding strategies in relieving bandwidth limitation for wireless multimedia

communications. Typical video-coding standards, especially the state-of-the-art high

efficiency video coding (HEVC) standard as well as recent research progress on

perceptual video coding, are included in this chapter. We further demonstrate an exam-

ple that minimizes the overall perceptual distortion by modeling subjective quality

with machine-learning-based saliency detection. We also present several promis-

ing directions in learning-based perceptual video coding to further enhance wireless

multimedia communication experience.

8.1 Background

At present, multimedia applications, such as Facebook and Twitter, are becoming

integral components in the daily lives of millions, leading to the explosion of big

data. Among them, videos are one of the largest types of big data [1], thus posing

a great challenge to the limited communication and storage resources. Meanwhile,

due to more powerful camera hardware, their resolutions are significantly increasing,

further intensifying the hunger on communication and storage resources. Aiming at

overcoming this resource-hungry issue, a set of video-coding standards have been

proposed to condense video data, e.g., MPEG-2 [2], MPEG-4 [3] VP9 [4], H.263 [5]

and H.264/AVC [6].

Most recently, as the successor of H.264/AVC, HEVC [7] was formally approved

in April, 2013. In HEVC, several new features, e.g., the quadtree-based coding

1Department of Electrical and Electronic Engineering, Imperial College London, UK
2Department of Electronic and Information Engineering, Beihang University, China
3Institute of Automation, Chinese Academy of Sciences, China
4School of Electrical and Electronic Engineering, The University of Manchester, UK
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structure and intra-prediction modes with 33 directions,1 were adopted. Consequently,

the HEVC Main Still Picture (HEVC-MSP) profile [8], which is designed for still

picture compression, achieves the best performance among all the state-of-the-art

standards on image compression, with an approximately 10% (overVP9) to 40% (over

JPEG) improvement in bit-rate savings [9]. However, all existing standards, including

HEVC-MSP, primarily focus on removing statistical redundancy by adopting various

techniques [10], e.g., intra-prediction and entropy coding. Further reducing statistical

redundancy may help to improve coding efficiency, but at the cost of extremely high

computational complexity.

Koch et al. [12] investigated that the bandwidth between the human eyes and

brain is approximately 8 Mbps, which is far insufficient to process the visual input

captured by millions of optical cells. Thus, the human eye is mostly at a quite low res-

olution, except for a small area at the fovea (visual angle of approximately 2◦), which

is called the region-of-interest (ROI) in the video-coding community. Meanwhile, as

pointed out by [13], human ROIs are similar across different individuals. It is also well

known [14] that the coding mechanism can be modified to cater to the human visual

system (HVS) by moving bits from non-ROIs to ROIs to achieve better subjective

quality. This is also illustrated in Figure 8.1(b) and (c). Perceptual video coding has

received a great deal of research effort from 2000 onwards, due to its great potential in

improving coding efficiency [15–18]. In H.263, a perceptual rate control scheme [15]

was proposed. In this scheme, a perceptual sensitive weight map of conversational

scene (i.e., scene with frontal human faces) is obtained by combining stimulus-driven

(i.e., luminance adaptation and texture masking) and cognition-driven (i.e., skin col-

ors) factors together. According to such a map, more bits are allocated to ROIs by

reducing QP values in these regions. Afterwards, for H.264/AVC, a novel resource

allocation method [16] was proposed to optimize the subjective rate–distortion

(R–D)-complexity performance of conversational video coding, by improving the

visual quality of face region extracted by the skin-tone algorithm. Moreover, Xu

et al. [19] utilized a novel window model to characterize the relationship between

the size of window and variations of picture quality and buffer occupancy, ensuring

a better perceptual quality with less quality fluctuation. This model was advanced

in [20] with an improved video quality metric for better correlation to the HVS. Most

recently, in HEVC, the perceptual model of structural similarity (SSIM) has been

incorporated for perceptual video coding [21]. Instead of minimizing mean squared

error (MSE) and sum of absolute difference, SSIM is minimized [21] to improve

the subjective quality of perceptual video coding in HEVC. However, through our

investigation, the substantial low quality in non-ROIs may also significantly degrade

image quality, as shown in Figure 8.1(d). Thus, how many bits should “move” from

non-ROIs to ROIs, together with accurate ROI detection, is crucial for compression.

In other words, we need to ensure that the detected ROIs are the regions that attract

human attention, and then bit allocation needs to be optimized according to ROIs,

targeting minimal overall perceptual distortion.

1Planar and DC are two other intra-prediction modes.
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Figure 8.1 An example of HEVC-based compression for Lena image, with different

bit allocation emphasis on ROIs. Note that (a) is the heat map of eye

fixations; (b), (c) and (d) are compressed by HEVC-MSP at 0.1 bpp

with no, well balanced and more emphasis on face regions. The

difference mean opinion scores (DMOS) for (b), (c) and (d) are 63.9,

57.5 and 70.3, respectively [11]

The organization of this chapter is as follows. The literature review is first intro-

duced in Section 8.2, from perspectives of perceptual models and incorporations in

video coding. We then present in Section 8.3 the recursive Taylor expansion (RTE)

method for optimal bit allocation toward the perceptual distortion and also provide rig-

orous proofs. The computational analysis of the proposed RTE method is introduced in
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Section 8.4. For experimental validations, we first verify the proposed RTE method

on compressing one single image/frame in Section 8.5, followed by the results on

compressing video sequences in Section 8.6.

8.2 Literature review on perceptual video coding

Generally speaking, main parts of perceptual video coding are perceptual mod-

els, perceptual model incorporation in video coding and performance evaluations.

Specifically, perceptual models, which imitate the output of the HVS to specify

the ROIs and non-ROIs, need to be designed first for perceptual video coding.

Second, on the basis of the perceptual models and existing video-coding standards,

perceptual model incorporation in video coding from perceptual aspects needs to

be developed to encode/decode the videos, mainly through removing their percep-

tual redundancy. Rather than incorporating perceptual model in video coding, some

machine-learning-based image/video compression approaches have also proposed

during the past decade.

8.2.1 Perceptual models

Perceptual models can be classified into two categories: either manual or automatic

identifications.

8.2.1.1 Manual identification

This kind of perceptual models requires manual effort to distinguish important regions

which need to be encoded with high quality. In the early years, Geisler and Perry [22]

employed a foveated multi-resolution pyramid video encoder/decoder to compress

each image of varying resolutions into five or six regions in real-time, using a pointing

device. This model requires the users to specify which regions attract them most

during the video transmission. Thus, this kind of models may lead to transmission

and processing delay between the receiver and transmitter sides, when specifying

the ROIs. Another way [23] is to specify ROIs before watching, hence avoiding the

transmission and processing delay. However, considering the workload of humans,

these models cannot be widely applied to various videos.

In summary, the advantage of manual identification models is the accurate detec-

tion of ROIs. However, as the cost, it is expensive and intractable to extensively apply

these models due to the involvement of manual effort or hardware support. In addition,

for the models of user input-based selection, there exists transmission and processing

delay, thus making the real-time applications impractical.

8.2.1.2 Automatic identification

Just as its name implies, this category of perceptual models is to automatically

recognize ROIs in videos, according to visual attention mechanisms. Therefore,

visual attention models are widely used among various perceptual models. There are

two classes of visual attention models: either bottom-up or top-down models. Itti’s

model [24] is one of the most popular bottom-up visual attention models in perceptual
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video coding. Mimicking processing in primate occipital and posterior parietal cortex,

Itti’s model integrates low-level visual cues, in terms of color, intensity, orientation,

flicker and motion, to generate a saliency map for selecting ROIs [17].

The other class of visual attention models is top-down processing [14,18,25–29].

The top-down visual attention models are more frequently applied to video applica-

tions, since they are more correlated with human attractiveness. For instance, human

face [16,18,26] is one of the most important factor that draws top-down attention,

especially for conversational video applications. Beyond, a hierarchical perceptual

model of face [18] has been established, endowing unequal importance within face

region. However, abovementioned approaches are unable to figure out the importance

of face region.

In this article, we quantify the saliency of face and facial features via learning the

saliency distribution from the eye fixation data of training videos, via conducting the

eye-tracking experiment. Then, after detecting face and facial features for automati-

cally identifying ROI [18], the saliency map of each frame of encoded conversational

video is assigned using the learnt saliency distribution. Although the same ROI is

utilized in [18], the weight map of our scheme is more reasonable for the perceptual

model for video coding, as it is in light of learnt distribution of saliency over face

regions. Note that the difference between ROI and saliency is that the former refers

to the place that may attract visual attention while the later refers to the possibility of

each pixel/region to attract visual attention.

8.2.2 Incorporation in video coding

The existing incorporation schemes can be mainly divided into two aspects: model-

based and learning-based approaches. The model-based approaches apply prior

models or the above perceptual models to the existing video-coding approaches,

while the learning-based approaches aim at discovering similarities among pixels or

blocks to reduce redundancy in video coding.

8.2.2.1 Model-based approaches

One category of approaches called preprocessing is to control the nonuniform dis-

tribution of distortion before encoding [30–32]. A common way for preprocessing

is spatial blurring [30,31]. For instance, the spatial blurring approach [30] separates

the scene into foreground and background. The background is blurred to remove

high-frequency information in spatial domain so that less bits are allocated to this

region. However, this may cause obvious boundaries between the background and

foreground.

Another category is to control the nonuniform distribution of distortion during

encoding, therefore called embedded encoding [16,18,33–35]. As it is embedded into

the whole coding process, this category of approaches is efficient in more flexibly

compressing videos with different demands. In [16], Liu et al. established importance

map at macro block (MB) level based on face detection results. Moreover, combin-

ing texture and nontexture information, a linear rate–quantization (R–Q) model is

applied to H.264/AVC. Based on the importance map and R–Q model, the optimized
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QP values are assigned to all MBs, which enhances the perceived visual quality of

compressed videos. In addition, after obtaining the importance map, the other encod-

ing parameters, such as mode decision and motion estimation search, are adjusted to

provide ROIs with more encoding resources. Xu et al. [18] proposed a new weight-

based unified R–Q (URQ) rate control scheme for compressing conversational videos,

which assigns bits according to bpw, instead of bpp in conventional URQ scheme.

Then, the quality of face regions is improved such that its perceived visual quality

is enhanced. The scheme in [18] is based on the URQ model [36], which aims at

establishing the relationship between bite-rate R and quantization parameters Q, i.e.,

R–Q relationship. However, since various flexible coding parameters and structures

are applied in HEVC, R–Q relationship is hard to be precisely estimated [37]. There-

fore, Lagrange multiplier λ [38], which stands for the slope of R–D curve, has been

investigated. According to [37], the relationship between λ and R can be better char-

acterized in comparison with R–Q relationships. This way, on the basis of R–λ model,

the state-of-the-art R–λ rate control scheme [39] has better performance than the

URQ scheme. Therefore, on the basis of the latest R–λ scheme, this article proposes

a novel weight-based R–λ scheme to further improve the perceived video quality

of HEVC.

8.2.2.2 Learning-based approaches

From the viewpoint of machine learning, the pixels or blocks from one image or several

images may have high similarity. Such similarity can be discovered by machine-

learning techniques and then utilized to decrease redundancy of video coding. For

exploiting the similarity within an image/video, image inpainting has been applied

in [40,41] to use the image blocks from spatial or temporal neighbors for synthe-

sizing the unimportant content, which is deliberately deleted at the encoder side. As

such, the bits can be saved as not encoding the missing areas of the image/video.

Beyond, rather than predicting the missing intensity information in [40,41] , several

approaches [42–45] have been proposed to learn to predict the color in an images using

the color information of some representative pixels. Then, only representative pixels

and grayscale image need to be stored, such that the image [43–45] or video [42] cod-

ing can be achieved. Most recently, the deep-learning technique has also been applied

to reduce coding complexity via an early-terminated coding unit (CU) partition

scheme [46].

For working on similarity across various images or frames of videos, dictio-

nary learning has been developed to discover the inherent patterns of image blocks.

Together with dictionary learning, sparse representation can be then used to effec-

tively represent an image for image [47] or video coding [48], instead of conventional

image transforms such as discrete cosine transform.

The above approaches primarily improve the fidelity of ROIs, but they may fail

in ensuring the overall subjective quality, as extremely low quality on non-ROIs can

also degrade the subjective quality. In the next section, we propose an approach to

optimize the overall subjective quality, different from the above approaches that only

increase bits in ROIs.
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8.3 Minimizing perceptual distortion with the RTE method

In this section, we primarily focus on minimizing the perceptual distortion of

one image/frame compression for clarify and propose a closed-form bit allocation

approach to minimize the perceptual distortion [49]. It needs to point out that the

approach can also be applied in perceptual video compression, which is to be presented

in Section 8.6.

Specifically, the most recent work [17] has pointed out that eye-tracking weighted

peak signal-to-noise ratio (EWPSNR), which is the combination of eye-tracking fix-

ations and MSE, is highly correlated with subjective quality. Due to the unavailability

of eye-tracking data, we utilize the saliency weighted PSNR (SWPSNR) instead as

the perceptual distortion to approximate subjective quality. Automatic saliency detec-

tion is thus the first step of our approach for saliency-guided image compression. In

our approach, we leverage on our most recent face saliency-detection method [50]

for compressing face images and a latest saliency-detection method [51] for com-

pressing other generic images. Note that face and non-face images are automatically

classified using the face detector in [50]. Then, we propose a formulation to min-

imize perceptual distortion with reasonable bit allocation on compressed images.

Unfortunately, it is intractable to obtain a closed-form solution to the proposed opti-

mization formulation because the formulation is a high-order algebraic equation, and

its non-integer exponents vary across different coding tree units (CTUs). We thus

develop a new method, namely, RTE, to acquire the solution for optimal bit alloca-

tion in a closed-form manner. In the proposed RTE method, we iterate a third-order

Taylor expansion to reach the optimal solution for bit allocation. We also develop

an optimal bit reallocation process to alleviate the mismatch between the target and

actual bits, while maintaining perceptual distortion optimization. We further verify

via both theoretical and numerical analyses that little time cost is incurred by our

approach.

We first transplant the R–λ RC approach [37] into HEVC-MSP in Section 8.3.1.

Upon this, an optimization formulation is proposed in Section 8.3.2, which aims at

maximizing the SWPSNR at a given bit rate for each image. The RTE method is then

proposed in Section 8.3.3 to solve this formulation with a closed-form solution. In

this way, the perceptual distortion can be minimized via bit allocation. In addition, we

develop an optimal bit reallocation method in Section 8.3.4 to alleviate the mismatch

between the target and actual bit rates.

8.3.1 Rate control implementation on HEVC-MSP

The latest R–λ approach is proposed in [37] for RC in HEVC. Since we concentrate

on applying RC to image compression, the CTU level RC in one video frame is

discussed here. Specifically, for HEVC, it has been verified that the hyperbolic model

can better fit the R–D relationship [37]. Based on the hyperbolic model, an R–λ model

is developed for bit allocation in the latest HEVC RC approach, where λ is the slope

of the R–D relationship [38]. Assuming that di, ri and λi represent the distortion, bits
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and R–D slope for the ith CTU, respectively, the R–D relationship and R–λ model are

formulated as follows:

di = ciri
−ki , (8.1)

and

λi = −
∂di

∂ri

= ciki · ri
−ki−1, (8.2)

where ci and ki are the parameters that reflect the content of the ith CTU. In the R–λ

approach [37], ri is first allocated according to the predicted mean absolute difference,

and then its corresponding λi is obtained using (8.2). By adopting a fitting relationship

between λi and QP, the QPs of all CTUs within the frame can be estimated such that

RC is achieved in HEVC. For more details, refer to [37].

However, for HEVC-MSP, ci and ki cannot be obtained when encoding CTUs.

Thus, it is difficult to directly apply the R–λ RC approach to HEVC-MSP. In the work

of [52], the sum of the absolute transformed differences (SATD), calculated by the

sum of Hadamard transform coefficients, is utilized for HEVC-MSP. Specifically,

the modified R–λ model is

λi = αi

(
si

ri

)βi

, (8.3)

where αi and βi are the constants for all CTUs and remain the same when encoding

an image. Moreover, si denotes the SATD for the ith CTU, which measures the CTU

texture complexity. Nevertheless, SATD is too simple to reflect image content, leading

to an inaccurate R–D relationship during RC.

To avoid the above issues, we adopt a preprocessing process in calculating ci and

ki. After pre-compressing, the pre-encoded distortion, bits and λ can be obtained for

the ith CTU, which are denoted as d̄i, r̄i and λ̄i, respectively. Then, the RC-related

parameters, ci and ki, can be estimated upon (8.1) and (8.2) before encoding the

ith CTU:

ci =
d̄i(

r̄
−λ̄i ·r̄i/d̄i
i

) , (8.4)

and

ki =
λ̄i · r̄i

d̄i

. (8.5)

With the estimated ci and ki, the RC of the R–λ approach [37] can be implemented in

HEVC-MSP.

Here, a fast pre-compressing process is developed in our approach, which sets the

maximum CU depth to 0 for all CTUs. We have verified that the fast pre-compressing

process slightly increases the computational complexity by a 5% burden, which is

slightly larger than the 3% of the SATD-based method [52]. However, this process is

able to well reflect the R–D relationship, as to be verified Section 8.5.4.
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8.3.2 Optimization formulation on perceptual distortion

The primary objective of this chapter is to minimize perceptual distortion for HEVC-

based image compression. In our approach, the SWPSNR is applied to measure the

perceptual distortion, as [53] has shown that SWPSNR is highly correlated with sub-

jective quality. For SWPSNR, the pixel-wise saliency values need to be detected as

the first step in our approach, and these values are used for weighting the MSE.

In this chapter, we utilize two state-of-the-art saliency-detection methods for

calculating SWPSNR. Specifically, the latest Boolean-map-based saliency (BMS)

method [51] is applied in modeling SWPSNR for generic images. Furthermore, for

face images, our most recent work [50] has better accuracy in saliency detection than

the BMS method. Thus, when computing the SWPSNR of face images, we use the

work of [50] to obtain the saliency values.

Here, we denote wi as the average saliency value within the ith CTU. Meanwhile,

we calculate distortion di by the sum of pixel-wise square error for the ith CTU. Then,

based on di and wi, the optimization on SWPSNR at a given target bit rate R can be

formulated as

min

(
�M

i=1widi

�M
i=1wi

)
s.t. �M

i=1ri = R. (8.6)

In (8.6), M denotes the number of CTUs in the image. By using the Lagrange multi-

plier λ, (8.6) can be turned to find the minimum value of R–D cost J [38], which is

defined as

J =
(

�M
i=1widi

�M
i=1wi

)
+ λ · (�M

i=1ri). (8.7)

By setting the partial derivatives of (8.7) to zero, the minimum J can be found as

follows2:

∂J

∂ri

=
∂

(
�M

i=1widi/�
M
i=1wi + λ(�M

i=1ri)
)

∂ri

=
wi

�M
i=1wi

·
∂di

∂ri

+ λ

= 0. (8.8)

Given (8.1) and (8.2), (8.8) is turned to

ri =
(

λ · �M
i=1wi

cikiwi

)−(1/(ki+1))

=
(

w̃iai

λ

)bi

, (8.9)

where ai = ciki and bi = (1/(ki + 1)) also reflect the image content for each CTU.

Moreover, w̃i = wi/(�M
i=1wi) represents the visual importance for each CTU. Note

that with our pre-compressing process, ci and ki can be obtained in advance. Thus, ai

2It needs to point out that J in (8.7) is convex with regard to ri and λ, which ensures the global minimum

of the problem (8.7).
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and bi are available before encoding the image. Once λ is known, ri can be estimated

using (8.9) for achieving the minimum J .

Meanwhile, there also exists a constraint on bit rate, which is formulated as

M∑

i=1

ri = R. (8.10)

According to (8.9) and (8.10), we need to find the “proper” λ and bit allocation ri to

satisfy the following equation:

M∑

i=1

ri =
M∑

i=1

(
w̃iai

λ

)bi

= R. (8.11)

After solving (8.11) to find the “proper” λ, the target bits can be assigned to each

CTU with the maximum SWPSNR.

Unfortunately, since ai and bi vary across different CTUs, (8.11) cannot be solved

by a closed-form solution. Next, the RTE method is proposed to provide a closed-form

solution.

8.3.3 RTE method for solving the optimization formulation

For solving (8.11), we assume that r̃i (̃λ)bi = (w̃iai)
bi , where r̃i and λ̃ are the estimated

ri and λ, respectively. Then, (8.11) can be rewritten as

M∑

i=1

ri =
M∑

i=1

(
w̃iai

λ

)bi

=
M∑

i=1

r̃i

(
λ̃

λ

)bi

= R. (8.12)

From (8.12), we can see that once λ̃ → λ, there exists r̃i → ri. As such, the optimiza-

tion formulation of (8.11) can be solved in our approach. However, we do not know

λ̃ at the beginning. Meanwhile, λ of (8.12) is also unknown because it is intractable

to find the closed-form solution to (8.11). Therefore, a chicken-and-egg dilemma

exists between λ̃ and λ. To solve this dilemma, a possible λ̃ is initially set. In our RTE

method, the picture λ (denoted as λpic) is chosen as the initial value of λ̃ for quick

convergence. It is calculated by the R–λ model at the picture level [37,52]:

λpic = αpic

( spic

R

)βpic

, (8.13)

where αpic and βpic are the fitted constants (αpic = 6.7542 and βpic = 1.7860 in HM

16.0) and spic represents the SATD for the current picture. Recall that R denotes the

target bits allocated to the currently encoded picture.

In the following, the RTE method is proposed to iteratively update λ̃ for making

λ̃ → λ.
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Specifically, we preliminarily apply Taylor expansion on (̃λ/λ)bi of (8.12), and

then we discard the biquadratic and higher order terms. The process can be formulated

as follows:

R =
M∑

i=1

r̃i

(
λ̃

λ

)bi

=
M∑

i=1

r̃i

(
1 +

ln (̃λ/λ)

1!
bi + · · · +

(ln (̃λ/λ))n

n!
bn

i + · · ·
)

≈
M∑

i=1

r̃i

(
1 +

ln (̃λ/λ)

1!
bi +

(ln (̃λ/λ))2

2!
b2

i +
(ln (̃λ/λ))3

3!
b3

i

)
(8.14)

In the following equation, we use λ̂ to denote the approximation solution to (8.14)

after discarding the biquadratic and higher order terms. Consequently, (8.12) can be

approximated to be a cubic equation with variable ln λ̂:

R =
M∑

i=1

r̃i

(
1 +

ln (̃λ/̂λ)

1!
bi +

(ln (̃λ/̂λ))2

2!
b2

i +
(ln (̃λ/̂λ))3

3!
b3

i

)

= −
M∑

i=1

r̃i

(
b3

i

6

)

︸ ︷︷ ︸
A

ln3 λ̂ +
M∑

i=1

r̃i

(
b2

i

2
+

b3
i

2
ln λ̃

)

︸ ︷︷ ︸
B

ln2 λ̂

−
M∑

i=1

r̃i

(
b2

i ln λ̃ + bi +
b3

i

2
ln2 λ̃

)

︸ ︷︷ ︸
C

ln λ̂

+
M∑

i=1

r̃i

(
1 + bi ln λ̃ +

b2
i

2
ln2 λ̃ +

b3
i

6
ln3 λ̃

)

︸ ︷︷ ︸
D

. (8.15)

By applying the Shengjin formula [54], this cubic equation is evaluated to

obtain the solution of λ̂ as

λ̂ = e((−B−( 3√Y1+ 3√Y2))/3A), Y1,2 = BE + 3A

(
−F ±

√
F2 − 4EG

2

)
, (8.16)

where E = B2 − 3AC, F = BC − 9A(D − R) and G = C2 − 3B(D − R). Since � =
F2 − 4EG > 0 in practical encoding, (8.16) has only one real solution [54]. Thus, the

value of λ̂ is unique for optimizing bit allocation. After further removing the cubic-

order term, (8.14) is turned to be a quadratic equation. We found that such a quadratic

equation may have no real solution or two solutions. Meanwhile, using only one term

may lead to large approximation error and slow convergence speed, while keeping

more than four terms probably makes the polynomial equations on ln λ̂ unsolvable.
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Therefore, discarding the biquadratic and higher order terms of the Taylor expansion

is the best choice for our approach.

However, due to the truncation of high-order terms in the Taylor expansion, λ̂

estimated by (8.16) may not be an accurate solution to (8.12). Fortunately, as proven

in Lemma 8.1, λ̂ is more accurate3 than λ̃ when λ̃ < λ.

Lemma 8.1. Consider λ > λ̃ > 0, bi > 0, and R > 0 for (8.12). When the solution of

λ to (8.12) is λ̂, the following inequality holds for λ̂:

|̂λ − λ| < |̃λ − λ|. (8.17)

Proof. As can be seen in (8.15), λ̂ is the solution of λ to the third-order Taylor

expansion on
∑M

i=1 r̃i (̃λ/λ)bi . Hence, the following equation exists:

R =
M∑

i=1

r̃i

(
λ̃

λ

)bi

=
M∑

i=1

r̃i +
M∑

i=1

r̃i

ln (̃λ/̂λ)

1!
bi +

M∑

i=1

r̃i

(ln (̃λ/̂λ))2

2!
b2

i +
M∑

i=1

r̃i

(ln (̃λ/̂λ))3

3!
b3

i . (8.18)

In fact, 0 < (̃λ/λ)bi < 1 holds for 0 < λ̃ < λ and bi > 0. Besides, there exists

R =
∑M

i=1 r̃i (̃λ/λ)bi in (8.18). Therefore,
∑M

i=1 r̃i > R can be evaluated.

Next, assuming that λ̂ ≤ λ̃, we have ln (̃λ/̂λ) ≥ 0. Due to
∑M

i=1 r̃i > R, ln (̃λ/̂λ) ≥
0, and bi > 0, the inequality below holds:

M∑

i=1

r̃i +
M∑

i=1

r̃i

ln (̃λ/̂λ)

1!
bi +

M∑

i=1

r̃i

(ln (̃λ/̂λ))2

2!
b2

i +
M∑

i=1

r̃i

(ln (̃λ/̂λ))3

3!
b3

i > R, (8.19)

which is contradictory with (8.18). Therefore, it can be proven that λ̃ < λ̂. Then,

given Lemma 8.2, λ̃ < λ̂ < λ can be obtained. As a result, |̂λ − λ| < |̃λ − λ| exists.

This completes the proof of Lemma 8.1.

Lemma 8.2. Consider λ̃ > 0, λ > 0, bi > 0, λ �= λ̃ and R > 0 for (8.12). If λ̂ is the

solution of λ to (8.12), then the following holds:

λ̂ < λ. (8.20)

3It is obvious that 0 < bi = 1/(ki + 1) < 1 and R > 0 in HEVC encoding.
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Proof. Toward the Taylor expansion of
∑M

i=1 r̃i (̃λ/λ)bi in (8.12), we can obtain the

following equations:

R =
M∑

i=1

r̃i

(
λ̃

λ

)bi

=
M∑

i=1

r̃i +
M∑

i=1

r̃i

ln (̃λ/̂λ)

1!
bi +

M∑

i=1

r̃i

(ln (̃λ/̂λ))2

2!
b2

i +
M∑

i=1

r̃i

(ln (̃λ/̂λ))3

3!
b3

i

=
M∑

i=1

r̃i +
M∑

i=1

r̃i

ln (̃λ/λ)

1!
bi +

M∑

i=1

r̃i

(ln (̃λ/λ))2

2!
b2

i +
M∑

i=1

r̃i

(ln (̃λ/λ))3

3!
b3

i

+
M∑

i=1

r̃i

(ln (̃λ/λ))4

4!
b4

i +
M∑

i=1

r̃i

(ln (̃λ/λ))5

5!
b5

i +
M∑

i=1

r̃i

(ln (̃λ/λ))6

6!
b6

i + · · · .

(8.21)

There exist two cases of λ̃ and λ:

● For λ̃ > λ > 0 and bi > 0, we can obtain (ln (̃λ/λ)) · bi > 0. It is known that

(8.21) holds with R >
∑M

i=1 r̃i > 0 and ln (̃λ/λ) > 0 because of (̃λ/λ) > 1. Thus,

ln (̃λ/̂λ) > ln (̃λ/λ) > 0 exists such that λ̂ < λ can be achieved.
● For λ > λ̃ > 0 and bi > 0, we have

M∑

i=1

r̃i

(ln (̃λ/λ))4

4!
b4

i +
M∑

i=1

r̃i

(ln (̃λ/λ))5

5!
b5

i +
M∑

i=1

r̃i

(ln (̃λ/λ))6

6!
b6

i + · · · >0. (8.22)

Then, with (8.21), the following inequality exists:

M∑

i=1

r̃i

ln (̃λ/̂λ)

1!
bi +

M∑

i=1

r̃i

(ln (̃λ/̂λ))2

2!
b2

i +
M∑

i=1

r̃i

(ln (̃λ/̂λ))3

3!
b3

i

>

M∑

i=1

r̃i

ln (̃λ/λ)

1!
bi +

M∑

i=1

r̃i

(ln (̃λ/λ))2

2!
b2

i +
M∑

i=1

r̃i

(ln (̃λ/λ))3

3!
b3

i . (8.23)

Moreover, viewing λ̂ and λ as variable x, the inequality (8.23) can be analyzed

by (8.24). The function of (8.24) monotonously decreases to 0 along with the

increasing of variable x (until x ≤ λ̃):

M∑

i=1

r̃i +
M∑

i=1

r̃i

ln (̃λ/x)

1!
bi +

M∑

i=1

r̃i

(ln (̃λ/x))2

2!
b2

i +
M∑

i=1

r̃i

(ln (̃λ/x))3

3!
b3

i . (8.24)

By combining (8.23) and (8.24), we can obtain λ̂ < λ.

Therefore, λ̂ < λ holds for both cases. This completes the proof of Lemma 8.2.
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Remark 8.1. Given Lemma 8.2, for the subsequent iterations of the RTE method,

0 < λ̃ < λ of Lemma 8.1 can be satisfied since the value of λ̃ has been replaced

by that of λ̂. Furthermore, as shown in Lemma 8.1, although both λ̃ and λ̂ may be

inaccurate for estimating λ in (8.11), λ̂, obtained through (8.12)–(8.16), is closer to

λ than λ̃. Therefore, we can iterate the Taylor expansion by using λ̂ as λ̃ to the next

iteration, which is the core of our RTE method. In this way, the closed-form solution

λ can be obtained by iteratively estimating λ̃.

Our RTE method is summarized in Table 8.1. For each iteration, the con-

vergence criterion is set according to the approximation error, Ea < 10−10, where

Ea = |�M
i=1̃ri − R|/R. As analyzed in Section 8.4, the approximation error of our

RTE method is able to converge to 10−10, generally with no more than three itera-

tions. In other words, after three or fewer iterations, the RTE method is able to reduce

the difference between λ̃ and λ to an extremely small range, meeting the convergence

criterion. Thus, λ̃ can be output as the closed-form solution to (8.12) (as well as

(8.11)). Finally, we replace λ by λ̃ in (8.9) to allocate the target bits to each CTU such

that SWPSNR can be maximized.

The physical explanation for the fast convergence speed of our RTE method is

as follows. Obviously, the approximation error for each iteration of the RTE method

is largely related to ln (̃λ/λ) in ((ln (̃λ/λ))n/n!)bn
i of (8.14). To reduce the value of

ln (̃λ/λ) for small approximation error, our RTE method utilizes a more accurate solu-

tion λ̂ after each iteration to replace λ̃ for the next iteration, making ((ln (̃λ/λ))n/n!)bn
i

decrease sharply. Therefore, such a replacement not only provides a more accurate

input for the next iteration but also greatly reduces the values of the discarded terms

and the approximation error. In this way, the convergence speed can be accelerated

along with iterations. Moreover, keeping three terms for the Taylor expansion rather

than other terms is solvable and also contributes to the fast convergence speed of our

RTE method.

8.3.4 Bit reallocation for maintaining optimization

As we discussed in Section 8.3.3, bits are reasonably allocated in our approach to

minimize perceptual distortion. However, in practical encoding, a slight difference

Table 8.1 The RTE method for solving (8.12) [11]

• Input: ai, bi, wi for each encoding CTUs and target bits R.
• Output: reasonable bit allocation r̃i for each CTU on maximizing SWPSNR.

– Initialize λ̃ to be λpic.

– While λ̃ does not meet the convergence criterion

1 Calculate A, B, C and D of (8.15) with λ̃.

2 Obtain λ̂ estimated by (8.16).

3 Update λ̃ with the obtained λ̂.
End

– Save the final λ̃.
– Apply it to bit allocation r̃i with (8.9).
– Return r̃i for each CTU.
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Figure 8.2 The procedure of our approach on minimizing perceptual

distortion [11]

between the target and actual bits may exist for each CTU.This difference may degrade

RC accuracy. To overcome this, we develop a bit reallocation process to accurately

control bit rates, meanwhile maintaining the optimization for perceptual distortion.

Specifically, for compensating the bit-rate error after encoding the ith CTU, the

target bits for the incoming K CTUs (denoted as Ti+1,i+K ) are updated by

Ti+1,i+K =
j=i+K∑

j=i+1

r̃j +

⎛
⎝T̂ −

j=M∑

j=i+1

r̃j

⎞
⎠

︸ ︷︷ ︸
bit-rate error

. (8.25)

In (8.25), T̂ is the remaining bits for encoding remaining CTUs, and r̃j represents

the target bits for the jth CTU by our RTE method. Recall that M denotes the total

number of CTUs. Obviously, as seen from (8.25), the bit error is compensated during

encoding the next K CTUs. Here, the RTE method of Section 8.3.3 is applied to

reallocate Ti+1,i+K to the next K CTUs. Note that we follow [52] and [37] to set

K = 4, which means that bits are reassigned in the next four CTUs. Moreover, note

that due to the fast convergence speed of our RTE method, the complexity increases

little for the bit reallocation process.

Finally, we summarize our HEVC-based image compression approach in

Figure 8.2. Specifically, we first transplant RC to HEVC-MSP with a simplified

pre-compression process, and the saliency values are detected for the input image.

Then, our RTE method obtains the target bits of each CTU, which can minimize per-

ceptual distortion at a given bit rate. Next, the QP value of each CTU is estimated

using the R–λ model and QP fitting. Note that the bits need to be reallocated in the

following CTUs to bridge the gap between the target and actual bits. In addition, as

to be verified in Section 8.4, little computational complexity cost is introduced in our

RTE method, further highlighting the efficiency of our approach.

8.4 Computational complexity analysis

In this section, we primarily focus on the computational complexity of our approach.

Since our approach adopts the RTE method to optimize perceptual distortion, the
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convergence speed of the RTE method is first discussed from both theoretical and

numerical perspectives. In the numerical analysis, we also provide the practical

computational time of our approach.

8.4.1 Theoretical analysis

For the theoretical analysis, we investigate the difference between λ̃ and λ alongside

the iterations of our RTE method. Here, we define �λ as the difference between λ̃

and λ as

�λ =
λ̃ − λ

λ
. (8.26)

If |�λ| → 0, then it indicates that our RTE method is stably convergent. Therefore,

we take into consideration �λ along with each iteration in our RTE method to analyze

its convergence speed.

In practice, ki (> 0) of (8.9) varies in a small range when encoding images

using HEVC-MSP. Therefore, we assume that bi (0 < bi = (1/(ki + 1)) < 1 in (8.9))

remains constant for simplicity. Based on this assumption, the convergence speed of

our RTE method can be determined with Lemma 8.3.

Lemma 8.3. Consider that λ̃ > 0, λ̂ > 0, λ > 0, R > 0, and ∀i, bi = l ∈ (0,1). Recall

that λ̃ is the estimated λ of (8.12) before each iteration of our RTE method and that

λ̂ is the solution of λ to (8.12) after each iteration of our RTE method. After each

iteration in our RTE method, λ̃ is replaced by λ̂. Then, there exists |�λ| → 0 along

with iterations. Specifically, when −0.9 < �λ < 0:

|�λ| < 0.04 (8.27)

exists after two iterations.

Proof. Since r̃i = (ai/̃λ)bi and ri = (ai/λ)bi , we can obtain r̃i = ri · (λ/̃λ)bi . Then, by

combining (8.14) and (8.15), we obtain the following equation:

R =
M∑

i=1

r̃i

(
λ̃

λ

)bi

=
M∑

i=1

r̃i +
M∑

i=1

r̃i

ln (̃λ/̂λ)

1!
bi +

M∑

i=1

r̃i

(ln (̃λ/̂λ))2

2!
b2

i +
M∑

i=1

r̃i

(ln (̃λ/̂λ))3

3!
b3

i . (8.28)

Since ∀i, bi = l ∈ (0, 1) and
∑M

i=1 ri = R, there exists
∑M

i=1 r̃i =
∑M

i=1 ri ·
(λ/̃λ)bi = R · (λ/̃λ)l . Next, we can rewrite (8.28) as

(
λ

λ̃

)l
R · l3

3!
·
(

ln
λ̃

λ̂

)3

+
(

λ

λ̃

)l
R · l2

2!
·
(

ln
λ̃

λ̂

)2

+
(

λ

λ̃

)l
R · l

1!
· ln

λ̃

λ̂
+R ·

(
λ

λ̃

)l

= R. (8.29)
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convergence speed, i.e., when l = 1 and initial |�λ| = 0.9 [11]

By solving this cubic equation, we can obtain:

λ̂ = λ̃ · e(1+2( 3√Z1+ 3√Z2))/l , (8.30)

where

Z1, Z2 =−
1

8
+

1

8
·

⎛
⎝−3

(
λ̃

λ

)l

+2±

√

9

(
λ̃

λ

)2l

−6

(
λ̃

λ

)l

+2

⎞
⎠ . (8.31)

Given (8.30), the relationship between (̂λ − λ)/λ (which is �λ for the next

iteration) and �λ (which is �λ for the current iteration) is illustrated in Figure 8.3.

From this figure, we can determine that |�λ| → 0 in a quite fast speed. On the other

hand, the convergence speed of |�λ| → 0 depends on l. When l = 1, the lowest

convergence speed of |�λ| holds. In this case, �λ decreases at least to 0.58 for

one iteration (when the largest initial |�λ| = 0.9) and to 0.038 for two iterations. For

other cases (e.g., l = 0.5 and l = 0.01), |�λ| decreases at a considerably faster speed.

Therefore, |�λ| < 0.04 exists after two iterations.

This completes the proof of Lemma 8.3.

As proven in Lemma 8.2, λ̃ < λ of our RTE method holds after the first iteration,

which means that �λ ∈ (−1, 0). Moreover, we empirically found that �λ for all CTUs

is restricted to (−0.9, 0) after the first iteration in HEVC-MSP. Then, Lemma 8.3

indicates that |�λ| can be reduced to below 0.04 in at most three iterations, quickly

approaching 0. This verifies the fast convergence speed of the RTE method in terms

of �λ. Next, we numerically evaluate the convergence speed of our RTE method in

terms of Ea.
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8.4.2 Numerical analysis

In this section, the numerical analysis of the convergence speed of our approach is pre-

sented. Specifically, we utilize the approximation error Ea to verify the convergence

speed of the RTE method. Recall that Ea = |�M
i=1̃ri − R|/R (defined in Section 8.3.3).

Figure 8.4 shows Ea versus RTE iterations when applying our approach to image com-

pression in the HM 16.0 platform. As shown in this figure, with no more than three

iterations, Ea reaches below 10−10, thereby reflecting the fast convergence speed of our

RTE method. This result is in accordance with the theoretical analysis of Section 8.4.1.

We further investigate the computational time for each iteration of the RTE

method. As shown in Table 8.1, the computational time for each iteration is indepen-

dent of the image content in our RTE method. Therefore, one image was randomly

chosen from our test set, and the average time of one iteration of our RTE method

was then recorded. The computer used for the test has an Intel Core i7-4770 CPU at
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Figure 8.4 Ea versus iteration times of the RTE method at various bit rates. Note

that for (a), the black dots represent �λ for each CTU in Lena image.

For (b), all 38 images (from our test set of Section 8.5) were used to

calculate the approximation error Ea and the corresponding standard

deviation along with the increasing iterations [11]



Machine-learning-based perceptual video coding 279

3.4 GHz and 16 GB of RAM. From this test, we found out that one iteration of our

RTE method only consumes approximately 0.0015 ms for each CTU. Since it takes

at most three iterations to acquire the closed-form solution, the computational time

for our RTE method is less than 0.005 ms.

Our approach consists of two parts: bit allocation and reallocation with the RTE

method. For bit allocation, three iterations are sufficient for encoding one image, thus

consuming at most 0.005 ms. For bit reallocation, the computational time depends on

the number of CTUs of the image since each CTU requires at most three iterations

to obtain the reallocated bits. For a 1, 600 × 1, 280 image, the computational time of

our approach is approximately 2.5 ms because it includes 500 CTUs. This implies the

negligible computational complexity burden of our approach.

8.5 Experimental results on single image coding

In this section, experimental results are presented to validate the performance of our

approach. Specifically, the test and parameter settings for image compression are

first presented in Section 8.5.1. Then, the R–D performance is evaluated in Section

8.5.2. In Section 8.5.3, the Bjontegaard delta bit rate (BD-rate) savings are provided

to show how many bits can be saved in our approach for image compression. Then, the

accuracy of bit-rate control is discussed in Section 8.5.4. Finally, the generalization

of our approach is verified in Section 8.5.5.

8.5.1 Test and parameter settings

To evaluate the performance of our approach, we established a test set consisting of

38 images at different resolutions. Table 8.2 summarizes all 38 of these images in our

test set. Among these images, ten images have faces, and the other images have no

faces. Saliency for these images is first detected in our approach. Note that the face

and non-face images are automatically recognized by using the face detector in [50].

Specifically, the face detector is first utilized to determine whether there is any face in

the image. For the images with detected faces, we use [50] to predict saliency, and then

we calculate SWPSNR as the optimization objective in our approach. Otherwise, [51]

is utilized to predict saliency for SWPSNR for optimization.

Since the detected salient regions may deviate from the regions attracting human

attention, in our experiments, we measure the EWPSNR of compressed images, which

adopts the ground-truth eye fixations to weight MSE. The previous work of [17] has

also verified that the EWPSNR is highly correlated with subjective quality. To obtain

the ground-truth eye fixations4 for measuring EWPSNR, 21 subjects (12 males and

9 females) with either corrected or uncorrected normal eyesight participated in our

eye-tracking experiments by viewing all images of our test set. Note that only one

among the 21 subjects was an expert who worked in the research field of saliency

4The ground-truth eye fixations, together with their corresponding images, can be obtained from our

website at https://github.com/RenYun2016/TMM2016.
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detection. The other 20 subjects did not have any background in saliency detection,

and they were naive to the purpose of the eye-tracking experiment. Then, a Tobii

TX60 eye tracker integrated with a monitor of a 23-in. LCD display was used to

record the eye movement at a sample rate of 60 Hz. All subjects were seated on an

adjustable chair at a distance of 60 cm from the monitor of the eye tracker. Before

the experiment, the subjects were instructed to perform the 9-point calibration for the

eye tracker. During the experiment, each image was presented in a random order and

lasts for 4 s, followed by a 2-s black image for a drift correction. All subjects were

asked to freely view each image. Overall, 9,756 fixations were collected for our 38

test images.

In our experiments, our approach was implemented in HM 16.0 with the MSP

configuration profile. Then, the non-RC HEVC-MSP [9], also on the HM 16.0 plat-

form, was utilized for comparison. The RC HEVC-MSP was also compared, the RC of

which is mainly based on [52]. Note that both our approach and the RC HEVC-MSP

have integrated RC to specify the bit rates, and the other parameters in the configu-

ration profile were set by default, the same as those of the non-RC HEVC-MSP. To

obtain the target bit rates, we encoded each image with the non-RC HEVC-MSP at

six fixed QPs, the values of which are 22, 27, 32, 37, 42 and 47. Then, the target bit

rates of our approach and the RC HEVC-MSP were set to be the actual bits obtained

by the non-RC HEVC-MSP. As such, high ranges of visual quality for compressed

images can be ensured.

8.5.2 Assessment on rate–distortion performance

Now, we assess the R–D performance of our approach and of the conventional non-

RC and RC HEVC-MSP approaches. The R–D curves for face and non-face images

are first plotted and analyzed. Subsequently, we present the results of image quality

improvement of our approach at different QPs, which are measured by the EWP-

SNR and SWPSNR increase of our approach over the conventional approaches.

Next, we evaluate how ROI detection accuracy affects the quality improvement in

our approach. Finally, the subjective quality is evaluated by calculating the DMOS,

as well as showing several compressed images.

R–D curve: The first ten figures of Figures 8.5 and 8.6 show the EWPSNR and

PSNR versus bit rates for all ten face images of our test set. As shown in these figures,

our approach is able to significantly improve the EWPSNR of compressed images,

despite the slight decrease in PSNR. Consequently, subjective quality can be dra-

matically improved by our approach. Moreover, The last eight figures of Figures 8.5

and 8.6 show the curves of EWPSNR and PSNR versus bit rates for eight non-face

images randomly selected from our test set. These figures show that our approach is

also capable of achieving superior subjective quality for non-face images.

EWPSNR assessment: To quantify the R–D improvement of our approach, we

tabulate in Table 8.3 the EWPSNR enhancement of our approach over conventional

approaches. We have the following observations with regard to the EWPSNR enhance-

ment. For face images, our approach achieves significant EWPSNR improvement, as

the increase over the non-RC HEVC-MSP and RC HEVC-MSP is 2.31±1.23 dB and
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Figure 8.5 EWPSNR and PSNR versus bit rates for our approach and the non-RC

HEVC-MSP [11]

2.47±1.20 dB, respectively. In addition, the maximum increase of EWPSNR is 5.75

and 6.30 dB in our approach over the non-RC and RC HEVC-MSP approaches,

respectively, whereas the minimum increase is 0.39 and 0.71 dB for these two

approaches, respectively. For non-face images, the EWPSNR improvement of our

approach reaches 1.49 dB on average compared with the RC HEVC-MSP approach,

with a standard deviation of 0.70 dB. Compared to the non-RC HEVC-MSP approach,

our approach enhances the EWPSNR by 1.21 dB on average, and the standard devi-

ation of this enhancement is 0.61 dB. In a word, our approach dramatically improves

the EWPSNR over the conventional approaches for both face and non-face images.

SWPSNR assessment: Since the optimization objective of our approach is to

maximize SWPSNR, we further report in Table 8.3 the SWPSNR improvement of

our approach over the conventional approaches. As shown in Table 8.3, our approach
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Figure 8.6 EWPSNR and PSNR versus bit rates for our approach and the RC

HEVC-MSP [11]

also achieves significant improvements in SWPSNR at different QPs. Specifically,

compared with RC HEVC-MSP, our approach achieves an SWPSNR improvement

over all images, with up to a 4.14 dB SWPSNR enhancement for face images and

up to a 2.14 dB enhancement for non-face images. On average, for non-face images,

our approach increases the SWPSNR by 0.72 and 1.00 dB over non-RC and RC

HEVC-MSP, respectively. For face images, a more average SWPSNR gain is obtained

by our approach, which has 1.56 and 1.67 dB increase over non-RC and RC

HEVC-MSP.

Influence of ROI detection accuracy: Now, we investigate how the ROI detec-

tion accuracy influences the results of quality improvement in our approach. To this

end, we further implement our approach using EWPSNR (instead of SWPSNR) as the

optimization objective, which means that ROI detection is of 100% accuracy when



Table 8.3 EWPSNR and SWPSNR improvement of our approach over non-RC and RC HEVC-MSP approaches, for the 38 images [11]

Face Non-face

SWPSNR improvement EWPSNR improvement SWPSNR improvement EWPSNR improvement

Avg. ± Std. Max./Min. Avg. ± Std. Max./Min. Avg. ± Std. Max./Min. Avg. ± Std. Max./Min.

QP = 47 Over non-RC 1.10 ± 0.47 2.05/0.44 1.55 ± 0.79 2.93/0.39 0.44 ± 0.19 0.95/0.14 0.71 ± 0.43 1.91/0.04
Over RC 1.19 ± 0.52 2.21/0.65 1.67 ± 0.86 2.87/0.71 0.90 ± 0.40 1.84/0.25 1.15 ± 0.55 2.51/0.24

QP = 42 Over non-RC 1.21 ± 0.43 1.83/0.39 1.71 ± 0.79 2.84/0.47 0.58 ± 0.23 1.17/0.18 0.92 ± 0.42 2.13/0.15
Over RC 1.43 ± 0.55 2.43/0.55 1.99 ± 0.80 2.98/1.07 0.97 ± 0.45 1.74/0.31 1.34 ± 0.62 2.74/0.23

QP = 37 Over non-RC 1.29 ± 0.38 1.95/0.72 1.92 ± 0.93 3.64/0.67 0.71 ± 0.29 1.23/0.25 1.16 ± 0.46 2.21/0.31
Over RC 1.42 ± 0.50 2.40/0.90 2.16 ± 0.92 3.56/0.80 1.00 ± 0.50 1.96/0.25 1.47 ± 0.65 2.83/0.51

QP = 32 Over non-RC 1.51 ± 0.51 2.48/0.67 2.23 ± 1.08 4.20/1.04 0.81 ± 0.34 1.32/0.24 1.35 ± 0.54 2.40/0.27
Over RC 1.57 ± 0.52 2.49/0.95 2.38 ± 1.10 4.18/0.91 0.99 ± 0.50 1.99/0.21 1.56 ± 0.68 2.90/0.36

QP = 27 Over non-RC 1.90 ± 0.73 3.26/0.79 2.85 ± 1.37 5.41/1.66 0.86 ± 0.36 1.48/0.33 1.49 ± 0.61 2.66/0.10
Over RC 2.01 ± 0.65 3.14/1.01 2.98 ± 1.25 5.16/1.73 0.97 ± 0.47 2.13/0.36 1.58 ± 0.73 2.77/0.23

QP = 22 Over non-RC 2.38 ± 0.92 4.14/1.26 3.60 ± 1.21 5.75/2.17 0.92 ± 0.38 1.54/0.40 1.62 ± 0.69 3.07/0.12
Over RC 2.42 ± 1.05 4.14/1.17 3.65 ± 1.21 6.30/2.07 1.15 ± 0.51 2.14/0.39 1.85 ± 0.82 3.60/0.08

Overall Over non-RC 1.56 ± 0.73 4.14/0.39 2.31 ± 1.23 5.75/0.39 0.72 ± 0.34 1.54/0.14 1.21 ± 0.61 3.07/0.04
Over RC 1.67 ± 0.76 4.14/0.55 2.47 ± 1.20 6.30/0.71 1.00 ± 0.47 2.14/0.21 1.49 ± 0.70 3.60/0.08
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Table 8.4 EWPSNR difference (dB) of our approach after replacing SWPSNR with

EWPSNR as the optimization objective [11]

QP 47 42 37 32 27 22 Overall

Face 0.72 0.77 0.67 0.66 0.57 0.45 0.64
Non-face 0.70 0.77 0.84 0.92 0.98 1.01 0.87

compressing images using our approach. Specifically, Table 8.4 shows the EWPSNR

difference averaged over all 38 test images when replacing SWPSNR with EWPSNR

as the optimization objective in our approach. This reflects the influence of ROI

detection accuracy on the quality improvement of our approach. We can see from

Table 8.4 that the EWPSNR of our approach can be enhanced by 0.64 and 0.87 dB on

average for face and non-face images after replacing SWPSNR by EWPSNR as the

optimization objective. Thus, visual quality can be further improved in our approach

when ROI detection is more accurate.

Subjective quality evaluation: Next, we compare our approach with the non-

RC HEVC-MSP using DMOS. Note that the DMOS of the RC HEVC-MSP is not

evaluated in our test because it produces even worse visual quality than the non-RC

HEVC-MSP. The DMOS test was conducted by the means of single stimulus contin-

uous quality score, which is processed by Rec. ITU-R BT.500 to rate the subjective

quality. The total number of subjects involved in the test is 12, consisting of 6 males and

6 females. Here, a Sony BRAVIA XDV-W600, with a 55-in. LCD, was utilized for dis-

playing the images. The viewing distance was set to be four times the image height for

rational evaluation. During the experiment, each image was displayed for 4 s, and the

order in which the images were displayed was random. Then, the subjects were asked

to rate after each image was displayed, i.e., excellent (100–81), good (80–61), fair

(60–41), poor (40–21) and bad (21–0). Finally, DMOS was computed to qualify the

difference in subjective quality between the compressed and uncompressed images.

The DMOS results for the face images are tabulated in Table 8.5. Smaller values

of DMOS indicate better subjective quality. As shown in Table 8.5, our approach

has considerably better subjective quality than the non-RC HEVC-MSP at all bit

rates. Note that for all images, the DMOS values of our approach at QP = 47 are

almost equal to those of the non-RC HEVC-MSP at QP = 42, which approximately

doubles the bit rates of QP = 47. This indicates that a bit rate reduction of nearly half

can be achieved in our approach. This result is also in accordance with the ∼40%

BD-rate saving of our approach (to be discussed in Section 8.5.3). We further show

in Figure 8.7 Lena and Kodim18 compressed by our and the other two approaches.

Obviously, our approach, which incorporates the saliency-detection method of [50],

is able to significantly meliorate the visual quality over face regions (that humans

mainly focus on). Consequently, our approach yields significantly better subjective

quality than the non-RC and RC HEVC-MSP for face images.

In addition, the DMOS results of those eight non-face images are listed in

Table 8.6. Again, our approach is considerably superior to the non-RC HEVC-MSP



Table 8.5 DMOS results for face images between our approach and the non-RC HEVC-MSP [11]

Tourist Golf Travel Doctor Woman Kodim15 Kodim04 Kodim18 Tiffany Lena

QP = 47 Bits (bpp) 0.04 0.02 0.04 0.02 0.04 0.03 0.03 0.05 0.03 0.05
Our 57.2 58.0 56.9 56.5 61.4 64.5 68.9 55.0 59.2 57.5
Non-RC 74.3 69.6 69.1 63.9 78.4 70.1 73.9 66.3 67.6 63.9

QP = 42 Bits (bpp) 0.08 0.03 0.10 0.03 0.13 0.06 0.06 0.16 0.06 0.09
Our 45.0 50.0 42.7 47.8 43.9 50.7 53.6 43.1 43.1 47.9
Non-RC 58.5 56.3 53.7 52.1 61.3 61.2 61.9 56.9 54.1 55.5

QP = 32 Bits (bpp) 0.27 0.08 0.36 0.10 0.56 0.29 0.31 0.76 0.26 0.28
Our 28.1 35.2 26.1 34.1 28.9 30.0 30.0 20.8 27.1 36.9
Non-RC 36.4 42.0 34.0 42.3 36.0 38.7 38.8 28.5 30.2 44.0

Note: The bold values mean the best subjective quality per test QP and test image.
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(a) (b) (c) (d)

Face Face Face

FaceFaceFace

Figure 8.7 Subjective quality of Lena and Kodim18 images at both 0.05 bpp

(QP = 47) for three approaches [11]: (a) human fixations, (b) non-RC

HEVC-MSP, (c) RC HEVC-MSP and (d) our

approach at all bit rates. Moreover, Figure 8.8 shows two images Kodim06 and

Kodim07 compressed by our approach and by the other two approaches. From this

figure, we can see that our approach improves the subjective quality of compressed

images, as the fixated regions are with higher quality.

8.5.3 Assessment of BD-rate savings

It is interesting to investigate how many bits can be saved when applying our approach

to image compression. In our experiments, BD-rates were calculated for this investi-

gation. To calculate the BD-rates, the six different bit rates, each of which corresponds

to one fixed QP (among QP = 22, 27, 32, 37, 42, and 47), were all utilized. Since the

above section has shown that the EWPSNR is more effective than the PSNR for eval-

uating subjective quality, the EWPSNRs of each image at six bit rates were measured

as the distortion metric. Given the bit rates and their corresponding EWPSNRs, the

BD rate of each image was achieved. Then, the BD-rate savings of our approach can

be obtained, with the non-RC or RC HEVC-MSP as an anchor.

Table 8.7 reports the BD-rate savings of our approach averaged over all 38

images of our test set. As shown in this table, a 24.3% BD-rate saving is achieved

in our approach for all images over the non-RC HEVC-MSP. The BD-rate saving

of our approach increases to 27.7%, when compared with the RC HEVC-MSP. In

Table 8.7, the results of BD-rate savings for face and non-face images are also listed.

Accordingly, we can see that our approach is able to save 39.1% and 42.5% BD-rates

over non-RC and RC HEVC-MSP, respectively. Note that compared with non-face

images, face images witness more gains in our approach. It is probably due to the fact



Table 8.6 DMOS results for non-face images between our approach and the non-RC HEVC-MSP [11]

Bike Picture14 Kodim02 Kodim06 Kodim07 Kodim10 Kodim16 Kodim24

QP = 47 Bits (bpp) 0.07 0.04 0.02 0.04 0.05 0.03 0.02 0.06
Our 53.3 59.6 65.5 62.0 56.8 63.0 71.1 67.1
Non-RC 57.2 63.1 69.9 72.1 67.0 68.1 79.2 70.2

QP = 42 Bits (bpp) 0.14 0.10 0.04 0.12 0.10 0.08 0.06 0.17
Our 36.8 50.3 50.0 52.7 50.1 54.5 56.2 55.4
Non-RC 38.9 54.2 53.4 57.6 56.3 58.7 62.1 59.3

QP = 32 Bits (bpp) 0.49 0.40 0.26 0.60 0.33 0.28 0.36 0.71
Our 30.3 31.7 33.5 34.8 36.3 34.7 35.6 32.6
Non-RC 30.8 32.6 35.2 35.6 38.0 37.9 40.8 33.8

Note: The bold values mean the best subjective quality per test QP and test image.
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(a) (b) (c) (d)

Figure 8.8 Subjective quality of Kodim06 and Kodim07 image at 0.04 and

0.05 bpp (QP = 47) for three approaches [11]: (a) human fixations,

(b) non-RC HEVC-MSP, (c) RC HEVC-MSP and (d) our

Table 8.7 BD-rate savings and encoding time ratio of our

approach over non-RC and RC HEVC-MSP [11]

Over non-RC Over RC
HEVC-MSP HEVC-MSP

Face images (%) 39.18 42.50
Non-face images (%) 18.98 22.43
All generic images (%) 24.30 27.72
Encoding time (%) 108.3 105.2

that human faces are more consistent than other objects in attracting human attention.

Meanwhile, in our approach, the saliency of face images can be better predicted than

that of non-face images. Consequently, the ROI-based compression of face images

by our approach is more effective in satisfying human perception, resulting in larger

improvements in EWPSNR, BD-rate savings and DMOS scores.

As a result of BD-rate saving, the computational time of our approach increases,

which is also reported in Table 8.7. Specifically, our approach increases the encoding

time by approximately 8% and 5% over non-RC and RC HEVC-MSP, respectively.

The computational time of our approach mainly comes from three parts, i.e., saliency

detection, pre-compression and RTE optimization. As discussed above (Sections 8.3.1

and 8.4.2), our pre-compression process slightly increases the computational cost

by ∼3%, while our RTE method consumes negligible computational time. Besides,

saliency detection, which is the first step in our approach, consumes ∼2% extra time.

8.5.4 Assessment of control accuracy

The control accuracy is another factor in evaluating the performance of RC-related

image compression. Here, we compare the control accuracy of our approach and of
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the RC HEVC-MSP over all images in our test set. Since the bit reallocation process

is developed in our approach to bridge the gap between the target and actual bits, the

control accuracy of our approach with and without the bit reallocation process is also

compared. In the following, the control accuracy is evaluated from two aspects: the

CTU level and the image level.

For the evaluation of control accuracy at the CTU level, we compute the bit-rate

error of each CTU, i.e., the absolute difference between target and actual bits assigned

to one CTU. Then, Figure 8.9 demonstrates the heat maps of bit-rate errors at the CTU

level averaged over all images with the same resolutions from the Kodak and JPEG

XR sets. The heat maps of our approach and of the RC HEVC-MSP are both shown in

Figure 8.9. It can easily be observed that our approach ensures a considerably smaller

bit-rate error for almost all CTUs when compared with the RC HEVC-MSP. Note that

the accurate rate control at the CTU level is meaningful because it ensures that the

bit consumption follows the amount that it is allocated, satisfying the subjective R–D

optimization formulation of (8.6). As a result, the bits in our approach can be accu-

rately assigned to ROIs with optimal subjective quality. In contrast, the conventional

RC HEVC-MSP normally accumulates redundant bits at the end of image bitstreams,

resulting in poor performance in R–D optimization.

For the evaluation of control accuracy at the image level, the bit-rate error, defined

as the absolute difference between the target and actual bits of the compressed image,

is worked out. Figure 8.10 shows the bit-rate errors of all 38 images from our test set in

terms of maximum, minimum, average and standard deviation values. As shown in this

figure, our approach achieves smaller bit-rate error than the RC HEVC-MSP from the

aspects of mean, standard deviation, maximum and minimum values. This verifies

the effectiveness of our approach in RC and also makes our approach more practical

because the accurate bit allocation of our approach well meets the bandwidth or storage

requirements. Furthermore, Figure 8.10 shows that the bit-rate error significantly

increases from 1.43% to 6.91% and also dramatically fluctuates once bit reallocation

is disabled in our approach. This indicates the effectiveness of the bit-reallocation

process in our approach. Note that because a simple reallocation process is also

adopted in the RC HEVC-MSP, the bit-rate errors of RC HEVC-MSP are also much

smaller than those of our approach without bit reallocation.

In summary, our approach has more accurate RC at both the CTU and image

levels compared to the RC HEVC-MSP.

8.5.5 Generalization test

To verify the generalization of our approach, we further compare our approach and

conventional approaches on 112 raw images from 3 test sets grouped into 4 categories,

i.e., 22 face images, 41 non-face images, 4 graphics images and 45 aerial images. The

resolutions of these images range from 256 × 256 to 7,216 × 5,408. The experimental

results on these 112 images are reported in Table 8.8, including the mean, standard

deviation, maximum and minimum values of SWPSNR3 as well as bit-rate errors.

Due to space limitation, this table only shows the results of compression at QP = 32

and the overall results of compression at QP = 22, 27, 32, 37, 42 and 47.
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CTU. Note that the bit-rate errors are obtained via averaging all

images compressed by our and the RC HEVC MSP at six different bit

rates (corresponding to QP = 22, 27, 32, 37, 42, 47) [11]. (a) Kodak

768 × 512, (b) Kodak 512 × 768, (c) JPEG XR 1,280 × 1,600
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Figure 8.10 The bit-rate errors of each single image for our approach with and

without bit reallocation, as well as the RC HEVC-MSP. The maximum,

minimum, average and standard deviation values over all images are

also provided [11]

As shown in Table 8.8, our approach still dramatically outperforms the conven-

tional approaches across different categories of images in terms of both quality and RC

error. Specifically, the SWPSNR improvement on the newly added 112 images is sim-

ilar to that on the above 38 test images. In particular, when compressing face images

at 6 QPs, our approach has 1.50 ± 0.84 dB SWPSNR increase over the conventional

RC HEVC-MSP. Moreover, the average increase in SWPSNR at six QPs is 0.75 dB

for non-face images, 0.83 dB for graphic images and 0.60 dB for aerial images. For

control accuracy, the average bit-rate errors of our approach stabilize at 1.84%–3.74%

across different categories, while the conventional RC approach in HEVC fluctuates

from 4.08% to 12.40% on average with an even larger standard deviation. This result

validates that our approach can achieve a stable and accurate RC, compared to RC

HEVC-MSP. Finally, the generalization of our approach can be validated.

8.6 Experimental results on video coding

In this section, we present an implementation of the RTE method in perceptual video

coding, i.e., to optimize the subjective quality at a given bit rate for panoramic videos.

Several saliency-detection methods for panoramic videos can be employed in our

framework [55,56]. We adopt the S-PSNR of [55] in this chapter as an example.

Based on the definition of S-PSNR, the sphere-based distortion is the sum of square

error between pixels sampled from sphere:

di =
∑

n∈Ci

(S(xn, yn) − S ′(xn, yn))2, (8.32)

where Ci is the set of pixels belonging to the ith CTU. Therefore, at target bit rate R,

the optimization on S-PSNR can be formulated by

min

(
M∑

i=1

di

)
s.t.

M∑

i=1

ri = R. (8.33)



Table 8.8 Performance improvement of our approach over non-RC and RC HEVC-MSP approaches, for 112 test images belonging to

different categories [11]

QP SWPSNR improvement (dB) Face Non-face Graphics Aerial All

32 Over non-RC Avg. ± Std. 1.14 ± 0.03 0.54 ± 0.40 0.51 ± 0.28 0.35 ± 0.30 0.58 ± 0.50
Max./Min. 2.82/0.11 1.60/0.02 0.81/0.14 1.04/0.00 2.82/0.00

Over RC Avg. ± Std. 1.40 ± 0.76 0.73 ± 0.49 0.65 ± 0.13 0.59 ± 0.61 0.80 ± 0.66
Max./Min. 2.85/0.17 1.80/0.01 0.83/0.53 2.97/0.00 2.97/0.00

All Over non-RC Avg. ± Std. 1.25 ± 0.71 0.53 ± 0.45 0.50 ± 0.21 0.30 ± 0.33 0.58 ± 0.58
Max./Min. 3.30/0.01 3.35/0.00 0.90/0.14 2.28/0.01 3.35/0.00

Over RC Avg. ± Std. 1.50 ± 0.84 0.75 ± 0.59 0.83 ± 0.68 0.60 ± 0.52 0.84 ± 0.71
Max./Min. 4.59/0.01 3.13/0.01 2.88/0.06 2.97/0.01 4.59/0.01

Bit-rate error (%) Face Non-face Graphics Aerial Overall

32 RC HEVC-MSP Avg. ± Std. 2.40 ± 2.76 3.53 ± 9.11 6.43 ± 9.80 6.93 ± 9.09 4.78 ± 8.39
Max./Min. 10.9/0.06 53.65/0.01 20.99/0.47 35.07/0.02 53.65/0.01

Our Avg. ± Std. 2.72 ± 2.62 2.80 ± 4.15 1.89 ± 1.69 1.63 ± 3.34 2.28 ± 3.51
Max./Min. 12.11/0.36 25.45/0.03 4.42/0.85 20.38/0.06 25.45/0.03

All RC HEVC-MSP Avg. ± Std. 4.08 ± 5.51 7.96 ± 15.64 11.96 ± 21.20 12.40 ± 16.29 9.12 ± 15.07
Max./Min. 33.61/0.04 98.81/0.00 86.00/0.12 69.12/0.00 98.81/0.00

Our Avg. ± Std. 3.37 ± 3.63 3.74 ± 5.71 2.17 ± 1.85 1.84 ± 3.03 2.85 ± 4.37
Max./Min. 25.79/0.10 39.32/0.01 7.00/0.31 21.39/0.00 39.32/0.00
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In (8.33), rm is the assigned bits at the mth CTU, and M is the total number of CTUs

in the current frame. To solve the above formulation, a Lagrange multiplier λ is

introduced, and (8.33) can be converted to an unconstrained optimization problem:

min
{ri}M

i=1

J =
M∑

i=1

(di + λri). (8.34)

Here, we define J as the value of R–D cost. By setting derivative of (8.34) to zero,

minimization on J can be achieved by

∂J

∂ri

=
∂

(∑M

i=1 (di + λri)
)

∂ri

=
∂di

∂ri

+ λ

= 0. (8.35)

Next, we need to model the relationship between distortion di and bit rate ri, for

solving (8.35). Note that di and ri are equivalent to S-MSE and bpp divided by the

number of pixels in a CTU, respectively. Similar to [37], we use the hyperbolic model

to investigate the relationship between sphere-based distortion S-MSE and bit-rate

bpp, on the basis of four encoded panoramic video sequences. Figure 8.11 plots the

fitting R–D curves using the Hyperbolic model, for these four sequences. In this

figure, bpp is calculated by

bpp =
R

f × W × H
, (8.36)

where f means frame rate, and W and H stand for width and height of video, respec-

tively. Figure 8.11 shows that the Hyperbolic model is capable of fitting on the

relationship between S-MSE [55] and bpp, and R-square for the fitting curves of

four sequences are all more than 0.99. Therefore, the hyperbolic model is used in our

RC scheme as follows:

di = ci · (ri)
−ki , (8.37)

where cm and km are the parameters of the hyperbolic model that can be updated for

each CTU using the same way as [11].

The above equation can be rewritten by

−
∂di

∂ri

= ci · ki · r
(−ki−1)
i . (8.38)

Given (8.35) and (8.38), the following equation holds:

ri =
(

ciki

λ

)(1/(ki+1))

. (8.39)
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Figure 8.11 R–D fitting curves using the hyperbolic model. Note that these four

sequences are encoded by HM 15.0 with the default low delay P

profile. The bit rates are set as the actual bit rates when

compressing at four fixed QP (27, 32, 37, 42), to be described in

Section 8.6.1.1 [55]

Moreover, according to (8.33), we have the following constraint:

M∑

i=1

ri = R. (8.40)

Upon (8.39) and (8.40), the bit allocation for each CTU can be formulated as follows:

M∑

i=1

ri =
M∑

i=1

(
ci · ki

λ

)(1/(ki+1))

= R. (8.41)

Therefore, once (8.41) is solved, target bit ri can be obtained for each CTU, with

maximization on S-PSNR. In this chapter, we apply the RTE method [49] in solving

(8.41) with the closed-form solution.

After obtaining the optimal bit-rate allocation, quantization parameter (QP) of

each CTU can be estimated using the method of [37]. Figure 8.12 summarizes the

overall procedure of our RC scheme for panoramic video coding. Note that our RC

scheme is mainly applicable for the latest HEVC-based panoramic video coding, and



296 Applications of machine learning in wireless communications

Panoramic sequence
Bit allocation QP estimation

Update parameters

Bit stream

0 0 1 1 1 0 1 0

Encoding

Current frame t

Next frame t + 1

Bit allocation QP estimation Encoding

cm, km

cm, km

rm QPm

QPmrm

Figure 8.12 The framework of the proposed RC scheme for panoramic video

coding [55]

it can be extended to other video-coding standards by reinvestigating the hyperbolic

model of bit rate and distortion.

8.6.1 Experiment

In this section, experiments are conducted to validate the effectiveness of our RC

scheme. Section 8.6.1.1 presents the settings for our experiments. Section 8.6.1.2

evaluates our approach from aspects of R–D performance, BD-rate and Bjontegaard

delta S-PSNR (BD-PSNR). Section 8.6.1.3 discusses the RC accuracy of our scheme.

8.6.1.1 Settings

Due to space limitation, eight panoramic video sequences at 4K are chosen from

the test set of IEEE 1857 working group in our experiments. They are shown in

Figure 8.13. These sequences are all at 30 fps with duration of 10 s. Figure 8.13

shows that the contents of these sequences, which vary from indoor to outdoor scenes

and contain people and landscapes. Then, these panoramic video sequences are com-

pressed by the HEVC reference software HM-15.0. Here, we implement our RC

scheme in HM-15.0, and then compare our scheme with the latest R–λ RC scheme [37]

that is default RC setting of HM-15.0. For HM-15.0, the Low Delay P setting is applied

with the configuration file encoder lowdelay P main.cfg. The same as [37], we first

compress panoramic video sequences using the conventional HM-15.0 at four fixed

QPs, which are 27, 32, 37 and 42. Then, the obtained bit rates are used to set the

target bit rates of each sequence for both our and conventional [37] schemes. It is

worth pointing out that we only compare with the state-of-the-art RC scheme [37] of

HEVC for 2D video coding, since there exists no RC scheme for panoramic video

coding.

8.6.1.2 Evaluation on R–D performance

R–D curves. We compare the R–D performance of our and the conventional RC [37]

schemes using S-PSNR in Y channel. We plot in Figure 8.14 the R–D curves of

all test panoramic video sequences, for both our and the conventional RC schemes.
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(a) (b) (c) (d)

(h)(e) (f) (g)

Figure 8.13 Selected frames from all test panoramic video sequences [55]:

(a) Fengjing_1 (4,096 × 2,048), (b) Tiyu_1 (4,096 × 2,048),

(c) Yanchanghui_2 (4,096 × 2,048), (d) Dianying (4,096 × 2,048),

(e) Hangpai_1 (4,096 × 2,048), ( f ) Hangpai_2 (4,096 × 2,048),

(g) AerialCity (3,840 × 1,920), (h) DrivingInCountry (3,840 × 1,920)

We can see from these R–D curves that our scheme achieves higher S-PSNR than [37]

at the same bit rates, for all test sequences. Thus, our RC scheme is superior to [37]

in R–D performance.

BD-PSNR and BD-rate. Next, we quantify R–D performance in terms of BD-

PSNR and BD-rate. Similar to the above R–D curves, we use S-PSNR inY channel for

measuring BD-PSNR and BD-rate. Table 8.9 reports the BD-PSNR improvement of

our scheme over [37]. As can be seen from this table, our scheme averagely improves

0.1613 dB in BD-PSNR over [37]. Such improvement is mainly because our scheme

aims at optimizing S-PSNR, while [37] deals with optimization on PSNR. Table 8.9

also tabulates the BD-rate saving of our RC scheme with [37] being an anchor. We

can see that our RC scheme is able to save 5.34% BD-rate in average, when compared

with [37]. Therefore, our scheme has potential in relieving the bandwidth-hungry

issue posed by panoramic videos.

Subjective quality. Furthermore, Figure 8.15 shows visual quality of one

selected frame of sequence Dianying, encoded by HM-15.0 with our and conven-

tional RC schemes at the same bit rate. We can observe that our scheme yields better

visual quality than [37], with smaller blurring effect and less artifacts. For exam-

ple, both regions of fingers and light generated by our scheme is much more clearer

than those by [37]. Besides, the region of the leg encoded with our RC scheme has

less blurring effect, compared to [37]. In summary, our scheme outperforms [37]

in R–D performance, evaluated by R–D curves, BD-PSNR, BD-rate and subjective

quality.

8.6.1.3 Evaluation on RC accuracy

Now, we evaluate the RC accuracy of our scheme. For such evaluation, Table 8.10

illustrates the error rate of actual bit rate with respect to target bit rate, for both our

and the conventional RC [37] schemes. We can see from this table that the average RC

error rate is less than 1‰, comparable to the error rate of [37]. Besides, the maximum

error rate for our RC scheme is 3.02‰ for sequence Tiyu 1, and the error rate of [37]
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Figure 8.14 R–D curves of all test sequences compressed by HM-15.0 with our

and conventional RC [37] schemes [55]: (a) Fengjing 1, (b) Tiyu 1,

(c) Yanchanghui 2, (d) Dianying, (e) Hangpai 1, ( f ) Hangpai 2,

(g) AerialCity, (h) DrivingInCountry



Table 8.9 BD-rate saving and BD-PSNR enhancement for each test panoramic video sequence [55]

Name Fengjing 1 Tiyu 1 Yanchanghui 2 Dianying Hangpai 1 Hangpai 2 AerialCity DrivingInCountry Average

BD-rate saving (%) −7.63 −4.39 −3.96 −4.81 −3.87 −4.04 −5.41 −8.63 −5.34
BD-PSNR (dB) 0.2527 0.1155 0.1619 0.1441 0.1143 0.1197 0.1356 0.2464 0.1613
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(a) (b)

Figure 8.15 Visual quality of Dianying compressed at 158 kbps by HM-15.0 with

our and conventional RC [37] schemes. Note that this figure shows

the 68th frame of compressed Dianying [55]. (a) Conventional RC

scheme and (b) our scheme

is up to 1.37‰. Although the RC accuracy of our scheme is smaller than [37], it

is rather high and very close to 100% accuracy. Therefore, our scheme is effective

and practical for controlling bit rate of HEVC-based panoramic video coding. More

importantly, our RC is capable of improving RC performance for panoramic video

coding.

8.7 Conclusion

In this chapter, we have proposed a novel HEVC-based compression approach that

minimizes the perceptual distortion. Benefiting from the state-of-the-art saliency

detection, we developed a formulation to minimize perceptual distortion, which main-

tains properly high quality at regions that attract attention. Then, the RTE method was

proposed as a closed-form solution to our formulation with little extra time for mini-

mizing perceptual distortion, followed by the bit allocation and reallocation process.

Consequently, we validated our approach in experiments of compressing both images

and videos.

There are two possible directions for future work: (1) our approach only takes

into account the visual attention in improving the subjective quality of compressed

images/videos. In fact, other factors of the HVS, e.g., JND, may also be integrated

into our approach for perceptual compression. (2) Our approach in its present form

only concentrates on minimizing perceptual distortion according to the predicted

visual attention of uncompressed frames. However, the distribution of visual attention

may be influenced by the distortion of compressed frames in reverse. A long-term



Table 8.10 S-PSNR improvement and RC accuracy of our RC scheme, compared with the conventional scheme [37,55]

Name Fixed RC error (‰) RC S-PSNR (dB) Name Fixed RC error (‰) RC S-PSNR (dB) Name Fixed RC error (‰) RC S-PSNR (dB)

QP (conventional) error (‰) improvement error (‰) QP (conventional) error (‰) improvement QP (conventional) error (‰) improvement

(our) (our) (our)

Fengjing 1 27 0.07 0.12 0.27 Tiyu 1 27 0.04 0.04 0.18 Yanchanghui 2 27 0.74 0.34 0.03

32 0.06 0.05 0.28 32 0.46 0.08 0.13 32 0.34 0.52 0.17

37 0.32 0.20 0.23 37 0.01 1.98 0.07 37 0.25 0.96 0.19

42 0.31 0.23 0.15 42 1.37 3.02 0.10 42 0.54 1.89 0.20

Dianying 27 0.02 1.68 −0.07 Hangpai 1 27 0.05 0.19 0.19 Hangpai 2 27 0.02 0.18 0.15

32 0.00 2.00 0.11 32 0.10 0.29 0.11 32 0.45 0.27 0.14

37 0.26 0.49 0.25 37 0.06 1.46 0.09 37 0.42 0.50 0.09

42 0.70 0.04 0.32 42 0.12 0.10 0.12 42 0.01 0.78 0.09

AerialCity 27 0.17 0.95 0.06 Driving 27 0.02 2.75 0.34 Average 27 0.14 0.78 0.14

InCountry

32 0.28 0.74 0.12 32 0.04 0.24 0.27 32 0.21 0.52 0.17

37 0.06 1.18 0.20 37 0.02 0.52 0.21 37 0.17 0.91 0.17

42 0.09 4.43 0.18 42 0.05 1.24 0.19 42 0.40 1.47 0.17

Overall average 0.23 0.92 0.16
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goal of perceptual compression should thus include the loop between visual attention

and perceptual distortion over compressed images/videos.
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Chapter 9

Machine-learning-based saliency detection and
its video decoding application in wireless

multimedia communications

Mai Xu1, Lai Jiang1, and Zhiguo Ding2

Saliency detection has been widely studied to predict human fixations, with various

applications in wireless multimedia communications. For saliency detection, we argue

that the state-of-the-art high-efficiency video-coding (HEVC) standard can be used to

generate the useful features in compressed domain. Therefore, this chapter proposes

to learn the video-saliency model, with regard to HEVC features. First, we establish an

eye-tracking database for video-saliency detection. Through the statistical analysis on

our eye-tracking database, we find out that human fixations tend to fall into the regions

with large-valued HEVC features on splitting depth, bit allocation, and motion vector

(MV). In addition, three observations are obtained from the further analysis on our eye-

tracking database. Accordingly, several features in HEVC domain are proposed on the

basis of splitting depth, bit allocation, and MV. Next, a support vector machine (SVM)

is learned to integrate those HEVC features together, for video-saliency detection.

Since almost all video data are stored in the compressed form, our method is able to

avoid both the computational cost on decoding and the storage cost on raw data. More

importantly, experimental results show that the proposed method is superior to other

state-of-the-art saliency-detection methods, either in compressed or uncompressed

domain.

9.1 Introduction

According to the study on the human visual system (HVS) [1], when a person looks

at a scene, he/she may pay much visual attention on a small region (the fovea) around

a point of eye fixation at high resolution. The other regions, namely, the peripheral

regions, are captured with little attention at low resolutions. As such, humans are

able to avoid the processing of tremendous visual data. Visual attention is therefore

1School of Electronic and Information Engineering, Beihang University, China
2School of Electrical and Electronic Engineering, The University of Manchester, UK
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a key to perceive the world around humans, and it has been extensively studied in

psychophysics, neurophysiology, and even computer vision societies [2]. Saliency

detection is an effective way to predict the amount of human visual attention attracted

by different regions in images/videos. Most recently, saliency detection has been

widely applied in wireless multimedia communications and other computer vision

tasks, such as, object detection [3,4], object recognition [5], image retargeting [6],

image-quality assessment [7], and image/video compression [8,9].

In earlier time, some heuristic saliency-detection methods are developed accord-

ing to the understanding of the HVS. Specifically, in light of the HVS, Itti and

Koch [10] found out that the low-level features of intensity, color, and orientation

are efficient in detecting saliency of still images. In their method, center-surround

responses in those feature channels are established to yield the conspicuity maps.

Then, the final saliency map can be obtained by linearly integrating conspicuity maps

of all three features. For detecting saliency in videos, Itti et al. [11] proposed to

add two dynamic features (i.e., motion and flicker contrast) into Itti’s image saliency

model [10]. Later, other advanced heuristic methods [12–18] have been proposed for

modeling video saliency.

Recently, data-driven methods [19–24] have emerged to learn the visual atten-

tion models from the ground-truth eye-tracking data. Specifically, Judd et al. [19]

proposed to learn a linear classifier of SVM from training data for image saliency

detection, based on several low, middle, and high-level features. For video-saliency

detection, most recently, Rudoy et al. [23] have proposed a novel method to predict

saliency by learning the conditional saliency map from human fixations over a few

consecutive video frames. This way, the inter-frame correlation of visual attention is

taken into account, such that the accuracy of video-saliency detection can be signif-

icantly improved. Rather than free-view saliency detection, a probabilistic multitask

learning method was developed in [21] for the task-driven video-saliency detection,

in which the “stimulus-saliency” functions were learned from the eye-tracking data

as the top-down attention models.

HEVC [25] was formally approved as the state-of-the-art video-coding standard

in April 2013. It achieves double coding efficiency improvement over the preced-

ing H.264/AVC standard. Interestingly, we found out that the state-of-the-art HEVC

encoder can be explored as a feature extractor to efficiently predict video saliency. As

shown in Figure 9.1, the HEVC domain features on splitting depth, bit allocation, and

MV for each coding tree unit (CTU), are highly correlated with the human fixations.

The statistical analysis of Section 9.3.2 verifies such high correlation. Therefore, we

develop several features in our method for video-saliency detection, which are based

on splitting depths, bit allocation, and MVs in HEVC domain. It is worth pointing

out that most videos exist in the form of encoded bitstreams and the features related

to entropy and motion have been well exploited by video coding at the encoder side.

Since [2] has argued that entropy and motion are very effective in video-saliency

detection, our method utilizes these well-exploited HEVC features (splitting depth,

bit allocation, and MV) at the decoder side to achieve high accurate detection on

video saliency.
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CTU structure

MV Heat map of human fixations(c) (d)

Heatmap

Counts
0 1

Bit allocation(a) (b)

Figure 9.1 An example of HEVC domain features and heat map of human fixations

for one video frame. Parts (a), (b), and (c) are extracted from the

HEVC bitstream of video BQSquare (resolution: 416 × 240) at

130 kbps. Note that in (c) only the MVs that are larger than 1 pixel are

shown. Part (d) is the heat map convolved with a 2D Gaussian filter

over fixations of 32 subjects

Generally speaking, the main motivation of using HEVC features in our saliency

detection method is 2-fold: (1) our method takes advantage from sophisticated

encoding of HEVC, to effectively extract features for video-saliency detection. Our

experimental results in this chapter also show that the HEVC features are quite effec-

tive in video-saliency detection. (2) Our method can efficiently detect video saliency

from HEVC bitstreams without completely decoding the videos, thus saving both the

computational time and storage. Consequently, our method is generally more effi-

cient than the aforementioned video-saliency detection methods at pixel domain (or

called uncompressed domain), which have to decode the bitstreams into raw data.

Such efficiency is also validated by our experiments.

There are only a few methods [26–28] proposed for detecting video saliency

in compressed domain of previous video-coding standards. Among these methods,

the block-wise discrete cosine transform (DCT) coefficients and MVs are extracted

in MPEG-2 [26] and MPEG-4 [27]. Bit allocation of H.264/AVC is exploited for

saliency prediction in [28]. However, all above methods do not take full advantage of

the sophisticated features of the modern HEVC encoder, such as CTU splitting [29]

and R–λ bit allocation [30]. More importantly, all methods of [26–28] fail to find out

the precise impact of each compressed domain feature on attracting visual attention.
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In fact, the relationship between compressed domain features and visual attention can

be learned from the ground-truth eye-tracking data. Thereby, this chapter proposes

to learn the visual attention model of videos with regard to the well-explored HEVC

features.

Similar in spirit, the latest work of [31] also makes use of HEVC features for

saliency detection. Despite conceptually similar, our method is greatly different from

[31] in two aspects. From the aspect of feature extraction, our method develops pixel-

wise HEVC features, while [31] directly uses block-based HEVC features with deeper

decoding (e.g., inverse DCT). Instead of going deeper, our method develops shallow

decoded HEVC features with sophisticated design of temporal and spatial difference

on these features, more unrestrictive than [31]. In addition, camera motion is detected

and then removed in our HEVC features, such that our features are more effective

in predicting attention. From the aspect of feature integration, compared with [31],

our method is data driven, in which a learning algorithm is developed to bridge the

gap between HEVC features and video saliency. Meanwhile, our data-driven method

benefits from thorough analysis of our established eye-tracking database.

Specifically, the main contributions of this chapter are listed in the following:

● We establish an eye-tracking database on viewing 33 raw videos of the latest data

sets, with the thorough analysis and observations on our database.
● We propose several saliency-detection features in HEVC domain, according to

the analysis and observations on our established eye-tracking database.
● We develop a data-driven method for video-saliency detection, with respect to the

proposed HEVC features.

The rest of this chapter is organized as follows: in Section 9.2, we briefly review

the related work on video-saliency detection. In Section 9.3, we present our eye-

tracking database as well as the analysis and observations on our database. In light

of such analysis and observations, Section 9.4 proposes several HEVC features for

video-saliency detection. Section 9.5 outlines our learning-based method, which is

based on the proposed HEVC features. Section 9.6 shows the experimental results to

validate our method. Finally, Section 9.7 concludes this chapter.

9.2 Related work on video-saliency detection

9.2.1 Heuristic video-saliency detection

For modeling saliency of a video, a great number of methods [11–18] have been

proposed. Itti et al. [11] started the initial work of video-saliency detection, by

adding two dynamic features of motion and flicker contrast into Itti’s image saliency

model [10]. Later, a novel term called surprise was defined in [14] to measure

how the visual change attracts human observers. With the new term surprise, [14]

developed a Bayesian framework to calculate the Kullback–Leibler (KL) divergence

between spatiotemporal posterior and prior beliefs, for predicting video saliency.

Some other Bayesian-framework-related methods, e.g., [15], were also proposed
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for video-saliency detection. Most recently, some advanced video-saliency detection

methods [16–18] have been proposed. To be more specific, Guo et al. [16] applied

phase spectrum of quaternion Fourier transform (PQFT) on four feature channels

(two color channels, one intensity channel, and one motion channel) to detect video

saliency. Lin et al. [18] utilized earth mover’s distance to measure the center-surround

difference in spatiotemporal receptive filed, for producing the dynamic saliency maps

of videos. Inspired by sparse representation, Ren et al. [17] proposed to explore the

movement of a target patch for temporal saliency detection of videos. In their method,

the movement of the target patch can be estimated by finding the minimal reconstruc-

tion error of sparse representation regarding the patches of neighboring frames. In

addition to temporal saliency detection, the center-surround contrast needs be mod-

eled for spatial saliency detection. This is achieved through sparse representation with

respect to neighboring patches.

In fact, top-down visual cues play an important role in determining the saliency

of a scene. Thereby, the top-down visual attention models have been studied in [32,33]

for predicting the saliency of dynamic scenes in a video. In [32], Pang et al. proposed

to integrate the top-down information of eye-movement patterns (i.e., passive and

active states [13]) for video saliency detection. In [33], Wu and Xu found out that the

high-level features, such as face, person, car, speaker, and flash, may attract extensive

human attention. Thus, these high-level features are integrated with the bottom-up

model [16] for saliency detection of news videos.

However, the understanding of the HVS is still in its infancy, and saliency detec-

tion thus has a long way to go yet. In fact, we may rethink saliency detection by

taking advantage of the existing video-coding techniques. Specifically, the video-

coding standards have evolved for almost three decades, with HEVC being the latest

one. The evolution of video coding adopts several elegant and effective techniques to

produce several sophisticated features, for continuously improving coding efficiency.

For example, the state-of-the-art HEVC standard introduced fractional sample inter-

polation to represent MVs with quarter-sample precision, thus being able to precisely

model object motions. Moreover, HEVC proposes to partition CTUs into smaller

blocks using the tree structure and quadtree-like signaling [29], which can well reflect

the texture complexity of video frames. On the other hand, the HEVC features, which

are generated by the sophisticated process of the latest HEVC techniques, may be

explored for efficient video-saliency detection.

9.2.2 Data-driven video-saliency detection

During the past decade, data-driven methods have emerged as a possible way to learn

video-saliency model from ground-truth eye-tracking data, instead of the study on the

HVS. The existing data-driven video-saliency detection can be further divided into

task-driven [13,21,22,34,35] and free-view [20,23,24,36] methods.

For task-driven video-saliency detection, Peter and Itti [13] proposed to incorpo-

rate the computation on signatures of each video frame. Then, a regression classifier

is learned from the subjects’ fixations on playing video games, which associates the

different classes of signatures (seen as gist) with the gaze patterns of task-driven
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attention. Combined with 12 multi-scale bottom-up features, [13] has high accu-

racy in task-driven saliency detection. Most recently, a dynamic Bayesian network

method [35] has been proposed for learning top-down visual attention model of play-

ing video games. Besides the task of playing video games, a data-driven method [34]

on video-saliency detection was proposed with the dynamic consistency and align-

ment models, for the task of action recognition. In [34], the proposed models are

learned from the task-driven human fixations on large-scale dynamic computer vision

databases like Hollywood-2 [37] and UCF Sports [38]. In [21], Li et al. developed

a probabilistic multitask learning method to include the task-related attention mod-

els for video-saliency detection. The “stimulus-saliency” functions are learned from

the eye-tracking database, as the top-down attention models to some typical tasks

of visual search. As a result, [21] is “good at” video-saliency detection in multiple

tasks, more generic than other methods that focus on single visual task. However, all

task-driven saliency-detection methods can only deal with the specific tasks.

For free-view video-saliency detection, Kienzle et al. [20] proposed a nonpara-

metric bottom-up method to model video saliency, via learning the center-surround

texture patches and temporal filters from the eye-tracking data. Recently, Lee et al.

[24] have proposed to extract the spatiotemporal features, i.e., rarity, compactness,

center prior, and motion, for the bottom-up video-saliency detection. In their bottom-

up method, all extracted features are combined together by an SVM, which is learned

from the training eye-tracking data. In addition to the bottom-up model, Hua et al. [36]

proposed to learn the middle-level features, i.e., gists of a scene, as the top-down cue

for both video and image-saliency detection. Most recently, Rudoy et al. [23] have

proposed to detect the saliency of a video, by simulating the way that humans watch

the video. Specifically, a visual attention model is learned to predict the saliency map

of a video frame, given the fixation maps from the previous frames. As such, the inter-

frame dynamics of gaze transitions can be taken into account during video-saliency

detection.

As aforementioned, this chapter mainly concentrates on utilizing the HEVC fea-

tures for video-saliency detection. However, there is a gap between HEVC features

and human visual attention. From data-driven perspective, machine learning can be

utilized in our method to investigate the relationship between HEVC features and

visual attention, according to eye-tracking data. Thus, this chapter aims at learning an

SVM classifier to predict saliency of videos using the features from HEVC domain.

9.3 Database and analysis

9.3.1 Database of eye tracking on raw videos

In this chapter, we conducted the eye-tracking experiment to obtain fixations on

viewing videos of the latest test sets. Here, all 33 raw videos from the test sets [9,39],

which have been commonly utilized for evaluating HEVC performance, were included

in our eye-tracking experiment. We further conducted the extra experiment to obtain

the eye-tracking data on watching all videos of our database compressed by HEVC at
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different quality. Through the data analysis, we found that visual attention is almost

unchanged when videos are compressed at high or medium quality (more than 30 dB).

This is consistent with the result of [40]. Compared with the conventional databases

(e.g., SFU [41] and DIEM [42]), the utilization of these videos benefits from the

state-of-the-art test sets in providing videos with diverse resolutions and content. For

the resolution, the videos vary from 1080p (1,920 × 1,080) to 240p (416 × 240). For

the content, the videos include sport events, surveillance, video conferencing, video

games, videos with the subscript, etc.

In our eye-tracking experiment, all videos are withYUV 4:2:0 sampling. Here, the

resolutions of the videos in Class A of [39] were down-sampled to be 1,280 × 800,

as the screen resolution of the eye tracker can only reach to 1,920 × 1,080. Other

videos were displayed in their original resolutions. In our experiment, the videos were

displayed in a random manner at their default frame rates to reduce the influence of

video-playing order on the eye-tracking results. Besides, a blank period of 5 seconds

was inserted between two consecutive videos, so that the subjects can have a proper

rest time to avoid eye fatigue.

There were a total of 32 subjects (18 male and 14 female, aging from 19 to

60) involved in our eye-tracking experiment. These subjects were selected from the

campuses of Beihang University and Microsoft ResearchAsia. All subjects have either

corrected or uncorrected normal eyesight. Note that only two subjects were experts,

who are working in the research field of saliency detection. The other 30 subjects

did not have any research background in video-saliency detection, and they were also

native to the purpose of our eye-tracking experiment.

The eye fixations of all 32 subjects over each video frame were recorded by

a Tobii TX300 eye tracker at a sample rate of 300 Hz. The eye tracker is inte-

grated with a monitor of 23-inch LCD screen, and the resolution of the monitor

was set to be 1,920 × 1,080. All subjects were seated on an adjustable chair at a

distance of around 60 cm from the screen of the eye tracker, ensuring that their

horizontal sight is in the center of the screen. Before the experiment, subjects were

instructed to perform the 9-point calibration for the eye tracker. Then, all subjects

were asked to free-view each video. After the experiment, 392,163 fixations over

13,020 frames of 33 videos were collected. Here, the eye fixations of all subjects

and the corresponding MATLAB® code for our eye-tracking database are available

online: https://github.com/remega/video_database.

9.3.2 Analysis on our eye-tracking database

Figure 9.1 has shown that the HEVC features, i.e., splitting depth, bit allocation, and

MV, are effective in predicting human visual attention. It is therefore interesting to

statistically analyze the correlation between these HEVC features and visual attention.

From now on, we concentrate on the statistical analysis on our eye-tracking database

to show the effectiveness of the HEVC features on the prediction of visual attention.

This is a new finding, which reveals the correlation between HEVC features and

visual attention.
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For all videos of our database, the features on splitting depth, bit allocation, and

MV were extracted from the corresponding HEVC bitstreams. Then, the maps of

these features were generated for each video frame. Note that the configuration to

generate the HEVC bitstreams can be found in Section 9.6. Afterwards, a 2D Gaussian

filter was applied to all three feature maps of each video frame. For each feature map,

after sorting pixels in the descending order of their feature values, the pixels were

equally divided into ten groups according to the values of corresponding features.

For example, the group of 0%–10% stands for the set of pixels, the features of which

rank top 10%. Finally, the number of fixations belonging to each group was counted

upon all 33 videos in our database.

We show in Figure 9.2 the percentages of eye fixations belonging to each group, in

which the values of the corresponding HEVC features decrease alongside the groups.

From this figure, we can find out that extensive attention is drawn by the regions

with large-valued HEVC features, especially for the feature of bit allocation. For

example, about 33% fixations fall into the regions of top 10% high-valued feature of

bit allocation, whereas the percentage of those hitting the bottom 10% is much less

than 2%. Hence, the HEVC features on splitting depth, bit allocation, and MV, are

explored for video-saliency detection in our method (Section 9.4).

0%−10% 10%−20% 20%−30% 30%−40% 40%−50% 50%−60% 60%−70% 70%−80% 80%−90% 90%−100%
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Figure 9.2 The statistical results for fixations belong to different groups of pixels,

in which values of the corresponding HEVC features are sorted in the

descending order. Here, all 392,163 fixations of 33 videos are used for

the analysis. In this figure, the horizontal axis indicates the groups of

pixels. For example, 0%–10% means that the first group of pixels, the

features of which rank top 10%. The vertical axis shows the percentage

of fixations that fall into each group
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9.3.3 Observations from our eye-tracking database

Beyond the analysis of our eye-tracking database, we verify some other factors on

attracting human attention, with the following three observations. These observations

provide insightful guide for developing our saliency-detection method.

Observation 9.1: Human fixations lag behind the moving or new objects in a video

by some microseconds.

In Figure 9.3, we show the frames of videos BasketballDrive and Kimono with the

corresponding heat maps of human fixations. The first row of this figure reveals that

the visual attention falls behind the moving object, as the fixations trail the moving

basketball. In particular, the distance between the basketball and fixations becomes

large, when the basketball moves at high speed. Besides, the second row of Figure

9.3 illustrates that the human fixations lag behind the new appearing objects by a

few frames. It is because the human fixations still stay in the location of the salient

region in previous frames, even when the scene has been changed. This completes

the analysis of Observation 9.1.

Observation 9.2: Human fixations tend to be attracted by the new objects appearing

in a video.

It is intuitive that visual attention is probably to be attracted by the objects newly

emerging in a video. It is thus worth analyzing the influence of the object emergence

on human visual attention. Figure 9.4 shows the heat maps of fixations on several

frames selected from videos vidyo1 and ParkScene. Note that a person appears in the

door from the 553th frame of the video vidyo1, and that a person riding bicycle arises

from the 64th frame of the video ParkScene. From Figure 9.4, one may observe that

once a new object appears in the video, it probably attracts a huge amount of visual

120 frame

138 frame 144 frame

Time

147 frame 187 frame

125 frame 135 frame 145 frame

Figure 9.3 Illustration of Observation 9.1. This figure shows the heat maps of

human fixations of all 32 subjects on several selected frames of videos

BasketballDrive and Kimono. In BasketballDrive, the green box is

drawn to locate the moving basketball
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431 frame

32 frame 64 frame

Time

78 frame 121 frame

553 frame 581 frame 599 frame

Figure 9.4 Illustration of Observation 9.2. This figure shows the heat maps of

visual attention of all 32 subjects, over several selected frames of

videos vidyo1 and ParkScene

Heatmap

Counts
0 1

Figure 9.5 Illumination of Observation 9.3. This figure shows the map of human

fixations of all 32 subjects, over a selected frame of video

PeopleOnStreet. Note that in the video a lot of visual attention is

attended to the old man, who pushes a trolley and walks in the opposite

direction of the crowd

attention. This completes the analysis of Observation 9.2. Note that there exists the

lag of human fixations, as the door is still fixated on when the person has left. This

also satisfies Observation 9.1.

Observation 9.3: The object, which moves in the opposite direction of the

surrounding objects, is possible to receive extensive fixations.

The previous work [10] has verified that the human fixations on still images are

influenced by the center-surround features of color and intensity. Actually, the center-

surround feature of motions also has an important effect on attracting visual attention.

As seen from Figure 9.5, the old man with a trolley moves in the opposite direction

of the surrounding crowd, and he attracts the majority of visual attention. Therefore,
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this suggests that the object moving in the opposite direction to its surround (i.e., it is

with large center-surround motion) may receive extensive fixations. This completes

the analysis of Observation 9.3.

9.4 HEVC features for saliency detection

In this section, we mainly focus on exploring the features in HEVC domain, which can

be used to efficiently detect video saliency. As analyzed above, three HEVC features,

i.e., splitting depth, bit allocation, and MV, are effective in predicting video saliency.

Therefore, they are worked out as the basic features for video saliency detection, to be

presented in Section 9.4.1. Note that the camera motion has to be removed for the MV

feature, with an efficient algorithm developed in Section 9.4.1. Based on the three

basic HEVC features, the features on temporal and spatial difference are discussed

in Sections 9.4.2 and 9.4.3, respectively.

9.4.1 Basic HEVC features

Splitting depth. The CTU partition structure [29], a new technique introduced by

HEVC, can offer more flexible block sizes in video coding. In HEVC, the block

sizes range from 64 × 64 to 8 × 8. In other words, the splitting depth varies from 0

(=64 × 64 block size) to 3 (=8 × 8 block size). In HEVC, rather than raw pixels, the

residual of each coding block is encoded, which reflects spatial texture in intra-frame

prediction and temporal variation in inter-frame prediction. Consequently, in intra-

frame prediction, splitting depth of each CTU can be considered to model spatial

saliency. In inter-frame prediction, splitting depth of each coding block can be used

to model temporal saliency. Since Section 9.3.2 has demonstrated that most fixations

fall into groups with high-valued splitting depths, the splitting depth of each CU is

applied as a basic HEVC feature in video-saliency detection.

Let dk
ij be the normalized splitting depth of pixel (i, j) at the kth frame. First, the

splitting depths of all CUs need to be extracted from HEVC bitstreams. Then, we

assume that the splitting depth of each pixel is equivalent to that of its corresponding

CU. Afterwards, all splitting depths should be normalized by the maximal splitting

depth in each video frame. At last, all normalized dk
ij can be yielded as one basic

feature of our method.

Bit allocation. Since the work of [30] is a state-of-the-art rate control scheme

for HEVC, it has been embedded into the latest HEVC reference software (HM 16.0)

for assigning bits to different CTUs. In the work of [30], the rate-distortion was opti-

mized in each video frame, such that the CTUs with high-information were generally

encoded by more bits. It has been argued in [2] that high-information regions attract

extensive visual attention. Thus, the bits, allocated by [30] in HEVC, are consid-

ered a basic feature, modeling spatial saliency in intra-frame prediction and temporal

saliency in inter frame prediction. Specifically, Section 9.3.2 has shown that visual

attention is highly correlated with the bit allocation of each CTU. Thereby, bit per

pixel (bpp) is extracted from HEVC bitstreams, toward saliency detection. Let bk
ij

denote the normalized bpp of pixel (i, j) at the kth frame. Here, the bpp is achieved
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via averaging all consumed bits in the corresponding CTU. Next, the bpp is normal-

ized to be bk
ij in each video frame, and it is then included as one of basic HEVC

features to detect saliency.

MV. In video coding, MV identifies the location of matching prediction unit

(PU) in the reference frame. In HEVC, MV is sophisticatedly developed to indicate

motion between neighboring frames. Intuitively, MV can be used to detect video

saliency, as motion is an obvious cue [16] of salient regions. This intuition has also

been verified by the statistical analysis of Section 9.3.2. Therefore, MV is extracted

as a basic HEVC feature in our method.

During video coding, MV is accumulated by two factors: the camera motion

and object motion. It has been pointed out in [43] that in a video, moving objects

may receive extensive visual attention, while static background normally draws little

attention. It is thus necessary to distinguish moving objects and static background.

Unfortunately, MVs of static background may be as large as moving objects, due to

the camera motion. On the other hand, although temporal difference of MVs is able

to make camera motion negligible for static background, it may also miss the moving

objects. Therefore, the camera motion has to be removed from calculated MVs to

estimate object motion for saliency detection.

Figure 9.6 shows that the camera motion can be estimated to be the dominant

MVs in a video frame. In this chapter, we therefore develop a voting algorithm to

estimate the motion of camera. Assuming that mk
ij is the two-dimensional MV of pixel

(i, j) at the kth frame, the dominant camera motion mk
c in this frame can be determined

in the following way.

First, the static background Sk
b is roughly extracted to be

Sk
b =

⎧

⎨

⎩

(i, j)|dk
ij · bk

ij <
1

|Ik |

∑

(i′ , j′)∈Ik

dk
i′j′ · bk

i′j′

⎫

⎬

⎭

, (9.1)

(a) (b)Without camera motion With camera motion

Figure 9.6 An example of MV values of all PUs in (a) a frame with no camera

motion and (b) a frame with right-to-left camera motion. Note that the

MVs are extracted from HEVC bitstreams. In (a) and (b), the dots stand

for the origin of each MV, and the blue lines indicate the intensity and

angle of each MV. It can be seen that in (a) there is no camera motion,

as most MV values are close to zero, whereas the camera motion in (b)

is from right to left according the most MV values
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for the kth frame Ik (with |Ik | pixels). It is because the static background is generally

with less splitting depth and bit allocation than the moving foreground objects. Then,

the azimuth a(mk
c ) for the dominant camera motion can be calculated via voting all

MV angles in the background Sk
b as

max hist

⎛

⎝

⋃

i, j∈Sk
b

a(mk
ij)

⎞

⎠ , (9.2)

where a(mk
ij) is the azimuth for MV mk

ij, and hist( · ) is the azimuth histogram of all

MVs. In this chapter, 16 bins with equal angle width (= 360◦/16 = 22.5◦) are applied

for the histogram. After obtaining a(mk
c ), radius r(mk

c ) for the camera motion needs to

be calculated via averaging over all MVs from the selected bin of a(mk
c ). Finally, the

camera motion of each frame can be achieved upon a(mk
c ) and r(mk

c ). For justification,

we show in Figure 9.7 some subjective results of the camera motion estimated by our

voting algorithm (in yellow arrows), as well as the annotated ground truth of camera

motion (in blue arrows). As can be seen from this figure, our algorithm is capable of

accurately estimating the camera motion. See Appendix for more justification on the

estimation of camera motion.

Next, in order to track the motion of objects, all MVs obtained in HEVC domain

need to be processed to remove the estimated camera motion. All processed MVs

should be then normalized in each video frame, denoted as m̂k
ij. Since it has been

argued in [16] that visual attention is probably attracted by moving objects, ‖m̂k
ij‖2 is

utilized as one of the basic HEVC features to predict video saliency.

5 frame

15 frame

25 frame 400 frame 150 frame 400 frame 360 frame 168 frame 240 frame

350 frame 100 frame 350 frame 300 frame 156 frame 180 frame

300 frame 50 frame 300 frame 240 frame 144 frame 120 frame

Figure 9.7 The results of camera motion estimation, yielded by our voting

algorithm. The first six videos are with some extended camera motion,

whereas the last one is without any camera motion. In the frames of the

second row, the yellow and blue arrows represent the estimated and

manually annotated vectors of the camera moving from frames of the

first row to frames of the second row, respectively. Similarly, the yellow

and blue arrows in the frames of the third row show the camera motion

from frames of the second row to the third row. Refer to Appendix for

the way of annotating ground-truth camera motion
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9.4.2 Temporal difference features in HEVC domain

As revealed in Observation 9.2, humans tend to fixate on the new objects appearing

in a video. In fact, the new appearing or moving objects in the video also leads

to large temporal difference of HEVC features in colocated regions of neighboring

frames. Hence, the temporal difference features, which quantify the dissimilarity of

splitting depth, bit allocation and MV across neighboring frames, are developed as

novel HEVC features in our method. However, the temporal difference in colocated

region across video frames refers to the sum of object motion and camera motion.

It has been figured out in [43] that moving objects attract extensive visual attention,

whereas camera motion receives little attention. Therefore, when developing temporal

difference features, camera motion needs to be removed to compensate object motion

(to be discussed in the following).

Specifically, let us first look at the way on estimating temporal difference of

splitting depths. For pixel (i, j) at the kth frame, �td
k
ij is defined as the difference

value of splitting depth across neighboring frames. It can be calculated by averaging

the weighted difference values of the splitting depths over all previous frames:

�td
k
ij =

∑k

l=1 exp(−(l2/σ 2
d ))‖dk

ij − dk−l
ij ‖1

∑k

l=1 exp(−(l2/σ 2
d ))

, (9.3)

where parameter σd controls the weights on splitting depth difference between two

frames. In (9.3), dk−l
ij is the splitting depth of pixel (i, j) at the (k − l)th frame. After

considering the camera motion with our voting algorithm, we assume that (ik ,l , jk ,l) is

the pixel at the (k − l)th frame matching to pixel (i, j) at the kth frame. To remove

the influence of the camera motion, we replace dk−l
ij in (9.3) by dk−l

ik ,l jk ,l . Then, (9.3) is

rewritten to be

�td
k
ij =

∑k

l=1 exp(−(l2/σ 2
d ))‖dk

ij − dk−l

ik ,l jk ,l ‖1

∑k

l=1 exp(−(l2/σ 2
d ))

. (9.4)

After calculating (9.4), �td
k
ij needs to be normalized in each video frame, as one of

temporal difference features in HEVC domain.

Furthermore, the bpp difference across neighboring frames is also regarded as a

feature for saliency detection. Let �tb
k
ij denote the temporal difference of the bpp at

pixel (i, j) between the currently processed kth frame and its previous frames. Similar

to (9.4), �tb
k
ij can be obtained by

�tb
k
ij =

∑k

l=1 exp(−(l2/σ 2
b ))‖bk

ij − bk−l

ik ,l jk ,l ‖1

∑k

l=1 exp(−(l2/σ 2
b ))

, (9.5)

where σb decides the weights of the bpp difference between frames. In (9.5), with

the compensated camera motion, bk−l

ik ,l jk ,l is the bpp for pixel (ik ,l , jk ,l) at the (k − l)th

frame, which matches to pixel (i, j) at the kth frame.

Finally, the temporal difference of MV is also taken into account, by adopting

the similar way presented above. Recall that m̂k
ij is the extracted MV of each pixel,
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with the camera motion being removed. Since m̂k
ij is a 2D vector, ℓ2-norm operation

is applied to compute the temporal difference of MVs (denoted by �tm̂
k
ij) as follows:

�tm̂
k
ij =

∑k

l=1 exp(−(l2/σ 2
m))‖m̂k

ij − m̂k−l

ik ,l jk ,l ‖2

∑k

l=1 exp(−(l2/σ 2
m))

. (9.6)

In (9.6), we can use parameter σm to determine the weights of MV difference between

two frames. Moreover, m̂k−l

ik ,l jk ,l is the MV value for pixel (ik ,l , jk ,l) at the (k − l)th

frame, which is the colocated pixel of (i, j) at the kth frame, after the camera motion

is removed by our voting algorithm.

9.4.3 Spatial difference features in HEVC domain

However, the above features are not sufficient to model saliency in a video, since some

smooth regions may stand out from complicated background for drawing attention

(like a salient smooth ball appearing in grass land). Generally speaking, the basic

features of splitting depth and bit allocation in a smooth region are significantly

different from those in its surrounding background. Thus, we here develop spatial

difference features for saliency detection. In addition, according to Observation 9.3,

the object moving in the opposite direction to the nearby objects may result in extensive

visual attention. Actually, the dissimilarity of object motion can be measured by the

spatial difference of MVs between neighboring PUs. Hence, the spatial difference of

all three basic features is incorporated into our method, as given below.

Recall that Ik is the kth video frame, and that dk
ij , bk

ij, and mk
ij denote the splitting

depth, bit allocation, and MV , respectively, for pixel (i, j) of this video frame. For the

spatial difference of MV, the camera motion has to be removed in each mk
ij, defined

by m̂k
ij. Then, we have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�sd
k
ij =

∑

(i′, j′)∈Ik exp(−(((i′ − i)2 + ( j′ − j)2)/ξ 2
d ))‖dk

i′j′
− dk

ij‖1
∑

(i′, j′)∈Ik exp(−(((i′ − i)2 + ( j′ − j)2)/ξ 2
d ))

�sb
k
ij =

∑

(i′, j′)∈Ik exp(−(((i′ − i)2 + ( j′ − j)2)/ξ 2
b ))‖bk

i′j′
− bk

ij‖1
∑

(i′, j′)∈Ik exp(−(((i′ − i)2 + ( j′ − j)2)/ξ 2
b ))

�sm̂
k
ij =

∑

(i′, j′)∈Ik exp(−(((i′ − i)2 + ( j′ − j)2)/ξ 2
m))‖m̂k

i′j′
− m̂k

ij‖2
∑

(i′, j′)∈Ik exp(−(((i′ − i)2 + ( j′ − j)2)/ξ 2
m))

,

(9.7)

to compute the spatial difference of splitting depth, bit allocation, and MV. As in the

above equations, ξd , ξb, and ξm are the parameters to control the spatial weighting of

each feature.

Finally, all nine features in HEVC domain can be achieved in our saliency

detection method. Since all the proposed HEVC features are block wise, the

block-to-pixel refinement is required to obtain smooth feature maps. For the block-

to-pixel refinement, a 2D Gaussian filter is applied to three basic features. In this

chapter, the dimension and standard deviation of the Gaussian filter are tuned to be
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(2h/15) × (2h/15) and (h/30), where h is the height of the video. It is worth men-

tioning that the above features on spatial and temporal difference are explored in

compressed domain with the block-to-pixel refinement, while the existing methods

compute contrast features in pixel domain (e.g., in [10,11]). Additionally, unlike the

existing methods, the camera motion is estimated and removed when calculating

the feature contrast in our method. Despite being simple and straightforward, these

features are effective and efficient, as evaluated in experiment section.

Figure 9.8 summarizes the procedure of HEVC feature extraction in our saliency

detection method. As seen from Figure 9.8, the maps of nine features have been

obtained, based on splitting depth, bit allocation, and MV of HEVC bitstreams. We

argue that one single feature is not capable enough [2] but has different impact on

saliency detection. We thus integrate the maps of all nine features with the learned

weights. For more details, refer to the next section.

9.5 Machine-learning-based video-saliency detection

This section mainly concentrates on learning an SVM classifier to detect video

saliency, using the abovementioned nine HEVC features. The framework of our

learning-based method is summarized in Figure 9.9. As shown in this figure, given the

HEVC bitstreams, all HEVC features need to be extracted and calculated. Then, the

saliency map of each single video frame is yielded by combining the HEVC features

with C-support vector classification (C-SVC), which is a kind of nonlinear SVM clas-

sifier. Here, the C-SVC classifier is learned from the ground-truth human fixations

of training videos. At last, a simple forward smoothing filter is applied to the yielded

saliency maps across video frames, outputting the final video-saliency maps. More

details about our learning-based method are to be discussed in the following.

9.5.1 Training algorithm

In our method, the nonlinear C-SVC [44], a kind of SVM, is trained as the binary

classifier to decide if each pixel can attract attention, according to the proposed

HEVC features. First, for the binary classifier, both positive and negative samples

need to be obtained from the training set, in which the positive samples mean the

pixels attracting fixations, and negative samples indicate the pixels without any visual

attention. Next, three basic HEVC features of each training sample are extracted from

the HEVC bitstreams, and then other spatial and temporal features are computed upon

the corresponding basic features. Let {(fn, ln)}N
n=1 be those training samples, where fn

is the vector of the nine HEVC features for the nth training sample, and ln ∈ {−1, 1} is

the class label indicating whether the sample is positive (ln =1) or negative (ln =−1).

Finally, the C-SVC for saliency detection can be worked out, via solving the following

optimization problem:

min
w,b,{βn}N

n=1

1

2
‖w‖2

2 + C

N
∑

n=1

βn

(9.8)

s.t. ∀n, ln(wT · φ(fn) + b) ≥ 1 − βn, βn ≥ 0.
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Figure 9.8 Framework of our HEVC feature extractor for video-saliency detection
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Figure 9.9 Framework of our learning-based method for video-saliency detection

with HEVC features. For the HEVC feature extractor, refer to Figure 9.8

In (9.8), w and b are the parameters to be learned for maximizing the margin between

positive and negative samples, and βn is a nonnegative slack variable evaluating the

degree of classification error of fn. In addition, C balances the trade-off between

the error and margin. Function φ(·) transforms the training vector of HEVC features

fn to higher dimensional space. Then, w can be seen as the linear combination of

transformed vectors:

w =

N
∑

m=1

λmlm · φ(fm), (9.9)

where λm is the Lagrange multiplier to be learned. Then, the following holds:

wT · φ(fn) =

(

N
∑

m=1

λmlm · φ(fm)

)T

· φ(fn)

=

N
∑

m=1

λmlm · 〈φ(fm), φ(fn)〉. (9.10)

Note that 〈φ(fm), φ(fn)〉 indicates the inner product of φ(fm) and φ(fn). To calculate

(9.10), a kernel of radial based function (RBF) is introduced:

K(fm, fn) = 〈φ(fm), φ(fn)〉 = exp(−γ ‖fm − fn‖
2
2), (9.11)

where γ (> 0) stands for the kernel parameter. Here, we utilize the above RBF

kernel due to its simplicity and effectiveness. When training the C-SVC for saliency

detection, the penalty parameter C in (9.8) is set to 2−3, and γ of the RBF kernel is

tuned to be 2−15, such that the trained C-SVC is rather efficient in detecting saliency.

Finally, w and b can be worked out in the trained C-SVC as the model of video-saliency

detection, to be discussed below.

9.5.2 Saliency detection

To detect the saliency of test videos, all nine HEVC features are integrated together

using the learned w and b of our C-SVC classifier. Then, the saliency map Sk for each

single video frame can be yielded by

Sk = wT · φ(Fk ) + b, (9.12)
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where Fk defines the pixel-wise matrix of nine HEVC features at the kth video frame.

Note that w in (9.12) is one set of weights for the binary classifier of C-SVC, which

have been obtained using the above training algorithm.

Since Observation 9.1 offers a key insight that visual attention may lag behind

the moving or new appearing objects, a forward smoothing filter is developed in our

method to take into account the saliency maps of previous frames. Mathematically, the

final saliency map Ŝk of the kth video frame is calculated by the forward smoothing

filter as follows:

Ŝk =
1

⌈t · fr⌉

k
∑

k ′=k−⌈t·fr⌉+1

Sk ′ , (9.13)

where t (> 0) is the time duration1 of the forward smoothing, and fr is the frame

rate of the video. Note that a simple forward smoothing filter of (9.13) is utilized

here, since we mainly concentrate on extracting and integrating features for saliency

detection. Some advanced tracking filters may be applied, instead of the forward

smoothing filter in our method, for further improving the performance on saliency

detection. To model visual attention on video frames, the final saliency maps need to

be smoothed with a 2D Gaussian filter, which is in addition to the one for each single

feature map (as shown in Figure 9.8). Note that the 2D Gaussian filter here shares the

same parameters as those for feature maps.

9.6 Experimental results

In this section, we present the experimental results on video-saliency detection to

validate the performance of our method. Section 9.6.1 shows the settings of our

method, and Section 9.6.2 discusses the parameter selection in our method. Sections

9.6.3 and 9.6.4 compare the saliency detection results by our and other seven methods,

over our and other two public databases, respectively. For comparing the accuracy of

saliency detection, receiver operating characteristic (ROC) curves, the equal error

rate (EER), the area under ROC curve (AUC), normalized scanpath saliency (NSS),

linear correlation coefficient (CC), and KL were measured on the saliency maps

generated by our and other seven methods. Section 9.6.5 evaluates the performance

of our method at different working conditions. In Section 9.6.6, we demonstrate the

effectiveness of each single HEVC feature in saliency detection.

9.6.1 Setting on encoding and training

HEVC configuration. Before saliency detection, the bitstreams of both train-

ing and test videos were generated by the HEVC encoder, for extracting fea-

tures. In our experiments, the HEVC reference software HM 16.0 (JCT-VC;

http://hevc.hhi.fraunhofer.de/) was used as the HEVC encoder. Then, the HEVC

1We found out through experiments that t = 0.3 s makes the saliency detection accuracy highest. So, time

duration t of our forward smoothing was set to be 0.3 in Section 9.6.
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bitstreams of all 33 videos in our database were produced for both training and test.

In HM 16.0, the low delay (LD) P main configuration was chosen. In addition, the

latest R–λ rate control scheme [30] was enabled in HM 16.0. Since the test videos are

with diverse content and resolutions, we followed the way of [30] to set the bit rates

the same as those at fixed QPs. The CTU size was set to 64 × 64 and maximum CTU

depth was 3 to allow all possible CTU partition structures for saliency detection. Each

group of pictures (GOP) was composed of 4 P frames. Other encoding parameters

were set by default, using the common encoder_lowdelay_P_main.cfg configuration

file of HM.

Other working conditions. The implementation of our method in random access

(RA) configuration is to be presented in Section 9.6.5. The rate control of RA in HM

16.0 is also enabled. In our experiments, we set all other parameters of RA via the

encoder_randomaccess_main.cfg file. Note that the GOP of RA is 8 B frames for

HM 16.0. Section 9.6.5 further presents the saliency detection results of our method

for the bitstreams of ×265, which is more practical than the HM encoder from the

aspects of encoding and decoding time.2 Here, ×265 v1.8 encoder, embedded in the

latest FFmpeg, was applied. For ×265, both LD and RA were tested. In ×265, the bit

rates were chosen using the same way as we applied for HM 16.0. The GOP structure

is 4 P frames for LD and four frames (BBBP) for RA. Other parameters were all set

by default in the FFmpeg with the ×265 codec. It is worth pointing out that the ×265

codec was used to extract features from the bitstreams encoded by ×265, while the

features of HM 16.0 bitstreams were extracted by the software of HM 16.0.

Training setting. In order to train the C-SVC, our database of Section 9.3.1 was

divided into nonoverlapping sets. For the fair evaluation, 3-fold cross validation was

conducted in our experiments, and the averaged results are reported in Sections 9.6.2

and 9.6.3. Specifically, our database was equally partitioned into three nonoverlapping

sets. Then, two sets were used as training data, and the remaining set was retained for

validating saliency detection. The cross-validation process is repeated by 3-fold, with

each of the three sets being used exactly once as the validation data. In the training set,

3 pixel of each video frame were randomly selected from top 5% salient regions of

ground-truth fixation maps as the positive samples. Similarly, 3 pixel of each video

frame were further chosen from bottom 70% salient regions as negative samples.

Then, both positive and negative samples were available in each cross validation, to

train the C-SVC with (9.8).

9.6.2 Analysis on parameter selection

In HEVC, the bit allocation, splitting depth, and MV of each CTU may change

along with increased or decreased bit rates. Therefore, we analyze the performance

of our method with regard to the videos compressed at different bit rates. Since the

resolutions of test videos vary from 416 × 240 to 1,920 × 1,080, there is an issue on

2It takes around 100 s for HM to encode a 1080p video frame, in a PC with Intel Core i7-4770 CPU and

16 GB RAM. By contrast, ×265 adopts parallel computing and fast methods to encode videos, such that

real-time 4K HEVC encoding can be achieved by ×265.
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finding bit rates suitable for all videos to ensure proper visual quality. To solve such

an issue, we follow [30] in setting the bit rates of each video for rate control the

same as those of fixed QPs. Then, we report in Figure 9.10 the AUC, CC, and NSS

results of our method at different bit rates. Note that the bit rates averaged over all

33 videos are shown, varying from 2,068 to 100 kbps. Figure 9.10 shows that our

method achieves the best performance in terms of CC and NSS, when the averaged

bit rate of rate control is 430 kbps (equal to those of fixed QP = 37). Therefore, such

bit-rate setting is used for the following evaluation. Figure 9.10 also shows that the

bit rates have slight impact on the overall performance of our method in terms of

AUC, NSS, and CC. The minimum values of AUC, NSS, and CC are above 0.82,

1.52, and 0.41, respectively, at different bit rates, which are superior to all other

methods reported in Section 9.6.3. Besides, one may observe from Figure 9.10 that

the saliency detection accuracy of some HEVC features is fluctuating when the bit

rate is changed. Hence, this figure suggests that our saliency detection should not rely
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Figure 9.10 Performance comparison of our method (first column) and our single

features (second to fourth columns) at different bit rates. The bit rates

of each video in our rate control are the same as those of fixed QPs,

i.e., QP = 27, 32, 35, 37, 39, 42, and 47. Here, the bit rates averaged

over all 33 videos are shown in the horizontal axis
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Figure 9.11 Saliency detection performance of each single feature at different

parameter settings. Note that only the AUC is utilized here to evaluate

the saliency detection performance. For other metrics (e.g., NSS and

CC), similar results can be found for choosing the optimal values of

parameters

on a single feature. On the contrary, the combination of all features is robust across

various bit rates, implying the benefit of applying the C-SVC in learning to integrate

all HEVC features for saliency detection.

Next, we analyze the parameters of our saliency detection method. When com-

puting the spatial difference features through (9.7), parameters ξd , ξb, and ξm have

been all traversed to find the optimal values. The results are shown in Figure 9.11.

As can be seen in this figure, parameters ξd , ξb, and ξm should be set to 13, 3, and 57

for optimizing saliency detection results. In addition, the saliency detection accuracy

of temporal difference features almost reaches the maximum, when σd , σb, and σm

of (9.4), (9.5), and (9.6) are equivalent to 46, 46, and 26, respectively. Finally, we

achieve the optimal parameter selection for the following evaluation (i.e., ξd = 13,

ξb = 3, ξm = 57, σd = 46, σb = 46, and σm = 26).

The effectiveness of the center bias in saliency detection has been verified in [45],

as humans tend to pay more attention on the center of the image/video than the
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Figure 9.12 ROC curves of saliency detection by our and other state-of-the-art

methods. Note that the results are averaged over frames of all test

videos of 3-fold cross validation

surround. In this chapter, we follow [45] to impose the same center bias map B to both

our and other compared methods, for fair comparison. Specifically, the center bias is

based on the Euclidean distance of each pixel to video frame center (ic, jc) as follows:

B(i, j) = 1 −

√

(i − ic)2 + (j − jc)2

√

i2
c + j2

c

, (9.14)

where B(i, j) is the center bias value at pixel (i, j). Then, the detected saliency maps

of all methods are weighted by the above center bias maps.

9.6.3 Evaluation on our database

In this section, we evaluate the saliency detection accuracy of our method, in com-

parison with other seven state-of-the-art methods,3 i.e., Itti’s model [10], Bayesian

surprise [14], Judd et al. [19], PQFT [16], Rudoy et al. [23], Fang et al. [27], and

OBDL [28]. Note that 3-fold cross validation was applied in our database for eval-

uation, and the saliency detection accuracy was averaged over the frames of all test

videos of 3-fold cross validation. Furthermore, the saliency maps of some selected

video frames are provided for each cross validation, to show the subjective saliency

detection results of our and other methods.

ROC curves. The ROC curves of our and other seven methods are shown in

Figure 9.12, to evaluate the accuracy of saliency detection in predicting human fix-

ations. As can be seen in this figure, our method generally has higher true positive

3In our experiments, we directly used the codes by the authors to implement all methods except Fang

et al. [27], which was realized by ourselves as the code is not available online.
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rates than others at the same false positive rates. In a word, the ROC curves illustrate

the superior performance of our method in saliency detection.

AUC and EER. In order to quantify the ROC curves, we report in Table 9.1

the AUC and EER results of our and other seven state-of-the-art methods. Here,

both mean and standard deviation are provided for the AUC and EER results of

all test video frames of 3-fold cross validation. This table shows that our method

performs better than all other seven methods. Specifically, there are 0.026 and 0.038

enhancement of AUC, over Fang et al. [27] and OBDL [28], respectively, which also

work in compressed domain. The EER of our method has 0.028 and 0.036 decrease,

compared with compressed domain methods of [27,28]. Smaller EER means that there

is a lower misclassifying probability in our method when the false positive rate equals

to the false negative rate. The possible reasons for the improvement of our method

are (1) the new compressed domain features (i.e., CTU structure and bit allocation)

are developed in light of the latest HEVC standard; (2) the camera motion has been

removed in our method; (3) the learning mechanism is incorporated into our method

to bridge the gap between HEVC features and human visual attention. Besides, our

method outperforms uncompressed domain learning-based methods [19,23], with

0.007 and 0.038 improvement in AUC as well as 0.009 and 0.029 reduction in EER.

This verifies the effectiveness of the newly proposed features in compressed domain,

which benefit from the well-developed HEVC standard. However, since extensive

high and middle level features are applied in [19], there is little AUC improvement

(around 0.007) of our method over [19]. Generally speaking, our method outperforms

all other seven methods, which are in compressed or uncompressed domain.

NSS, CC, and KL. Now, we concentrate on the comparison of NSS, CC, and KL

metrics to evaluate the accuracy of saliency detection on all test videos. The averaged

results (with their standard deviation) of NSS, CC, and KL, by our and other seven

state-of-the-art methods, are also reported in Table 9.1. Note that the method with a

higher value of NSS, CC or KL can better predict the human fixations. Again, it can

be seen from Table 9.1 that our method improves the saliency detection accuracy over

all other methods, in the terms of NSS, CC, and KL. Moreover, the improvement of

NSS, CC, and KL, especially CC, is much larger than that of AUC.

Saliency maps. Figure 9.13 shows the saliency maps of four randomly selected

test videos, detected by our and other seven methods, as well as the ground-truth

human fixation maps. Note that the results of only one frame for each video are

shown in these figures. From these figures, one may observe that in comparison with

all other seven methods, our method is capable of well locating the saliency regions

in a video frame, much closer to the maps of human fixations. In summary, the

subjective results here, together with the objective results above, demonstrate that our

method is superior to other state-of-the-art methods in our database.

Computational time. For time-efficiency evaluation, the computational time

of our and other methods has been recorded4 and listed in Table 9.2. We can see

from this table that our method ranks third in terms of computational speed, only

4All methods were run in the same environment: MATLAB 2012b at a computer with Intel Core i7-4770

CPU@3.4 GHz and 16 GB RAM.



Table 9.1 The averaged accuracy of saliency detection by our and other seven methods, in mean (standard deviation) of all test

videos of 3-fold cross validation over our database

Our Itti [10] Surprise [14] Judd [19] PQFT [16] Rudoy [23] Fang [27] OBDL [28]

AUC 0.823(0.071) 0.688(0.066) 0.752(0.083) 0.816(0.065) 0.750(0.084) 0.785(0.100) 0.797(0.073) 0.785(0.086)
NSS 1.658(0.591) 0.445(0.464) 1.078(0.739) 1.427(0.440) 1.300(0.529) 1.401(0.708) 1.306(0.560) 1.511(0.825)
CC 0.438(0.133) 0.119(0.098) 0.272(0.156) 0.387(0.111) 0.311(0.121) 0.386(0.186) 0.370(0.133) 0.352(0.166)
KL 0.300(0.086) 0.104(0.043) 0.183(0.086) 0.285(0.076) 0.239(0.076) 0.269(0.111) 0.266(0.081) 0.236(0.111)
EER 0.241(0.075) 0.365(0.051) 0.305(0.075) 0.250(0.064) 0.307(0.074) 0.270(0.094) 0.269(0.071) 0.277(0.098)

Note: The bold values indicate the best saliency prediction results in the table.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 9.13 Saliency maps of four videos selected from the first time of our

cross-validation experiments. The maps were yielded by our and other

seven methods as well the ground-truth human fixations. Note that the

results of only one frame are shown for each selected video: (a) input,

(b) human, (c) our, (d) Itti, (e) surprise, (f) Judd, (g) PQFT, (h) Rudoy,

(i) Fang, (j) OBDL

Table 9.2 Computational time per video frame averaged over our database for our

and other seven methods

Our Itti Surprise Judd PQFT Rudoy Fang OBDL

Time (s) 3.1 1.6 40.6 23.9 0.5 98.5 15.4 5.8

slower than Itti [10] and PQFT [16]. However, as discussed above, the performance

of Itti and PQFT is rather inferior compared with other methods, and their saliency

detection accuracy is much lower than that of our method. In summary, our method

has high time efficiency with effective saliency prediction performance. The main

reason is that our method benefits from the modern HEVC encoder and the learning

mechanism, thus not wasting much time on exploiting saliency-detection features. We

further transplanted our method into C++ program on the VS.net platform to figure

out its potential in real-time implementation. After the transplantation, our method

consumes averaged 140 ms per frame over all videos of our database and achieves

real-time detection for 480p videos at 30 frame per second (fps). It is worth pointing

out that some speeding-up techniques, like parallel computing, may further reduce the

computational time of our method for real-time saliency detection of high-resolution

videos.

9.6.4 Evaluation on other databases

For evaluating the generalization of our method, we compared our and other seven

methods on all videos of SFU [41] and DIEM [42], which are two widely used

databases. In DIEM, the first 300 frames of each video were tested for matching the

length of videos in SFU and our databases. Here, all 33 videos of our database were

selected for training the C-SVC classifier. Table 9.3 presents the saliency detection



Table 9.3 Mean (standard deviation) values for saliency detection accuracy of our and other methods over SFU and DIEM databases

SFU

Our Itti [10] Surprise [14] Judd [19] PQFT [16] Rudoy [23] Fang [27] OBDL [28]

AUC 0.83(0.06) 0.70(0.07) 0.65(0.12) 0.77(0.07) 0.72(0.08) 0.79(0.08) 0.80(0.07) 0.80(0.07)
NSS 1.42(0.34) 0.27(0.36) 0.47(0.58) 1.05(0.33) 0.86(0.45) 1.38(0.57) 1.23(0.40) 1.36(0.57)
CC 0.49(0.11) 0.09(0.09) 0.16(0.17) 0.37(0.10) 0.29(0.14) 0.46(0.16) 0.42(0.12) 0.44(0.16)
KL 0.28(0.07) 0.09(0.03) 0.13(0.08) 0.18(0.06) 0.19(0.07) 0.25(0.10) 0.24(0.07) 0.27(0.09)
EER 0.24(0.06) 0.34(0.06) 0.32(0.09) 0.29(0.06) 0.28(0.06) 0.26(0.07) 0.26(0.07) 0.26(0.06)

DIEM

Our Itti [10] Surprise [14] Judd [19] PQFT [16] Rudoy [23] Fang [27] OBDL [28]

AUC 0.86(0.07) 0.77(0.07) 0.75(0.12) 0.75(0.09) 0.79(0.08) 0.80(0.11) 0.80(0.09) 0.79(0.12)
NSS 1.82(0.65) 0.54(0.67) 0.93(0.91) 0.99(0.40) 1.28(0.75) 1.48(0.91) 1.23(0.57) 1.62(1.01)
CC 0.49(0.14) 0.13(0.12) 0.23(0.19) 0.29(0.11) 0.30(0.15) 0.41(0.22) 0.35(0.14) 0.39(0.22)
KL 0.37(0.10) 0.10(0.06) 0.18(0.13) 0.20(0.07) 0.25(0.11) 0.29(0.14) 0.28(0.10) 0.30(0.13)
EER 0.21(0.07) 0.28(0.07) 0.29(0.10) 0.31(0.08) 0.26(0.07) 0.25(0.10) 0.25(0.08) 0.26(0.11)

Note: The bold values indicate the best saliency prediction results in the table.



334 Applications of machine learning in wireless communications

Table 9.4 Comparison to the results reported in [23]

Our PQFT [16] Rudoy [23]

Median shuffled-AUC 0.74 0.68 0.72

Note: The bold values indicate the best saliency prediction results in the table.

accuracy of our and other methods over the SFU and DIEM databases. Again, our

method performs much better than others in terms of all five metrics. Although the

C-SVC was trained on our database, our method still significantly outperforms all

seven conventional methods over other databases.

Although above results were mainly upon the codes by their authors, it is fairer

to compare with the results reported in their literatures. However, it is hard to find

the literatures reporting the results of all seven methods on a same database. Due to

this, we only compare to the reported results of the method with top performance. We

can see from Tables 9.1 and 9.3 that among all methods we compared, Rudoy [23]

generally ranks highest in our, SFU, and DIEM databases. Thus, we implemented our

method on the same database as Rudoy [23] (also the DIEM database), and then we

compared the results of our method to those of seven PQFT [16] and Rudoy [23],

which were reported in [23]. The comparison is provided in Table 9.4. Note that the

comparison is in terms of median shuffled-AUC, as shuffled version of AUC was

measured with median values available in [23]. Note that shuffled-AUC is much

smaller than AUC, due to the removed center bias prior. We can see from Table 9.4

that our method again performs better than [16,23].

9.6.5 Evaluation on other work conditions

For further assessing the generalization of our method, we extended the implemen-

tation of our method at different HEVC working conditions. The working conditions

include HM 16.0 and ×265 v1.8 encoders, at both LD and RA configurations. We

have discussed the parameter settings of these working conditions in Section 9.6.1.

The rate control at these working conditions was also enabled, with the bit rates the

same as above.

Figure 9.14 compares the saliency detection performance of our method applied

to HM and ×265 encoders with LD and RA configurations. The performance is

evaluated in the terms of AUC, CC, NSS, and KL, averaged over all videos of the

three databases, i.e., our, SFU, and DIEM databases. The results of Rudoy [23] and

Fang [27] are also provided in this figure as the reference. As seen from Figure

9.14, although our method in RA performs a bit worse than that in LD, it is much

superior to other state-of-the-art methods. We can further see from Figure 9.14 that the

performance of our method slightly decreases, when using ×265 bitstreams instead

of HM bitstreams. Such a slight decrease is probably due to the simplified process

of ×265 over HM. More importantly, when applied to ×265 bitstreams, our method

still significantly outperforms other methods. In summary, our method is robust to

different working conditions.
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Figure 9.14 Performance of our method at different working conditions, compared

with Rudoy [23] and Fang [27]. The performance is assessed in terms

of AUC, NSS, CC, and KL, averaged over all videos of our, SFU, and

DIEM databases

9.6.6 Effectiveness of single features and learning algorithm

It is interesting to investigate the effectiveness of each HEVC feature in our method.

We utilized each single feature of our method to detect saliency of all 33 videos

from our database. Since the learning process is not required when evaluating each

feature of our method, all 33 videos of our database were tested here without any

cross validation. In Table 9.5, we tabulate the saliency detection accuracy of each

single feature, measured by AUC, NSS, CC, KL, and EER. This table shows that the

AUC results of all nine HEVC features in our method are significantly better than

that of random hit, the AUC of which is 0.5. This confirms that the HEVC encoder

can be utilized as an effective feature extractor for saliency detection. Besides, it can

be clearly observed from this table that the accuracy of bit-allocation-related features

ranks the highest among all features. Therefore, we can conclude that the bit allocation

of HEVC is rather effective in saliency detection, compared to other HEVC features.

Furthermore, Figure 9.15 evaluates the robustness of each single feature across

various working conditions (HM+LD, HM+RA, ×265+LD and ×265+RA). Here,

the evaluation is performed on AUC averaged all 33 videos of our database. We can

see that the AUC of each single feature, especially the features of splitting depth,

varies at different working conditions. This implies that each single feature relies on

the working conditions. Benefitting from the machine-learning power of the C-SVC

(presented in Section 9.5), the performance of combining all features is significantly

more robust than a single feature as shown in Figure 9.15. Since the splitting depth is

least robust across various working conditions, we plot in Figure 9.15 the AUC values

of integrating six features (excluding spitting depth related features). It shows that the

integration of six features underperforms the integration of all nine features for all

working conditions. Thus, we can validate that the features of spitting depth are still

able to improve the overall performance of our method at various working conditions.



Table 9.5 Mean (standard deviation) values for saliency detection accuracy by each single feature of our method, averaged over the

frames of all 33 test videos

Basic Temporal difference Spatial difference

Depth Bit MV Depth Bit MV Depth Bit MV

AUC 0.73(0.10) 0.76(0.09) 0.68(0.11) 0.72(0.09) 0.75(0.09) 0.69(0.10) 0.71(0.10) 0.79(0.08) 0.69(0.12)
NSS 0.84(0.49) 1.26(0.72) 0.85(0.67) 0.97(0.55) 1.15(0.63) 0.86(0.61) 0.82(0.50) 1.38(0.70) 0.78(0.62)
CC 0.23(0.12) 0.31(0.15) 0.19(0.15) 0.23(0.12) 0.27(0.14) 0.20(0.15) 0.23(0.13) 0.35(0.15) 0.19(0.15)
KL 0.19(0.09) 0.24(0.10) 0.19(0.09) 0.22(0.08) 0.24(0.09) 0.19(0.08) 0.19(0.08) 0.27(0.09) 0.12(0.09)
EER 0.27(0.08) 0.29(0.09) 0.35(0.09) 0.33(0.08) 0.30(0.08) 0.34(0.09) 0.33(0.09) 0.27(0.09) 0.35(0.02)
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Figure 9.15 AUC curves of saliency detection by each single feature and feature

combination. Six comb. and nine comb. mean the results of saliency

detection by six features (excluding features of splitting depth) and by

all six features, respectively. Similar results can be found for other

metrics, e.g., CC

Table 9.6 The averaged accuracy of saliency detection by our method with C-SVC

and equal weight

AUC NSS CC KL EER

C-SVC 0.823(0.071) 1.658(0.591) 0.438(0.133) 0.300(0.086) 0.241(0.075)
Equal weight 0.775(0.087) 1.268(0.546) 0.330(0.129) 0.247(0.083) 0.279(0.084)

Finally, it is necessary to verify the effectiveness of the C-SVC learning algorithm

in our method, since it bridges the gap between the proposed HEVC features and

saliency. Provided that the learning algorithm is not incorporated, equal weighting

is a common way for feature integration (e.g., in [10]). Table 9.6 compares saliency

detection results of our method with the C-SVC learning algorithm and with equal

weighting. As can be seen in this table, the C-SVC produces significantly better

results in all metrics, compared with the equal weight integration. This indicates the

effectiveness of the learning algorithm applied in our method for saliency detection.
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9.7 Conclusion

In this chapter, we found out that the state-of-the-art HEVC encoder is not only effi-

cient in video coding but also effective in providing the useful features in saliency

detection. Therefore, this chapter has proposed a novel method for learning to detect

video saliency with several HEVC features. Specifically, to facilitate the study on

video-saliency detection, we first established an eye-tracking database on viewing

33 uncompressed videos from test sets commonly used for HEVC evaluation. The

statistical analysis on our database revealed that human fixations tend to fall into the

regions with the high-valued HEVC features of splitting depth, bit allocation, and

MV. Besides, three observations were also found from our eye-tracking database.

According to the analysis and observations, we proposed to extract and then com-

pute several HEVC features, on the basis of splitting depth, bit allocation, and MV.

Next, we developed the C-SVC, as a nonlinear SVM classifier, to learn the model of

video saliency with regard to the proposed HEVC features. Finally, the experimental

results verified that our method outperforms other state-of-the-art saliency detection

methods, in terms of ROC, EER, AUC, CC, NSS, and KL metrics.

In the reality of wireless multimedia communications, almost all videos exist

in the form of bitstreams, generated by video-coding techniques. Since HEVC is

the latest video-coding standard, there is no doubt that the HEVC bitstreams will be

prevalent in the near future. Accordingly, our method, performed in HEVC domain, is

more practicable over other state-of-the-art uncompressed domain methods, as both

time and storage complexity on decompressing videos can be saved.
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Chapter 10

Deep learning for indoor localization
based on bimodal CSI data

Xuyu Wang1 and Shiwen Mao2

In this chapter, we incorporate deep learning for indoor localization utilizing channel

state information (CSI) with commodity 5 GHz Wi-Fi. We first introduce the state-of-

the-art deep-learning techniques including deep autoencoder network, convolutional

neural network (CNN), and recurrent neural network (RNN). We then present a deep-

learning-based algorithm to leverage bimodal CSI data, i.e., average amplitudes and

estimated angle of arrivals (AOA), for indoor fingerprinting. The proposed scheme

is validated with extensive experiments. Finally, we discuss several open research

problems for indoor localization based on deep-learning techniques.

10.1 Introduction

The proliferation of mobile devices has fostered great interest in indoor-location-based

services, such as indoor navigation, robot tracking in factories, locating workers on

construction sites, and activity recognition [1–8], all requiring accurately identifying

the locations of mobile devices indoors. The indoor environment poses a complex

radio-propagation channel, including multipath propagation, blockage, and shadow

fading, and stimulates great research efforts on indoor localization theory and sys-

tems [9]. Among various indoor-localization schemes, Wi-Fi-based fingerprinting is

probably one of the most widely used. In fingerprinting, a database is first built with

data collected from a thorough measurement of the field in the off-line training stage.

Then, the position of a mobile user can be estimated by comparing the newly received

test data with that in the database. A unique advantage of this approach is that no

extra infrastructure needs to be deployed.

Many existing fingerprinting-based indoor-localization systems use received

signal strength (RSS) as fingerprints, due to its simplicity and low hardware require-

ment [10,11]. For example, radar is one of the first RSS-based fingerprinting systems

1Department of Computer Science, California State University, United States
2Department of Electrical and Computer Engineering, Auburn University, United States
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that incorporate a deterministic method for location estimation [10]. For higher accu-

racy, Horus, another RSS-based fingerprinting scheme, adopts a probabilistic method

based on K-nearest neighbor (KNN) [9] for location estimation [11]. The performance

of RSS-based schemes is usually limited by two inherent shortcomings of RSS. First,

due to the multipath effect and shadow fading, the RSS values are usually highly

diverse, even for consecutively received packets at the same position. Second, RSS

value only reflects the coarse channel information, since it is the sum of the powers

of all received signals.

Unlike RSS, CSI represents fine-grained channel information, which can now

be extracted from several commodity Wi-Fi network interface cards (NIC), e.g., Intel

Wi-Fi Link 5300 NIC [12], theAtherosAR9390 chipset [13], and theAtherosAR9580

chipset [14]. CSI consists of subcarrier-level measurements of orthogonal frequency

division multiplexing (OFDM) channels. It is a more stable representation of chan-

nel characteristics than RSS. Several CSI-based fingerprinting systems have been

proposed and shown to achieve high localization accuracy [15,16]. For example, the

fine-grained indoor fingerprinting system (FIFS) [15] uses a weighted average of

CSI values over multiple antennas. To fully exploit the diversity among the multiple

antennas and subcarriers, DeepFi [16] learns a large amount of CSI data from the

three antennas and 30 subcarriers with an autoencoder. These CSI-based schemes only

use the amplitude information of CSI, since the raw phase information is extremely

random and not directly usable [17].

Recently, for the Intel 5300 NIC in 2.4 GHz, two effective methods have been

proposed to remove the randomness in raw CSI phase data. In [18], the measured

phases from 30 subcarriers are processed with a linear transformation to mitigate

the random phase offsets, which is then employed for passive human-movement

detection. In [17], in addition to the linear transformation, the difference of the

sanitized phases from two antennas is obtained and used for line-of-sight (LOS)

identification. Although both approaches can stabilize the phase information, the

mean value of phase will be zero (i.e., lost) after such processing. This is actually

caused by the firmware design of the Intel 5300 NIC when operating on the 2.4 GHz

band [19]. To address this issue, Phaser [19] proposes to exploit CSI phase in 5 GHz

Wi-Fi. Phaser constructs an AOA pseudospectrum for phase calibration with a single

Intel 5300 NIC. These interesting works motivate us to explore effectively cleansed

phase information for indoor fingerprinting with commodity 5 GHz Wi-Fi.

In this chapter, we investigate the problem of fingerprinting-based indoor local-

ization with commodity 5 GHz Wi-Fi. We first present three hypotheses on CSI

amplitude and phase information for 5 GHz OFDM channels. First, the average

amplitude over two antennas is more stable over time for a fixed location than that

from a single antenna as well as RSS. Second, the phase difference of CSI values

from two antennas in 5 GHz is highly stable. Due to the firmware design of Intel

5300 NIC, the phase differences of consecutively received packets form four clusters

when operating in 2.4 GHz. Such ambiguity makes measured phase difference unus-

able. However, we find this phenomenon does not exist in the 5 GHz band, where

all the phase differences concentrate around one value. We further design a sim-

ple multi-radio hardware for phase calibration which is different from the technique
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in [19] that uses AOA pseudospectrum search with a high computation complexity,

to calibrate phase in single Intel 5300 NIC. As a result, the randomness from the

time and frequency difference between the transmitter and receiver, and the unknown

phase offset can all be removed, and stable phase information can be obtained. Third,

the calibrated phase difference in 5 GHz can be translated into AOA with considerable

accuracy when there is a strong LOS component. We validate these hypotheses with

both extensive experiments and simple analysis.

We then design BiLoc, bimodal deep learning for indoor localization with com-

modity 5 GHz Wi-Fi, to utilize the three hypotheses in an indoor fingerprinting

system [20]. In BiLoc, we first extract raw amplitude and phase data from the three

antennas, each with 30 subcarriers. We then obtain bimodal data, including average

amplitudes over pairs of antennas and estimated AOAs, with the calibration procedure

discussed above. In the off-line training stage, we adopt an autoencoder with three

hidden layers to extract the unique channel features hidden in the bimodal data and

propose to use the weights of the deep network to store the extracted features (i.e.,

fingerprints). To reduce the computational complexity, we propose a greedy learn-

ing algorithm to train the deep network in a layer-by-layer manner with a restricted

Boltzmann machine (RBM) model. In the online test stage, bimodal test data is first

collected for a mobile device. Then a Bayesian probability model based on the radial

basis function (RBF) is leveraged for accurate online position estimation.

In the rest of this chapter, preliminaries on deep learning for indoor localization

is introduced Section 10.2. Then, the three hypotheses are given in Section 10.3.

We present the BiLoc system in Section 10.4 and validate its performance in

Section 10.5. Section 10.6 discusses future research problems for indoor localization,

and Section 10.7 concludes this chapter.

10.2 Deep learning for indoor localization

With the rapid growth of computation platforms likeTensorflow, Caffe, andTorch [21],

deep learning has been widely applied in a variety of areas such as object recogni-

tion, natural-language processing, computer vision, robotics, automated vehicles,

and artificial intelligence (AI) games [22]. Compared with shallow machine-learning

algorithms, such as support vector machine (SVM) and KNN, deep learning is a

branch of machine learning, which implements nonlinear transformations with mul-

tiple hidden layers and has high-level data abstractions. In addition, deep learning can

train the weights and bias of the network with a huge quantity of data for improving

classification performance and data-representation capability, which includes unsu-

pervised and supervised learning with different deep-learning models [23]. In this

chapter, three different deep-learning frameworks are discussed below for indoor

localization problems.

10.2.1 Autoencoder neural network

A deep autoencoder neural network is an unsupervised learning, which can produce

output data that is a de-noised input data. Moreover, it is also used to extract data
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features or reduce the size of data, which is more powerful than principal component

analysis-based methods because of its nonlinear transformations with multiple hidden

layers. Figure 10.1 shows the architecture of the deep autoencoder neural network. For

training, a deep autoencoder neural network has three stages including pretraining,

unrolling, and fine-tuning [24]. In the pretraining stage, each neighboring set of two

layer is considered as an RBM, is denoted as a bipartite undirected graphical model.

Then, a greedy algorithm is used to train the weights and biases for a stack of RBMs.

In the unrolling stage, the deep autoencoder network is unrolled to obtain the recon-

structed input data. Finally, the fine-tuning phase employs the backpropagation (BP)

algorithm for training the weights in the deep autoencoder network by minimizing

the loss function (i.e., the error).

The first work that applies a deep autoencoder to indoor localization is

DeepFi [16,25], which is a deep autoencoder network-based indoor fingerprinting

method with CSI amplitudes. For every training location, the deep autoencoder net-

work is trained to obtain a set of weights and biases, which are used as fingerprints

for the corresponding locations. For online test, the true location is estimated based

on the Bayesian scheme. The experimental results show that the mean distance error

in a living room environment and a laboratory environment is 1.2 and 2.3 m, respec-

tively. In addition, PhaseFi [26,27] is proposed to use CSI calibrated phase, which

still incorporates a deep autoencoder networks for indoor localization. Moreover, deep

autoencoder networks are used for device-free indoor localization [28,29]. The denois-

ing autoencoder-based indoor localization with Bluetooth Low Energy (BLE) is also

used to provide 3-D localization [30]. In this chapter, we consider deep autoencoder

networks for indoor localization using bimodal CSI data.

10.2.2 Convolutional neural network

CNN is also a useful deep-learning architecture, which has been successfully used

in computer vision and activity recognition [23,31]. In 1998, LeCun proposed

LeNet-5 [32], which is the first architecture of CNN. Figure 10.2 shows the CNN

framework, which includes the convolutional layers, subsampling layers, and fully

connected layers.
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The convolutional layer can obtain feature maps within local regions in the pre-

vious layer’s feature maps with linear convolutional filters, which is followed by

nonlinear activation functions. The subsampling layer is to decrease the resolution of

the feature maps by downsampling over a local neighborhood in the feature maps of

the previous layer, which is invariant to distortions in the input data [33]. The feature

maps in the previous layer are pooled over a local temporal neighborhood using the

mean pooling function. Other operations such as the sum or max pooling function

can also be incorporated in the subsampling layer.

After the convolutional and subsampling layers, there is a fully connected layer,

which is a basic neural network with one hidden layer, to train the output data. More-

over, a loss function is used to measure the difference between the true location label

and the output of CNN, where the squared error or cross entropy is used as loss func-

tion for training the weights. Currently, an increasing number of CNN models are

proposed, such as AlexNet [31] and ResNet [34]. AlexNet is a larger and more com-

plex model, where Max pooling and rectified linear unit (ReLU) nonlinear activation

function are used in the model [35]. Moreover, dropout regularization is used to han-

dle the overfitting problem. ResNet was proposed by Microsoft, where the residual

block includes a direct path between the input and output, and the batch normaliza-

tion technique is used to avoid diminishing or exploding of the gradient. ResNet is a

152 layers residual learning framework, which won the ILSVRC 2015 classification

competition [31].

For indoor localization problems, the CiFi [33,36] system leverages the con-

structed images with estimated AOA values with commodity 5 GHz Wi-Fi for indoor

localization. This system demonstrates that the performance of the localization has

outperformed several existing schemes, like FIFS and Horus. Motivated by ResNet,

the ResLoc [37] system uses bimodal CSI tensor data to train a deep residual sharing

learning, which can achieve the best performance among deep-learning-based local-

ization methods using CSI. CSI amplitude is also used to obtain CSI images for indoor

localization [38]. In addition, input images by using received signal strength indicator

(RSSI) of Wi-Fi signals are leveraged to train a CNN model [39,40]. CNN has also

been used for TDoA-based localization systems, which can estimate nonlinearities in

the signal propagation space but also predict the signal for multipath effects [41].
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10.2.3 Long short-term memory

To process variable-length sequence inputs, RNNs are proposed, where long range

dependencies can be captured using the feedback loop in the recurrent layer. However,

the dependencies also makes it hard to train an RNN, because of diminishing or

exploding of the gradient of the loss function. Long short-term memory (LSTM) is

proposed to handle the above problem, which has been widely applied for sequence

data processing [42].

For the LSTM algorithm in Figure 10.3, the input gate i decides how much new

information will be exploited in the current memory cell, the forget gate f controls

how much information will be removed from the old memory cell, and the output

gate o determines how much data will be output based on the current memory cell

c. In addition, the sigmoid function σ can control how much information can be

updated and the hyperbolic tangent function tanh can create new candidate values g.

Thus, unlike RNN, LSTM can handle long-term dependency and has better data

representation ability, and has been employed for speech recognition, machine

translation, and time-series problems.

The recently proposed DeepML system uses a two-layer LSTM network for a

higher learning and representation ability on exploiting magnetic and light sensor data

for indoor localization, which can achieve submeter level localization accuracy [43].

LSTM can be used for sequence-based localization problems with other signals. We

have also applied LSTM to wheat moisture level detection [44] and forecasting of

renewable energy generation [45].

10.3 Preliminaries and hypotheses

10.3.1 Channel state information preliminaries

OFDM is widely used in wireless network standards, such as Wi-Fi (e.g., IEEE

802.11a/g/n), where the total spectrum is partitioned into multiple orthogonal subcar-

riers, and wireless data is transmitted over the subcarriers using the same modulation
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and coding scheme to mitigate frequency selective fading. Leveraging the device

driver for off-the-shelf NICs, e.g., the Intel 5300 NIC, we can extract CSI for each

received packet, that is a fine-grained physical layer (PHY) information. CSI reveals

the channel characteristics experienced by the received signal such as the multipath

effect, shadow fading, and distortion.

With OFDM, the Wi-Fi channel at the 5 GHz band can be considered as a nar-

rowband flat fading channel. In the frequency domain, the channel model can be

expressed as

�Y = CSI · �X + �N , (10.1)

where �Y and �X denote the received and transmitted signal vectors, respectively,
�N is the additive white Gaussian noise (AWGN), and CSI represents the channel’s

frequency response, which can be computed from �Y and �X .

Although a Wi-Fi receiver uses an OFDM system with 56 subcarriers for a

20 MHz channel, the Intel 5300 NIC can report 30 out of 56 subcarriers. The channel

frequency response of subcarrier i, CSIi, is a complex value, that is,

CSIi = Ii + jQi = |CSIi| exp( j∠CSIi), (10.2)

where Ii and Qi are the in-phase component and quadrature component, respectively;

|CSIi| and ∠CSIi are the amplitude response and phase response of subcarrier i,

respectively.

10.3.2 Distribution of amplitude and phase

In general, both Ii and Qi can be modeled as i.i.d. AWGN of variance σ 2.

The amplitude response is |CSIi| =
√

I 2
i + Q2

i , which follows a Rician distribution

when there is a strong LOS component [46]. The probability distribution function

(PDF) of the amplitude response is given by

f (|CSIi|) = |CSIi|
σ 2

× exp

(
−|CSIi|2 + |CSI0|2

2σ 2

)
× I0

( |CSIi| · |CSI0|
σ 2

)
, (10.3)

where |CSI0| is the amplitude response without noise, I0(·) is the zeroth-

order modified Bessel function of the first kind. When the signal-to-noise ratio

(SNR) is high, the PDF f (|CSIi|) will converge to the Gaussian distribution as

N (
√

|CSI0|2 + σ 2, σ 2) [46].

The phase response of subcarrier i is computed by ∠CSIi = arctan(Qi/Ii) [46].

The phase PDF is given by

f (∠CSIi) = 1

2π
exp

(
−|CSI0|2

2σ 2

) (
1 + |CSI0|

σ

√
2π cos(∠CSIi)

×exp

( |CSI0|2 cos2(∠CSIi)

2σ 2

) (
1 − Q

( |CSI0| cos(∠CSIi)

σ

)))
,

where Q(·) is the Q-function. In the high SNR regime, the PDF f (∠CSIi) also

converges to a Gaussian distribution as N
(
0, (σ/|CSI0|)2

)
[46]. The distribution

of amplitude and phase of the subcarriers would be useful to guide the design of

localization algorithms.
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10.3.3 Hypotheses

We next present three important hypotheses about the CSI data on 5 GHz OFDM chan-

nels, which are demonstrated and tested with our measurement study and theoretical

analysis.

10.3.3.1 Hypothesis 1

The average CSI amplitude value of two adjacent antennas for the 5 GHz OFDM

channel is highly stable for a fixed location.

We find CSI amplitude values exhibit great stability for continuously received

packets at a given location. Figure 10.4 presents the cumulative distribution functions

(CDF) of the standard deviations (STD) of (i) the normalized CSI amplitude averaged

over two adjacent antennas, (ii) the normalized CSI amplitude from a single antenna,

and (iii) the normalized RSS amplitude from a single antenna, for 90 positions. At

each position, 50 consecutive packets are received by the Intel 5300 NIC operating on

the 5 GHz band. It can be seen that 90% of the testing positions are blow 10% of the

STD in the case of averaged CSI amplitudes, while the percentage is 80% for the case

of single antenna CSI and 70% for the case of single antenna RSS. Thus, averaging

over two adjacent antennas can make CSI amplitude highly stable for a fixed location

with 5 GHz OFDM channels. We conduct the measurements over a long period of

time, including midnight and business hours. No obvious difference in the stability of

CSI is observed over different times, while RSS values exhibit large variations even

for the same position. This finding motivates us to use average CSI amplitudes of two

adjacent antennas as one of the features of deep learning in the BiLoc design.

Recall that the PDF of the amplitude response of a single antenna is Gaussian

in the high SNR regime. Assuming that the CSI values of the two antennas are i.i.d.
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Figure 10.4 CDF of the standard deviations of normalized average CSI amplitude,

a single CSI amplitude, and a single RSS in the 5 GHz OFDM channel

for 90 positions
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(true when the antennas are more than a half wavelength apart [17]), the average

CSI amplitudes also follow the Gaussian distribution, as N (
√

|CSI0|2 + σ 2, σ 2/2),

but with a smaller variance. This proves that stability can be improved by averaging

CSI amplitudes over two antennas [47] (as observed in Figure 10.4). We consider the

average CSI amplitudes over two antennas instead of three antennas or CSI amplitudes

from only one antenna, and BiLoc employs bimodal data, including estimated AOAs

and average amplitudes. This requires that we use the same number of nodes as the

input for the deep network.

10.3.3.2 Hypothesis 2

The difference of CSI phase values between two antennas of the 5 GHz OFDM channel

is highly stable, compared to that of the 2.4 GHz OFDM channel.

Although the CSI phase information is also available from the Intel 5300 NIC,

it is highly random and cannot be directly used for localization, due to noise and

the unsynchronized time and frequency of the transmitter and receiver. Recently, two

useful algorithms are used to remove the randomness in CSI phase. The first approach

is to make a linear transform of the phase values measured from the 30 subcarriers [18].

The other one is to exploit the phase difference between two antennas in 2.4 GHz and

then remove the measured average [17]. Although both methods can stabilize the CSI

phase in consecutive packets, the average phase value they produce is always near

zero, which is different from the real phase value of the received signal.

Switching to the 5 GHz band, we find the phase difference becomes highly

stable. In Figure 10.5, we plot the measured phase differences of the 30 subcarriers

between two antennas for 200 consecutively received packets in the 5 GHz (in blue)

and 2.4 GHz (in red) bands. The phase difference of the 5 GHz channel varies between

[0.5, 1.8], which is considerably more stable than that of the 2.4 GHz channel (varies

between [−π , π]). To further illustrate this finding, we plot the measured phase

differences on the fifth subcarrier between two antennas using polar coordinates in

Figure 10.6. We find that all the 5 GHz measurements concentrate around 30◦, while

the 2.4 GHz measurements form four clusters around 0◦, 90◦, 180◦, and 270◦. We

conjecture that this may be caused by the firmware design of the Intel 5300 NIC when

operating on the 2.4 GHz band, which reports the phase of channel modulo π/2 rather

than 2π on the 5 GHz band [19]. Comparing to the ambiguity in the 2.4 GHz band,

the highly stable phase difference in the 5 GHz band could be very useful for indoor

localization.

As in Hypothesis 1, we also provide an analysis to validate the observation from

the experiments. Let ∠ĈSI i denote the measured phase of subcarrier i, which is given

by [14,48]:

∠ĈSI i = ∠CSIi + (λp + λs)mi + λc + β + Z , (10.4)

where ∠CSIi is the true phase; Z is the measurement noise; β is the initial phase

offset because of the phase-locked loop; mi is the subcarrier index of subcarrier i;

λp, λs, and λc are phase errors from the packet boundary detection (PBD); the
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sampling frequency offset and central frequency offset, respectively [48], which are

expressed by
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λp = 2π
�t

N

λs = 2π

(
T ′ − T

T

)
Ts

Tu

n

λc = 2π�f Tsn,

(10.5)
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where �t is the PBD delay, N is the fast Fourier transform (FFT) size, T ′ and T are the

sampling periods from the receiver and the transmitter, respectively, Tu is the length

of the data symbol, Ts is the total length of the data symbol and the guard interval, n

is the sampling time offset for current packet, �f is the center frequency difference

between the transmitter and receiver. It is noticed that we cannot obtain the exact

values about �t, (T ′ − T )/T , n, �f , and β in (10.4) and (10.5). Moreover, λp, λs,

and λc vary for different packets with different �t and n. Thus, the true phase ∠CSIi

cannot be derived from the measured phase value.

However, note that the three antennas of the Intel 5300 NIC use the same clock and

the same down-converter frequency. Consequently, the measured phases of subcarrier

i from two antennas have identical packet detection delay, sampling periods, and

frequency differences (and the same mi) [19]. Thus the measured phase difference on

subcarrier i between two antennas can be approximated as

�∠ĈSI i = �∠CSIi + �β + �Z , (10.6)

where �∠CSIi is the true phase difference of subcarrier i, �β is the unknown differ-

ence in phase offsets, which is in fact a constant [19], and �Z is the noise difference.

We find that �∠ĈSI i is stable for different packets because of (10.6) where �t and

n are cancelled.

In the high SNR regime, the PDF of the phase response of subcarrier i for each

of the antennas is N (0, (σ/|CSI0|)2). Due to the independent phase responses, the

measured phase difference of subcarrier i is also Gaussian with N (�β, 2σ 2(1 +
1/|CSI0|2)). Note that although the variance is higher comparing to the true-phase

response, the uncertainty from the time and frequency differences is removed, leading

to much more stable measurements (as shown in Figure (10.6)).

10.3.3.3 Hypothesis 3

The calibrated phase difference in 5 GHz can be translated into the AOA with

considerable accuracy when there is a strong LOS component.

The measured phase difference on subscriber i can be translated into an estimation

of AOA, as

θ = arcsin

(
�∠ĈSI iλ

2πd

)
, (10.7)

where λ is the wavelength and d is the distance between the two antennas (set to

d = 0.5λ in our experiments). Although the measured phase difference �∠ĈSI i is

highly stable, we still wish to remove the unknown phase offset difference �β to

further reduce the error of AOA estimation. For commodity Wi-Fi devices, the only

existing approach for a single NIC, to the best of our knowledge, is to search for �β

within an AOA pseudospectrum in the range of [−π , π], which, however, has a high

time complexity [19].

In this chapter, we design a simple method to remove the unknown phase offset

difference �β using two Intel 5300 NICs. As in Figure 10.7, we use one Intel 5300 NIC

as transmitter and the other as receiver, while a signal splitter is used to route signal

from antenna 1 of the transmitter to antennas 1 and 2 of the receiver through cables
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Figure 10.8 The estimated AOAs from the 30 subcarriers using the MUSIC

algorithm, while the real AOA is 14◦

of the same length. Since the two antennas receive the same signal, the true phase

difference �∠CSIi of subcarrier i is zero. We can thus obtain �β as the measured

phase offset difference between antennas 1 and 2 of the receiver. We also use the

same method to calibrate antennas 2 and 3 of the receiver, to obtain the unknown

phase offset difference between them as well. We find that the unknown phase offset

difference is relatively stable over time.

Having calibrated the unknown phase offset differences for the three antennas,

we then use the MUSIC algorithm for AOA estimation [49]. In Figure 10.8, the AOA

estimation using MUSIC with the calibrated phase information for the 30 subcarriers

is plotted for a high SNR signal with a known incoming direction of 14◦. We can see

that the peak occurs at around 20◦ in Figure 10.8, indicating an AOA estimation error

of about 6◦.
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We can obtain the true incoming angle with MUSIC when the LOS component is

strong. To deal with the case with strong NLOS paths (typical in indoor environments),

we adopt a deep network with three hidden layers to learn the estimated AOAs and the

average amplitudes of adjacent antenna pairs as fingerprints for indoor localization.

As input to the deep network, the estimated AOA is obtained as follows:

θ = arcsin

((
�∠ĈSI i − �β

) λ

2πd

)
+ π

2
, (10.8)

where �β is measured with the proposed multi-radio hardware experiment. The

estimated AOA is in the range of [0, π].

10.4 The BiLoc system

10.4.1 BiLoc system architecture

The overall architecture of BiLoc is illustrated in Figure 10.9. The BiLoc design uses

only one access point and one mobile device, each equipped with an Intel 5300 NIC,

servicing as receiver and transmitter, respectively. All the communications are on the

CSI data collection

Location 1

bimodal data

Deep learning

Location N

bimodal data

Data fusion
Test location X

Bimodal data 

Estimated location

Mobile device

Bimodal data extraction

Off-line

Bimodal fingerprint database

Online

Access point

...

Figure 10.9 The BiLoc system architecture
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5 GHz band. The Intel 5300 NIC has three antennas; at each antenna, we can read

CSI data from 30 subcarriers. Thus we can collect 90 CSI data for every received

packet. We then calibrate the phase information of the received CSI data using our

multi-radio hardware design (see Figure 10.7). Both the estimated AOAs and average

amplitudes of two adjacent antennas are used as location features for building the

fingerprint database.

A unique feature of BiLoc is its bimodal design. With the three receiving antennas,

we can obtain two groups of data: (i) 30 estimated AOAs and 30 average amplitudes

from antennas 1 and 2 and (ii) that from antennas 2 and 3. BiLoc utilizes estimated

AOAs and average amplitudes for indoor fingerprinting for two main reasons. First,

these two types of CSI data are highly stable for any given position. Second, they are

usually complementary to each other under some indoor circumstances. For example,

when a signal is blocked, the average amplitude of the signal will be significantly

weakened, but the estimated AOA becomes more effective. On the other hand, when

the NLOS components are stronger than the LOS component, the average amplitude

will help to improve the localization accuracy.

Another unique characteristic of BiLoc is the use of deep learning to produce

feature-based fingerprints from the bimodal data in the off-line training stage, which

is quite different from the traditional approach of storing the measured data as fin-

gerprints. Specifically, we use the weights in the deep network to represent the

features-based fingerprints for every position. By obtaining the optimal weights with

the bimodal data on estimated AOAs and average amplitudes, we can establish a

bimodal fingerprint database for the training positions. The third feature of BiLoc

is the probabilistic data fusion approach for location estimation based on received

bimodal data in the online test stage.

10.4.2 Off-line training for bimodal fingerprint database

In the off-line stage, BiLoc leverages deep learning to train and store the weights to

build a bimodal fingerprint database, which is a deep autoencoder that involves three

phases: pretraining, unrolling, and fine-tuning [24]. In the pretraining phase, a deep

network with three hidden layers and one input layer is used to learn the bimodal

data. We denote hi as the hidden variable with Ki nodes at layer i, i = 1, 2, 3, and h0

as the input data with K0 nodes at the input layer. Let the average amplitude data be

v1 and the estimated AOA data be v2. To build the bimodal fingerprint database, we

set h0 = v1 and h0 = v2 for databases 1 and 2, respectively, each of which is a set of

optimal weights. We denote W1, W2, and W3 as the weights between input data and

the first hidden layer, the first, and second hidden layers, and the second and third

hidden layers, respectively.

We define Pr(h0, h1, h2, h3) as the probabilistic generative model for the deep

network. To derive the optimal weights, we maximize the marginal distribution of the

input data for the deep network, which is given by

max
{W1,W2,W3}

∑

h1

∑

h2

∑

h3

Pr(h0, h1, h2, h3). (10.9)
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Because of the large number of nodes and the complex model structure, it is

difficult to find the optimal weights for the input data with the maximum likelihood

method. To reduce the computational complexity, BiLoc utilizes a greedy learning

algorithm to train the weights layer by layer based on a stack of RBMs [50]. We

consider an RBM as a bipartite undirected graphical model [50] with joint distribution

Pr(hi−1, hi), as

Pr(hi−1, hi) = exp(−E(hi−1, hi))∑
hi−1

∑
hi exp(−E(hi−1, hi))

, (10.10)

where E(hi−1, hi) denotes the free energy between layer (i − 1) and layer i, which is

given by

E(hi−1, hi) = −bi−1hi−1 − bihi − hi−1Wih
i, (10.11)

where bi−1 and bi are the biases for the units of layer (i − 1) and that of layer i,

respectively. To obtain the joint distribution Pr(hi−1, hi), the CD-1 algorithm is used

to approximate it as [50]:
⎧
⎨
⎩

Pr(hi−1|hi) = ∏Ki−1

j=1 Pr(hi−1
j |hi)

Pr(hi|hi−1) = ∏Ki

j=1 Pr(hi
j|hi−1),

(10.12)

where Pr(hi−1
j |hi) and Pr(hi

j|hi−1) are given by the sigmoid belief network as follows:
⎧
⎪⎨
⎪⎩

Pr(hi−1
j |hi) =

(
1 + exp(−bi−1

j − ∑Ki

t=1 W
j,t
i hi

t)
)−1

Pr(hi
j|hi−1) =

(
1 + exp(−bi

j − ∑Ki−1

t=1 W
j,t
i hi−1

t )
)−1

.

(10.13)

We propose a greedy algorithm to train the weights and biases for a stack of

RBMs. First, with the CD-1 method, we use the input data to train the parameters

{b0, b1, W1} of the first layer RBM. Then, the parameters {b0, W1} are frozen, and we

sample from the conditional probability Pr(h1|h0) to train the parameters {b1, b2, W2}
of the second layer RBM. Next, we freeze the parameters {b0, b1, W1, W2} of the

first and second layers and then sample from the conditional probability Pr(h2|h1) to

train the parameters {b2, b3, W3} of the third layer RBM. In order to train the weights

and biases of each RBM, we use the CD-1 method to approximate them. For the

layer i RBM model, we estimate ĥi−1 by sampling from the conditional probability

Pr(hi−1|hi); by sampling from the conditional probability Pr(hi|ĥi−1), we can estimate

ĥi. Thus, the parameters are updated as follows:
⎧
⎪⎨
⎪⎩

�Wi = ε(hi−1hi − ĥi−1ĥi)

�bi = ε(hi − ĥi)

�bi−1 = ε(hi−1 − ĥi−1),

(10.14)

where ε is the step size.

After the pretraining phase, we obtain the near-optimal weights for the deep

network. We then unroll the deep network with forward propagation to obtain the

reconstructed input data in the unrolling phase. Finally, in the fine-tuning phase, the
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BP algorithm is used to train the weights in the deep network according to the error

between the input data and the reconstructed input data. The optimal weights are

obtained by minimizing the error. In BiLoc, we use estimated AOAs and average

amplitudes as input data and obtain two sets of optimal weights for the bimodal

fingerprint database.

10.4.3 Online data fusion for position estimation

In the online phase, we adopt a probabilistic approach to location estimation based on

the bimodal fingerprint database and the bimodal test data. We derive the posteriori

probability Pr(li|v1, v2) using Bayes’ law as

Pr(li|v1, v2) = Pr(li) Pr(v1, v2|li)∑N

j=1 Pr(lj) Pr(v1, v2|lj)
, (10.15)

where N is the number of reference locations, li is the ith reference location in the

bimodal fingerprint database, and Pr(li) is the prior probability that the mobile device

is considered to be at the reference location li. Without loss of generality, we assume

that Pr(li) is uniformly distributed. The posteriori probability Pr(li|v1, v2) becomes:

Pr(li|v1, v2) = Pr(v1, v2|li)∑N

j=1 Pr(v1, v2|lj)
. (10.16)

In BiLoc, we approximate Pr(v1, v2|li) with an RBF in the similar form of a

Gaussian function, to measure the degree of similarity between the reconstructed

bimodal data and the test bimodal data, given by

Pr(v1, v2|li) = exp

(
−(1 − ρ)

‖v1 − v̂1‖
η1σ1

− ρ
‖v2 − v̂2‖

η2σ2

)
, (10.17)

where v̂1 and v̂2 are the reconstructed average amplitude and reconstructed AOA,

respectively; σ1 and σ2 are the variance of the average amplitude and estimated AOA,

respectively; η1 and η2 are the parameters of the variance of the average amplitude

and estimated AOA, respectively; and ρ is the ratio for the bimodal data.

For the (10.17), the average amplitudes v̂1 and the estimated AOAs v̂2 are as

the input of deep network, where the different nodes of the input can express the

different CSI channels. Then, by employing the test data v̂1 and v̂2, we compute the

reconstructed average amplitude v̂1 and reconstructed AOA v̂2 based on databases 1

and 2, respectively, which is used to compute the likelihood function Pr(v1, v2|li).

The location of the mobile device can be finally estimated as a weighted average

of all the reference locations, which is given by

l̂ =
N∑

i=1

Pr(li|v1, v2) · li. (10.18)
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10.5 Experimental study

10.5.1 Test configuration

We present our experimental study with BiLoc in the 5 GHz band in this section. In

the experiments, we use a desktop computer as an access point and a Dell laptop as

a mobile device, both equipped with an Intel 5300 NIC. In fact, we use the desktop

computer instead of the commodity routers that are not equipped with the Intel 5300

NIC nowadays. Our implementation of BiLoc is executed on the Ubuntu desktop

14.04 LTS OS for both the access point and mobile device. We use Quadrature Phase

Shift Keying (QPSK) modulation and a 1/2 coding rate for the OFDM system. For

the access point, it is set in monitor model, and the distance between two adjacent

antennas is d = 2.68 cm, which is half of a wavelength for the 5 GHz band. For the

mobile device, it transmits packets at 100 packets per second using only one antenna

in injection mode. By using packet-injection technique based on LORCON version

1, 5 GHz CSI data can be obtained. Then, we extract bimodal data for training and

test stages as described in Section 10.4.2.

We also implement three representative schemes from the literature, i.e.,

Horus [11], FIFS [15], and DeepFi [16]. For a fair comparison, all the schemes

use the same measured dataset captured in the 5 GHz band to estimate the location

of the mobile device. We conduct extensive experiments with the schemes in the

following two representative indoor environments:

Computer laboratory: This is a 6 × 9 m2 computer laboratory, a cluttered environment

with metal tables, chairs, and desktop computers, blocking most of the LOS paths.

The floor plan is shown in Figure 10.10, with 15 chosen training positions (marked

as red squares) and 15 chosen test positions (marked as green dots). The distance

Table Table Table Table

Table Air conditioner

9 m

6 m

AP

Figure 10.10 Layout of the computer laboratory: training positions are marked as

red squares and testing positions are marked as green dots
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between two adjacent training positions is 1.8 m. The single access point is put close

to the center of the room. We collect bimodal data from 1,000 packet receptions for

each training position, and from 25 packet receptions for each test position. The deep

network used for this scenario is configured as {K1 = 150, K2 = 100, K3 = 50}. Also,

the ratio ρ for the bimodal data is set as 0.5.

Corridor: This is a 2.4 × 24 m2 corridor, as shown in Figure 10.11. In this scenario,

the AP is placed at one end of the corridor, and there are plenty of LOS paths. Ten

training positions (red squares) and ten test positions (green dots) are arranged along

a straight line. The distance between two adjacent training positions is also 1.8 m. We

also collect bimodal data from 1,000 packets for each training position and from 25

packets for each test position. The deep network used for this scenario is configured

as {K1 = 150, K2 = 100, K3 = 50}. Also, the ratio ρ for the bimodal data is set as 0.1.

10.5.2 Accuracy of location estimation

Tables 10.1 and 10.2 present the mean and STD of localization errors, and the exe-

cution time of the four schemes for the two scenarios, respectively. In the laboratory

8 m 

24 m

314

313

310

308311312

318 309

AP

Figure 10.11 Layout of the corridor: training positions are marked as red squares

and testing positions are marked as green dots

Table 10.1 Mean/STD error and execution time of the laboratory experiment

Algorithm Mean error (m) Std. dev. (m) Mean execution time (s)

BiLoc 1.5743 0.8312 0.6653
DeepFi 2.0411 1.3804 0.3340
FIFS 2.7151 1.0805 0.2918
Horus 3.0537 1.0623 0.2849

Table 10.2 Mean/STD errors and execution time of the corridor experiment

Algorithm Mean error (m) Std. dev. (m) Mean execution time (s)

BiLoc 2.1501 1.5420 0.5440
DeepFi 2.8953 2.5665 0.3707
FIFS 4.4296 3.4256 0.2535
Horus 4.8000 3.5242 0.2505
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environment, BiLoc achieves a mean error of 1.5743 m and an STD error of 0.8312 m

across the 15 test points. In the corridor experiment, because only one access point is

used for this larger space, BiLoc achieves a mean error of 2.1501 m and an STD error

of 1.5420 m across the ten test points. BiLoc outperforms the other three benchmark

schemes with the smallest mean error, as well as with the smallest STD error, i.e.,

being the most stable scheme in both scenarios. We also compare the online test time

of all the schemes. Due to the use of bimodal data and the deep network, the mean

executing time of BiLoc is the highest among the four schemes. However, the mean

execution time is 0.6653 s for the laboratory case and 0.5440 s for the corridor case,

which are sufficient for most indoor localization applications.

Figure 10.12 presents the CDF of distance errors of the four schemes in the

laboratory environment. In this complex propagation environment, BiLoc has 100%

of the test positions with an error under 2.8 m, while DeepFi, FIFS, and Horus

have about 72%, 52%, and 45% of the test positions with an error under 2.8 m,

respectively. For a much smaller error of 1.5 m, the percentage of test positions having

a smaller error are 60%, 45%, 15%, and 5% for BiLoc, DeepFi, FIFS, and Horus,

respectively. BiLoc achieves the highest precision among the four schemes, due to

the use of bimodal CSI data (i.e., average amplitudes and estimated AOAs). In fact,

when the amplitude of a signal is strongly influenced in the laboratory environment,

the estimated AOA can be utilized to mitigate this effect by BiLoc. However, the other

schemes-based solely on CSI or RSS amplitudes will be affected.

Figure 10.13 presents the CDF of distance errors of the four schemes for the

corridor scenario. Only one access point is used at one end for this 24 m long corridor,

making it hard to estimate the location of the mobile device. For BiLoc, more than

90% of the test positions have an error under 4 m, while DeepFi, FIFS, and Horus have

about 70%, 60%, and 50% of the test positions with an error under 4 m, respectively.

For a tighter 2 m error threshold, BiLoc has 60% of the test positions with an error

below this threshold, while it is 40% for the other three schemes. For the corridor
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Figure 10.12 CDF of localization errors in 5 GHz for the laboratory experiment
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scenario, BiLoc mainly utilizes the average amplitudes of CSI data, because the

estimated AOAs are similar for all the training/test positions (recall that they are

aligned along a straight line with the access point at one end). This is a challenging

scenario for differentiating different test points and the BiLoc mean error is 0.5758 m

higher than that of the laboratory scenario.

10.5.3 2.4 versus 5 GHz

We also compare the 2.4 and 5 GHz channels with the BiLoc scheme. For a fair

comparison, we conduct the experiments at night, because the 2.4 GHz band is much

more crowded than the 5 GHz band during the day.

Figure 10.14 presents the CDF of localization errors in the 2.4 and 5 GHz band

in the laboratory environment, where both average amplitudes and estimated AOAs

are effectively used by BiLoc for indoor localization. We can see that for BiLoc,

about 70% of the test positions have an error under 2 m in 5 GHz, while 50% of

the test positions have an error under 2 m in 2.4 GHz. In addition, the maximum

errors in 2.4 and 5 GHz are 6.4 and 2.8 m, respectively. Therefore, the proposed

BiLoc scheme achieves much better performance in 5 than 2.4 GHz. In fact, the

phase difference between two antennas in 2.4 GHz exhibits great variations, which

lead to lower localization accuracy. This experiment also validates our Hypothesis 2.

10.5.4 Impact of parameter ρ

Recall that the parameter ρ is used to trade-off the impacts of average amplitudes

and estimated AOAs in location estimation as in (10.17). We examine the impact

of ρ on localization accuracy under the two environments. With BiLoc, we use

bimodal data for online testing, and ρ directly influences the likelihood probability

Pr (v1, v2|li) (10.17), which in turn influences the localization accuracy.
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corridor experiments

Figure 10.15 presents the mean localization errors for increasing ρ for the lab-

oratory and corridor experiments. In the laboratory experiment, when ρ is increased

from 0 to 0.3, the mean error decreases from 2.6 to 1.5 m. Furthermore, the mean

error remains around 1.5 m for ρ ∈ [0.3, 0.7], and then increases from 1.5 to 2 m

when ρ is increased from 0.6 to 1. Therefore, BiLoc achieves its minimum mean

error for ρ ∈ [0.3, 0.7], indicating that both average amplitudes and estimated AOAs

are useful for accurate location estimation. Moreover, BiLoc has higher localization

accuracy with the mean error of 1.5 m, compared with individual modality such as

the estimated AOAs with that of 2.6 m or the average amplitudes with that of 2.0 m.
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In the corridor experiment, we can see that the mean error remains around 2.1 m

when ρ is increased from 0 to 0.1. When ρ is further increased from 0.1 to 1, the

mean error keeps on increasing from 2.1 to about 4.3 m. Clearly, in the corridor

experiment, the estimated AOAs provide similar characteristics for deep learning and

are not useful for distinguishing the positions. Therefore, BiLoc should mainly use

the average amplitudes of CSI data for better accuracy. These experiments provide

some useful guidelines on setting the ρ value for different indoor environments.

10.6 Future directions and challenges

10.6.1 New deep-learning methods for indoor localization

This chapter has discussed three deep-learning technologies including autoencoder,

CNN, LSTM for fingerprinting-based indoor localization. With the rapid growth in the

AI field, new deep-learning approaches are proposed for mainly handling computer

vision problems, such as robust object recognition and detection, data generation, as

well as the Go game. For example, generative adversarial network (GAN) can be used

for generating new data samples; deep reinforcement learning has been leveraged for

AlphaGo; deep Gaussian process can be utilized for improving the robustness of object

detection. In fact, these new deep-learning methods can be also used for solving basic

indoor localization problems such as radio map constructions, environment change,

and devices calibration. For example, deep reinforcement learning [51] can be used

for improving localization performance and reduce cost. Moreover, Bayesian deep

learning such as deep Gaussian process [52,53] has high robustness for environment

noise, which can be exploited for radio map construction, and mitigating environment

changes and devices calibration. Moreover, GAN can be incorporated for building

radio map and increasing the number of training data samples. In addition, com-

pressed deep learning [54] by using pruning and quantization can be considered for

resource limited mobile devices. Thus, we can implement deep-learning models on

smartphones in addition to servers for indoor localization.

10.6.2 Sensor fusion for indoor localization using deep learning

In this chapter, we have proposed bimodal CSI data for indoor localization. In fact,

multiple sensor data sources can be fused for improving indoor localization perfor-

mance. Traditionally, sequence models such as Kalman filter, particle filter, hidden

Markov model, and conditional random field can fuse Wi-Fi and inertial sensor data

on smartphones for indoor localization, which requires for obtaining the sequence

data from continuing smartphone movement. Deep-learning techniques can improve

the performance of indoor localization using multimodal sequence data. For exam-

ple, LSTM method can be leveraged for indoor localization using sequence RSS or

CSI data, which also fuse multimodal data for improving the localization accuracy.

Considering Wi-Fi and magnetic sensor data from smartphone, we can integrate them

into a large data matrix as input to LSTM for indoor localization. In fact, Wi-Fi and

magnetic sensor data are complementary to each other. For example, because of lower
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resolution of Wi-Fi signals, only using Wi-Fi RSS values cannot obtain better per-

formance at close locations, while magnetic sensor data at such positions is greatly

different. LSTM can effectively fuse them for indoor localization [43]. In addition,

an integrated CNN and LSTM model can be used for Wi-Fi RSS or CSI images data,

which can be easily created from different access points or different subcarriers. In

fact, the LSTM model can be combined with other deep-learning models such as

autoencoder, GAN, deep reinforcement learning, Bayesian model for different local-

ization problems such as radio map construction, device calibration, and environment

change. For sensor data fusion for indoor localization, different sensor data sources

should be normalized and aligned [23].

10.6.3 Secure indoor localization using deep learning

For wireless-fingerprinting-based indoor localization, security becomes increasingly

important, where wireless signals are susceptible to eavesdropping, distributed denial-

of-service (DDoS) attacks, and bad data injection [55]. Specially, for crowd-sourcing-

based indoor localization, fingerprints are from different devices at different times,

which greatly exposes the security problem. For attacker models, there are three

general scenarios for RSS fingerprinting-based localization [56]. First, the attacker

does not know the true RSS fingerprints and injects fake RSS data at random. Second,

the attacker knows legitimate RSS fingerprints and add noise to them. Third, the

attacker can change the mapping between RSS fingerprints and positions. For defense

models, they can consider the temporal correlation and spatial correlation within

RSS Traces against different attackers. In fact, deep learning can study the feature

of Localization signals to address the above security problems. Deep learning can

consider different data features from multiple paths of wireless signals to classify

eavesdropping, DDoS attack, or bad data injection for fingerprinting-based indoor

localization.

On the other hand, deep-learning security is also an important problem, which

mainly focuses on how to recognize adversarial data and clean RSS data. Deep learn-

ing will have bad performance with adversarial data, which can be obtained by adding

small noise into clear RSS data. Thus, adversarial data should be recognized before

implementing indoor localization systems based on deep learning, thus guaranteeing

good localization performance. In addition, privacy persevering deep learning can

be used for indoor localization problems, which can protect user location privacy

information.

10.7 Conclusions

In this chapter, we proposed a bimodal deep-learning system for fingerprinting-based

indoor localization with 5 GHz commodity Wi-Fi NICs. First, the state-of-the-art

deep-learning techniques including deep autoencoder network, CNN, and LSTM

were introduced. We then extracted and calibrated CSI data to obtain bimodal CSI

data, including average amplitudes and estimated AOAs, which were used in both
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the off-line and online stages. The proposed scheme was validated with extensive

experiments. We concluded this chapter with a discussion of future directions and

challenges for indoor localization problems using deep learning.
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Chapter 11

Reinforcement-learning-based wireless
resource allocation

Rui Wang1

In wireless systems, radio resource management (RRM) is a necessary approach to

improve the transmission efficiency. For example, the base stations (BSs) of cellular

networks can optimize the selection of downlink receiving users in each frame and

the transmission power for them according to channel state information (CSI), such

that the total throughput is maximized. The RRM of various kinds are usually rep-

resented by mathematical optimization problems, with an objective to be optimized

(e.g., throughput or delay) and some constraints on limited resources (e.g., transmis-

sion time, frequency or power). The mathematical modeling procedure from the needs

of resource allocation to optimization problems is usually referred to as “problem

formulation.”

In this chapter, we shall focus on the formulation of RRM via Markov decision

process (MDP). Convex optimization has been widely used in the RRM within a

short-time duration, where the wireless channel is assumed to be quasi-static. These

problems are usually referred to as deterministic optimization problems. On the other

hand, MDP is an elegant and powerful tool to handle the resource optimization of wire-

less systems in a longer timescale, where the random transitions of system and channel

status are considered. These problems are usually referred to as stochastic optimization

problems. Particularly, MDP is suitable for the joint optimization between physical

and media-access control (MAC) layers. Based on MDP, reinforcement learning is a

practical method to address the optimization without a priori knowledge of system

statistics. In this chapter, we shall first introduce some basics on stochastic approxi-

mation, which serves as one basis of reinforcement learning, and then demonstrate the

MDP formulations of RRM via some case studies, which require the knowledge of sys-

tem statistics. Finally, some approaches of reinforcement learning (e.g., Q-learning)

are introduced to address the practical issue of unknown system statistics.

11.1 Basics of stochastic approximation

Stochastic approximation is a general iterative method to solve some stochastic fixed-

point problems or optimization problems without the knowledge of statistics in the

1Department of Electrical and Electronic Engineering, The Southern University of Science andTechnology,

China
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problem. Mathematically, these kinds of problems are not well defined. They may refer

to some systems with unknown random behavior. For example, the wireless trans-

mitter wants to make sure that the average receiving signal-to-interference-plus-ratio

(SINR) is above certain quality level; however, the interference level at the receiver

is hard to predict without its statistics. Clearly, this problem cannot be solved unless

more information can be collected. In the transmission protocol design, the receiver

can estimate the receiving interference level and report it to the transmitter periodi-

cally, so that the transmitter can adjust its power and guarantee an acceptable average

SINR level. Hence, the procedure of problem-solving includes not only calculation

but also system observation. Stochastic approximation is such an online learning and

adapting procedure, which collects the information from each observation and finally

converges to the solution.

11.1.1 Iterative algorithm

In this section, we use one example of deterministic fixed-point problem to demon-

strate the structure of iterative solution, which is widely used in solving the problems

without close-form solutions. The exemplary fixed-point problem is provided below.

Problem 11.1 (Deterministic fixed-point problem). Find an x such that

f (x) = 0, (11.1)

where f (x) is a monotonically increasing function.

Providing the expression of f (x), this problem may be solved analytically. For

example, x = log10 a when f (x) = 10 x − a and a is a positive constant. Nevertheless,

the following iterative algorithm is useful when the explicit expression of x cannot be

derived.

Iterative algorithm for Problem 11.1

Let n be the index of iteration and xn be the median value of x in the nth iteration,

the solution of (11.1) can be achieved as follows:

1. Initialize the iteration index n as n = 0, and the value of x as x0.

2. Update the median value of x as

xn+1 = xn − γn+1 f (xn), (11.2)

where γn is the step size of iteration. Let n = n + 1.

3. Let ε be a threshold for terminating the iteration. The algorithm stops if

|xn+1 − xn| < ε or goes to Step 2 otherwise.

Strictly speaking, the solution for Problem 11.1 may not be unique; the above

algorithm is to find one feasible solution if it exists. There are a number of choices
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System

f (x)
Input: xn Output: f (xn)

Controller

xn+1 = xn – γn+1 f (xn)

Figure 11.1 Block diagram for the iterative algorithm of Problem 11.1

on the step size {γn|∀n = 1, 2, . . .}. For the Newton’s method (also known as the

Newton–Raphson method), the step size is

γn =
1

f
′
(xn)

,

where f
′
(xn) is the first-order derivative of f (x) at x = xn. For the case that f

′
(xn)

cannot be obtained, one more general choice of step size is the harmonic series

γn =
1

n
.

An intuitive explanation on using the harmonic series as iteration step size is

provided below:

● Note that this series is monotonically decreasing. When xn is close to the solution,

smaller step size is better for fine adjustment.
● Note that

∑+∞

n=1 (1/n) = +∞, the incremental update of −γn+1 f (x) is not neg-

ligible as long as f (x) �= 0. Hence the algorithm could drive xn to the solution

of f (x) = 0.

A block diagram of the iterative algorithm is illustrated in Figure 11.1, where f (x)

may be an observation of certain system with input x. A controller, with the objective

of f (x) = 0, collects the observation of f (x) and update the value of x.

11.1.2 Stochastic fixed-point problem

The problem introduced in the previous section assumes that the function f (x) can

be accurately estimated when an input value of x is provided. However, this may not

be the case in some applications. For example, suppose that Y is a random variable

whose distribution is unknown, and we want to find an appropriate x to satisfy the

following equation:

E[x − Y ] = 0. (11.3)
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This is not a well-defined problem if there is no further information of Y , and its

solution can only be obtained by learning its statistics. This section will provide a

general iterative solution for such stochastic fixed-point problem, which is referred

to as stochastic approximation.

Consider a general expression of stochastic fixed-point problem. Let f (x, Y ) be

a function of variable x and random variable Y . f (x, Y ) can be treated as the output

of a system, which depends on the input parameter x and random internal statue Y .

In some applications, people may be interested in the expected output of the system.

Hence, it is defined that

f (x) = E f (x, Y ) =

∫

f (x, y)p(y)dy, (11.4)

where p(y) is the PDF of random variable Y . The fixed-point problem to be solved

becomes.

Problem 11.2 (stochastic fixed-point problem). Find x such that

f (x) = 0, (11.5)

where f (x) and its realization f (x, Y ) satisfy the following conditions:

● Suppose f (θ ) = 0. Given x, there exists a finite positive constant δ such that

f (x) ≤ −δ for x < θ , f (x) ≥ δ for x > θ. (11.6)

● There exists a finite constant c such that

Pr[| f (x, Y )| ≤ c] = 1. (11.7)

The condition (11.6) guarantees that the value of f (x) can be used to update

the variable x: x should be decreased when f (x) is positive, and vice versa. The

condition (11.7) assures that each realization f (x, Y ) can be adopted to evaluate its

expectation f (x). According to the method of stochastic approximation, the solution

of Problem 11.2 is described below.

Iterative algorithm for Problem 11.2

Let xn be the nth input value of x, and Yn be the nth realization of random variable

Y . The solution of (11.5) can be achieved as follows:

1. Initialize the iteration index n as n = 0, and the value of x as x0.

2. Update the input value of x as

xn+1 = xn − γn+1 f (xn, Yn), (11.8)

where γn is the step size of iteration. Let n = n + 1.

3. Let ε be a threshold for terminating the iteration. The algorithm stops if

|xn+1 − xn| < ε or goes to Step 2 otherwise.
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The convergence of the above algorithm is summarized below.

Theorem 11.1. Let en = E(xn − θ )2. If γn = 1/n, the conditions of (11.6) and (11.7)

are satisfied, then

lim
n→+∞

en = 0.

Please refer to the Theorem 11.1 of [1] for the rigorous proof. Some insights on

the convergence property are provided here. In fact, f (xn, Yn) can be treated as one

estimation of f (xn) with estimation error Zn. Thus:

f (xn, Yn) = f (xn) + Zn, ∀n. (11.9)

Since E f (xn, Yn) = f (xn), we know that E[Zn] = 0. From the iterative update equation

(11.8), it can be derived that

x1 = x0 − γ1 f (x0, Y0) = x0 − [ f (x0) + Z0]

x2 = x1 − γ2 f (x1, Y1) = x0 − [ f (x0) + Z0] −
1

2
[ f (x1) + Z1]

· · ·

xn = xn−1 − γn f (xn−1, Yn−1) = x0 −

n−1
∑

i=0

1

i + 1
f (xi) −

n−1
∑

i=0

1

i + 1
Zi

= x0 −

k−1
∑

i=0

1

i + 1
[Zi + f (xi)]

︸ ︷︷ ︸

xk

−

n−1
∑

i=k

1

i + 1
f (xi) −

n−1
∑

i=k

1

i + 1
Zi. (11.10)

Hence, the convergence of {xn} is discussed as follows:

1. The last term of (11.10),
∑n−1

i=k (1/(i + 1))Zi, can be treated as the noise of

iteration. Because without it, the iteration becomes:

xn = xk −

n−1
∑

i=k

1

i + 1
f (xi), (11.11)

which is the solution algorithm for the deterministic fixed point f (x) = 0. The

expectation of the noise is zero, i.e., E

[
∑n−1

i=k (1/(i + 1))Zi

]

= 0.

2. The variance of noise
∑n−1

i=k (1/(i + 1))Zi are analyzed as follows:

Var

[
n−1
∑

i=k

1

i + 1
Zi

]

=

n−1
∑

i=k

1

(i + 1)2
Var(Zi) ≤

n−1
∑

i=k

1

(i + 1)2
σ 2

Z , (11.12)

where σ 2
Z = max

i
Var(Zi).

3.
∑∞

i=k (1/(i + 1)2)σ 2
Z is finite. Moreover, for arbitrary ε > 0, there exists an integer

K such that
∑∞

i=K (1/(i + 1)2)σ 2
Z < ε.
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4. Let n → ∞ on both sides of (11.10), we have

x∞ = xk −

∞
∑

i=k

1

i + 1
f (xi) −

∞
∑

i=k

1

i + 1
Zi. (11.13)

Note that
∑∞

i=k (1/(i + 1))Zi is generally finite according to the above discus-

sion. If f (xi) is always greater than certain positive value,
∑∞

i=k (1/(i + 1)) f (xi)

will drive x∞ to negative infinity, which will lead to negative f (xi). Thus, the

convergence can be intuitively understood according to the above contradiction.

11.2 Markov decision process: basic theory and applications

In wireless systems, the transmission time and spectrum are usually organized as

frames. For example, every 1 ms in the long-term evolution (LTE) system is orga-

nized as one subframe, and every ten subframes constitutes a frame. The wireless

channel is usually assumed to be quasi-static within one subframe or even one frame.

In LTE systems, the CSI can be estimated in every subframe, which is used to decode

the current subframe or determine the transmission parameters of the following sub-

frames. The transmission resource allocation in one subframe can be formulated as

various optimization problems. For example, one possible problem formulation is to

jointly optimize the uplink or downlink transmission time and power among multi-

ple mobile users, such that the overall throughput of the subframe is maximized. In

fact, many resource optimization problems share the similar structure, which usually

consists of the following:

● System state: A number of parameters specifying the system status, which can

be estimated and notified to the scheduler, e.g., coefficients of large-scale and

small-scale fading.
● Scheduling action: A number of transmission or receiving parameters can be

adjusted, e.g., transmission time and power.
● Objective: A function measuring the utility or cost within a time slot, where the

system state is assumed to be quasi-static. For example, the overall throughput

in an LTE subframe. The objective is usually a function of system state and

scheduling action.
● Constraints: A number of limitations on the transmission resources within the

aforementioned time slot, e.g., the total resource elements (symbols) for data

transmission in an LTE subframe. There might be a number of constraints on

different types of transmission resource. Each constraint is usually a function of

scheduling action; some of them may also depend on system state.

As a result, the resource allocation problems can be generally formulated by the

following optimization problem:

max
Action

or min
Action

Objective (state, action)

subject to Constraints(state, action) ∈ System affordable region.
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These type of problems aim at finding the optimal values of some transmission or

receiving parameters for each time slot (i.e., action). It implies that there is a sched-

uler, who observes the system state in each time slot, solves the above optimization

problem, and uses the solution in transmission. In many of such optimization prob-

lems, the optimization action in one time slot does not affect that of the followings.

Hence, we shall refer to this type of problems as the“single stage” optimization in the

remaining of this chapter. The following is an example of single stage optimization

formulation.

Example 11.1 (Multi-carrier power allocation). Suppose that there is one point-

to-point OFDM link with NF subcarriers, and their channel gains in one certain

time slot are denoted by {hi|i = 1, 2, . . . , NF}. Let pi (i = 1, 2, . . . , NF ) be the

transmission power on the ith subcarrier. One typical power allocation problem

is to determine the transmission power on each subcarrier { pi|i = 1, 2, . . . , NF}

such that the overall throughput is maximized, which can be formulated as follows:

● System state: {hi|i = 1, 2, . . . , NF}.
● Action: { pi|i = 1, 2, . . . , NF}.
● Objective:

∑NF

i=1 log2

(

1 + ((pi‖hi‖
2)/σ 2

z )
)

.

● Constraint:
∑NF

i=1 pi ≤ P, where P is the peak transmission power.

Hence, the overall optimization problem can be written as

max
{pi |i=1,2,...,NF }

NF∑

i=1

log2

(

1 +
pi‖hi‖

2

σ 2
z

)

subject to

NF∑

i=1

pi ≤ P,

where σ 2
z is the power of noise. This problem can be solved by the well-known

water-filling algorithm. Note that this is the single stage optimization, since there

is no connection between the optimization in different time slots.

However, the above single stage formulation is not powerful enough to address

all the wireless-resource-allocation problems, especially when the scope of opti-

mization is extended to the MAC layer and larger timescale. From the MAC layer

point of view, the BS maintains one queue for each active downlink mobile user.

If the BS schedules more transmission resource to one user in certain time slot,

the traffic load for this user in the following time slots can be relieved. Hence, the

scheduling action in one time slot can affect that of the following ones, and a joint

optimization along multiple time slots becomes necessary. The difficulty of such joint

optimization is that the wireless channel is time varying. Hence, the scheduler can-

not predict the channel of the following time slots and, of course, cannot determine
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their scheduling parameters in advance. We shall refer to this type of problems as the

“multistage” optimization in the remaining of this chapter. Due to the uncertainty on

future system state, its differences from the single-stage optimization problem are as

follows:

● Instead of calculating the values for scheduling action, we should provide a map-

ping from arbitrarily possible system state to the corresponding scheduling action,

so that the system can work properly in all possible situations. This mapping is

called policy, thus:

Policy : System State → Scheduling Action. (11.14)

● The expectation should be taken on the objective and constraints (if any) since

these functions depend on random system state.

In this section, the MDP is introduced to formulate and solve this kind of multi-

stage optimization problem. In order to bring up the basic principle without struggling

with the mathematical details, this section is only about the discrete-time MDP with

finite state and action spaces, and some mathematical proof is neglected. For the read-

ers who are interested in a overwhelm and rigorous discussion on MDP optimization

theory, please refer to [2,3].

11.2.1 Basic components of MDP

As illustrated in Figure 11.2, there are three basic components in an MDP, namely,

system state, control or scheduling action, and cost function. Sometimes, people may

want to maximize some utility function, this is equivalent to minimize the inverse

of utility function, which can be treated as cost function. System state, denoted as

s, consists of the set of parameters, which uniquely specify the system at any time

instance. The set of all the possible values of system state is called the state space,

denoted as S . In this chapter, we consider the case that the cardinality of state space

System

State: sn
Cost: g(sn, an)

Transition kernel: Pr(sn+1 | sn, an)

Action: an = Ωn(sn)

Figure 11.2 Block diagram for Markov decision process
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S , denoted as |S |, is finite, or it can be compressed to finite. Given the state s, there

is a controller, which is able to manipulate the system by adjusting a set of control

parameters a. This set of control parameters is called the control action, and the set of

all the possible choices of control actions are named as action space, denoted as A . In

Example 11.1 (it can be treated as a trivial case of MDP), the system state and control

action are the CSI and the transmission powers of all the subcarriers, respectively.

Thus,

s = {hi|i = 1, 2, . . . , NF}

and

a = {pi|i = 1, 2, . . . , NF}.

We focus on discrete-time MDP, where subscript of notations is used to indicate

the stage index. For example, at the tth stage, the system state and control action are

denoted as st and at , respectively. The control action at is uniquely determined by the

system state st , the mapping from system state to control action is named as control

policy. Let �t : S → A be the control policy at the tth stage, i.e.:

�t(st) = at , ∀st ∈ S . (11.15)

In MDP, the state of a system evolves with time in a Markovian way: providing

the current system state and control action, the distribution of next system state is

independent of other historical states or actions. In other words, the evolving of system

state is a Markov chain, providing the control policy at each stage. Given the current

(say the tth stage) system state st and control action at , the distribution of next system

state, Pr(st+1|st , at), is called the state transition probability or transition kernel.

The expense of control action is measured by the cost function. The cost of the

system at the tth stage is a function of st and at , which is denoted as gt(st , at). In fact,

gt can be a random variable given st and at , i.e., gt(st , at , ξt) where ξt for different

t are independent variables. To simplify the elaboration, we focus on the form of

gt(st , at) in the following discussion. Note that the cost function can be homogeneous

or heterogeneous along the time line. Particularly, gt can be different with respect to

stage index t for an MDP with finite number of stages. However, when it is extended

to the optimization over infinite number of stages, gt should usually be homogeneous

and subscript of stage index can be removed.

What are optimized in an MDP are not some parameters but a policy, which

maps from the system state to control (scheduling) action. Thus, the solution of an

MDP is a “function” rather than the values for some parameters. In Example 11.1,

the water-filling algorithm can be used to figure out the values of the transmission

powers on all the subcarriers. This is a physical-layer point of view. The following

example shows that the if the scope of resource allocation is extended to MAC layer,

the value optimization will transfer to policy optimization, which can be formulated

as an MDP.
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Example 11.2 (Multi-carrier power allocation: view from MAC-layer). Similar

to Example 11.1, a point-to-point OFDM link with NF subcarriers is considered. In

MAC layer, a transmission queue is maintained, which accepts packets from upper

layer and delivers them via physical layer. Suppose that each packet consists of

B information bits, and the number of arrival packets in each frame follows the

Poisson distribution with expectation λ, i.e.:

Pr [The number of arrival packets in one frame = n] =
λne−λ

n!
. (11.16)

The packet departure in the MAC layer is determined by the physical layer trans-

mission. Let q(t) be the number of packets waiting to be transmitted in the tth

frame, the queue dynamics can be represented by

q(t + 1) = max{0, q(t) − d(t)} + c(t), (11.17)

where d(t) and c(t) are the numbers of departure and arrival packets in the tth

frame.

In physical layer, let {hi(t)|i = 1, 2, . . . , NF} be the CSI of all the subcarriers in

the tth frame, and { pi(t)|i = 1, 2, . . . , NF} be the corresponding power allocation.

The number of packets can be delivered in the tth frame is

d(t) =
⌊
∑NF

i=1 log2

(

1 + ((pi(t)‖hi(t)‖
2)/σ 2

z )
)

B

⌋

. (11.18)

Clearly, larger transmission power will lead to larger departure rate of the

transmission queue. However, some systems may have the following concerns

on the average power consumption, which is particularly for battery-powered

device:

lim
T→+∞

E

[

1

T

T
∑

t=1

NF∑

i=1

pi(t)

]

≤ P, (11.19)

where P is the average power constraint.

When the queue in the MAC layer is considered, the maximum throughput

used in the Example 11.1 may not be suitable as the scheduling objective. One

reasonable objective is the minimum average delay, which measures the average

time duration for one packet from arrival to departure. Let:

Q = lim
T→+∞

E

[

1

T

T
∑

t=1

q(t)

]

(11.20)
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be the average queue length at the transmitter, the average delay W is given below

according to the Little’s Law [4]:

W =
Q

λ
= lim

T→+∞
E

[

1

T

T
∑

t=1

q(t)

λ

]

. (11.21)

Therefore, one possible problem formulation is to minimize the average packet

delay while satisfying the average power constraint. Thus,

min
{pi(t)|∀i,t}

W

subject to (11.19).

In Example 11.1, the scheduling in different frames is independent. In other

words, one does not need to worry about the impact of current frame scheduling on

the future frames. However, when the average transmission delay W is the objective

with the average power constraint, the scheduling in the current frame will affect

that of the future frames. For example, the current frame may be scheduled with

a power level greater than P, which consumes the power budget of the following

frames. Hence, it becomes meaningless to consider the resource optimization in

one single frame (as Example 11.1), and the scope of optimization is the whole

time line. As a result, what should be optimized is a mapping from CSI and queue

length (also called queue state information or QSI) to the power allocation. Thus

it is a “function,” rather than some “variables.”

Three forms of MDP formulation will be discussed in the following: first of all, we

introduce the finite-horizon MDP, where the number of stages for joint optimization

is finite. Then, we move to the infinite-horizon MDP, where two cost functions are

considered: namely, average cost and discounted cost.

11.2.2 Finite-horizon MDP

In this section, we focus on the optimization along a fixed number of stages, say T

stages. The overall cost function, denoted as G, can be written as

G
(

{�n|n = 1, 2, . . . , T }
)

= E

[
T

∑

t=1

gt(st , at)

]

, (11.22)

where at = �t(st). The expectation in the above equation is with respect to the ran-

domness of the system state at the first stage and the state transition given the control

action. Note that with the expectation on random system state, the overall cost func-

tion G depends on the control policies used in all the stages. With the objective of

minimizing G, the problem of finite-horizon MDP is described below.
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Problem 11.3 (Finite-horizon MDP). Find the optimal control polices for each

stage, denoted as {�∗
t |t = 1, 2, . . . , T }, such that the overall cost G is minimized, i.e.:

{�∗
t |t = 1, 2, . . . , T } = arg min

{�t |t=1,2,...,T }
G
(

{�t|t = 1, 2, . . . , T }
)

. (11.23)

It is worth to highlight that in finite-horizon MDP, the optimal scheduling policies

in different stages are usually different. For example, the policy design of the first

stage should jointly consider the cost of the current stage and the potential cost of the

following N − 1 stages, whereas the policy design of the last stage only needs to care

the cost of the current stage.

In order to elaborate the solution structure of Problem 11.3, we first define the

following cost-to-go function:

Vt(st) = min
{�k |k=t,t+1,...,T }

E

[
T

∑

k=t

gk (sk , ak )

]

, ∀t, st , (11.24)

which is the average cost from the tth stage to the last one given the system state in

the tth time slot st . The cost-to-go function Vt is usually named as value function.

It is straightforward to see that they satisfy the following iterative expressions:

Vt(st) = min
at

⎡

⎣gt(st , at) +
∑

st+1

Pr(st+1|st , at)Vt+1(st+1)

⎤

⎦ , ∀t, st . (11.25)

Equation (11.25) is usually referred to as the Bellman equation. It provides impor-

tant insights on the solution of Problem 11.3. Given the system state at the tth stage

st , the optimal control action minimizing the right-hand-side of (11.25), denoted as

�∗
t (st), is obviously the optimal control action for system state st at the tth stage, i.e.:

�∗
t (st) = arg min

at

⎡

⎣gt(st , at) +
∑

st+1

Pr(st+1|st , at)Vt+1(st+1)

⎤

⎦ , ∀t, st . (11.26)

Hence, in order to obtain the optimal control policy at the tth stage, it is neces-

sary to first figure out the value function Vt+1 for all possible next state. It implies

that before calculating the optimal policy, a backward recursion for evaluating VT ,

VT−1, …, V1 sequentially is required, which is usually referred to as value iteration

(VI). The VI algorithm for finite-horizon MDP is elaborated below.

VI algorithm for finite-horizon MDP

The value functions for finite-horizon MDP, as defined in (11.24), can be evaluated

by the following steps:

1. Calculate the value function VT for the last stage by

VT (sT ) = min
aT

gT (sT , aT ), ∀sT . (11.27)

2. For t = T − 1, T − 2, . . . , 1, calculate the value function Vt according to

(11.25) sequentially.
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Note that the value functions are calculated from the last stage to the first one.

This is because of iterative structure as depicted in the Bellman equation (11.25). As

a summary, the procedure to obtain the optimal control policy for the finite-horizon

MDP can be described below.

● Off-line VI: Before running the system, the controller should evaluate the value

functions for all the possible system states and all the stages. Their values can be

stored in a table.
● Online scheduling: When the system is running, the controller should identify

the system state, solve the corresponding Bellman equation, and apply the optimal

action.

Hence, the solution raises both computation and memory requirements to the con-

troller, whose complexities are proportional to the size of state space |S | and

the number of stages T . In the following, we shall demonstrate the application of

finite-horizon MDP via the multi-carrier power allocation problem.

11.2.2.1 Case study: multi-carrier power allocation via finite-horizon
MDP

Suppose that there is one OFDM transmitter which wants to deliver a file of B bits

to the receiver within T frames. The number of subcarriers is NF . The transmitter

is a battery-powered device, and it tries to save the transmission energy as much as

possible by exploiting the channel temporal diversity in the T frames. One possible

formulation for transmission scheduling at the transmitter is provided below:

● System state: In the tth frame (t = 1, 2, . . . , T ), the system state st is uniquely

specified by the CSI of all the subcarriers {hi(t)|i = 1, 2, . . . , NF} and the number

of remaining bits at the transmitter q(t), which is usually called QSI. Thus:

st =
{

{hi(t)|i = 1, 2, . . . , NF}, q(t)
}

. (11.28)

● Control policy: The control action in the tth frame (t = 1, 2, . . . , T ) is the power

allocation on all the subcarriers, i.e.,

at = {pi(t)|i = 1, 2, . . . , NF}.

Then the control policy in the tth frame, denoted as �t , can be written as

�t(st) = at , ∀t, st . (11.29)

● Transition kernel: The block fading channel model is considered, and the CSIs

in different frames are i.i.d. distributed. Therefore, the transition kernel can be

rewritten as

Pr(st+1|st , at) = Pr
(

{hi(t + 1)|i = 1, 2, . . . , NF}
)

Pr
(

q(t + 1)|st , at

)

,

(11.30)
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where

q(t + 1) = max{0, q(t) − d(t)}, (11.31)

and

d(t) =
⌊ NF∑

i=1

log2

(

1 +
pi(t)‖hi(t)‖

2

σ 2
z

)
⌋

(11.32)

is the number of bits transmitted in the tth frame. Hence, given st and at , q(t + 1)

is uniquely determined.
● Cost: In the tth frame (t = 1, 2, . . . , T ), the cost of the system is the total power

consumption, i.e.:

gt(st , at) =

NF∑

i=1

pi(t), ∀t = 1, 2, . . . , T . (11.33)

Due to the randomness of the channel fading, a penalty is added in case there are

some remaining bits after T frames transmission (penalty on the remaining bits

in the (T + 1)th frame). Hence, the following cost is introduced for the (T + 1)th

frame:

gT+1(sT+1, aT+1) = w q(T + 1), (11.34)

where w is the weight for the penalty and q(T + 1) is the number of remaining

bits after T frames. Note that there is no control action in the (T + 1)th frame and

aT+1 is introduced simply for notation consistency.

As a result, the optimization of transmission resource allocation can be written

as the following finite-horizon MDP:

min
{�t |t=1,2,...,T }

E

[
T+1
∑

t=1

gt(st , at)

]

= min
{�t |t=1,2,...,T }

E

[
T

∑

t=1

NF∑

i=1

pi(t) + w q(T + 1)

]

.

(11.35)

The expectation is because that pi(t) (∀i, t) and q(T + 1) are random due to channel

fading. It can be observed that the choice of weight w may have strong impact on the

scheduling policy: small weight leads to conservative strategy (try to save energy)

and large weight makes the transmitter aggressive.

The Bellman equation for the above MDP is given in (11.25), where VT+1(sT+1) =

w q(T + 1) can be calculated directly. However, because the space of CSI is continuous

and infinite, it is actually impossible to evaluate the other value functions. Note that
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the CSI is i.i.d. distributed among different frames, the expectation on CSI can be

taken on both sides of the Bellman equation, which can be written as

V t(q(t)) = Eh Vt(st)

= Eh min
at

⎡

⎣gt(st , at) +
∑

st+1

Pr(st+1|st , at)Vt+1(st+1)

⎤

⎦

= Eh min
at

⎡

⎣gt(st , at) +
∑

st+1

Pr
(

{hi(t + 1)|∀i}
)

Vt+1(st+1) Pr(q(t + 1)|st , at)

⎤

⎦

= Eh min
at

[

gt(st , at) + V t+1(q(t + 1))
]

, (11.36)

where Eh denotes the expectation over CSI.Therefore, an equivalent Bellman equation

with compressed system state is obtained, whose value function V t (t = 1, 2, . . . , T )

depends only on the QSI. The dependence of CSI is removed from the value function,

which is mainly due to the nature of i.i.d. distribution. As a result, the state space is

reduced from infinite to finite, and a practical solution becomes feasible.

The off-line VI can be applied to compute the new value function V t for all states

and stages (off-line VI), which is given below:

● Initialize the value function of the (T + 1)th stage as

V T+1(q(T + 1)) = w q(T + 1). (11.37)

● For t = T , T − 1, . . . , 1, evaluate the value function according to (11.36). Note

that there is an expectation with respect to channel fading, the Monte Carlo method

can be used to calculate the value function numerically by generating sufficient

number of CSI realizations according to its distribution (e.g., Rayleigh fading).

With the value functions, the optimal online scheduling when the system is running

can be derived in each stage according to

�∗
t (st) = a∗

t = arg min
at

[

gt(st , at) + V t+1(q(t + 1))
]

. (11.38)

Note that in both off-line VI and online scheduling, we always need to find the

optimal solution for (11.38), which can be solved as follows. From the principle of

water-filling method, it can be derived that with a given total transmission power in

the tth frame, the optimal power allocation on each subcarrier can be written as

pi(t) = max

{

0,
1

βt

−
σ 2

z

‖hi(t)‖2

}

, ∀i = 1, 2, . . . , NF , (11.39)

where βt is determined by the total transmission power on all the subcarriers. There-

fore, the key of solution is to find the optimal total transmission power (or βt) for the
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tth frame such that the right-hand-side of (11.38) is minimized. Notice that the num-

ber of information bits delivered in the tth frame is given by (11.32), the optimization

problem on the right-hand-side of (11.38) can be rewritten as

min
βt

NF∑

i=1

max

{

0,
1

βt

−
σ 2

z

‖hi(t)‖2

}

+ V t+1(max{0, q(t) − d(t)}), (11.40)

which can be solved by one-dimensional search on βt .

From the above solution, the difference between this problem and Example 11.1

can be observed. In both problems, the power allocation follows the expression of

(11.39). Their difference lies in the choice of βt . In Example 11.1, βt is determined by

the peak transmission power constraint, whereas in this problem, βt should be opti-

mized via (11.40). In other words, if the MAC layer queue dynamics are considered

in the power allocation, different system states or stages will result in different water

levels. This insight is intuitive. For example, if there are still a lot of bits waiting to

be delivered, the transmitter tends to use high-transmission power (small βt), and vice

versa. It is worth to mention that the value function V 1(B) is the minimum average

system cost to deliver all the B information bits within T frames.

Finally, a numerical simulation result is provided in Figure 11.3 to demonstrate

the performance gain of the finite-horizon MDP formulation, where the baseline is the

power allocation via conventional physical layer water-filling method with constant

power constraint in each frame. It can be observed that the MDP approach always has
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Figure 11.3 Performance comparison between conventional water-filling

algorithm (baseline algorithm) and finite-horizon MDP algorithm

(proposed algorithm)
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less cost than the physical layer approach with various peak power levels. This gain

mainly comes from the cross-frame power scheduling, which exploits the channel

temporal diversity.

11.2.3 Infinite-horizon MDP with discounted cost

When the scope of optimization is extended to infinite time horizon, the MDP formu-

lation and solution would become quite different from the case of finite time horizon.

In the example of Section 11.2.2.1, the system cost is the summation of all transmis-

sion powers in all the subcarriers and frames. It can be imagined that if it is extended

to infinite time horizon with the possibility of new packet arrival at the transmitter,

the system cost will tend to infinity, i.e., it cannot be measured. In order to handle this

issue, in infinite-horizon MDP, two measurements on the system cost are considered,

namely, discounted cost and average cost. This section will introduce the formulation

and solution for discounted system cost, and the case of average cost is left to the

next one.

In infinite-horizon MDP, it is usually assumed that the cost function and the

control policy are the same for all stages. Hence, let s and a be the system state and

control action in certain stage, the corresponding cost can be denoted as g(s, a) and

the overall discounted cost for one certain control policy � and initial system state at

the first stage s1 can be written as

G(�) = lim
T→+∞

E

[
T

∑

t=1

γ t−1g(st , at)

∣
∣
∣s1

]

, (11.41)

where st and at = �(st) are the system state and control action of the tth stage,

respectively. The expectation is taken over all possible state transition, and the infinite

summation usually converges due to the discount factor γ ∈ (0, 1). As a result, the

infinite-horizon MDP can be mathematically described as follows:

Problem 11.4 (Infinite-horizon MDP with discounted cost). Find the optimal

control polices, denoted as �∗, such that the overall cost G is minimized, i.e.:

�∗ = arg min
�

G(�) = arg min
�

lim
T→+∞

E

[
T

∑

t=1

γ t−1g
(

st , �(st)
)
]

. (11.42)

In order to derive the solution of the above problem, the following cost-to-go

function (value function) is first defined for one arbitrary system state s1 at the first

stage:

V (s1) = min
�

lim
T→+∞

E

[
T

∑

t=1

γ t−1g
(

st , �(st)
)∣
∣
∣s1

]

= min
�

{

g(s1, a1) + lim
T→+∞

E

[
T

∑

t=2

γ t−1g(st , at)

∣
∣
∣s1

]}

. (11.43)
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With the definition of V , the system cost starting from the tth stage given the state st

at the tth stage can be written as

min
�

lim
T→+∞

E

[
T

∑

n=t

γ n−1g(sn, an)

∣
∣
∣st

]

= γ t−1 min
�

lim
T→+∞

E

[
T

∑

n=t

γ n−tg(sn, an)

∣
∣
∣st

]

= γ t−1 min
�

lim
T

′
→+∞

E

⎡

⎣

T
′

∑

k=1

γ k−1g(sk+t−1, ak+t−1)

∣
∣
∣st

⎤

⎦ , (11.44)

where the second equality is due to k = n − t + 1 and T
′
= T − t + 1. If we define the

new notation for system state by letting s
′

k = sk+t−1 and a
′

k = ak+t−1, the minimization

of the above equation can be written as

min
�

lim
T

′
→+∞

E

⎡

⎣

T
′

∑

k=1

γ k−1g(sk+t−1, ak+t−1)

∣
∣
∣st

⎤

⎦

= min
�

lim
T

′
→+∞

E

⎡

⎣

T
′

∑

k=1

γ k−1g(s
′

k , a
′

k )

∣
∣
∣s

′

1

⎤

⎦

= V (s
′

1) = V (st). (11.45)

Hence, it can be derived that

min
�

lim
T→+∞

E

[
T

∑

n=t

γ n−1g(sn, an)

∣
∣
∣st

]

= γ t−1V (st). (11.46)

Since the time horizon is infinite, the optimal policy minimizing the system cost

since the first stage also minimizes the system cost since any arbitrary stage. Hence,

(11.43) can be written as

V (s1) = min
�

{

g(s1, a1) + Es2
lim

T→+∞
E{si |i=3,4,...}

[
T

∑

t=2

γ t−1g(st , at)

∣
∣
∣s2

]}

= min
�(s1)

{

g(s1, a1) + Es2
min

�
lim

T→+∞
E{si |i=3,4,...}

[
T

∑

t=2

γ t−1g(st , at)

∣
∣
∣s2

]}

= min
�(s1)

{

g(s1, a1) + γ Es2
V (s2)

}

, (11.47)

where the last equality is due to (11.46). Similarly, for arbitrary system state at the

arbitrary tth stage st , the Bellman equation for infinite-horizon MDP with discounted

cost can be written as follows:

V (st) = min
�(st )

{

g(st , at) + γ Est+1
V (st+1)

}

. (11.48)
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Regarding to the solution, if the value function has already been calculated, it is

straightforward to see that the optimal control action for arbitrary stage is

�∗(st) = a∗
t = arg min

at

{

g(st , at) + γ Est+1
V (st+1)

}

, ∀t, st . (11.49)

On the other hand, the value function should satisfy the Bellman equation in (11.48).

This is a fixed-point problem with minimization on the right-hand-side, and we have

to rely on the iterative algorithm, which is named as VI. The detail steps of VI is

elaborated below, and please refer to [3] for the proof of convergence.

VI algorithm for infinite-horizon MDP with discounted cost

The value functions defined in (11.48) can be evaluated by the following steps:

1. Let i = 0 and initialize the value function V (s) for all possible s ∈ S , which

is denoted as V i(s).

2. In the ith iteration, update the value function as

V i+1(st) = min
�

{

g(st , at) + γ Est+1
V i(st+1)

}

, (11.50)

for all possible st ∈ S .

3. If the update from V i to V i+1 for any system state is negligible (or less than one

predetermined threshold), the iteration terminates. Otherwise, let i = i + 1

and jump to Step 2.

In the following section, we still use the case of multi-carrier power allocation

to demonstrate the formulation via infinite-horizon MDP with the discounted cost. It

takes the packet arrival at the MAC layer into considered, which is not addressed in

Section 11.2.2.1.

11.2.3.1 Case study: multi-carrier power allocation with random
packet arrival

The resource allocation problem introduced in Example 11.2 can also be addressed

with discounted cost, which will be elaborated in this example. Specifically, a point-

to-point OFDM communication link with NF subcarriers and random packet arrival at

the transmitter is considered. It is assumed that each packet consists of B information

bits, and one packet should be transmitted within one frame. The key elements of

MDP formulation are elaborated below:

● System state: In the tth frame (t = 1, 2, 3, . . .), the system state st is uniquely

specified by the CSI of all the subcarriers {hi(t)|i = 1, 2, . . . , NF} and the QSI

q(t). The latter denotes the number of remaining packets waiting at the transmitter.

Thus:

st =
{

{hi(t)|i = 1, 2, . . . , NF}, q(t)
}

. (11.51)
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● Control policy: The control action in the tth frame (t = 1, 2, 3, . . .) is the power

allocation on all the subcarriers, i.e., at = {pi(t)|i = 1, 2, . . . , NF}. Then the

control policy in the tth frame, denoted as �, can be written as

�(st) = at , ∀t, st . (11.52)

● Transition kernel: The block fading channel model is considered, and the CSI in

each frame is i.i.d. distributed. Therefore, the transition kernel can be written as

Pr(st+1|st , at) = Pr
(

{hi(t + 1)|i = 1, 2, . . . , NF}
)

Pr
(

q(t + 1)

∣
∣
∣st , at

)

,

(11.53)

where

q(t + 1) = max{0, q(t) − d(t)} + c(t), (11.54)

and

d(t) =
⌊ 1

B

NF∑

i=1

log2

(

1 +
pi(t)‖hi(t)‖

2

σ 2
z

)
⌋

(11.55)

are the number of packets transmitted in the tth frame, c(t) is the number of arrival

packets in the tth frame. It is usually assumed that c(t) follows the Poisson arrival

with expectation λ, as in Example 11.2. Thus, there are λ arrival packets in one

frame on average.
● Cost: The average power consumption at the transmitter is

P = lim
T→+∞

E

[

1

T

T
∑

t=1

NF∑

i=1

pi(t)

]

. (11.56)

According to the Little’s Law, the average transmission delay of one packet is

W =
Q

λ
= lim

T→+∞
E

[

1

T

T
∑

t=1

q(t)

λ

]

, (11.57)

where Q is the average number of packets waiting at the transmitter. The weighted

sum of average power and delay is

P + ηW = lim
T→+∞

E

{

1

T

T
∑

t=1

[

η
q(t)

λ
+

NF∑

i=1

pi(t)

]}

, (11.58)

where η is the weight on the average transmission delay. The problem of minimiz-

ing P + ηW is an infinite horizon MDP with average cost, whose solution will

be introduced in the next section. Usually, people prefer to consider the discount

approximation of P + ηW as follows:

G = lim
T→+∞

E

{
T

∑

t=1

γ t−1
[

η
q(t)

λ
+

NF∑

i=1

pi(t)
]
}

. (11.59)
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The main reason for approximating average cost via discounted cost is that it has

better converge rate in VI.

Hence, the resource allocation problem can be formulated as

min
�

G = min
�

lim
T→+∞

E

⎡

⎢
⎢
⎢
⎢
⎣

T
∑

t=1

γ t−1
(

η
q(t)

λ
+

NF∑

i=1

pi(t)
)

︸ ︷︷ ︸

g(st ,at )

⎤

⎥
⎥
⎥
⎥
⎦

, (11.60)

which is an infinite-horizon MDP with discounted cost. The Bellman equation for

this problem is

V (st) = min
�

{

η
q(t)

λ
+

NF∑

i=1

pi(t) + γ Est+1
V (st+1)

}

. (11.61)

Note that the space of the system state includes all possible values of CSI, and it is

actually impossible to evaluate value function. Similar to Section 11.2.2.1, since the

CSI is i.i.d. distributed in each frame, the expectation with respect to the CSI can be

taken on both side of the above Bellman equation, i.e.:

V
(

q(t)
)

= Eh min
�

{

η
q(t)

λ
+

NF∑

i=1

pi(t) + γ Est+1
V (st+1)

}

= Eh min
�

⎧

⎨

⎩
η

q(t)

λ
+

NF∑

i=1

pi(t) + γ
∑

q(t+1)

Pr
(

q(t + 1)|st , at

)

V
(

q(t + 1)
)

⎫

⎬

⎭

= η
q(t)

λ
+ Eh min

�

⎧

⎨

⎩

NF∑

i=1

pi(t) + γ
∑

c(t)

λc(t)e−λ

c(t)!
V
(

q(t + 1)
)

⎫

⎬

⎭

= η
q(t)

λ
+ Eh,c min

�

{
NF∑

i=1

pi(t) + γ V
(

q(t + 1)
)
}

, (11.62)

where Eh is the expectation over CSI, Est+1
is the expectation over next system state,

and Eh,c is the expectation over random packet arrival.

The off-line VI can be applied to compute the value function V for all possible

queue length. In order to avoid infinite transmission queue, we can set a buffer size.

Thus, the overflow packets will be dropped. With the value function, the optimal

scheduling action can be calculated via:

�∗(st) = a∗
t = arg min

�

⎧

⎨

⎩

NF∑

i=1

pi(t) + γ
∑

c(t)

λc(t)e−λ

c(t)!
V
(

q(t + 1)
)

⎫

⎬

⎭
. (11.63)

Note that in both off-line VI and online scheduling, we always need to find the optimal

solution for (11.63), which can be solved with the approach introduced in Section

11.2.2.1 (i.e., water-filling with optimized water level).
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Figure 11.4 Performance comparison between conventional water-filling

algorithm (baseline algorithm) and infinite-horizon MDP algorithm

(proposed algorithm)

Finally, a numerical simulation result is provided in Figure 11.4 to demonstrate

the performance gain of the infinite-horizon MDP formulation, where the baseline

is the power allocation via conventional physical layer water-filling method with

constant power constraint in each frame. It can be observed that the MDP approach

always has less cost than the physical layer approach with various peak power levels.

Particularly, the performance gain of the MDP formulation is more significant in the

region of heavier traffic (larger λ).

11.2.4 Infinite-horizon MDP with average cost

In the problem formulation of Section 11.2.3.1, the average cost, a weighted summa-

tion of average power and average delay, is approximated as discounted cost so that

the solution for infinite-horizon MDP with discounted cost can be applied. In this

section, we shall show how to handle the exact average cost via infinite-horizon MDP.

Let s and a be the system state and control action in certain stage, the corre-

sponding cost is g(s, a) and the overall average cost for one certain control policy �

can be written as

G(�) = lim
T→+∞

E

[

1

T

T
∑

t=1

g(st , at)

]

, (11.64)

where st and at = �(st) are the system state and control action of the tth stage,

respectively. The expectation is taken over all possible state transition. Therefore,
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the infinite-horizon MDP with average cost can be mathematically described as

follows:

Problem 11.5 (Infinite-horizon MDP with discounted cost). Find the optimal

control policy, denoted as �∗, such that the overall cost G is minimized, i.e.:

�∗ = arg min
�

G(�) = arg min
�

lim
T→+∞

E

[

1

T

T
∑

t=1

g
(

st , �(st)
)
]

. (11.65)

Comparing with Problem 11.4, it can be observed that the discounted cost MDP

values the current cost more than the future cost (due to discount factor γ ), but the

average cost MDP values them equally. Moreover, when the discount factor γ of

Problem 11.4 is close to 1, the discounted cost MDP becomes closer to the average

cost MDP.

Unlike the case of discounted cost, the value function for the case of average cost

does not have straightforward meaning. Instead, the value function is defined via the

following Bellman equation:

θ + V (st) = min
�(st )

{

g(st , at) + Est+1
V (st+1)

}

, ∀st , at , (11.66)

where V (s) is the value function for system state s. As proved in [3], this Bellman

equation could bring the following insights on Problem 11.5:

● θ is the minimized average system cost, i.e.:

θ = min
�

lim
T→+∞

E

[

1

T

T
∑

t=1

g
(

st , �(st)
)
]

. (11.67)

● The optimal control action for arbitrary system state st at arbitrary tth stage can

be obtained by solving the right-hand-side of (11.66), i.e.:

�∗(st) = a∗
t = arg min

at

{

g(st , at) + Est+1
V (st+1)

}

. (11.68)

Moreover, the VI to calculate the value function is elaborated below.

VI algorithm for infinite-horizon MDP with average cost

The value functions for infinite-horizon MDP can be evaluated by the following

steps:

1. Let i = 0 and initialize the value function V i(s) for all possible s ∈ S . More-

over, arbitrarily choose one system state as the reference state, which is

denoted as sref .

2. In the ith iteration, update the value function for all system states as follows:

V i+1(st) = min
�(st )

{

g(st , at) + Est+1
V i(st+1)

}

− V i(sref ), ∀st . (11.69)

3. If the update from V i to V i+1 for all system states is negligible, the iteration

terminates. Otherwise, let i = i + 1 and jump to Step 2.



394 Applications of machine learning in wireless communications

11.2.4.1 Case study: multi-carrier power allocation with average cost

Following the definition of system state, transition kernel and control policy in

Section 11.2.3.1, the average cost minimization of the point-to-point OFDM

transmission is given by

min
�

G = min
�

lim
T→+∞

E

⎡

⎢
⎢
⎢
⎢
⎣

T
∑

t=1

1

T

(

η
q(t)

λ
+

NF∑

i=1

pi(t)
)

︸ ︷︷ ︸

g(st ,at )

⎤

⎥
⎥
⎥
⎥
⎦

. (11.70)

Its Bellman equation after taking expectation on the CSI can be written as

θ + V
(

q(t)
)

= η
q(t)

λ
+ E min

�

⎧

⎨

⎩

NF∑

i=1

pi(t) +
∑

c(t)

λc(t)e−λ

c(t)!
V
(

q(t + 1)
)

⎫

⎬

⎭
,

(11.71)

where V (q(t)) is the value function with q(t) packets at the transmitter. The VI can

be used to evaluate the value function for all the possible queue lengths (a maximum

queue length can be assumed to avoid infinite queue). Moreover, with the value

function, the optimal scheduling action at arbitrary one stage (say the tth stage) with

arbitrary system state st can be derived via:

�∗(st) = a∗
t = arg min

at

⎧

⎨

⎩

NF∑

i=1

pi(t) +
∑

c(t)

λc(t)e−λ

c(t)!
V (q(t + 1))

⎫

⎬

⎭
. (11.72)

Note that q(t + 1) depends on both pi(t) (∀i) and c(t). This problem can be solved

with the approach introduced in Section 11.2.2.1 (i.e., water-filling with optimized

water level).

11.3 Reinforcement learning

In the previous section, when introducing the solution of MDP, we actually assume

that the state transition kernel and the system cost function of each stage are precisely

known. If this knowledge is unknown, which might happen in practice, the methods

of reinforcement learning can be used to collect the information in an online way and

finally yield the desired solution.

In this section, we shall use the case of infinite-horizon MDP with discounted cost

as an example to explain some methods of reinforcement learning. The approaches

can be similarly applied on the other forms of MDPs. It has been introduced in

the previous section that the solution of MDP includes the off-line VI and online
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scheduling. Now, consider the following VI, which is supposed to be finished before

running the system:

V i+1(st) = min
at

{

g(st , at) + γ Est+1
V i(st+1)

}

= min
at

⎧

⎨

⎩
g(st , at) + γ

∑

st+1

Pr(st+1|st , at)V
i(st+1)

⎫

⎬

⎭
. (11.73)

It can be observed that the VI relies on the knowledge of cost function g(st , at) and

the state transition probability Pr(st+1|st , at). In other words, the VI is infeasible if

they are unknown. In the following example, we extend the power allocation example

of Section 11.2.3.1 from ideal mathematical model to practical implementation and

show that the cost function or the transition kernel (state transition probability) may

be unknown in some situation.

Example 11.3 (Multi-carrier power allocation with unknown statistics). In the

example of Section 11.2.3.1, after taking the expectation on CSI, the equivalent

Bellman equation is given by

V
(

q(t)
)

= η
q(t)

λ
+ Eh,c min

�

{
NF∑

i=1

pi(t) + γ V
(

q(t + 1)
)
}

.

The expectation on the right-hand-side is with respect to the distributions of CSI

and packet arrival. It is usually to assume that they are Rayleigh fading and Poisson

arrival, respectively. In practice, the BS may be lack of their statistics, e.g., mean

or variance, or they may even not follow the assumed distributions. Hence, the VI

based on the above equation cannot be carried on off-line.

In order to match the above equations with the standard form of Bellman

equation (11.73), we can define the following control policy with respect to the

queue length:

�
(

q(t)
)

=
{

�(st)|∀hi(t), i = 1, 2, . . . , NF

}

= at . (11.74)

Thus, � is a mapping from the queue length to the power allocations for all

possible CSI. With the definition of �, the Bellman equation for the example of

Section 11.2.3.1 can be written as

V
(

q(t)
)

= min
�(q(t))

{

η
q(t)

λ
+ Eh

[
NF∑

i=1

pi(t)

]

+ γ Eh,c

[

V
(

q(t + 1)
)]

}

,
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where cost function and state transition probability of (11.73) are given by

g(st , at) = η
q(t)

λ
+ E

[
NF∑

i=1

pi(t)

]

, (11.75)

and

Pr(st+1|st , at) = Eh Pr
(

q(t + 1)

∣
∣
∣q(t), �(q(t)), {hi(t)}

)

, (11.76)

respectively. Hence, the cost function requires the knowledge of CSI distribu-

tion, and the state transition probability depends on the distributions of both CSI

and packet arrival. Without the knowledge of both distribution, the off-line VI is

infeasible.

In order to find the optimal policy without the a priori knowledge on the statistics

of the system, we have to perform VI in an online way, which is usually referred to

as reinforcement learning. In the remaining of this section, we shall introduce two

learning approaches. The first approach can be applied on the example of Section

11.2.3.1 without any knowledge on CSI distribution, and the second one, which is

call as Q-learning, is more general to handle unknown statistics of packet arrival.

11.3.1 Online solution via stochastic approximation

In this section, we shall focus on the particular type of MDPs as elaborated in Example

11.3. For the elaboration convenience, we extend the formulation of infinite-horizon

MDP with discounted cost in Section 11.2.3 by including an independent random

variable in each stage. Specifically, suppose that ξt is a random variable (or a set

of random variables) at the tth stage, and its distribution is i.i.d. with respect to t.

Now, consider an infinite-horizon MDP with discounted cost, where the cost function

at the tth stage is g(st , at , ξt) and the transition kernel is given by the distribution

Pr(st+1|st , at , ξt). st is the system state at the tth stage, and ξt (which is not included

in st) can also be observed at the beginning of the tth stage. In a policy �, the control

action at is determined according to both st and ξt , i.e., at = �(st , ξt). The MDP

problem can be described as

min
�

lim
T→+∞

E

[
T

∑

t=1

γ t−1g(st , at , ξt)

∣
∣
∣s1

]

, (11.77)

where the value function is defined as

V (s) = min
�

lim
T→+∞

E

[
T

∑

t=1

γ t−1g(st , at , ξt)

∣
∣
∣s1 = s

]

. (11.78)
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Note that this is the exact MDP problem discussed in Section 11.2.3.1, where ξt and

system state st refer to the CSI and queue length in the tth frame, respectively. Its

Bellman equation can be written as

V (st) = Eξt min
at

{

g(st , at , ξt) + γ Pr(st+1|st , at , ξt)V (st+1)
}

. (11.79)

In this section, we assume that ξt (∀t), g(st , at , ξt), and Pr(st+1|st , at , ξt) can be

observed or measured at each stage, but the distribution of ξt is unknown. This

refers to the situation that the CSI distribution in the example of Section 11.2.3.1

is unknown (the distribution of packet arrival is known). Hence, the off-line VI is

infeasible as the right-hand-side of (11.79) cannot be calculated. Instead, we can

first initialize a control policy, evaluate the value function corresponding to this

policy via stochastic approximation in an online way, and then update the policy

and reevaluate the value function again. By such iteration, it can be proved that

the Bellman equation of (11.79) can be finally solved. The algorithm is elaborated

below.

Online value and policy iteration

1. Let i = 0, and initialize a control policy �i.

2. Run the system with the policy �i and evaluate the corresponding value

function V i which satisfies:

V i(st) = Eξt

[

g(st , at , ξt) + γ Pr(st+1|st , at , ξt)V
i(st+1)

]

, ∀st , (11.80)

where st+1 denotes the next stage system state given the current stage system

state st .

3. Update the control policy from �i to �i+1 via:

�i+1(st , ξt) = arg min
at

{

g(st , at , ξt) + γ Pr(st+1|st , at , ξt)V
i(st+1)

}

.

(11.81)

Note that ξt can be observed at the tth stage (e.g., the CSI can be estimated

at the beginning of each frame in the example of Section 11.2.3.1), the above

optimization problem can be solved.

4. If the update on the control policy is negligible, terminate the algorithm.

Otherwise, let i = i + 1 and jump to Step 2.

It can be proved that the policy and value function obtained by the above itera-

tive algorithm, denoted as V ∞ and �∞, can satisfy the Bellman equation in (11.79).

Thus, �∞ is the optimal control policy and V ∞ represents the minimum discounted

cost for each initial system state. Notice that in the second step of the above algo-

rithm, we should solve a fixed-point problem with unknown statistics. The stochastic
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approximation introduced in Section 11.1 can be applied. Specifically, the procedure

is elaborated below.

Stochastic approximation algorithm for value function

1. Let j = 1. Initialize the value function V i, and denote it as V i, j.

2. At the jth stage, denote sj as the system state and update the value function

as follows:

V i, j+1(sj) =
j

j + 1
V i, j(sj) +

1

j + 1

[

g(sj, aj, ξj) + γ V i, j(sj+1)
]

, (11.82)

and

V i, j+1(s) = V i, j(s), ∀s �= sj. (11.83)

Thus, the value for the current system state sj is updated, and others remain

the same. As a remark, notice that g(sj, aj, ξj) + γ V i, j(sj+1) is an unbiased

estimation of Eξt

[

g(st , at , ξt) + γ Pr(st+1|st , at , ξt)V
i(st+1)

]

. Moreover, since

the knowledge on sj+1 is required, the above update should be calculated after

observing the next system state.

3. If the update on the value function is negligible, terminate the algorithm.

Otherwise, let j = j + 1 and jump to Step 2.

11.3.1.1 Case study: multi-carrier power allocation without channel
statistics

In this example, we shall continue the optimization of power allocation without chan-

nel statistics, as initiated in Example 11.3, by the online value and policy iteration

described in this section (Section 11.3.1). The notations will follow the definitions in

Example 11.3 and Section 11.2.3.1. In order to match the MDP formulation of this

section, we shall treat the QSI only as the system state (i.e., st), and the CSI as the

independent variables in each optimization stage (i.e., ξt). Specifically, the problem

formulation of Example 11.3 is established below.

● System state: Since the distribution of CSI is i.i.d. in each frame, we can treat

the CSI as the independent random variables ξt , instead of the system state. Thus:

ξt = {hi(t)|∀i}, (11.84)

whose distribution is unknown. The system state becomes:

st = {q(t)}. (11.85)
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● Control policy: As elaborated in Example 11.3, when the CSI is removed from

the system state, the control action becomes the power allocation for all possible

CSI given the QSI. Thus, the control action of the tth frame is

at = �(st) =
{

�
(

q(t), {hi(t)}
)∣
∣
∣∀i, hi(t)

}

. (11.86)

As a remark note that � and � represent the same scheduling behavior, however

their mathematical meanings are different: � is a policy with respect to QSI and

CSI, and � is a policy with respect to QSI only. Hence, one action in � consists

of a number of actions in � with the same QSI.
● Transition kernel: Given the system state, CSI and control action of the tth frame,

the transition kernel can be written as

Pr(st+1|st , at , ξt) = Pr
(

q(t + 1)

∣
∣
∣q(t), {hi(t)|∀i}, {pi(t)|∀i}

)

, (11.87)

where

q(t + 1) = max{0, q(t) − d(t)} + c(t), (11.88)

d(t) =
⌊ 1

B

NF∑

i=1

log2

(

1 +
pi(t)‖hi(t)‖

2

σ 2
z

)
⌋

(11.89)

is the number of packets transmitted in the tth frame, c(t) is the number of arrival

packets in the tth frame. Note that the randomness of q(t + 1) comes from random

packet arrival c(t).
● Cost: The overall cost function as defined in Section 11.2.3.1 is

G = lim
T→+∞

E

{
T

∑

t=1

γ t−1
[

η
q(t)

λ
+

NF∑

i=1

pi(t)
]
}

. (11.90)

As elaborated in Example 11.3, the Bellman equation for the above MDP

problem is

V
(

q(t)
)

= min
�(q(t))

{

η
q(t)

λ
+ Eξt

[
NF∑

i=1

pi(t)

]

+ γ Eξt ,c(t)

[

V
(

q(t + 1)
)]
}

,

(11.91)

or equivalently:

V
(

q(t)
)

= Eξt min
�(q(t))

⎧

⎨

⎩
η

q(t)

λ
+

NF∑

i=1

pi(t) + γ
∑

c(t)

Pr
(

c(t)
)

V
(

q(t + 1)
)

⎫

⎬

⎭
.

(11.92)

Note that without the distribution knowledge of CSI ξt , the expectations in the above

Bellman equation cannot be calculated directly. Hence, we have to rely on the online

value and policy iteration introduced in this section, which consists of two levels of

iteration. The outer iteration is for updating the policy, and the inner one is to find the

value function corresponding to the policy. The procedure is elaborated below.
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Step 1 (Initialize a policy): In order to obtain an initial policy, we can first

initialize the value function, which is denoted as V
0
, and derive a power allocation

policy by solving the right-hand-side of the above Bellman equation (11.92) with the

initialized value function. Specifically, from the principle of water-filling method, it

is known that given a total transmission power in the tth frame, the optimal power

allocation on each subcarrier can be written as

pi(t) = max

{

0,
1

βt

−
σ 2

z

‖hi(t)‖2

}

, ∀i = 1, 2, . . . , NF , (11.93)

where βt depends on the total transmission power of the tth frame. βt is usually

referred to as the Lagrange multiplier as the above power allocation is derived via

convex optimization [5]. Moreover, given st and ξt , the βt with respect to the initialized

value function V
0
, denoted as β1

t , can be calculated according to the right-hand-side

of (11.92), i.e.,

β1
t = arg min

⎧

⎨

⎩
η

q(t)

λ
+

NF∑

i=1

{

0,
1

βt

−
σ 2

z

‖hi(t)‖2

}

+ γ
∑

c(t)

Pr
(

c(t)
)

V
0
(

q(t + 1)
)

⎫

⎬

⎭
.

As a result, the initial power allocation policy is then given by

p1
i (t) = max

{

0,
1

β1
t

−
σ 2

z

‖hi(t)‖2

}

, ∀i = 1, 2, . . . , NF . (11.94)

Step 2 (Value function evaluation): Given the power allocation policy derived

based on β i
t (i = 1, 2, . . .), the corresponding value function can be calculated as

follows:

● Let j = 1. Initialize the value function by V
i, j

= V
i−1

.
● At the jth stage, denote sj as the system state and update the value function as

follows:

V
i, j+1

(sj) =
j

j + 1
V

i, j
(sj) +

1

j + 1

[

g(sj, aj, ξj) + γ V i, j(sj+1)
]

, (11.95)

and

V
i, j+1

(s) = V
i, j

(s), ∀s �= sj. (11.96)

● Let j = j + 1 and repeat the above step until the iteration converged. Let V
i

be

the converged value function.
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Step 3 (Policy evaluation): Update the βt as

β i+1
t = arg min

{

η
q(t)

λ
+

NF∑

i=1

{

0,
1

βt

−
σ 2

z

‖hi(t)‖2

}

+ γ
∑

c(t)

Pr
(

c(t)
)

V
i
(

q(t + 1)
)

⎫

⎬

⎭
.

As a result, the updated power allocation policy is then given by

pi+1
i (t) = max

{

0,
1

β i+1
t

−
σ 2

z

‖hi(t)‖2

}

, ∀i = 1, 2, . . . , NF . (11.97)

If the update on the power allocation policy is negligible, terminate the algorithm;

otherwise, let i = i + 1 and jump to the Step 2.

The above online algorithm will converge to the optimal power allocation as in

Section 11.2.3.1, and the performance illustrated in Figure 11.4 also applies on it.

Moreover, it can be observed from the above algorithm that the calculation of βt in

each iteration requires the distribution knowledge to packet arrival. We may learn

it from the history of packet arrival, if it is unknown at the very beginning. In fact,

Q-learning is one more elegant way to handle this situation, which is elaborated in

the below section.

11.3.2 Q-learning

The stochastic-approximation-based learning approach in the previous section is able

to handle the situation that the controller knows the transition kernel Pr(st+1|st , at , ξt)

but does not know its expectation with respect to ξt , i.e., Pr(st+1|st , at) =

Eξt [ Pr(st+1|st , at , ξt)]. Regarding to the example in Section 11.3.1.1, it refers to the

circumstance that the transmitter knows the distribution of packet arrival in each

frame, but not the CSI distribution. Q-learning is a more powerful tool to solve MDP

problems with unknown transition kernel Pr(st+1|st , at). In other words, it can handle

the power allocation even without the statistics of packet arrival.

We use the infinite-horizon MDP with discounted cost in Problem 11.4 as the

example to demonstrate the method of Q-learning. First of all, the Q function is

defined as

Q(s, a) = min
�

lim
T→+∞

E

[
T

∑

t=1

γ t−1g(st , at)

∣
∣
∣s1 = s, a1 = a

]

. (11.98)

Hence, the relation between value function and Q function is

V (s) = min
a

Q(s, a), (11.99)

and the optimal control action for system state s is

�∗(s) = arg min
a

Q(s, a). (11.100)
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In other words, the optimal control policy can be easily obtained with the Q function

of the MDP. Moreover, the Bellman equation in (11.48) can be written in the form of

Q function, i.e.:

Q(st , at) = g(st , at) + γ Pr(st+1|st , at)V (st+1), (11.101)

V (st) = min
at

{

g(st , at) + γ Pr(st+1|st , at) min
at+1

Q(st+1, at+1)
}

, (11.102)

or

Q(st , at) = g(st , at) + γ Pr(st+1|st , at) min
at+1

Q(st+1, at+1). (11.103)

In order to compute and store the values of Q function, it is actually required that

both the state and action spaces should be finite. Regarding the example of Section

11.3.1.1, we should quantize the transmission power into finite levels.

The Bellman equation (11.103) provides an iterative way to evaluate the

Q function. The procedure is described below.

VI algorithm for Q function

The Q function defined in (11.103) can be evaluated by the following steps:

1. Let i = 0 and initialize the Q function Q(s, a) for all possible s ∈ S and

a ∈ A , which is denoted as Qi(s, a).

2. In the ith iteration, update the Q function as

Qi+1(st , at) = g(st , at) + γ Pr(st+1|st , at) min
at+1

Qi(st+1, at+1),

for all possible st ∈ S and at ∈ A .

3. If the update from Qi to Qi+1 for any system state and action is negligible (or

less than one predetermined threshold), the iteration terminates. Otherwise,

let i = i + 1 and jump to Step 2.

The above VI require the knowledge on the distribution of Pr(st+1|st , at). If they

are not available at the controller, the Q-learning algorithm is provided below.

Q-learning algorithm

1. Let j = 1, initialize the Q function, denoted as Qj.

2. At the jth stage, denote si as the system state and ai as the action, update the

value function as follows:

Qi+1(si, ai) =
j

j + 1
Qi(si, ai) +

1

j + 1

[

g(sj, aj) + γ min
ai+1

Qi(si+1, ai+1)

]

,

and

Qi+1(s, a) = Qi(s, a), ∀(s, a) �= (sj, aj). (11.104)
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Since the knowledge on sj+1 is required, the above update should be calculated

after observing the next system state.

3. If the update on the Q function is negligible, terminate the algorithm.

Otherwise, let j = j + 1 and jump to Step 2.

In the above algorithm, the control action for each stage should be chosen to

guarantee that the Q function for all pairs of system state and control action can be

well trained.

11.3.2.1 Case study: multi-carrier power allocation via Q-learning

In this example, we shall still consider the power-allocation problem introduced

in Section 11.3.1.1, however, with more practical assumption that not only the

distribution of CSI but also the distribution of packet arrival is unknown. We shall

show that the Q-learning method could provide an online optimization algorithm. The

definitions of system state, control policy, transition kernel, and cost function follow

that in Section 11.3.1.1. Note that Q function is defined in terms of system state

and control action both with finite space, we can quantize the choice of Lagrange

multiplier βt into a finite space B. Thus, the Q function can be written as

Q
(

q(t), βt

)

, where βt ∈ B. (11.105)

Hence, the Bellman equation in terms of Q function becomes:

Q
(

q(t), βt

)

= η
q(t)

λ
+ Eξt

[
NF∑

i=1

pi(t)

]

+ γ Eξt Pr
(

q(t + 1)|q(t), βt , ξt

)

min
β

Q
(

q(t + 1), β
)

. (11.106)

Without the statistics knowledge of ξt and packet arrival c(t), the Q-learning algorithm

is provided below:

1. Let i = 1. Initialize the Q function, denoted as Qi.

2. In the ith frame, let q(i) and βi be the system state (QSI) and the Lagrange

multiplier for power allocation, update the value function as follows:

Qi+1
(

q(i), βi

)

=
i

i + 1
Qi

(

q(i), βi

)

+
1

i + 1

⎡

⎣η
q(i)

λ
+

NF∑

j=1

pj(i) + γ min
β

Q
(

q(i + 1), β
)

⎤

⎦ ,

and

Qi+1(s, β) = Qi(s, β), ∀(s, β) �=
(

q(i), βi

)

. (11.107)

Since the knowledge on q(i + 1) is required, the above update should be

calculated after observing the next system state.
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3. If the update on the Q function is negligible, terminate the algorithm. Otherwise,

let i = i + 1 and jump to Step 2.

With the Q function, the power allocation for the tth frame can be written as

pi(t) = max
{

0,
1

βt

−
σ 2

z

‖hi(t)‖2

}

, ∀i = 1, 2, . . . , NF , (11.108)

where βt = minβ Q(q(t), β). Note that in this solution, the Lagrange multiplier βt

is determined according to the QSI only. A better solution may be obtained if we

treat both CSI and QSI as the system state in the Q-learning algorithm (βt is then

determined according to both CSI and QSI). However, it requires the quantization of

CSI and larger system complexity.

Comparing with the method introduced in Section 11.3.1, it can be observed that

the Q-learning approach is more general in the sense that it can be applied on the

situation without knowledge of transition kernel. However, the price to pay is that the

Q function depends on both system state and control action. Thus, the storage and

computation complexities for evaluating the Q function is higher.

11.4 Summary and discussion

In this chapter, we focus on the wireless resource allocation along a number of frames,

where the MDP is used to formulate the scheduling as an stochastic optimization

problem. As the foundation of stochastic learning, we first elaborate on the basics

of stochastic approximation. Then we introduce the MDP with three different for-

mulations, and one example of power allocation is provided for each formulation.

As we can see, MDP is powerful to handle the multistage optimization problem with

random future. Moreover, it is common that some system statistics are unknown

before running; we continue to introduce the reinforcement learning to construct

online algorithms, which collect the system information and drive the scheduling to

optimal.

In order to simplify the elaboration, we have ignored the proofs of some math-

ematical statements in this chapter. For the readers who are interested in a more

rigorous treatment on mathematical derivation, please refer to [2,3] for the discus-

sions on the MDP and [6] for the discussions on the reinforcement learning. Moreover,

the application of MDP and reinforcement learning in wireless resource allocation

has drawn a number of research interests. For example, the infinite-horizon MDP has

been used to optimize the point-to-point link [7], cellular uplink [8,9], cellular down-

link [10], relay networks [11], and wireless cache systems [12], where the average

transmission delay is either minimized or constrained. Moreover, the low-complexity

algorithm design via approximate MDP can be considered to avoid the curse of

dimensionality [13].
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Chapter 12

Q-learning-based power control in small-cell
networks

Zhicai Zhang1, Zhengfu Li2, Jianmin Zhang3,

and Haijun Zhang3

Because of the time-varying nature of wireless channels, it is difficult to guarantee

the deterministic quality of service (QoS) in wireless networks. In this chapter, by

combining information theory with the effective capacity (EC) principle, the energy-

efficiency optimization problem with statistical QoS guarantee is formulated in the

uplink of a two-tier femtocell network. To solve the problem, we introduce a Q-

learning mechanism based on Stackelberg game framework. The macro users act as

leaders and know the emission power strategy of all femtocell users (FUS).The femto-

cell user is the follower and only communicates with the macrocell base station (MBS)

without communicating with other femtocell base stations (FBSs). In Stackelberg

game studying procedure, the macro user chooses the transmit power level first

according to the best response of the femtocell, and the micro users interact directly

with the environment, i.e., leader’s transmit power strategies, and find their best

responses. Then, the optimization problem is modeled as a noncooperative game,

and the existence of Nash equilibriums (NEs) is studied. Finally, in order to improve

the self-organizing ability of femtocell, we adopt Q-learning framework based on

noncooperative game, in which all the FBS are regarded as agents to achieve power

allocation. Numerical results show that the algorithm cannot only meet the delay

requirements of delay-sensitive traffic but also has good convergence.

12.1 Introduction

In recent years, most voice and data services have occurred in indoor environments.

However, due to long-distance transmission and high penetration loss, the indoor

coverage of macrocell may not be so good. As a result, FBS has gained wide attention

in wireless industry [1,2]. With the exponential growth of mobile data traffics, wireless
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3School of Computer & Communication Engineering, University of Science and Technology Beijing,
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communication networks play a more and more important role in the global emissions

of carbon dioxide [3]. Obviously, the increasing energy cost will bring significant

operational cost to mobile operators. On the other hand, limited battery resources

cannot meet the requirement of mass data rate. In this chapter, the concept of green

communication is proposed to develop environmentally friendly and energy saving

technologies for future wireless communications. Therefore, the use of energy aware

communication technology is the trend of the next generation wireless network design.

In a two-tier network with shared spectrum, due to cross-layer interference,

the target user and the femtocell user of each signal-to-interference-plus-noise

ratio (SINR) sampling macrocell are coupled. The SINR target concept estab-

lishes application-related minimum QoS requirements for each user. It is reasonably

expected that since home users deploy femtocell for their own benefit and because

they are close to their BS, femtocell users and cellular users seek different SINRs

(data rates)—usually higher data rates using femtocell. However, QoS improvements

from femtocell should be at the expense of reducing cellular coverage.

In practice, a reliable delay guarantee is provided for delay sensitivity. High

data rate services, such as video calling and video conferencing, are the key issues

of wireless communication network. However, due to the time-varying nature of

wireless channel, it is difficult and unrealistic to apply the traditional fixed delay

QoS guarantee. To solve the problem, the statistical QoS metric with delay-bound

violation probability have been widely adopted to guarantee the statistical delay QoS

[4–6]. In [5], for delay-sensitive traffic in single-cell downlink Orthogonal Frequency

Division Multiple Access (OFDMA) networks, the effective spectrum design based

on EC delay allocation is studied. In [6], a joint power and subchannel allocation

algorithm in vehicular infrastructure communication network is proposed. It has the

requirement of delayed QoS. However, as far as we know, EC-based delay provision

in two-tier femtocell cellular networks has not been widely studied.

In addition, due to the scarcity of spectrum, the microcell and macrocell usu-

ally share the same frequency band. However, in the case of co-channel operation,

intensive and unplanned deployment will lead to serious cross-tier and co-tier inter-

ference, which will greatly limit the performance of the network. Microcell base

stations are low-power, low-cost, and user-deployed wireless access points that use

local broadband connections as backhauls. Not only users but also operators ben-

efit from femtocell. On the one hand, users enjoy high-quality links; on the other

hand, operators reduce operating expenses and capital expenditure due to service

uninstallation and user deployment of FBS.

Therefore, it is necessary to design effective interference suppression mecha-

nism in the two-tier femtocell networks to reduce cross-tier and co-tier interference.

In [7,8], the author reviews the interference management in two-level microcellular

networks and small cellular networks. In [9], the authors have proposed a novel inter-

ference coordination scheme using downlink multicell chunk allocation with dynamic

inter-cell coordination to reduce co-tier interference. In [10], based on cooperative

Nash bargaining game theory, this chapter proposes a cognitive cell joint uplink sub-

channel and power-allocation algorithm to reduce cross-layer interference. In [11],

in order to maximize the total capacity of all femtocell users under the constraints of
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co-layer/cross-layer interference and given minimum capacity QoS, a resource allo-

cation scheme for cognitive nano-cellular is proposed. However, the delay QoS

provisioning was not taken into consideration in [9–11]. Also, as a randomly deployed

base station, the traditional centralized network scheduling is difficult to optimize its

network performance. Therefore, the reinforcement learning which can provide agents

with self-organization capability has attracted considerable interest in academy and

industry [12].

In [13], the author has studied the self-optimization, self-configuration and self-

optimization of small cell network. In [14], aiming at the power control problem in ad-

hoc networks, an enhanced learning algorithm based on random virtual game theory is

proposed. In [15,16], aiming at the utility maximization problem of two-tier femtocell

networks, an enhanced learning algorithm based on hierarchical Stackelberg game is

proposed. However, the algorithms in [15,16] require frequent routing information

exchanges between macrocells and micro cells, which greatly increases network load.

In recent years, there have been many researches on energy-efficient resource

management [17,18]. Energy efficiency was first proposed by Goodman et al., which

is defined as the number of error-free delivered bits for each energy-unit used in trans-

mission and is measured in bit/joule [19]. FBS is a low-power, low-cost base station

that can enhance indoor environment coverage and unload traffic from macrocell.

A low complexity energy-efficient subchannel allocation scheme is proposed in [17],

but the method does not consider interference caused by neighbors. In [18], joint

subchannel allocation and power control are modeled as a potential game to maxi-

mize energy efficiency of multicell uplink OFDMA systems, but QoS guarantees are

without consideration.

In addition to energy saving management of radio resources, femtocell network is

another promising technology for energy saving. Because of this type of deployment

strategy, the transmitter is closer to the receiver and reduces penetration and path loss.

As we know, FBS is installed by end users, who have not enough professional skills to

configure parameters of FBS. On this account, FBS should have self-learning ability to

automatically configure and optimize its operating information, e.g., transmit power

assignment. In recent years, reinforcement learning mechanism, such as Q-learning,

is widely used in radio resource allocation of wireless network [20–22]; however,

most of the existing works are focusing in cognitive radio networks.

In addition, providing delay QoS guarantees while minimizing energy consump-

tion is a key problem in green communication systems. For example, in real-time

services, such as multimedia video conferencing and live sports events, latency time

is a key QoS metric. Since the time-varying channel, deterministic delay QoS guaran-

tee mechanisms used in wired networks cannot take affect in wireless networks [4]. To

address this issue, statistical QoS provisioning, in terms of delay exponent and EC, has

become an effective method to support real-time service in wireless networks [23–25].

Machine learning can be widely used in modeling various technical prob-

lems of next-generation systems, such as large-scale Multiple-Input Multiple-Output

(MIMO), device-to-device networks, heterogeneous networks constituted by fem-

tocells and small cells [26]. Therefore there are some existing works about the

application of machine learning to small cell networks. In [27], a heterogeneous
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fully distributed multi-objective strategy based on a reinforcement learning model are

proposed to be built for self-configuration and optimization of femtocells. In [28],

the state of the system consists of the user’s specific allocation of small cell resource

blocks and channel quality, and the action consists of downlink power control actions.

The reward is quantified based on an improvement in SINR. The results show that

the compensation strategy based on the reinforcement learning model has achieved

excellent performance improvement.

Machine learning is a discipline that specializes in algorithms that can be learned

from data. In general, these algorithms are run by generating models built from

observational data and then using the generated models to predict and make decisions.

Most problems in machine learning can be translated into multi-objective optimization

problems where multiple targets must be optimized simultaneously in the presence

of two or more conflicting targets. Mapping multiple optimization problems to game

theory can provide a stable solution [29]. Game theory focuses on the nature of

equilibrium states. For example, an in-depth study of the concept of algorithmic

game theory is the concept of anarchy price. The anarchy of certain problems (such as

routing in a crowded network) is the biggest difference between the NE configuration

(the best way each participant routes in the case of other people’s behavior) and the

global optimal solution. However, NE is a subtle object. In large systems with multiple

entities with limited information, it is more natural to assume that each entity self-

adjusts its behavior based on past experience, producing results that may be stable

or unstable. Therefore, it is desirable to use the understanding of the characteristics

of such an adaptive algorithm to draw conclusions about the behavior of the overall

system [30].

In this chapter, we will study energy-efficient power control in uplink two-tier

femtocell networks with delayed QoS guarantees. Based on the concept of EC, we

formulate an energy-efficiency optimization problem with statistical QoS guarantee.

To solve the problem, a transmit power learning mechanism based on Stackelberg

game is proposed. In the learning process, macro users are leaders and can communi-

cate with micro users. Femto-users act as followers and only know the power strategy

of leader rather than other followers. Besides, leader knows followers’ best responses

of transmit power and selects strategy first; followers move subsequently. We use EC

as a network performance metric to provide statistical delay QoS.

Then we adopt pricing mechanism to protect macrocell users (MU) from severe

cross-layer interference. The optimization problem is modeled as a noncooperative

game. Then we study the existence of NEs. Specifically, considering that femtocells

are deployed by end users who have not enough professional skills to configure

and optimize FBSs’s parameters, such as transmit power, we use Q-learning theory

to enable femtocells to achieve self-organizing capability in terms of transmission

power and other parameters. And we propose a distributed Q-learning procedure based

on Stackelberg game. Simulation results show the proposed algorithm has a better

performance in terms of convergence compared with a conjecture-based multi-agent

Q-learning (CMAQL) algorithm with no information exchange between each player

[31]. Based on the noncooperative game framework, a Boltzmann distribution-based

weighted filter Q-learning algorithm (BDb-WFQA) is proposed to realize power

allocation. The simulation results show the proposed BDb-WFQA algorithm can
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meets the large-scale delay requirements, has a better convergence performance,

and a small EC loss compared with the Noncooperative Game-based Power Control

Algorithm (NGb-PCA). This algorithm can meet the large-scale delay requirements,

and has better convergence performance, and has a small EC loss.

The rest of the chapter is organized as follows. In Section 12.2, we briefly discuss

EC and formulate an energy-efficiency optimization problem with statistical delay

provisioning. A noncooperative game theoretic solution is proposed in Section 12.3.

A Q-learning mechanism based on Stackelberg game framework and a WFQA based

on Boltzmann distribution are proposed in Section 12.4. Simulation results are shown

in Section 12.5. In Section 12.6, we conclude the chapter.

12.2 System model

12.2.1 System description

The scenario considered in this chapter is shown in Figure 12.1, where N femtocells

are overlaid in a macrocell, which constitutes a two-tier femtocell network. FBSs are

in closed subscriber group (CSG) mode, i.e., mobile stations (MSs) that are not the

members of the CSG, are not allowed to access the CSG FBSs.

As Figure 12.2, the representative macrocell is covered by several femtocell. In

each femtocell, FBS provides services for its FUS. To analyze traceability, we assume

that only one active MU/FU is scheduled in each MBS/FBS in each signaling slot. It

is worth pointing out that the algorithm obtained under this assumption can be easily

extended to each MBS/FBS scenario with multiple active users.

However, in the two-tier network, cross-layer interference significantly hinders

the performance of traditional power-control schemes. For example, signal-strength-

based power control (channel inversion) adopted by cellular users results in unaccept-

able deterioration of cellular SINR. Because users carry out high-power transmissions
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Figure 12.1 System model of two-tier femtocell networks
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Macrocell

Femtocell

Figure 12.2 The scenario of two-tier femtocell networks

at the edges of their cell to meet their received power targets and cause excessive cross-

layer interference in nearby microcellular networks. Due to scalability, security, and

limited availability of backhaul bandwidth, base station (BS) and femtocells base

station APS.

Let i ∈ N = {0, 1, . . . , N } denote the index of active users, where i = 0 indicates

the scheduled user in macrocell B0 and i ∈ {1, 2, . . . , N } denotes the scheduled users

in femtocell Bi.

Let Bi (i ∈ N ) denote the base station (BS), where N = {0, 1, 2, . . . , N }. B0

denotes the MBS, and Bi (i ∈ N , i �= 0) is FBS. We assume that each MS will be

allocated only a subchannel, and in order to avoid intra cell interference during each

frame time slot, only one active MS in each cell can occupy the same frequency.

Let i ∈ N denote the index of scheduled user in Bi.

The received SINR of MS i in Bi can be expressed as

γi(pi, p−i) =
pihii

∑

j �=i pjhij + σ 2
i

, ∀i ∈ N , (12.1)

where pi denotes the transmit power of MS i, and p−i, (−i ∈ N ) denotes the transmit

power of other MSs except MS i. hii and hij are the channel gains from MS i to BS

Bi, Bj respectively, σ 2
i is the variance of additive white Gaussian noise (AWGN) of

MS i.

Similarly, the received SINR of MU is

γ0 =
h0,0p0

∑N

i=1 hi,0pi + σ 2
0

, (12.2)

where hi,0 is the channel gain from FBS Bi to the active MU and h0,0 denotes the

channel gain from MBS to its active MU.

According to the Shannon’s capacity formula, the ideal achievable data rate of

MS i is

Ri(pi, p−i) = wlog2(1 + γi(pi, p−i)), (12.3)

where w is the bandwidth of each subchannel.
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12.2.2 Effective capacity

The concept of statistical delay guarantee has been extensively studied in the effective

bandwidth theory [32]. Delay provisioning is an important and challenging problem in

wireless networks for delay-sensitive services such as video calls, video conferencing,

and online games. However, owing to the time-varying nature of wireless channels, it

is difficult and unrealistic to have deterministic delay guarantees for mobile services.

According to Shannon’s law, the capacity potential of a femtocell can be quickly

verified by associating the wireless link capacity (in bits per second) in the bandwidth

with the SINR. SINR is a function of the desired transmitter’s transmit power, path

loss, and shadows. Path losses cause the transmitted signal to decay as Ad−α , where

A is a fixed loss, d is the distance between the transmitter and receiver, and α is the

path loss exponent. The key to increasing capacity is to enhance reception between

intended transmitter receiver pairs by minimizing d and α.

To solve this problem, the concept of EC is proposed in [4], which is defined as

the maximum constant arrival rate guaranteed by a statistical delay specified by the

QoS index of θ on a time-varying channel.

Based on large deviation principle, Chang [32] has pointed out that with sufficient

condition, for a dynamic queueing system with stationary ergodic arrival and service

processes, the queue length process Q(t) converges to a random variable Q(∞):

lim
Qth→∞

log(Pr{Q(∞) > Qth})

Qth

= −θ , (12.4)

where Qth is queue length bound and θ > 0 is the decay rate of the tail distribution of

the queue length Q(∞).

If Qth → ∞, we get the approximation of the buffer violation probability,

Pr{Q(∞) > Qth} ≈ e−θQth .

We can find that the larger θ corresponds to the faster fading rate, which means

more stringent QoS constraints, while the smaller θ leads to a slower fading rate,

which means a looser QoS requirement. Similarly, the delay-outage probability can

be approximated by [4], Pr{Delay > Dth} ≈ ξe−θδDth , where Dth is the maximum

tolerable delay, ξ is the probability of a non-empty buffer, and δ is the maximum

constant arrival rate.

The concept of EC is proposed by Wu et al., in [4], it is defined as the maxi-

mum constant arrival rate that can be supported by the time-varying channel, while

ensuring the statistical delay requirement specified by the QoS exponent θ . The EC

is formulated as

Ec(θ ) = − lim
K→∞

1

Kθ
ln(E{e−θ

∑K
k=1 S[k]}), (12.5)

where {S[k]|k = 1, 2, . . . , K} denotes the discrete-time, stationary, and ergodic

stochastic service process. E{·} is the expectation over the channel state.
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We assume that the channel fading coefficients remain unchanged over the frame

duration T and vary independently for each frame and each MS. From (12.5), Si[k] =

TRi[k] is obtained. Based on the above analysis, the EC of MS i can be simplified as

Ec
i (θi) = −

1

θiT
ln(E{e−θiTRi[k]}). (12.6)

12.2.3 Problem formulation

The energy efficiency under statistical delay guarantees of MS i is defined as the ratio

of the EC to the totally consumed energy as follows:

ηi(pi, p−i) =
Ec

i (θi)

pi + pc

. (12.7)

In (12.7), pc represents the average energy consumption of device electronics,

including mixers, filters, and digital-to-analog converters, and excludes that of the

power amplifier. Femtocell is deployed randomly by end users, so cross-layer inter-

ference against MU is uncertain. When the cross-tier interference exceeds MUs’

threshold, the communication of MUs is seriously affected or even interrupted.

Given the minimum SINR guarantee γ ∗
i , FU i,s utility function can be

expressed as

ui(pi, p−i) =

{

EC
i (θi), if γi(pi, p−i) ≥ γ ∗

i

0, otherwise
, (12.8)

where p−i denotes the transmit power of other FBSs except FBS i.

Our goal is to maximize the energy efficiency of each MS while meeting the

delay QoS guarantee. Therefore, the corresponding problem is

max
−ln(E{e−θiTRi[k]})

θiT (pi + pc)
, (12.9a)

pi ≥ pmin, ∀i ∈ N , (12.9b)

pi ≤ pmax, ∀i ∈ N , (12.9c)

θi > 0, ∀i ∈ N , (12.9d)

where pmin and pmax are the lower and upper bounds of each MS’s transmit power,

respectively.

12.3 Noncooperative game theoretic solution

In this section, we formulate the FBSs’selfish behavior as a noncooperative game. Let

G = {N ′, {Pi}, ui(pi, p−i)} denote the noncooperative power control game (NPCG),

where N ′ = {1, 2, . . . N } is the set of FBSs, {Pi} is the strategy set of all players,

and ui(pi, p−i) is the utility function. It is obvious that the level of each FU’s utility

depends on its FBS’s transmit power and other FBSs’ strategies. We assume that each
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FBS is rational. Each player pursues the maximization of its own utility, which can

be denoted as

max
pi∈Pi

ui(pi
∗,p∗

−i), ∀i ∈ N ′, (12.10a)

subjectto : pi ≥ pi
min, (12.10b)

pi ≤ pi
max, (12.10c)

θi > 0. (12.10d)

Definition 12.1. A given power control strategy (pi
∗,p∗

−i) is an NE point of NPCG,

if for ∀i ∈ N ′,∀pi ∈ Pi, the following inequality is satisfied:

ui(pi
∗,p∗

−i) ≥ ui(pi,p
∗
−i). (12.11)

On the NE point, no player can improve their utility by changing its strategy uni-

laterally [33]. Generally speaking, we can prove the existence of NE by the following

Theorem 12.1.

Theorem 12.1. An NE exits in the NPCG G = {N ′, {Pi}, ui(pi,p−i)}, if for all i ∈ N ′,

the following two conditions are satisfied:

1. In Euclidean space RN , the strategy set {Pi} is a non-empty, convex, and compact

subset.

2. The utility function ui(pi,p−i) is continuous in (pi,p−i) and quasi-concave in pi.

Proof. For condition (1), it is obvious that {Pi} is a non-empty, convex, and compact

subset. We prove condition (2) in the following:

For fixed p−i, let hi = (gi,i/
∑

j �=0,i gj,ipj + g0,ip0 + σ 2) denote the channel gain-

to-interference-plus-noise ratio of FU i and f (hi) is the probability density of hi. For

almost all practical environment, we assume f (hi) is continuous and differentiable

in hi:

∼

ECi
(θi) = −

1

θi

ln

[∫ ∞

0

e−θiRi(pi)f (hi)dhi

]

− ugi,0pi. (12.12)

It is apparent that ui(pi,p−i) is continuous in (pi,p−i). In addition, ugi,0pi is

linear about pi, which does not affect the concavity of the equation. Based on

(
∫ b

a
f (p, h)dh)′p =

∫ b

a
f ′

p(p, h)dh, it is easy to prove that (∂2
∼

ECi
(θi)/∂pi

2) ≤ 0. Thus,
∼

ECi
(θi) is concave and the condition (2) is proved.

Therefore, the NPCG G = {N ′, {Pi}, ui(pi,p−i)} admits an NE point.

12.4 Q-learning algorithm

As far as we know, FBS is installed by end users, who have not enough professional

skill to configure parameters of FBS. On this account, FBS should have self-learning
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ability to automatically configure and optimize the FBS’s operating information. In

Stackelberg learning game, every user in the network behaves as an intelligent agent,

whose goal is to maximize its expected utility. The game is repeated to achieve the

best strategy. Stackelberg learning framework has two hierarchies: (1) MU maximizes

its expected utility by knowing the response of all FUs to each possible game and

(2) given an MU strategy, FU performs a noncooperative game.

In this section, we will adopt the reinforcement learning mechanism based on

the Stackelberg game framework to achieve the energy-saving transmission power

allocation while ensuring the delay of QoS requirements.

To be compatible with reinforcement learning mechanism [13], the transmit

power of MS i is discretized as Pi = (pi,vi
|vi = 1, 2, . . . , Vi). The probability of MS

i choosing transmit power pi,vi
at time slot t is π t

i,vi
(π t

i,vi
∈ π t

i ), and π t
i = (π t

i,vi
|vi =

1, 2, . . . , Vi), which satisfies
∑Vi

vi=1 π t
i,vi

= 1.

Then, the expected utility of MS i is given by

ui(π
t
i , π t

−i)=E{ηi(p)|π t
i , π t

−i}=
∑

p∈P

ηi(p)
∏

j∈N

π t
j,vj

, (12.13)

where p = (p0,v0
, . . . pi,vi

. . . , pN ,vN
) ∈ P is the actions of all MSs at time slot t, and

P = ×i∈N Pi.

12.4.1 Stackelberg game framework

The Stackelberg game model [33] is very suitable for two-tier femtocell networks,

where MS 0 is formulated as a leader, and MSs i (i ∈ N , i �= 0) are modeled as

followers. In Stackelberg game framework, the leader can first know the strategy

information of all followers, then choose the action, and followers can receive the

leader’s strategy and then act.

Based on above analysis, it is easy to find that the goal of MS 0 is to maximize

its revenue as

max u0(π0, π−0), (12.14)

and the objective of MS i, (i ∈ N , i �= 0) is

max ui(πi, π−i). (12.15)

Because of this fact, FBS is deployed by end users randomly. There is no com-

munication or coordination between femtocells. They pursue their profits selfishly.

Equation (12.10a)–(12.10d) can be modeled as a noncooperative power allocation

sub-game G = [{i}, {Pi}, {ui}] (i ∈ N , i �= 0).

Theorem 12.2. Given MS 0’s strategy π0, there exists a mixed strategy {π∗
i , π∗

−i}

satisfies:

ui(π
∗
i , π∗

−i) ≥ ui(πi, π
∗
−i), (12.16)

which is an NE point.



Q-learning-based power control in small-cell networks 417

Proof. As it has been shown in [33], every limited strategic game has a mixed strategy

equilibrium, i.e., there exists NE(π0) for given π0.

Lemma 12.1. The problem exists a Stackelberg equilibrium (SE) point {π∗
0 , π∗

i , π∗
−i}

(∀i ∈ N , i �= 0), which is a mixed strategy.

The proof of the existence of SE point is omitted here for brevity. We will employ

reinforcement learning mechanism, called Q-learning, to find SE point.

12.4.2 Q-learning

Based on reinforcement learning, each femtocell can be an intelligent agent with

self-organization and self-learning ability, and its operation parameters can be opti-

mized according to the environment. Q-learning is a common reinforcement learning

method, which is widely used in self-organizing femtocell networks. It does not need

teachers’ signals. It can optimize its operation parameters through experiments and

errors. Each BS acts as an intelligent agent, maximizing its profit by interacting

directly with the environment.

We define pi,vi
∈ Pi (∀i ∈ N ) as actions of Q-learning model, and π

t
−i (−i ∈ N )

are environment states. In a standard Q-learning model, an agent interacts with its

environment to optimize its operation parameters. First, the agent perceives the envi-

ronment and observes its current state s ∈ S. Then, the agent selects and performs

an action a ∈ A according to a decision policy π : s → a and the environment will

change to the next state s + 1. Meanwhile, the agent receives a reward W from the

environment.

In each state, there is a Q-value associated with each action. The definition of a

Q-value is the sum of the received reward (possibly discounted) when an agent per-

forms an associated action and then follows a given policy thereafter [34]. Similarly,

the optimal Q-value is the sum of the received reward when the optimal strategy is

followed. Therefore, the Q-value can be expressed as

Qt
π (a, s) = W t(a, s) + λ max

a∈A
Qt−1

π (a, s + 1), (12.17)

where W t(a, s) is the received reward when an agent performs an action a at the

state s in the time slot t and λ denotes a discount factor, 0 ≤ λ < 1. However, at the

beginning of the learning, the (12.17) has not been established. The deviation between

the optimal value and the realistic value is

�Qt
π (a, s) = W t(a, s) + λ max

a∈A
Qt−1

π (a, s + 1) − Qt−1
π (a, s), (12.18)

Therefore, the Q-value is updated as the following rule:

Qt
π (a, s) = Qt−1

π (a, s) + ρt�Qt
π (a, s)

= (1−ρt)Q
t−1
π (a, s) + ρt[W

t(a, s) + λ max
a∈A

Qt−1
π (a, s + 1)], (12.19)

where ρt is a learning factor.
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Q-learning represents the knowledge by means of a Q-function, whose Q-value

is defined as Qt+1
i (pi,vi

, π t+1
−i ) and is updated according to

Qt+1
i (pi,vi

, π t+1
−i ) = Qt

i (pi,vi
, π t+1

−i ) + αt(ri(pi,vi
, π t+1

−i ) − Qt
i (pi,vi

, π t+1
−i )), (12.20)

where αt ∈ [0, 1) is the learning rate. In (12.20), ri(pi,vi
, π t+1

−i ) is the reward function of

MS i when selecting pi,vi
and other MSs’ strategies are π

t+1
−i . The relationship between

reward and utility function of MS i is

ui(π
t
i , π t

−i) =

Vi
∑

vi=1

πi,vi
ri(pi,vi

, π t
−i). (12.21)

Each BS updates its strategy based on Boltzmann distribution [14], which is

formally described as

π t
i,vi

=
exp(Qt

i (pi,vi
, π t+1

−i )/τ )
∑Vi

vi=1 exp(Qt
i (pi,vi

, π t+1
−i )/τ )

, (12.22)

where τ (τ > 0) is temperature parameter. Higher value of τ causes the probabilities

of all actions of MS i to be nearly equal; lower value of τ leads to the probability of

actions’ bigger difference with respect to their Q-values.

12.4.3 Q-learning procedure

In this section, we will study the QoS aware power allocation in sparse and dense

deployment of femtocell networks. The Q-learning mechanism based on Stackelberg

game framework is adopted.

12.4.3.1 Sparsely deployed scenario

In sparsely deployed femtocell networks, for example, in rural areas, the interference

between FBS is negligible due to path loss and penetration loss.

As we have assumed before, MBS knows complete strategies of all FBSs and

updates its Q-value by (12.20). The reward function of MS 0 is the following:

r0(p0,v0
, π t+1

−0 ) =
∑

p∈P

{η0(p)δt+1
−(0,v0)}, (12.23)

where δt+1
−(0,v0) =

∏

j∈N , j �=0

π t+1
j,vj

denotes the probability of actions vector p−(0,v0) =

(p1,v1
, . . . pi,vi

. . . , pN ,vN
).

For MS i (∀i ∈ N , i �= 0), due to the fact that FBSs can receive MBS’s transmit

power strategy, and there is no interference between FBSs, the reward function of

MS i is

ri(pi,vi
, π t+1

0 ) =

V0
∑

v0=1

δt+1
−(i,vi)

ηi(pi,vi
, p0,v0

), (12.24)

where δt+1
−(i,vi)

= π t+1
0,v0

.
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12.4.3.2 Densely deployed scenario

In densely deployed femtocell networks, such as in urban areas, FBS is close to each

other and the interference between with each other cannot be ignored.

In this scenario, the reward function of MS 0 is according to (12.13). The reward

function of MS i (∀i ∈ N , i �= 0) in this scenario is

ri(pi,vi
, π t+1

0 ) =

V0
∑

v0=1

δt+1
−(i,vi)

η̂i(pi,vi
, p0,v0

). (12.25)

Since there is no communication or cooperation between FBSs, if the selected

power level at time shot t + 1 satisfies pt+1
i,vi

= pi,vi
, η̂t+1

i (pi,vi
, p0,v0

) is estimated by

(12.20), else η̂t+1
i (pi,vi

, p0,v0
) = η̂t

i (pi,vi
, p0,v0

):

η̂t+1
i (pi,vi

, p0,v0
) =

ηi(pi,vi
,p−i)−η̂t

i (pi,vi
, p0,v0

)

ρt (pi,vi
,p0,v0

)+1
+ η̂t

i (pi,vi
, p0,v0

). (12.26)

In (12.20), ηi(pi,vi
, p−i) is the real value when pt+1

i,vi
= pi,vi

, which can be calculated

by the feedback information from FBS Bi. ρ t(pi,vi
, p0,v0

) is the times number when

the MS 0s transmit power is p0,v0
, and MS i selects power level pi,vi

until time shot

t [14].

12.4.3.3 Distributed Q-learning algorithm

Theorem 12.3. The proposed algorithm can discover a SE mixed strategy.

Due to the limited space, the convergence of the proposed algorithm can be found

in [35]. As the Algorithm 12.1, a distributed Q-learning algorithm is proposed.

Algorithm 12.1: Distributed Q-learning algorithm

Step 1: Initialization: for t = 0, Qt
i (pi,vi

, π t
−i), ∀i ∈ N ;

power discretization: pi = (pi,1, . . . , pi,vi
, . . . , pi,Vi

);

Learning:

Step 2: Update t = t + 1;

Step 3: Update π t
i according to (12.22);

Step 4: Update MS 0s transmit power according to p0,v∗
0

= arg max (Qt
0(p0,v0

, π t
−0)),

and send the value of π t
0 to FBS.

Step 5: Update MS i’s (i �= 0) transmit power according to

pi,v∗
i

= arg max (Qt
i (pi,vi

, π t
−i)), and send the value of π t

i to MBS.

Step 6: Calculate MS 0s reward according to (12.23), calculate MS i’s (i �= 0) reward

by (12.25).

Step 7: Update MS i’s Q-value by (12.20).

Step 8: Back to Step 2.

End learning
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12.4.4 The proposed BDb-WFQA based on NPCG

In the NPCG G = {N ′, {Pi}, ui(pi,p−i)}, the strategy set Pi = [pmin
i , pmax

i ] is continu-

ous, which is not applicable in the Q-learning method. To be compatible with the

Q-learning method, we discretize the continuous power set pi ∈ Pi = [pmin
i , pmax

i ] [14]

as following:

pi(ai) =

(

1 −
ai

Mi

)

pmin
i +

ai

Mi

pmax
i , (12.27)

where ai ∈ Ai = {0, 1, . . . , Mi} and Ai is the set of FBS Bi’s action space. The number

of action space is Mi + 1.

Thus, the NPCG G = {N ′, {Pi}, ui(pi,p−i)} transforms to the discrete game Gd =

{N ′, {Ai}, ui(pi(ai),p−i)}. Based on the discrete game Gd , we design an appropriate

Q-learning algorithm to achieve the EC-based power allocation for FBSs.

According to the Q-learning theory, agent, state, and action can be defined as

follows:

Agent: All of the FBSs Bi. As stated in Section 12.2, there is only one sched-

uled active FU in each FBS during each signaling slot. Therefore, i ∈ N ′ =

{1, 2, . . . N }.

State: FBS Bi’s policy π t−1
i and the received interference of FU i I t

i =
∑

j �=i gj,ipj + g0,ip0 + σ 2. π t−1
i = (π t−1

i,0 , . . . , π t−1
i,ai

, . . . , π t−1
i,Mi

) is a probability

vector, where π t−1
i,ai

is the probability with which FBS Bi chooses action ai at

time t − 1.

Action: Each discrete transmit power can be denoted by each action ai. Therefore,

we use action ai ∈ Ai to replace the FBS Bi’s transmit power. According to

policy π t−1
i , FBS Bi selects transmit power ai with probability π t−1

i,ai
.

The Q-value can be formulated according to the utility function of discrete

game Gd :

Qt
πi

(ai, si) = W t(ai, si) + λ max
a∈A

Qt−1
πi

(ai, si + 1) = π t−1
i,ai

ut
i(pi(ai), p−i). (12.28)

Therefore, we adopt the following rule to update Q-value:

Qt
πi

(ai, si) = Qt−1
πi

(ai, si) + ρt(A)[π t−1
i,ai

ut
i(pi(ai), p−i) − Qt−1

πi
(ai, si)], (12.29)

where ρt(A) is the learning factor. In practice, FBS Bi knows neither the opponents’

strategy π t−1
−i nor the true utility before running the action ai. But the FBS Bi can

compute the attainable utility ut
i(pi(ai), p−i) through the feedback information of the

receiver; thus, we design the following learning factor to estimate the utility:

ρt(A) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

tπ t−1
i,ai

if A = ai,

α

t + α
otherwise.

(12.30)

where α is the filter parameter. Notice that the tπ t−1
i,ai

is approximately equal to the

frequency of FBS Bi selecting the action ai until time t. Therefore, the Qt
πi

(ai, si)
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is the approximation of FU i′s expected utility when FBS Bi adopts the action ai.

Additionally, α/(t + α) decreases with the increase of the time slot and

α

t + α
=

{

≥ 0.5 if t ≤ α,

< 0.5 if t >α.
(12.31)

Therefore, we can believe that theα represents the weight of the historical learning

process and can speed up learning. Moreover, in order to ensure fast convergence, we

propose a weighted filter algorithm-based Boltzmann distribution [31] to update the

policy π t
i :

π t
i,ai

=
α2

t2 + α2

exp(Qt
πi

(ai, si)/T )
∑Mi

j=0 exp(Qt
πi

( j, si)/T )
+

t2π t−1
i,ai

t2 + α2
, (12.32)

where T is the temperature parameter.

The convergence of the proposed algorithm is proved as follows. Because the NEs

exit in the NPCG and the action set of discrete game Gd is the discretized strategy

set of NPCG, there is at least one action ai
∗ at which the maximum Q-value Q∗

πi
is

attained [13]. Although there may be more than one optimal action ai
∗, the maximum

Q-value Q∗
πi

is unique. Additionally, we can prove the
∑∞

t=1 (α/(t + α)) = ∞ and
∑∞

t=1 (α/(t + α))2<∞ easily. According to [16], we achieve Qt
πi

(ai, si) → Q∗
πi

(ai
∗, si)

as t → ∞ with probability 1, where Q∗
πi

(ai
∗, si) denotes the optimal Q-value for

optimal action ai
∗ at state si.

The proposed BDb-WFQA algorithm is given in Algorithm 12.2.

Algorithm 12.2: The proposed BDb-WFQA algorithm

Step 1: Initialization: for t = 0;

Step 2: Select a0
i = rand(0, Mi);

Step 3: Compute pi(a
0
i ) using (12.27);

Step 4: Compute the received interference I 0
i ;

Step 5: Compute ui
0(pi(ai

0),p−i) using (12.8);

Step 6: Initialize Q0
πi

(ai
0, si) = ui

0(pi(ai
0),p−i);

Step 7: Initialize policy π0
i ,for the action j ∈ Ai,π

0
i,j =

exp(Q0
πi

( j,si)/T )
∑Mi

k=0
exp(Q0

πi
(k ,si)/T )

End Initialization

Step 8: Learning: for t = t + 1.

Step 9: Select at
i = l according to π t−1

i , l ∈ Ai;

Step 10: Compute pi(a
t
i) using (12.27);

Step 11: Compute the received interference I t
i of FU i;

Step 12: Compute ut
i(pi(ai

t), p−i) using (12.8);

Step 13: Update the Q-value using (12.19);

Step 14: Update the π t
i using (12.22);

End learning
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12.5 Simulation and analysis

12.5.1 Simulation for Q-learning based on Stackelberg game

In this section, we will introduce the simulation of the proposed algorithm and simulate

a CMAQL algorithm to compare with the proposed algorithm [31]. Macro-users and

micro-users are distributed randomly in the two-tier femtocell networks and share

the same spectrum with w = 200 kHz. The channel-fading is modeled as Rayleigh

block-fading channels, the fading-block duration T = 1 ms. Noise spectral density

is N0 = −174 dBm/Hz. The channel gain for macro-user and femto-users are λL−3

and λL−4, respectively, where L is the transmitter–receiver separation in meters, and

λ = 2 × 10−4 [36].

The additional circuit power pc is 10 dBm for all users, the lower bound of

transmit power for each user is pmin = 10 dB m, and upper bounds for femto-users

and macro-user are pmax = 20 dB m and pmax = 30 dB m, respectively. The transmit

power region [pmin, pmax] is divided into d parts equally in the Q-learning procedure,

and we consider d = 3, 10, 20, respectively, in the simulation.

Figure 12.3 shows expected utilities with respect to the QoS exponent. When the

value of θ is small, i.e., θ ≤ 10−4, there is no significant expected utility change. This

is because the smaller the QoS index, the looser the delay requirements, and the EC

is close to Shannon capacity, regardless of the arrival rate and delay requirements.

Instead, when the value of θ is larger, and the delay requirement is tighter, EC and

expected utility decrease correspondingly. On the other hand, the discretization of

transmit power results in the best transmit power error, while the smaller of d will

lead to a higher expected utility loss.
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Figure 12.3 Expected utilities versus different QoS exponent
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Figures 12.4 and 12.5 show the convergence of the proposed algorithm. From

these figures, we can see that the proposed algorithm has faster convergence speed

than CMAQL algorithm. The reason is that micro-users in the proposed Q-learning

mechanism can share transmit power strategy with macro-user, while the value of

δt+1
−(i,vi)

is estimated by only the past experiences in CMAQL algorithm.
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12.5.2 Simulation for BDb-WFQA algorithm

This section shows the performance of the proposed algorithm through numerical

simulations. We consider a two-tier femtocell network in which a macrocell is overlaid

by three cochannel deployed femtocells, which is similar to the scenario in [15]. The

related simulation parameters, as shown in Table 12.1, note that channel fading is

considered to be independent. And the Rayleigh block fading is also allocated. The

path loss of MUs and FUs is kd−3 and kd−4, respectively, where d is the distance

from the transmitter to receiver and k = 2 × 10−4 [36].

The convergence of the proposed BDb-WFQA is shown in Figure 12.6. For

the comparison purpose, two other algorithms are also simulated. The first one is

the NGb-PCA. The second one is the hierarchical reinforcement learning algorithm

(HRLA) in [15], which employs the discrete power as action profile and chooses

Table 12.1 Simulation parameters

Parameter Value

The channel bandwidth w 100 kHz
Macrocell radius 500 m
Femtocell radius 20 m

FBS transmit power pmin
i 10 dB m

FBS transmit power pmax
i 20 dB m

The number of discrete power value 3

Power of AWGN σ 2 −110 dB m
The minimum SINR γ ∗

i 5 dB
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Figure 12.6 The convergence of algorithms
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action through the Boltzmann distribution. From Figure 12.6, after 20 iterations, the

BDb-WFQA Algorithm is stable, which guarantees the convergence of the algorithm.

In addition, we find that compared with NGB-PCA and HLA, the proposed BDB-

WFQA has faster convergence. This is because the proposed BDb-WFQA employs

the discrete power as action profile and uses the weighted filter way to update the

policy where the filter parameter α can be considered as a believable parameter to

accelerate learning.

The average EC of FUs is shown in Figure 12.7. It is can be observed that the

average EC of FUs reduces with the increase of delay QoS exponent θ for both the

NGb-PCA and the proposed BDb-WFQA. This is because a larger θ means a more

stringent delay requirement. In addition, we find that the performance of the proposed

BDb-WFQA is slightly lower than that of NGB-PCA. This is because the proposed

BDb-WFQA uses discrete action contours, but it may lose correct power values.

However, as mentioned earlier, we know that the proposed BDb-WFQA converges

faster than NGb-PCA.

The average EC of MUs is shown in Figure 12.8. From the five curves in the

Figure 12.8, it can be observed that the average EC of MUs increases with the increase

of μ. Besides, we can see that when the pricing factor μ = 0, the average EC of

MUs is the smallest. This is because that μ = 0 means there is not interference

constraint at FBSs’ side, the FBSs will choose the optimal transmit power to self-

ishly increase their EC, which will cause severe cross-tier interference to macrocell.

When the μ≥ 170 dB, MUs gain the largest average EC. This is because the suffi-

ciently large pricing will make the FBSs choose the smallest transmit power; thus,

the cross-tier interference each MU received is smallest, and the achievable average
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Figure 12.7 The average EC of FUs versus delay QoS parameter θ
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EC is largest. Therefore, we can choose a pricing factor which can guarantee that

the received cross-tier interference of MUs is acceptable, and the FBSs can achieve a

good EC performance.

12.6 Conclusion

We investigate the energy efficient power control in two-tier femtocell networks

with considering delay-QoS guarantee. In order to enhance FBS’s ability of self-

configuration and self-optimization, we propose a Q-learning mechanism based on

Stackelberg game framework. In the learning procedure, macro-user is a leader, who

knows transmit power strategies of all femto-users and chooses power level first;

while femto-users acting as followers can communicate with only the leader and

move subsequently. Finally, a distributed Q-learning algorithm based on Stackelberg

game is proposed to study the downlink power control problem in two-layer femto-

cellular networks with statistical delay QoS constraints and interlayer interference

constraints. We also design a network performance measure with the statistical delay

QoS provisioning based on the concept of EC. Then we model the power allocation

problem as a noncooperative game and verify the existence of NEs. In particular,

we adopt a Q-learning theory to achieve self-organizing ability of femtocells and

propose BDb-WFQA to realize power allocation of FBS. Simulation results show

that compared with CMAQL algorithm, the Q-learning mechanism based on Stack-

elberg game framework has faster convergence speed. Simulation results also show

that the proposed BDb-WFQA increases the achievable EC of MUs through the pric-

ing method and provides a delay QoS provision for MUs and FUs. Furthermore, the
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BDb-WFQA has a better performance in the convergence compared with NGb-PCA

and HRLA. In the future, we will continue to study wireless resource optimization

issues and further use game theory to ensure the QoS in wireless networks.
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Chapter 13

Data-driven vehicular mobility modeling
and prediction

Yong Li1, Fengli Xu1, and Manzoor Ahmed2

Vehicular networks have been recently attracting an increasing attention from both the

industry and research communities. One of the challenges in this area is the under-

standing of vehicular mobility and further propose accurate and realistic mobility

models to aid the vehicular communication and networks design and evaluation. In

this chapter, different from the current works focusing on designing microscopic level

models that are describing the individual mobility behaviors, we are exploring the use

of open Jackson queuing network frameworks to model the macroscopic level vehic-

ular mobility. The proposed intuitive model can accurately describe the vehicular

mobility, and further predict various measures of network-level performance. These

measures include the vehicular distribution and vehicular-level performance, such as

average sojourn time in each area and the number of sojourned areas in the vehicular

networks. Model validation based on two large-scale urban vehicular motion traces

reveals that such a simple model can accurately predict a number of system measure

concerned with the vehicular network performance. Moreover, we develop two appli-

cations to illustrate the proposed model’s effectiveness in the analysis of system-level

performance and dimensioning of vehicular networks.

13.1 Introduction

Recently, as more and more vehicles are equipped with multiple sensors and hetero-

geneous communication access devices to enable wireless connectivity, interests on

vehicular communications and networks have grown tremendously [1]. It is seen as the

key technology for improving road safety and building intelligent transportation sys-

tem (ITS) [2]. Many applications of vehicular networks are also emerging, including

automatic collision warning, remote vehicle diagnostics, emergency management and

assistance for safely driving, vehicle tracking, automobile high speed Internet access,

and multimedia content sharing. In USA, Federal Communications Commission has

1Department of Electronic Engineering, Tsinghua University, China
2Department of Computer Science, Qingdao University, China
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allocated 75 MHz of spectrum for dedicated short-range communications in vehicular

networks, and IEEE is also working on the related standard specifications. The aim

of these leading consortia and standardization bodies is to develop technologies and

protocols for information transmission between vehicles and roadside units (RSU),

infrastructures equipment, known as vehicles to infrastructures (V2I), and between

vehicles, known as vehicles to vehicles (V2V).

Urban vehicular ad hoc networks (VANETs) [3] are recognized as an important

component of the next generation ITS to alleviate serious problems, such as traffic

jams and accidents, as well as to enable new mobile applications to the public [1].

Since urban VANETs are highly mobile, it is difficult to maintain a connected and

stable network for communication. Thus, they are usually distributed, self-organized

by the mobile vehicles, characterized by very high velocity, and limited degrees of

freedom in nodes mobility patterns. This brings a strong interaction between the

vehicular mobility and network protocol design, which is the main focus of current

development of VANETs [3]. First, mobility in the macroscopic means the flows of

vehicular traffic directed from one region to another, which influences the spatial

distribution of vehicles, and the data traffic may also be altered by mobility. Thus,

a specific relationship between the mobility and wireless communication exists in

VANETs. Second, mobility in the microscope means the individual vehicular mobility,

which influences the position of each vehicle. Then, the communication rate changes

when the vehicles communicate with the RSUs [4] or vehicles [5] via V2I or V2V.

In terms of VANETs’ design, since the development of VANETs’ technologies

has huge impact on the automotive market, we should put a growing effort in the

development of communication protocols and mobility models by efficiently utilizing

their relationship and the influences of mobility on the communications, specific to the

vehicular networks. In terms of protocol and vehicular network system performance

evaluation, economic issues and technology limitations make theoretical analysis

and simulation as the prime choices in the validation of VANETs, and also as the

widely adopted first step in the development of real world technologies [5]. A critical

aspect in the theoretical analysis and simulation of VANETs is the need for a realistic

mobility model reflecting the real behaviors of vehicles in terms of both large-scale

vehicular traffic and microscope level of individual mobility. In conclusion, mobility

models are significant to the development of vehicular networks and related works

have become an important part on vehicular networks [5].

After a few years of exciting work, a large variety of mobility models are available,

which can be categorized in three different classes known as synthetic, survey-

based model and trace-based models. The synthetic models as their name implies

are obtained by mathematical models, while the survey models extract mobility pat-

terns through surveys, and finally the trace-based models generate mobility patterns

from real mobility traces [5]. These models vary from the most trivial to the most

realistic ones, or from freely available models to commercial vehicular simulator.

However, these models consider each vehicle as a distinct entity, and they are in the

microscopic level [6]. Although microscopic level models describe the individual
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mobility behaviors precisely, unfortunately, they fail to capture the overall mobility

in the whole network. In contrast, macroscopic level description can lead to gross

quantities of metrics like vehicular distribution, density and means of velocity, by

treating vehicular traffic according to fluid dynamics, and then large-scale overall

vehicular behaviors and traffic can be easily revealed. Further, such models are indis-

pensable for network dimensioning, answering the “what if” questions like how the

network performance changes or the deployed network evolves as the number of

vehicles or communication demands scale-up [7]. Thus, macroscopic level vehicular

mobility models are crucial for the development of vehicular networking protocols

and algorithms.

In this chapter, against this background, we consider the problem of modeling

the macroscopic level vehicular mobility. Specifically, we explore the use of an open

Jackson queueing network to model the vehicular mobility among areas divided by the

intersections of the city road. In the model, vehicles arrive in the system according

to a random process, move from one area to another area by making independent

probabilistic transitions, and finally depart the system. The question we address is

can this simple queueing network model accurately describe the vehicular mobility

and further predict various measures of network-level performance like the vehicular

distribution, and vehicular-level performance like average sojourn time in each area

and the number of sojourned areas in the vehicular networks. Our novel contributions

are summarized as follows:

1. We model the macroscopic level vehicular mobility as an open Jackson queueing

network. Under this model, we obtain three important metrics related to vehicular

mobility and system performance, which are vehicular area distribution, average

sojourn time in each area, and average mobility length.

2. Using two large-scale urban vehicular motion traces, we validate the accuracy of

the proposed queueing network model by comparing the model-predicted results

with the observations in the traces. The results reveal that such a simple model

can accurately predict a number of system metrics concerned with the vehicular

network performance.

3. Under the proposed open Jackson queueing network for vehicular mobility, we

introduce two specific applications. One is the decision of how much the capacity

of the RSUs should provide with the increase of the communication demand

coming with the increasing of city vehicles. The second is investigating the

performance of the combined communications of V2I and V2V. The applied

applications illustrate that the proposed model is effective in the analysis of

system-level performance and dimensioning of vehicular networks.

The rest of this chapter is organized as follows. After introducing related work

in Section 13.2, we give the model motivation and describe the system model in

Section 13.3. While in Section 13.4, we derive related system performance metrics

based on the proposed model. Moreover, in Section 13.5, we introduce the vehicular
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mobility trace for model simulation and provide the validation results, and followed by

two specific applications of vehicular network performance analysis in Section 13.6.

Finally, we conclude the chapter in Section 13.7.

13.2 Related work

In terms of individual mobility models in the microscopic level, after a few years

of exciting developments, a large variety of models are available. Different from

the synthetic models [8,9] and survey-based models [10,11], the trace-based model

try to extract mobility patterns from existing mobility trace by approximating the

movements based on observed movement patterns [12,13]. Even both the synthetic

and survey-based models are very complex, still they are not able to come close to

realistic modeling of motion patterns. All these microscopic level individual mobility

modeling approaches have the limitation of obtaining global mobility patterns instead

of precise movements; and they also sometimes are too complex to solve by math-

ematical equations. On the contrary to modeling the individual mobility, our work

focuses on the macroscopic mobility modeling. To our knowledge, this is the first

work that gives a simple queueing model of mobility with large-scale urban vehicular

mobility empirical data validation.

Recent works [14] focus on studying the metric of inter-contact time, which

denotes the time between two successive communication contacts of two vehicles,

and it finds that the inter-contact time exhibits the exponential distribution over a

large range of timescales. Poisson distributed contact rate has been validated to fit

well to real vehicular traces and is widely used to model opportunistic vehicular

systems [15,16]. Instead of studying inter-contact time, Li et al. [17] puts forward

another key metric known as contact duration, which is how long a contact lasts. In

contrast to these works, revealing the vehicular contact patterns that indirectly reflect

the macroscopic mobility, we directly model the vehicular mobility among areas and

reveal the vehicular mobility flow and its spatial distribution in direct manner.

Previous works on modeling and performance analysis with queueing network

model studied mostly the wired network and applications like peer-to-peer live stream-

ing systems [18,19]. The most closely related works are theoretical analysis for cellular

and Wi-Fi networks [7,20,21]. Ashtiani et al. [20] used a closed queueing network

with fixed nodes to model the users and traffic in the cellular network, while Kim

et al. [21] utilized M/M/c/c queues to model cellular network mobile users. Simi-

larly, Chen et al. [7] proposed a mixed queueing network model to describe the user

mobility among access points in the campus wireless network environment. All these

models for wireless networks are proposed under different assumptions of mathe-

matical properties. In contrast, our work focuses on modeling the large-scale urban

vehicular mobility. Rather than giving complex mathematical deviation, we justify

that using the simplest open Jackson queueing model can capture the essential prop-

erties for vehicular mobility which are validated by two empirical traces. Moreover,

we introduce two typical applications, which show our proposed model is useful in

the vehicular network performance analysis and design.
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13.3 Model

13.3.1 Data sets and preprocessing

Shanghai trace [14] was collected in SG project [22], in which 2,019 operational taxis

continuously covered the whole month of February 2007 without any interruptions

in Shanghai city. In this trace, a taxi sends its location coordinates by GPRS to the

central database every 1 min when it has passengers onboard but every 15 s when it

is vacant for the reason of real-time scheduling. However, the different intervals of

reporting may distort the records of the physical movements of the taxis, since most

of the taxis are not vacant most of the time. Another drawback of this trace is that

the number of taxis is limited. Indeed, 2,000 taxis and 1 min duration may not be

sufficient to record the statistical features of contact duration in a high-speed large

urban environment.

In collecting Beijing trace, we used the mobility track logs obtained from 27,000

participating Beijing taxis carrying GPS receivers during May 2010. The reason

behind choosing taxis as vehicular devices is that taxis are more sensitive to urban

environments in terms of underlying road topology, traffic control, and urban plan-

ning, and they have broader coverage in terms of space and operation time than that

of buses and private cars. Specifically, we utilized the GPS devices to collect the

taxis’ locations and timestamps, and further GPRS modules report the records every

15 s for moving taxis. The specific information contained in such a report includes

the taxi’s ID, the longitude and latitude coordinates of the taxi’s location, timestamps,

instant speed, and heading direction. Beijing trace is the largest vehicular data trace

available.

By collecting the GPS information of longitude and latitude coordinates, we

obtain the taxi’s moving traces that are locations varying with the time. Since these

locations are measured by the GPS devices, the noise may exist in the collected data

due to the inaccuracy of the GPS device. At the same time, since the taxies may not

report their location time at the same timeslots at the fixed frequency like in Shanghai

trace. Therefore, we need to process the data trace to get accurate locations of all the

taxies in the same frequency and timeslots. In order to achieve these goals, we first

use the city map of Shanghai and Beijing to correct the taxi’s locations based on the

coordinates of city road. Then, we use the method of linear interpolation (LI) to insert

location points to let all the taxies have a location information at every 15 s. For the LI

method, we first select any location that is near to each other in the original trace at two

time points. If their interval is larger than 15 s, we use the selected two time points and

map the information to estimate the unknown ones. For example, suppose we have

the location information of one taxi in the original trace at time t1 < t2 < · · · < tn,

and their corresponding locations are l1, l2, . . . , ln. If we want to insert the location

information of time t that are calculated according to the time interval, we find m that

satisfies tm ≤ t < tm+1. Then, we calculate the location by the following expression

through LI:

lt = lm ·
tm+1 − t

tm+1 − tm

+ lm+1 ·
t − tm

tm+1 − tm

. (13.1)
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Figure 13.1 City maps recovered from one data taxis mobility trace of (a) Beijing

and (b) Shanghai

In order to verify the above data preprocess approach does not introduce inaccurate

information to the original data trace, we use the obtained data of locations of 1 day to

plot the trajectory of all taxies, which are shown in Figure 13.1(a) and (b) for Beijing

and Shanghai data, respectively. From these two figures, we can see that our data set

is fine-grained that even using 1 day’s data can recover the map of the whole city. In

order to further show the accuracy of our data processing, we compare the obtained

figures with the original Beijing and Shanghai Map and find that all the trajectories

are in the city road and thus demonstrate that the map drawn by these trajectories are

very similar with the original city map.

13.3.2 Model motivation

Consider a vehicle moving in the city roads. It will travel along a road and then come

across an intersection. It may then wait for traffic signal for a while in the intersection

to choose the direction and travel to another road to drive on. In the downtown of a

city, the road is usually very crowded, and the intersections may be very dense, which

lead to very long waiting time at the intersections and short driving time along the

road. Therefore, the intersection is an important factor to model the urban vehicular

mobility. From the viewpoint of the whole city, we observe a large group of vehicles

waiting at the area of each intersection, and the streams of traffic moving from one

area to another area. That is to say, in order to describe the vehicular distribution, we

need to pay attention to the areas around the intersections and understand vehicular

behaviors of transition from one area to another from the system viewpoint.

Thus, if we divide the whole urban area into different areas that include at least one

intersection, we can model the vehicles moving from one area to another adjacent area
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Figure 13.2 Illustration of area partition algorithm for a part of Shanghai city

and model the vehicular traffic transiting from one area to another. Taking Figure 13.2

as an example. We first marked the important intersections surrounded by a large

number of vehicles as the red point and then divide the whole area around the selected

intersections. The methods for the area partition can be chosen flexibly by the specific

applications. For example, if we want to adapt the model to the use in the vehicular

network design, i.e., deploying the RSU system, then the Voronoi diagram can be

used, where each point is divided into the intersection that it is nearest to and then

obtain the boundary of each area.

Let us consider the two-dimensional vehicular mobility defined by a sequence

of steps that a vehicle travels in the city road, which is modeled by the above areas

formed by the intersections. A step is denoted by a tuple (t1, t2, A), where A is the area,

t1 is the time entering area A, and t2 is the time that it departs the area. In the first step,

the vehicle enters the modeled region from the entering area, and after some step,

it moves out of the modeled region. Every vehicle moves in this way by transiting

from one area to another area. In this way, we can depict one vehicle’s mobility and

overall describe the traffic flows of the whole system by combining all the vehicles

and intersections together as a system. Now, we are ready to introduce our queue

network to model the above vehicle-mobility scenario.

13.3.3 Queue modeling

By the method of area dividing described above, the whole vehicular system can be

described by the partitioned areas. The number of areas is denoted by N , across which
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the vehicles transit, and the vehicles move into the system, move from one area to

another, and finally moving out the system. We use a queueing network to model

the above system, which is shown in Figure 13.3. It includes N server nodes with

infinite queue size, which models the N partitioned areas in the system. The servers

are denoted by set N = {A1, A2, AN }. The vehicular movement into the system and

moving from one area to another are modeled by the entrance into the queueing

network and the transition from one server to another.

Now, we describe the dynamic behaviors of vehicles moving in different areas

of the system. In such a vehicular mobility system with multi-areas, the vehicle

dynamic behaviors occur on two different timescales. One is on the long timescale, in

which the vehicle may enter and depart the system. The other is on the short timescale,

where a vehicle changes areas, which means it switches from one area to another. In

the viewpoint of queueing network model, the vehicles enter into the system with

certain rate, stay in the server’s queue, and then transfer into another server. For

the long timescale dynamics, we assume that vehicles arrive server n, n ∈ N with

rates of λn. When a vehicle moves to area n, it will continually stay in this area for

a period of time. We assume that the average amount of time that a vehicle stay in

area n is μn. The distribution of staying time is arbitrary. For the short timescale

dynamics, we consider that after the vehicle staying in area n for a random period

of time, it switches to another area m with probability pnm or leaves the system with

probability pn0. In this way, the vehicles move from one area to another, depart or enter

the system.

We have modeled the vehicular mobility system including N areas as an open

network of N servers with infinite queues. In such an open system, vehicles freely

join and leave the system. The exogenous arrival rate for server n is λn. After staying

in the queue of server n for time period of 1/μn, it will leave the queueing network

with probability pn0 or switch to other server like m with probability pnm and denote

the switching matrix as P. Therefore, for server n, its load is denoted by ρn = λn/μn.

pn0

p12

p21

λn

pn2

p2n

p1n

pn1

A2

A1 An

Figure 13.3 Illustration of the queue model for vehicular mobility
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Table 13.1 Parameters and notations used in the queueing

network model

Notations Meaning

N The set of areas, or the servers set
N The number of servers in the system
λn The exogenous arrival rate for server n
1/μn The expected vehicle residence time at area n
ρn The load of server n
M The number of vehicles in the system
pnm Probability of the vehicles moving from area n to area m
Wn The number of vehicles in area n

Since each server’s queue is considered as an infinite queue, and each user is served

immediately if we assume there are an infinite number of servers, and each vehicle is

independent of each other. Now, we summarize the key parameters and their notations

in our model in Table 13.1.

As we model the vehicular mobility system as the aforementioned open queueing

system, it would be very easy to get further results if it is an open Jackson network,

which has well-known results about the user distribution and waiting time. Related

to the Jackson network, we need to demonstrate that the exogenous arrival to each

server follows Poisson process. If it holds, the queueing network can be modeled

by a network with infinite server queue (i.e., M/G/∞). Thus, we need to study

the property of exogenous arrival rate in the system. By leveraging the Beijing and

Shanghai traces, we find that the actual exogenous arrival process of the vehicular

mobility matches well with the exponential distribution. Thus, the vehicular mobility

system can be modeled as an open Jackson network. Based on this model, we will

derive some important metrics to depict the system performance.

13.4 Performance derivation

Based on the open Jackson-queueing network model for the vehicular mobility, we

will investigate three important metrics related to the system performance, which are

vehicular area distribution, average sojourn time, and average mobility length. First,

we give formal definitions of above three metrics:

● Vehicular area distribution: The vehicular area distribution is defined as the steady

population probability distribution of all areas in the system. That is how the

vehicles of whole system are distributed in the areas. Basically, we can define it

as the separate distribution of each area and joint area distribution of all the areas.

Specifically, the vehicular distribution of separated area n is the probability that

there are wn vehicles in area n, which can be expressed as P(Wn = wn), where
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wn = 0, 1, . . . , M , 1 ≤ n ≤ N , and Wn is the random variable denoting the number

of vehicles in an area n. Then, the joint area vehicular distribution, denoted by

π(
→
wn ), can be expressed as follows:

π (
→
wn ) = P(W1 = w1, . . . , WN = wN ). (13.2)

● Average sojourn time: Average sojourn time is defined in the viewpoint of vehi-

cles, which is how long a vehicle will stay in the system. That is the time period

between that the vehicles entering into the region by one of the areas and that it

finally leaves the region. By averaging when all the vehicles in the system is in

a steady state, the average sojourn time. This parameter is related to the session

time of a vehicle visiting in the system.
● Average mobility length: Average mobility length is also defined in terms of

vehicles. That is the average number of areas that a vehicle will travel along when

it is in the system during the sojourn time. This parameter is related to the average

number of transitions of a vehicle during a session.

13.4.1 Vehicular distribution

Considering area n, the exogenous arrival rate for area n is λn. The vehicles switch

from one area to another area according to the matrix P. We treat N areas as an

open Jackson network of N nodes with infinite servers, and view each vehicle as a

customer that sojourns at node n for a random period of time with mean 1/μn, which

is the server time in node n. Then, we let γ = (γ1, γ2, . . . , γN ) be the effective arrival

rate vector for all areas in N . According to Figure 13.4, for any area, say n, we have

γn = λn +
∑

j �=n

γnpjn, 1 ≤ n ≤ N . (13.3)

We express above expression in matrix form accordingly as

γ=λ + γ P, (13.4)

where P is the N × N area-switching matrix.

For area n, let ρn = πn/μn, and ρn is the load of area n. Actually, ρn is the average

number of vehicles in area n. That is to say, ρn is the expected number of vehicles in

λn

pn0

pjn

pnj

An Aj

Figure 13.4 Effective arrival rate of Ai
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area n. Furthermore, we get the separated area vehicular distribution and joint area

vehicular distribution expressions by the following lemma:

Lemma 13.1. The vehicular distribution of the separated area n is

P(Wn = wn) =
ρn

wn e−ρn

wn!
, (13.5)

and the joint area vehicular distribution is

π(
→
wn ) =

N
∏

j=1

ρj
wj e−ρj

wj!
, (13.6)

and the expected number of vehicles that stay in the area n in dynamic vehicular

mobility system is ρn.

Proof. We consider one area, say n. The user arrival rate is γn and the serve time is

1/μn. We view this area as an infinite serve node. Therefore, according to the Jackson

networks, for the vehicular mobility system, we have

π(
→
wn ) = P(W1 = w1, . . . , WN = wN ) =

N
∏

j=1

ρj
wj e−ρj

wj!
. (13.7)

The marginal distribution for individual area is expressed as

P(Wn = wn) =
ρn

wn e−ρn

wn!
. (13.8)

We note that the distribution of vehicles at the queue of node n follows Poisson

with mean ρn. Therefore, the expected number of vehicles that stay in area n is ρn,

which proves the lemma.

13.4.2 Average sojourn time

Using the queueing model for the vehicular mobility, we can further analyze important

system metrics related to the mobility behaviors and properties. As introduced above,

now, we derive two metrics of average sojourn time and mobility length based on the

proposed queueing model of mobility.

First, recall the queueing server set is N = {A1, A2, AN }, which are the system

states that vehicles transfer from one to another, and P = {pnm, 1 ≤ n ≤ N , 1 ≤ m ≤

N } is the switching matrix of the probability that a vehicle moves into area m when

it is in area n. Note that we already define the probability that a vehicle leaves the

modeled region from area n with probability pn0. In order to define a complete system

state, we add another system state A0 into N , namely, the state when the vehicle is

out of the region and denote the new system states set as M , which is M = N
⋃

A0.
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We define p0n as the probability that a vehicle move into the system through area n.

From the definition of pn0 and p0n, we can obtain the following expression for them:

pn0 = 1 −

N
∑

m=1

pnm, n = 1, . . . , N , (13.9)

p0n =
γn

∑N

m=1 γm

, n = 1, . . . , N . (13.10)

In order to better distinguish the transitions on states N and M , we refer P =

{pnm}, 0 ≤ n, m ≤ N as the system transition on states M and denote the sub-matrix

R as the transition among the areas on state N , where R = P{pnm}, 1 ≤ n, m ≤ N .

Now, we obtain the average vehicular sojourn time by the following theorem:

Theorem 13.1. Denoting the vehicular sojourn time in the system by S, we can obtain

the average sojourn time designated as E[S] by the following expression:

E [S] =
∑

n∈N

p0nE [Tn] , (13.11)

where E [Tn] is obtained by [E [T1] , . . . , E [TN ]] = T = (I − R)−1
U, I is an all-one

vector, and U = [1/μ1, . . . , 1/μN ].

Proof. We denote Tn as the vehicular sojourn time in the system on the condition that

it is always in the system. That is to say, the vehicle will not move out of the region

when it stays in any area of n, n ∈ N . Considering the staying duration in area n, and

using the Jackson queue network model, we have

E [Tn] =
1

μn

+
∑

m∈N

pnmE [Tm] . (13.12)

Define U = [1/μ1, . . . , 1/μN ] and T = [E [T1] , . . . , E [TN ]], we can derive as

the following matrix form:

T = U + RT. (13.13)

By [23], we can obtain that (I − R) is reversible. Thus, we can have

T = (I − R)−1U. (13.14)

Therefore, the average sojourn time E[s] is

E [S] =
∑

n∈N

p0iE [Tn] , (13.15)

which proves the theorem.
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13.4.3 Average mobility length

Based on the average sojourn time of Theorem 13.1, we can obtain the average

vehicular mobility length in the following theorem:

Theorem 13.2. The average vehicular mobility length, denoted by E [L], can be

expressed by

E [L] =
∑

n∈N

p0nE [Tn] , (13.16)

where E [Tn] is obtained by [E [T1] , . . . , E [TN ]] = T = (I − R)−1
I

Proof. Note that in the obtained sojourn time that a vehicle stays in the system when

it is already in the system. In (13.13), we can change the sojourn time to mobility

length just by setting the staying time in each area by 1. That is, U = [1, . . . , 1]. Then,

we obtain:

T = (I − R)−11. (13.17)

Therefore, the average sojourn time E[L] is

E [L] =
∑

n∈N

p0nE [Tn] , (13.18)

which proves the theorem.

13.5 Model validation

By leveraging the two most largest urban vehicular mobility traces as introduced

earlier, we validate our proposed open Jackson queueing network model. The traces

record the location information, i.e., longitude and latitude of the vehicles during the

trace-collection period. Therefore, we first need to per-process the traces to fit our

model. Then, we validate our model by using the empirical trace data in terms of

following metrics: vehicular arrival rate, vehicular area distribution, average sojourn

time, and mobility length.

13.5.1 Time selection and area partition

In order to use the GPS vehicular trace to validate our model, we need to preprocess the

data on two different dimensions, i.e., time and location. In terms of time dimension,

since the traces record the continuous vehicular mobility trajectory of the whole day,

we need to select the period of time that is more stable in terms of numbers of the

vehicles in the system to observe. While in the location dimension, we need to partition

the urban map into areas according to the intersections and further decide which

vehicles belong to which area considering their longitude and latitude information.
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13.5.1.1 Area partition

In order to divide the vehicular mobility system into areas that they transit on, we

need to take the road and city structure into consideration. As mentioned before,

the intersection is the most important factor to model the urban vehicular mobility

and distributions. Therefore, we divide the system according to the position of the

intersections in the city roads. More specifically, we take the intersections as the

center of each area and then partition the roads into area according to the distance to

the intersections. We use Voronoi diagram to achieve this, which is a frequently used

method of decomposition of a given space [24]. In Voronoi diagram, we are given a

finite set of sites {p1, . . . , pn} in the Euclidean plane. The site of pi’s corresponding

Voronoi cell, denoted by Vi, consists of all points whose distance to pi is not greater

than their distance to any other sites. While using the Voronoi diagram to partition

the system region, we take all the intersections as the set of sites, denoted by I =

{p1, p2, . . . , pN }, and refer to all the points in the system region as L . We denote the

dli as the distance between point l, l ∈ L and site i, i ∈ I , which is the geometric

distance between point l and the point of intersection in site i. Then, the area for

site, i, is designated as Vi and expressed as Vi = {l|dli ≤ dlj, ∀j ∈ I \ {i}, ∀l ∈ L }.

According to the regulation introduced above, we obtain the boundary and partition

of the desired system region into different areas.

For example, we consider a part of Shanghai city, the area partitioned results

depicted via Voronoi diagram is shown in Figure 13.2. The blue points in the figure

are the records of vehicular trajectory, the marked red points are the intersections, and

the cells are the partition areas distinguished by the yellow curves. We observe that

the region is divided by different areas, and according to the coordinate information

of each vehicle, we can decide which area it belongs to. Consequently, the vehicular

mobility is modeled by the transitions from one area to another.

13.5.1.2 Observation period selection

Since we are interested in the time period when vehicles are most active and stable,

we look into the trace to investigate the time period when there are enough vehicles

in the system, and the system is relatively stable and stationary. In the urban city,

the vehicle traffic appears almost the same patterns varying from one day to another,

except the little difference between the working day and weekend. Thus, we can select

the suitable observation period by just investigating the aggregate vehicular arrival

rate in the timescale of 1 day.

We plot the aggregated vehicular arrival rate into the system of both Beijing and

Shanghai trace in Figure 13.5. By observing the curve of Beijing trace, we find the

arrival rate is very low from the midnight to 5 am, and it increases quickly during

6–9 am. Then, the arrival rate almost keeps in the same level during the daytime from

9 am to 7 pm. Following comes a rate-decreasing period. Similar arrival rate patterns

can be observed in the Shanghai trace, except the traffic also keeps in the very active

state during the period of 7 pm to the midnight. Combining the Shanghai and Beijing

traces’ results, our goals of finding the most active period for the vehicular mobility

system, we select the period of 9 am to 7 pm as the observation period as the data to

validate our proposed model. When processing the vehicular mobility trajectory, if a
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Figure 13.5 Average vehicular arrival rate to the system in timescale of 1 day for

Shanghai and Beijing trace

vehicle does not have records in any of the areas in the period of 10 min, we assume

that it has departed from the system and will take it as a new vehicle moving into the

system when it appears.

13.5.2 Arrival rate validation

We note that in the open Jackson network model, an important requirement is that

the exogenous arrival to each area should follow Poisson process. Therefore, we

need to validate this. In the open Jackson model, the arrival to each server is the

aggregated customer arrival process. Consequently, the aggregated arrivals is the

metric to validate the rationality of our proposed model. We validate the vehicu-

lar arrival rate in the timescales of not only 1 day but also all the days. First, we

investigate the aggregated arrivals of all vehicles in the system. Based on the intro-

duced method of area partition, we count the exogenous arrivals to each area. To

validate that the aggregated arrival rate follows Poisson process, we need to jus-

tify the arrival time that can be fitted well by the exponential distribution. We plot

the Complementary Cumulative Distribution Function (CCDF) of the arrival time

distribution obtained from Shanghai and Beijing traces in Figure 13.6. Since we

plot the results in linear-log scale, where the curves of exponential distribution will

become a straight line, we can observe that the arrival time may match the exponen-

tial distribution well. Furthermore, we use exponential distribution to fit the 90% of

the distribution, where the red curves are the exponential distribution and the blue

curves are the empirical curves. The goodness of fit is measured quantitatively by the

R-square statistics [25], which is defined as the percentage of the variation between

the empirical CCDF and the fitted distribution. We obtain that the average adjusted

R-square statistics is over 98% for both Shanghai and Beijing traces. This confirms
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the accuracy of the exponential distribution of the aggregated arrival time, which

indicates the aggregated arrivals follows Poisson process.

Second, in order to further validate the exogenous arrivals to each area following

Poisson distribution, we investigate the distribution of the exogenous arrival time

of each area in the timescale of 1 day and select the first 15 days for studying. To

measure the closeness of the Poisson distribution and empirical ones, we use the

Kolmogorov–Smirnov test (KS test) instead of CCDF fitting due to the large amount

of curves in each area of 15 days. The KS statistic can quantify the distance between the

empirical distribution function of the sample and the cumulative distribution function

of the theoretical distribution [26]. The smaller the KS statistic, the closer the two

distributions are. In our study, we set the significance level [26] of KS test to 0.01,

which means the confidence level is 99%. Figure 13.7 shows the goodness-of-fit

measured by the acceptance ratio of KS tests of each day by averaging the results of

all areas. From the results, we can observe that the acceptance ratio of Beijing trace

is above 90% except the second day, which have a relatively smaller vehicle mobility

records. With regards to the Shanghai trace, we note a good match between the model

distribution and empirical results, and the average acceptance ratios are around 80%,

which means the overall accuracy of the Poisson model is about 80%. Combing the

results of Shanghai and Beijing, we come to the conclusion that the exogenous arrivals

to each area can be accurately modeled by the Poisson distribution.

Now, we have completed the validation of Poisson-based exogenous arrivals’

accuracy in our model. Next, we focus on validating the results of vehicular distribu-

tion, sojourn time, and mobility length, which are important metrics obtained from

the open Jackson queuing network-based vehicular mobility model.
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timescale of 1 day for Shanghai and Beijing traces

13.5.3 Vehicular distribution

At the first glance, we would like to know how well the proposed queueing network

model matches the empirical results. We note that the direct metrics obtained from

the model is the vehicular distribution at each area. Therefore, we first investigate the

vehicular distribution by comparing the results obtained from the theoretical model

and empirical data.

By selecting the six most busiest areas from Beijing and Shanghai traces, we plot

the distribution of the number of vehicles in these areas by the empirical results and

also plot the model results obtained from Lemma 13.1. The results of Beijing trace are

shown in Figure 13.8, and that of Shanghai trace are shown in Figure 13.9, where the

blue solid lines are the model results and the red dotted lines are the empirical results.

From the results, it is quite obvious that our model results match the empirical results

well, which shows the accuracy of our proposed queuing network-based vehicular

mobility model.

In order to measure the closeness of the predicted results obtained from the

model and the empirical results of all areas, we use the distribution obtained in

Lemma 13.1 to fit the empirical curves of all the areas in both Shanghai and Beijing

traces. The goodness of fit is also measured quantitatively by the R-square statistics

[25], which is defined as the percentage of the variation between the empirical CCDF

and the fitted distribution. Figure 13.10 shows the adjusted R-square statistics of the

model distribution fittings, where the adjusted R-square statistics are computed with
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Figure 13.8 Vehicular distribution of six intersections in Beijing trace, where the

red and dotted curves are the empirical results obtained from the

trace, and the blue and solid curves are the theoretical results

obtained by our proposed model

MATLAB® Curve Fitting Toolbox. It can be seen from Figure 13.10 that the average

adjusted R-square statistics of over 90% areas for the Shanghai trace is larger than

98%, and that of over 90% areas for the Shanghai trace is larger than 95%. This

confirms the accuracy of the model-based prediction for vehicular distribution.
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Figure 13.9 Vehicular distribution of six intersections in Shanghai trace, where the

red and dotted curves are the empirical results obtained from the

trace, and the blue and solid curves are the theoretical results

obtained by our proposed model

13.5.4 Average sojourn time and mobility length

In this subsection, we compare the theoretical results of mean sojourn time and mobil-

ity length predicted from our proposed model against the empirical results obtained

by the mobility traces, where the theoretical results is calculate by Theorems 13.1

and 13.2.
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Table 13.2 Predicted and empirical results of average sojourn time and mobility

length of Shanghai trace

Mobility Average sojourn time Average mobility length
Number of vehicles Predicted and empirical

Predicted results Empirical results results

1,000 1,498.0 1,412.6 16.69
3,000 1,462.6 1,386.3 16.28
4,441 1,475.4 1,374.2 16.10

For testing the scalability of the accuracy of the proposed model, we vary the

number of evolved vehicles. Both for the Shanghai and Beijing trace, we sort the

vehicles according to their number of positions recorded in the GPS trace. We first

select vehicles that have at least 80% of record during the trace collection time, and

then put more and more vehicles into the system for testing. For Shanghai trace, we

selected different number of vehicles as 1,000, which have 80% of record, 3,000 and

4,441, which is the total number of vehicles in the trace. For Beijing trace, the set of

the number of vehicles as 3,000, 6,000, 10,000, and 28,590.

The results of average sojourn time and mobility length of predicted and empir-

ical results under the Shanghai and Beijing traces are shown in Tables 13.2 and

13.3, respectively. From the results of average sojourn time, we find that the pre-

dicted results match the empirical results very well for both Shanghai and Beijing

traces. Especially, when we only use vehicles with more completed record, the pre-

dicted results are very near to the empirical results. For example, in Shanghai trace,
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Table 13.3 Predicted and empirical results of average sojourn time and mobility

length of Beijing trace

Mobility Average sojourn time Average mobility length
Number of vehicles Predicted and empirical

Predicted results Empirical results results

3,000 1,689.8 1,720.5 9.86
6,000 1,662.5 1,699.7 9.62
10,000 1,613.4 1,658.1 9.23
28,590 1,450.4 1,500.1 8.37

the average deviation between the predicted and empirical results is only 5.7% when

the number of vehicular is 1, 000; while in Beijing trace, it is only 1.8% when the

number of vehicular is 3, 000. With the increasing number of vehicles, although more

and more vehicles are with imperfect records, which will induce some errors into the

system and model, the accuracy of our model is also accepted. For example, the pre-

diction accuracy are higher than 6.9% and 3.4% when the number of vehicles are

4, 441 and 28, 590 in Shanghai and Beijing trace, respectively. In terms of average

mobility length, the predicted results comply with the theoretical results completely.

Consequently, we validate that our model is accurate enough to model the vehicular

mobility to obtain the average and stable system performance.

13.6 Applications of networking

In vehicular networks, regarding with random and bursty data traffic initiated from

vehicles, RSUs play as the gateways to the internet and to the infrastructure of other

systems, such as ITS. Vehicles transmit their Internet access requests and information

to RSUs, and RSUs then send responses to the Internet for querying the data and

information needed by vehicles. Therefore, deploying RSUs appropriately is signif-

icant to the performance of vehicular networks. On one hand, the capacity and the

number of deployed RSUs determine the capacity and service that can be provided to

the vehicular network. On the other hand, a large number of RSUs deployed with large

capacity mean more infrastructure cost. Therefore, the decision for RSU deployment

should depend on the demands of vehicles. Basically, in the large urban city, it is very

difficult to make such decisions due to the dynamics of vehicular traffic and ran-

domness of vehicle mobility. However, based on our proposed vehicular model, we

can obtain some fundamental results of the relationship with the RSUs capacity and

network performance. Using the proposed queuing network-based vehicular mobility

model, we will analyze how much RSUs’ capacity should be provided with the rise

in communication demands resulting from the increase of urban vehicles.

In reality, it is difficult to cover roads with enough RSUs so that each vehicle

on the road can always be connected to nearby RSU in terms of infrastructure cost.
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Instead, vehicle-to-vehicle communications by opportunistic contacts offer higher

bandwidth communication capacity for data transmission, which can be utilized

to form what is known as the opportunistic vehicular network or vehicular delay

tolerant network (VDTN) [27]. By exploiting the delay-tolerant nature of non-real-

time applications, service providers can delay and even shift the data transmission to

VDTN. Therefore, in vehicular networking, vehicle-to-RSUs communications (V2I)

and vehicle-to-vehicle communications (V2V) usually are combined to offer ser-

vices. In this situation, investigating the performance of the networks considering

the vehicular mobility and different approaches of communications is a very difficult

problem. As the second part of this section, we will study the application of using the

queueing model to investigate the performance of the combined communications of

V2I and V2V.

13.6.1 RSU capacity decision

Now, we investigate the problem that if the number of vehicles increases with the

development of economy and human demands, can the deployed RSUs handle the

emerging growth of the communication demand. In this case, we define the capacity

of the RSU as the maximum number of vehicles that can be served. Since the vehicular

system in terms of both vehicular traffic and communication traffic is dynamic, we

further define the RSU is overloaded if the time period, in which the number of served

vehicles is more than its capacity, exceeds 95% of the whole measurement time. That

is if the probability that the served vehicles, more than the maximum number, is below

95%, the RSU is not overloaded. By increasing the exogenous arrival rate λ, we look

at the case that what fraction of RSUs will be overloaded.

From both the Shanghai and Beijing traces, we select those vehicles having almost

completely recorded during the whole trace collection time, which is 3,000 taxis, and

obtain the original λ from the trace, increase it from λ to 5λ, and plot the results

in Figures 13.11 and 13.12 for Beijing and Shanghai traces, respectively. From the

results, we can observe that with the increase in RSUs’ capacity, the fraction of the

overloaded RSU decrease very fast, while with the increase of the vehicular exogenous

arrival rate, it also increases. For quantitative analysis, we examine the requirements

of the capacity of RSU needed when at least 95% RSUs are not overloaded. In Beijing

trace, we note that when the vehicular arrival rate is λ, the required capacity is about

10, on the other hand, when the arrival rate is increased by five times, i.e., 5λ, the

required RSU capacity is about 35, which is only 3.5 times compared with the case

when the arrival rate is λ. With regard to the Shanghai trace, we can obtain similar

results when we increase the arrival rate by five times from λ to 5λ, the required RSU

capacity increases about three times. This result is not obvious since the capacity does

not need to increase linearly with the arrival rate, which means the number of vehicles

in the system. Moreover, according to the obtained results shown in the figures, we can

decide the RSU deploying policy according to the network performance requirements

and investigation of deploying RSU equipment in terms of the cost.
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Figure 13.11 Fraction of overloaded RSU according to its capacity when

scaling-up the vehicular arrival rate for Beijing trace
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Figure 13.12 Fraction of overloaded RSU according to its capacity when

scaling-up the vehicular arrival rate for Shanghai trace

13.6.2 V2I and V2V combined performance analysis

Based on the queueing network model, we derive closed-form expressions for per-

formance metrics, such as the probability of network-wide satisfied areas and the
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average number of areas that satisfy the communication demands with V2I and V2V

communications.

We say satisfied area occurs when every vehicle in this area can receive the

demanded data rate. When the network is in the state of satisfying communication,

all vehicles in the network are satisfied. For a given vehicular network, it is hard

for the network to enjoy the satisfying communication all the time. Then, the metric

of the steady-state probability that the network is in satisfying communication is an

important parameter to evaluate the performance of the vehicular network. Another

important metric is the expected number of areas that are enjoying the satisfying

communication. Now we give more precise definitions for these two metrics.

The communication capacity index for area n, denoted by �n(Wn), is defined as

�n(Wn) =
cn + pn

dn (Wn)
, (13.19)

where Wn is the number of vehicles in the area of n, cn is the communication capacity

of the deployed RSU in area n, pn is the capacity of the V2V communications in this

area, and dn (Wn) is the demand of communication of vehicles in the area. Based on

�n(Wn), the probability that area n is enjoying the satisfying communication can be

defined as

ASn = P(�n(Wn) ≥ 1) . (13.20)

The probability of all the areas that are satisfying is defined as

PS = P(�n(Wn) ≥ 1, n = 1, . . . , N ) (13.21)

Similarly, the average number of satisfied areas is defined as

NS =

N
∑

n=1

P(�n(Wn) ≥ 1). (13.22)

Now, we consider area n and calculate the area satisfying probability ASn. In this case,

cn is the capacity of the deployed RSU located at the center of this area, pn is the V2V

communication capacity, which depends on the number of vehicles in this area. We

assume each vehicle can offer capacity of ui, then pn =
∑

i∈Wn
ui. Assume vehicles

in area n need communication capacity of rn, then dn(Wn) = Wnrn. Hence, ASn can

be expressed as

ASn = P

(

cn +
∑

i∈Wn

ui ≥ Wnrn

)

. (13.23)

In the reality vehicular system, the V2V communication capacity depends on

the wireless interface. Suppose there are two classes of vehicles, i.e., one class uses

Bluetooth and the other uses Wi-Fi to achieve the short range peer-to-peer commu-

nications. Therefore, one class of vehicles has low capacity of u j, and the other class
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has large capacity of uk ; then, according to Theorem 13.1, the satisfying probability

of area n, ASn, is given by
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Consequently, we can obtain the probability of the network-wide satisfying PS

and the number of satisfying areas NS as follows:

PS = P(�n(Wn) ≥ 1, n = 1, . . . , N )

=

N
∏

n=1

P(�n(Wn) ≥ 1) =

N
∏

n=1

ASn; (13.25)

NS =

N
∑

n=1

P(�n(Wn) ≥ 1) =

N
∑

n=1

ASn. (13.26)

Based on the above derivation, we set a vehicular network environment to observe

the performance. For the considered system, we assume there are 20 areas. The RSU’s

communication capacity of each area is set to be uniformly distributed, i.e., [500,

12,000] bps by considering the capacity provided by usually deployed Wi-Fi or 3G/4G

base stations. The capacity of V2V communication of each vehicle is divide into two

class, one class having [750, 850] bps, and [50, 150] bps of low capacity vehicles.

Related to the load of each area, we use the data obtained from Beijing trace, select

most 20 areas with largest number of vehicles in the system, let half of vehicles are with

high capacity, and the other half are with low capacity. We set this area load settings

as ρ and increase the load by 3, 5, 7, and 9 times. In the vehicular side, we set their

communication by an exponential distribution with parameter of ϑ . Under the above

settings, we can obtain the vehicular networking system performance of area satisfying

probability, network-wide satisfying probability, and the number of satisfying areas.

By varying the mean of the communication demand of vehicles 1/ϑ , the results of

satisfying probability of the most loaded areas are shown in Figure 13.13. From the

results, we can see that the satisfying probability is near 100% when the average

demand is less than 300 bps. With the increase in demand, the satisfying probability
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Figure 13.14 Network-wide satisfying probability according to the demand of

communication rate

decreases. The larger the load, the sharper the decreasing rate. Under these results,

we can decide how to deploy the RSU equipment according to the performance curve

and specific requirements. In terms of the network-wide performance, Figures 13.14

and 13.15 show the results of PS and NS. With the increase in average demand and
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area load, we can see both PS and NS decrease. In this case, we can use the related

results to design the network system according to the requirements and decide how

to deploy infrastructure and RSU devices supporting V2V communications.

13.7 Conclusions

In this chapter, we used the open Jackson queueing network to model the macro-

scopic level vehicular mobility. Our proposed simple model can accurately describe

the vehicular mobility and predict various measures of network-level and vehicular-

level performance. Based on two large-scale urban city vehicular motion traces, we

validated the accuracy of our proposed model. Finally, we proposed two applica-

tions as an example to illustrate our proposed model effectiveness in the analysis of

system-level performance and dimensioning of vehicular networks.
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